1
|
Kong Q, Liu Q, Gao F, Wang X, Wang Z, Xiao C, Zhang X, Yu Q, Fan J, Zhu X. Computational cognitive mechanisms of visual working memory in major depressive disorder and sex differences. BMC Psychol 2025; 13:331. [PMID: 40181421 PMCID: PMC11969760 DOI: 10.1186/s40359-025-02662-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/27/2025] [Indexed: 04/05/2025] Open
Abstract
This study examined the computational cognitive mechanisms of visual working memory (VWM) in MDD, focusing on memory precision while exploring potential sex differences. 159 Major Depressive Disorder (MDD) patients and 67 healthy controls (HC) completed the color delay estimation task to measure their VWM. The mainstream models of VWM were compared, and the variable-precision (VP) model was the best fit for our data. The Bayesian ANCOVA was used to compare the differences between groups (MDD & HC) and sexes (male & female). Results revealed that MDD had worse memory precision than HC (BF10 = 103.872, decisive evidence for H1). Specifically, they had larger resource allocation variability (BF10 = 19.421, strong evidence for H1), indicating that they distributed memory resources more unevenly across different items than HC. In addition, females had better memory precision than males (BF10 = 10.548, strong evidence for H1). More specifically, they had more initial resources during the color delay estimation task (BF10 = 6.003, substantial evidence for H1) than males. These findings highlight the critical role of diminished precision, specifically, larger resource allocation variability, in impaired VWM in MDD. Meanwhile, these findings highlight sex differences in memory precision and initial resources of VWM.
Collapse
Affiliation(s)
- Qingzu Kong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Furong District, Changsha City, Hunan Province, China
- Medical Psychological Institute of Central South University, Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders (Xiangya), Changsha, China
- National Center for Mental Disorder, Changsha, China
| | - Qian Liu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Furong District, Changsha City, Hunan Province, China
- Medical Psychological Institute of Central South University, Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders (Xiangya), Changsha, China
- National Center for Mental Disorder, Changsha, China
| | - Feng Gao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Furong District, Changsha City, Hunan Province, China
- Medical Psychological Institute of Central South University, Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders (Xiangya), Changsha, China
- National Center for Mental Disorder, Changsha, China
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Furong District, Changsha City, Hunan Province, China
- Medical Psychological Institute of Central South University, Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders (Xiangya), Changsha, China
- National Center for Mental Disorder, Changsha, China
| | - Zhiyan Wang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Furong District, Changsha City, Hunan Province, China
- Medical Psychological Institute of Central South University, Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders (Xiangya), Changsha, China
- National Center for Mental Disorder, Changsha, China
| | - Chuman Xiao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Furong District, Changsha City, Hunan Province, China
- Medical Psychological Institute of Central South University, Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders (Xiangya), Changsha, China
- National Center for Mental Disorder, Changsha, China
| | - Xinyue Zhang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Furong District, Changsha City, Hunan Province, China
- Medical Psychological Institute of Central South University, Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders (Xiangya), Changsha, China
- National Center for Mental Disorder, Changsha, China
| | - Qianmei Yu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Furong District, Changsha City, Hunan Province, China
- Medical Psychological Institute of Central South University, Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders (Xiangya), Changsha, China
- National Center for Mental Disorder, Changsha, China
| | - Jie Fan
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Furong District, Changsha City, Hunan Province, China.
- Medical Psychological Institute of Central South University, Central South University, Changsha, China.
- National Clinical Research Center on Mental Disorders (Xiangya), Changsha, China.
- National Center for Mental Disorder, Changsha, China.
| | - Xiongzhao Zhu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Furong District, Changsha City, Hunan Province, China.
- Medical Psychological Institute of Central South University, Central South University, Changsha, China.
- National Clinical Research Center on Mental Disorders (Xiangya), Changsha, China.
- National Center for Mental Disorder, Changsha, China.
| |
Collapse
|
2
|
Hou W, Zhou F, Wang Q, Li H, Qin X, Ding Y, Dong F, Bo Q, Li A, Zhang L, Chen Z, Wang Z, Li X, Lee J, Wang C. Effect of transcranial direct current stimulation with concurrent cognitive performance targeting posterior parietal cortex vs prefrontal cortex on working memory in schizophrenia: a randomized clinical trial. Transl Psychiatry 2024; 14:279. [PMID: 38977683 PMCID: PMC11231223 DOI: 10.1038/s41398-024-02994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
Working memory deficits are linked to irregularities in the dorsolateral prefrontal cortex (DLPFC) and the posterior parietal cortex (PPC) in schizophrenia, effective intervention strategies are lacking. We evaluated the differential efficacy and underlying neuromechanisms of targeting transcranial direct current stimulation (tDCS) at the DLPFC and the PPC with concurrent cognitive performance for working memory in schizophrenia. In a randomized and double-blind clinical trial, sixty clinically stable schizophrenic patients with below-average working memory were randomly assigned to active DLPFC, active PPC, and sham tDCS groups. Two sessions of tDCS during N-back task were delivered daily for five days. The primary outcome was changes in spatial span test scores from baseline to week 1. The secondary outcomes included changes in scores of color delay-estimation task, other cognitive tasks, and mismatch negativity (biomarker of N-methyl-d-aspartate receptor functioning). Compared with the active DLPFC group, the active PPC group demonstrated significantly greater improvement in spatial span test scores (p = 0.008, d = 0.94) and an augmentation in color delay-estimation task capacity at week 1; the latter sustained to week 2. Compared with the sham tDCS group, the active PPC group did not show a significant improvement in spatial span test scores at week 1 and 2; however, significant enhancement was observed in their color delay-estimation task capacity at week 2. Additionally, mismatch negativity amplitude was enhanced, and changes in theta band measures were positively correlated with working memory improvement in the active PPC group, while no such correlations were observed in the active DLPFC group or the sham tDCS group. Our results suggest that tDCS targeting the PPC relative to the DLPFC during concurrent cognitive performance may improve working memory in schizophrenia, meriting further investigation. The improvement in working memory appears to be linked to enhanced N-methyl-d-aspartate receptor functioning.
Collapse
Affiliation(s)
- Wenpeng Hou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Fuchun Zhou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qi Wang
- Fengtai Mental Health Center, Beijing, China
| | - Hang Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xiangqin Qin
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yushen Ding
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Fang Dong
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qijing Bo
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Anning Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Liang Zhang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Zhenzhu Chen
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Zhimin Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xianbin Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jimmy Lee
- Institute of Mental Health, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chuanyue Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Fırat Z, Er F, Noyan H, Ekinci G, Üçok A, Uluğ AM, Aktekin B. Discriminant analysis using MRI asymmetry indices and cognitive scores of women with temporal lobe epilepsy or schizophrenia. Neuroradiology 2024; 66:1083-1092. [PMID: 38416211 DOI: 10.1007/s00234-024-03317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
PURPOSE This study aims to assess the diagnostic power of brain asymmetry indices and neuropsychological tests for differentiating mesial temporal lobe epilepsy (MTLE) and schizophrenia (SCZ). METHODS We studied a total of 39 women including 13 MTLE, 13 SCZ, and 13 healthy individuals (HC). A neuropsychological test battery (NPT) was administered and scored by an experienced neuropsychologist, and NeuroQuant (CorTechs Labs Inc., San Diego, California) software was used to calculate brain asymmetry indices (ASI) for 71 different anatomical regions of all participants based on their 3D T1 MR imaging scans. RESULTS Asymmetry indices measured from 10 regions showed statistically significant differences between the three groups. In this study, a multi-class linear discriminant analysis (LDA) model was built based on a total of fifteen variables composed of the most five significantly informative NPT scores and ten significant asymmetry indices, and the model achieved an accuracy of 87.2%. In pairwise classification, the accuracy for distinguishing MTLE from either SCZ or HC was 94.8%, while the accuracy for distinguishing SCZ from either MTLE or HC was 92.3%. CONCLUSION The ability to differentiate MTLE from SCZ using neuroradiological and neuropsychological biomarkers, even within a limited patient cohort, could make a substantial contribution to research in larger patient groups using different machine learning techniques.
Collapse
Affiliation(s)
- Zeynep Fırat
- Department of Radiology, Yeditepe University Hospitals, Kosuyolu, 34718, Istanbul, Turkey.
| | - Füsun Er
- Department of Information Systems Engineering, Piri Reis University, Istanbul, Turkey
| | - Handan Noyan
- Faculty of Social Sciences, Department of Psychology, Beykoz University, 34810, Istanbul, Turkey
| | - Gazanfer Ekinci
- Department of Radiology, Yeditepe University Hospitals, Kosuyolu, 34718, Istanbul, Turkey
| | - Alp Üçok
- Istanbul Faculty of Medicine, Department of Psychiatry, Istanbul University, 34134, Istanbul, Turkey
| | - Aziz M Uluğ
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
- CorTechs Labs Inc, San Diego, CA, USA
| | - Berrin Aktekin
- Department of Neurology, Yeditepe University Hospitals, Kosuyolu, 34718, Istanbul, Turkey
| |
Collapse
|
4
|
Perellón-Alfonso R, Oblak A, Kuclar M, Škrlj B, Pileckyte I, Škodlar B, Pregelj P, Abellaneda-Pérez K, Bartrés-Faz D, Repovš G, Bon J. Dense attention network identifies EEG abnormalities during working memory performance of patients with schizophrenia. Front Psychiatry 2023; 14:1205119. [PMID: 37817830 PMCID: PMC10560761 DOI: 10.3389/fpsyt.2023.1205119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction Patients with schizophrenia typically exhibit deficits in working memory (WM) associated with abnormalities in brain activity. Alterations in the encoding, maintenance and retrieval phases of sequential WM tasks are well established. However, due to the heterogeneity of symptoms and complexity of its neurophysiological underpinnings, differential diagnosis remains a challenge. We conducted an electroencephalographic (EEG) study during a visual WM task in fifteen schizophrenia patients and fifteen healthy controls. We hypothesized that EEG abnormalities during the task could be identified, and patients successfully classified by an interpretable machine learning algorithm. Methods We tested a custom dense attention network (DAN) machine learning model to discriminate patients from control subjects and compared its performance with simpler and more commonly used machine learning models. Additionally, we analyzed behavioral performance, event-related EEG potentials, and time-frequency representations of the evoked responses to further characterize abnormalities in patients during WM. Results The DAN model was significantly accurate in discriminating patients from healthy controls, ACC = 0.69, SD = 0.05. There were no significant differences between groups, conditions, or their interaction in behavioral performance or event-related potentials. However, patients showed significantly lower alpha suppression in the task preparation, memory encoding, maintenance, and retrieval phases F(1,28) = 5.93, p = 0.022, η2 = 0.149. Further analysis revealed that the two highest peaks in the attention value vector of the DAN model overlapped in time with the preparation and memory retrieval phases, as well as with two of the four significant time-frequency ROIs. Discussion These results highlight the potential utility of interpretable machine learning algorithms as an aid in diagnosis of schizophrenia and other psychiatric disorders presenting oscillatory abnormalities.
Collapse
Affiliation(s)
- Ruben Perellón-Alfonso
- Faculty of Medicine and Health Sciences, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Aleš Oblak
- University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia
| | - Matija Kuclar
- Department of Psychiatry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Blaž Škrlj
- Jožef Stefan Institute, Ljubljana, Slovenia
| | - Indre Pileckyte
- Center for Brain and Cognition, Pompeu Fabra University, Barcelona, Spain
| | - Borut Škodlar
- University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia
- Department of Psychiatry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Pregelj
- University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia
- Department of Psychiatry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Kilian Abellaneda-Pérez
- Faculty of Medicine and Health Sciences, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institut Guttmann, Institut Universitari de Neurorehabilitació Adscrit a la UAB, Barcelona, Spain
| | - David Bartrés-Faz
- Faculty of Medicine and Health Sciences, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Grega Repovš
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Jurij Bon
- University Psychiatric Clinic Ljubljana, Ljubljana, Slovenia
- Department of Psychiatry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Cao Y, Xu Y, Xia Q, Shan F, Liang J. Peripheral Complement Factor-Based Biomarkers for Patients with First-Episode Schizophrenia. Neuropsychiatr Dis Treat 2023; 19:1455-1462. [PMID: 37384352 PMCID: PMC10295471 DOI: 10.2147/ndt.s420475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023] Open
Abstract
Objective Schizophrenia (SCZ) is a severe, protracted neurological disorder that causes disruptive conduct in millions of individuals globally. Discovery of potential biomarkers in clinical settings would lead to the development of efficient diagnostic techniques and an awareness of the disease's pathogenesis and prognosis. The aim of the present study was to discover and identify serum complement factor-based biomarkers in discriminating patients with first-episode SCZ from healthy controls. Methods Eighty-nine patients with first-episode SCZ and 89 healthy controls were included in this study. Psychiatric symptom severity of patients with SCZ was measured with the Brief Psychiatric Rating Scale-18 Item Version (BPRS) and the Scales for the Assessment of Negative/Positive Symptoms (SANS/SAPS). A total of 5 complement factors including complement component 1 (C1), C2, C3, C4, and 50% hemolytic complement (CH50) were measured using commercially available enzyme-linked immunosorbent assay (ELISA) kits. The levels of serum complement factors in the SCZ and control groups were compared, and the receiver operating characteristic (ROC) curve method was used to assess the diagnostic values of various complement factors for separating SCZ patients from healthy controls. Pearson's correlation test was used to assess the relationships between serum complement factor concentrations and the psychiatric symptom severity. Results There was an increase in serum levels of C1, C2, C3, C4, and CH50 among patients with SCZ. Moreover, based on ROC curve analysis, the AUC value of a combined panel of C1, C2, C3, C4, and CH50 was 0.857 when used to discriminate patients with SCZ from healthy controls. Furthermore, serum C2, C3, and CH50 levels were positively correlated to the scores of SANS, SAPS, and BPRS in patients with SCZ, respectively. Conclusion These results suggested that circulating complement factors including C1, C2, C3, C4, and CH50 may have potential in discovering biomarkers for diagnosing first-episode SCZ.
Collapse
Affiliation(s)
- Yin Cao
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Department of Pharmacy, Hefei Fourth People’s Hospital, Hefei, People’s Republic of China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, People’s Republic of China
- Anhui Clinical Research Center for Mental Disorders, Hefei, People’s Republic of China
| | - Yayun Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, People’s Republic of China
| | - Qingrong Xia
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Department of Pharmacy, Hefei Fourth People’s Hospital, Hefei, People’s Republic of China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, People’s Republic of China
- Anhui Clinical Research Center for Mental Disorders, Hefei, People’s Republic of China
| | - Feng Shan
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Department of Pharmacy, Hefei Fourth People’s Hospital, Hefei, People’s Republic of China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, People’s Republic of China
- Anhui Clinical Research Center for Mental Disorders, Hefei, People’s Republic of China
| | - Jun Liang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Department of Pharmacy, Hefei Fourth People’s Hospital, Hefei, People’s Republic of China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, People’s Republic of China
- Anhui Clinical Research Center for Mental Disorders, Hefei, People’s Republic of China
| |
Collapse
|
6
|
Belekou A, Katshu MZUH, Dundon NM, d'Avossa G, Smyrnis N. Spatial and non-spatial feature binding impairments in visual working memory in schizophrenia. Schizophr Res Cogn 2023; 32:100281. [PMID: 36816536 PMCID: PMC9930192 DOI: 10.1016/j.scog.2023.100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Working memory (WM) impairments are well recognized in schizophrenia patients (PSZ) and contribute to poor psycho-social outcomes in this population. Distinct neural networks underlay the ability to encode and recall visual and spatial information raising the possibility that profile of visual working memory performance may help pinpoint dysfunctional neural correlates in schizophrenia. This study assessed the resolution and associative aspects of visual working memory deficits in schizophrenia and whether these deficits arise during encoding or maintenance processes. A total of 60 participants (30 PSZ and 30 healthy controls) matched in age, gender and education assessed on a modified object in place (OiPT), a delayed non-match-to-sample (DNMST) and a delayed spatial estimation (DSET) task. Patients demonstrated lower accuracy than controls in binding visual features of the same object and recognizing novel objects as well as lower precision recalling the location of a memorized target. Moreover, response choice set size affected recognition accuracy more in PSZ than controls. However, delay duration affected spatial recall precisions, binding, and recognition accuracy equally in the two groups. Our results suggest that visual working memory (vWM) impairments in schizophrenia predominantly reflect spatial and non-spatial binding deficits, with largely preserved discrete feature information. Moreover, these impairments likely arise more during encoding than during maintenance. These binding deficits may reflect impaired effective neural functional connectivity observed in schizophrenia.
Collapse
Affiliation(s)
- Antigoni Belekou
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute “COSTAS STEFANIS”, Athens, Greece
- 1st Psychiatry Department, National and Kapodistrian University of Athens, Medical School, Eginition Hospital, Athens, Greece
| | - Mohammad Zia Ul Haq Katshu
- Institute of Mental Health, University of Nottingham, Nottingham NG7 2TU, United Kingdom
- Nottinghamshire Healthcare NHS Foundation Trust, Nottingham NG3 6AA, United Kingdom
| | - Neil Michael Dundon
- Dept. of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University of Freiburg, 79104 Freiburg, Germany
| | - Giovanni d'Avossa
- School of Human and Behavioural Sciences, Bangor University, Bangor, Gwynedd LL57 2AS, United Kingdom
| | - Nikolaos Smyrnis
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute “COSTAS STEFANIS”, Athens, Greece
- 2nd Psychiatry Department, National and Kapodistrian University of Athens, Medical School, University General Hospital “ATTIKON”, Athens, Greece
- Corresponding author at: 2nd Psychiatry Department, National and Kapodistrian University of Athens, Medical School, University General Hospital “ATTIKON”, 1 Rimini St., Athens GR-12462, Greece.
| |
Collapse
|
7
|
Awareness of the relative quality of spatial working memory representations. Atten Percept Psychophys 2023:10.3758/s13414-022-02646-5. [PMID: 36720782 PMCID: PMC10371925 DOI: 10.3758/s13414-022-02646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 02/02/2023]
Abstract
Working memory (WM) is the ability to maintain and manipulate information no longer accessible in the environment. The brain maintains WM representations over delay periods in noisy population-level activation patterns, resulting in variability in WM representations across items and trials. It is established that participants can introspect aspects of the quality of WM representations, and that they can accurately compare which of several WM representations of stimulus features like orientation or color is better on each trial. However, whether this ability to evaluate and compare the quality of multiple WM representations extends to spatial WM tasks remains unknown. Here, we employed a memory-guided saccade task to test recall errors for remembered spatial locations when participants were allowed to choose the most precise representation to report. Participants remembered either one or two spatial locations over a delay and reported one item's location with a saccade. On trials with two spatial locations, participants reported either the spatial location of a randomly cued item, or the location of the stimulus they remembered best. We found a significant improvement in recall error and increase in response time (RT) when participants reported their best-remembered item compared with trials in which they were randomly cued. These results demonstrate that participants can accurately introspect the relative quality of neural WM representations for spatial position, consistent with previous observations for other stimulus features, and support a model of WM coding involving noisy representations across items and trials.
Collapse
|
8
|
Geng H, Chen J, Chuan-Peng H, Jin J, Chan RCK, Li Y, Hu X, Zhang RY, Zhang L. Promoting computational psychiatry in China. Nat Hum Behav 2022; 6:615-617. [PMID: 35347241 DOI: 10.1038/s41562-022-01328-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Haiyang Geng
- Department of Psychology, The University of Hong Kong, Hong Kong, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Tianqiao and Chrissy Chen Institute for Translational Research, Shanghai, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.
- Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| | - Jingwen Jin
- Department of Psychology, The University of Hong Kong, Hong Kong, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Li
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaoqing Hu
- Department of Psychology, The University of Hong Kong, Hong Kong, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- HKU, Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Ru-Yuan Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Psychology and Behavioral Science, Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai, China.
| | - Lei Zhang
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| |
Collapse
|