1
|
Knapp AC, Cruz DA, Mehrad B, Laubenbacher RC. Personalizing computational models to construct medical digital twins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596692. [PMID: 39574674 PMCID: PMC11580862 DOI: 10.1101/2024.05.31.596692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Digital twin technology, pioneered for engineering applications, is being adapted to biomedicine and healthcare; however, several problems need to be solved in the process. One major problem is that of dynamically calibrating a computational model to an individual patient, using data collected from that patient over time. This kind of calibration is crucial for improving model-based forecasts and realizing personalized medicine. The underlying computational model often focuses on a particular part of human biology, combines different modeling paradigms at different scales, and is both stochastic and spatially heterogeneous. A commonly used modeling framework is that of an agent-based model, a computational model for simulating autonomous agents such as cells, which captures how system-level properties are affected by local interactions. There are no standard personalization methods that can be readily applied to such models. The key challenge for any such algorithm is to bridge the gap between the clinically measurable quantities (the macrostate) and the fine-grained data at different physiological scales which are required to run the model (the microstate). In this paper we develop an algorithm which applies a classic data assimilation technique, the ensemble Kalman filter, at the macrostate level. We then link the Kalman update at the macrostate level to an update at the microstate level that produces microstates which are not only compatible with desired macrostates but also highly likely with respect to model dynamics.
Collapse
Affiliation(s)
- Adam C. Knapp
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida
| | - Daniel A. Cruz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida
| | - Borna Mehrad
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida
| | - Reinhard C. Laubenbacher
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida
| |
Collapse
|
2
|
Viteri JA, Temporal S, Schulz DJ. Distinct Strategies Regulate Correlated Ion Channel mRNAs and Ionic Currents in Continually versus Episodically Active Neurons. eNeuro 2024; 11:ENEURO.0320-24.2024. [PMID: 39496483 PMCID: PMC11574698 DOI: 10.1523/eneuro.0320-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/07/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024] Open
Abstract
Relationships among membrane currents allow central pattern generator (CPG) neurons to reliably drive motor programs. We hypothesize that continually active CPG neurons utilize activity-dependent feedback to correlate expression of ion channel genes to balance essential membrane currents. However, episodically activated neurons experience absences of activity-dependent feedback and, thus, presumably employ other strategies to coregulate the balance of ionic currents necessary to generate appropriate output after periods of quiescence. To investigate this, we compared continually active pyloric dilator (PD) neurons with episodically active lateral gastric (LG) CPG neurons of the stomatogastric ganglion (STG) in male Cancer borealis crabs. After experimentally activating LG for 8 h, we measured three potassium currents and abundances of their corresponding channel mRNAs. We found that ionic current relationships were correlated in LG's silent state, but ion channel mRNA relationships were correlated in the active state. In continuously active PD neurons, ion channel mRNAs and ionic currents are simultaneously correlated. Therefore, two distinct relationships exist between channel mRNA abundance and the ionic current encoded in these cells: in PD, a direct correlation exists between Shal channel mRNA levels and the A-type potassium current it carries. Conversely, such channel mRNA-current relationships are not detected and appear to be temporally uncoupled in LG neurons. Our results suggest that ongoing feedback maintains membrane current and channel mRNA relationships in continually active PD neurons, while in LG neurons, episodic activity serves to establish channel mRNA relationships necessary to produce the ionic current profile necessary for the next bout of activity.
Collapse
Affiliation(s)
- Jose A Viteri
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri 65211
| | - Simone Temporal
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri 65211
| | - David J Schulz
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri 65211
| |
Collapse
|
3
|
Favetta B, Wang H, Cubuk J, Barai M, Ramirez C, Gormley AJ, Murthy S, Soranno A, Shi Z, Schuster BS. Phosphorylation Toggles the SARS-CoV-2 Nucleocapsid Protein Between Two Membrane-Associated Condensate States. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618867. [PMID: 39464032 PMCID: PMC11507936 DOI: 10.1101/2024.10.17.618867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The SARS-CoV-2 Nucleocapsid protein (N) performs several functions during the viral lifecycle, including transcription regulation and viral genome encapsulation. We hypothesized that N toggles between these functions via phosphorylation-induced conformational change, thereby altering N interactions with membranes and RNA. We found that phosphorylation changes how biomolecular condensates composed of N and RNA interact with membranes: phosphorylated N (pN) condensates form thin films, while condensates with unmodified N are engulfed. This partly results from changes in material properties, with pN forming less viscous and elastic condensates. The weakening of protein-RNA interaction in condensates upon phosphorylation is driven by a decrease in binding between pN and unstructured RNA. We show that phosphorylation induces a conformational change in the serine/arginine-rich region of N that increases interaction between pN monomers and decreases nonspecific interaction with RNA. These findings connect the conformation, material properties, and membrane-associated states of N, with potential implications for COVID-19 treatment.
Collapse
Affiliation(s)
- Bruna Favetta
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Huan Wang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Jasmine Cubuk
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St. Louis, MO 63110
| | - Mayur Barai
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Cesar Ramirez
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Adam J Gormley
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Sanjeeva Murthy
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St. Louis, MO 63110
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Benjamin S Schuster
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| |
Collapse
|
4
|
Korotkevich E, Conrad DN, Gartner ZJ, O’Farrell PH. Selection promotes age-dependent degeneration of the mitochondrial genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615276. [PMID: 39386732 PMCID: PMC11463671 DOI: 10.1101/2024.09.27.615276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Somatic mutations in mitochondrial genomes (mtDNA) accumulate exponentially during aging. Using single cell sequencing, we characterize the spectrum of age-accumulated mtDNA mutations in mouse and human liver and identify directional forces that accelerate the accumulation of mutations beyond the rate predicted by a neutral model. "Driver" mutations that give genomes a replicative advantage rose to high cellular abundance and carried along "passenger" mutations, some of which are deleterious. In addition, alleles that alter mtDNA-encoded proteins selectively increased in abundance overtime, strongly supporting the idea of a "destructive" selection that favors genomes lacking function. Overall, this combination of selective forces acting in hepatocytes promotes somatic accumulation of mutations in coding regions of mtDNA that are otherwise conserved in evolution. We propose that these selective processes could contribute to the population prevalence of mtDNA mutations, accelerate the course of heteroplasmic mitochondrial diseases and promote age-associated erosion of the mitochondrial genome.
Collapse
Affiliation(s)
- Ekaterina Korotkevich
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| | - Daniel N. Conrad
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Zev J. Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Patrick H. O’Farrell
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Patil NS, Dingwell JB, Cusumano JP. A model of task-level human stepping regulation yields semistable walking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583616. [PMID: 38979349 PMCID: PMC11230222 DOI: 10.1101/2024.03.05.583616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
A simple lateral dynamic walker, with swing leg dynamics and three adjustable input parameters, is used to study how motor regulation affects frontal plane stepping. Motivated by experimental observations and phenomenological models, we imposed task-level multiobjective regulation targeting the walker's optimal lateral foot placement at each step. The regulator prioritizes achieving step width and lateral body position goals to varying degrees by choosing a mixture parameter. Our model thus integrates a lateral mechanical template, which captures fundamental mechanics of frontal-plane walking, with a lateral motor regulation template, an empirically verified model of how humans manipulate lateral foot placements in a goal-directed manner. The model captures experimentally observed stepping fluctuation statistics and demonstrates how linear empirical models of stepping dynamics can emerge from first-principles nonlinear mechanics. We find that task-level regulation gives rise to a goal equivalent manifold in the system's extended state space of mechanical states and inputs, a subset of which contains a continuum of period-1 gaits forming a semistable set: perturbations off of any of its gaits result in transients that return to the set, though typically to different gaits.
Collapse
Affiliation(s)
- Navendu S. Patil
- Department of Kinesiology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, PA 16802, USA
| | - Jonathan B. Dingwell
- Department of Kinesiology, Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph P. Cusumano
- Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
6
|
Zhang C, Revah O, Wolf F, Neef A. Dynamic Gain Decomposition Reveals Functional Effects of Dendrites, Ion Channels, and Input Statistics in Population Coding. J Neurosci 2024; 44:e0799232023. [PMID: 38286625 PMCID: PMC10977021 DOI: 10.1523/jneurosci.0799-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/31/2024] Open
Abstract
Modern, high-density neuronal recordings reveal at ever higher precision how information is represented by neural populations. Still, we lack the tools to understand these processes bottom-up, emerging from the biophysical properties of neurons, synapses, and network structure. The concept of the dynamic gain function, a spectrally resolved approximation of a population's coding capability, has the potential to link cell-level properties to network-level performance. However, the concept is not only useful but also very complex because the dynamic gain's shape is co-determined by axonal and somato-dendritic parameters and the population's operating regime. Previously, this complexity precluded an understanding of any individual parameter's impact. Here, we decomposed the dynamic gain function into three components corresponding to separate signal transformations. This allowed attribution of network-level encoding features to specific cell-level parameters. Applying the method to data from real neurons and biophysically plausible models, we found: (1) The encoding bandwidth of real neurons, approximately 400 Hz, is constrained by the voltage dependence of axonal currents during early action potential initiation. (2) State-of-the-art models only achieve encoding bandwidths around 100 Hz and are limited mainly by subthreshold processes instead. (3) Large dendrites and low-threshold potassium currents modulate the bandwidth by shaping the subthreshold stimulus-to-voltage transformation. Our decomposition provides physiological interpretations when the dynamic gain curve changes, for instance during spectrinopathies and neurodegeneration. By pinpointing shortcomings of current models, it also guides inference of neuron models best suited for large-scale network simulations.
Collapse
Affiliation(s)
- Chenfei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Shanghai 200433, People's Republic of China
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks, 37073 Göttingen, Germany
- Bernstein Center for Computational Neuroscience, 37073 Göttingen, Germany
| | - Omer Revah
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, 7610001 Rehovot, Israel
| | - Fred Wolf
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks, 37073 Göttingen, Germany
- Bernstein Center for Computational Neuroscience, 37073 Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, 37077 Göttingen, Germany
- Max Planck Institute of Multidisciplinary Sciences, 37077 Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, 37075 Göttingen, Germany
| | - Andreas Neef
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks, 37073 Göttingen, Germany
- Bernstein Center for Computational Neuroscience, 37073 Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, 37077 Göttingen, Germany
- Max Planck Institute of Multidisciplinary Sciences, 37077 Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
7
|
Gowers RP, Schreiber S. How neuronal morphology impacts the synchronisation state of neuronal networks. PLoS Comput Biol 2024; 20:e1011874. [PMID: 38437226 PMCID: PMC10939433 DOI: 10.1371/journal.pcbi.1011874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 03/14/2024] [Accepted: 01/30/2024] [Indexed: 03/06/2024] Open
Abstract
The biophysical properties of neurons not only affect how information is processed within cells, they can also impact the dynamical states of the network. Specifically, the cellular dynamics of action-potential generation have shown relevance for setting the (de)synchronisation state of the network. The dynamics of tonically spiking neurons typically fall into one of three qualitatively distinct types that arise from distinct mathematical bifurcations of voltage dynamics at the onset of spiking. Accordingly, changes in ion channel composition or even external factors, like temperature, have been demonstrated to switch network behaviour via changes in the spike onset bifurcation and hence its associated dynamical type. A thus far less addressed modulator of neuronal dynamics is cellular morphology. Based on simplified and anatomically realistic mathematical neuron models, we show here that the extent of dendritic arborisation has an influence on the neuronal dynamical spiking type and therefore on the (de)synchronisation state of the network. Specifically, larger dendritic trees prime neuronal dynamics for in-phase-synchronised or splayed-out activity in weakly coupled networks, in contrast to cells with otherwise identical properties yet smaller dendrites. Our biophysical insights hold for generic multicompartmental classes of spiking neuron models (from ball-and-stick-type to anatomically reconstructed models) and establish a connection between neuronal morphology and the susceptibility of neural tissue to synchronisation in health and disease.
Collapse
Affiliation(s)
- Robert P Gowers
- Institute for Theoretical Biology, Humboldt-University of Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Susanne Schreiber
- Institute for Theoretical Biology, Humboldt-University of Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
8
|
Park JH, Hothi P, Lopez Garcia de Lomana A, Pan M, Calder R, Turkarslan S, Wu WJ, Lee H, Patel AP, Cobbs C, Huang S, Baliga NS. Gene regulatory network topology governs resistance and treatment escape in glioma stem-like cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578510. [PMID: 38370784 PMCID: PMC10871280 DOI: 10.1101/2024.02.02.578510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Poor prognosis and drug resistance in glioblastoma (GBM) can result from cellular heterogeneity and treatment-induced shifts in phenotypic states of tumor cells, including dedifferentiation into glioma stem-like cells (GSCs). This rare tumorigenic cell subpopulation resists temozolomide, undergoes proneural-to-mesenchymal transition (PMT) to evade therapy, and drives recurrence. Through inference of transcriptional regulatory networks (TRNs) of patient-derived GSCs (PD-GSCs) at single-cell resolution, we demonstrate how the topology of transcription factor interaction networks drives distinct trajectories of cell state transitions in PD-GSCs resistant or susceptible to cytotoxic drug treatment. By experimentally testing predictions based on TRN simulations, we show that drug treatment drives surviving PD-GSCs along a trajectory of intermediate states, exposing vulnerability to potentiated killing by siRNA or a second drug targeting treatment-induced transcriptional programs governing non-genetic cell plasticity. Our findings demonstrate an approach to uncover TRN topology and use it to rationally predict combinatorial treatments that disrupts acquired resistance in GBM.
Collapse
Affiliation(s)
| | - Parvinder Hothi
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA
| | | | - Min Pan
- Institute for Systems Biology, Seattle, WA
| | | | | | - Wei-Ju Wu
- Institute for Systems Biology, Seattle, WA
| | - Hwahyung Lee
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA
| | - Anoop P Patel
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC
- Center for Advanced Genomic Technologies, Duke University, Durham, NC
| | - Charles Cobbs
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA
| | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA
- Departments of Microbiology, Biology, and Molecular Engineering Sciences, University of Washington, Seattle, WA
| |
Collapse
|
9
|
Sun Y, Ramesh V, Wei F, Locasale JW. Methionine availability influences essential H3K36me3 dynamics during cell differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568331. [PMID: 38045360 PMCID: PMC10690240 DOI: 10.1101/2023.11.22.568331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Histone modifications are integral to epigenetics through their influence on gene expression and cellular status. While it's established that metabolism, including methionine metabolism, can impact histone methylation, the direct influence of methionine availability on crucial histone marks that determine the epigenomic process remains poorly understood. In this study, we demonstrate that methionine, through its metabolic product, S-adenosylmethionine (SAM), dynamically regulates H3K36me3, a cancer-associated histone modification known to influence cellular status, and myogenic differentiation of mouse myoblast cells. We further demonstrate that the methionine-dependent effects on differentiation are mediated in part through the histone methyltransferase SETD2. Methionine restriction leads to preferential decreases in H3K36me3 abundance and genome accessibility of genes involved in myogenic differentiation. Importantly, the effects of methionine restriction on differentiation and chromatin accessibility can be phenocopied by the deletion of Setd2. Collectively, this study demonstrates that methionine metabolism through its ability to be sensed by chromatin modifying enzymes can have a direct role in influencing cell fate determination.
Collapse
|
10
|
Pennance T, Calvelo J, Tennessen JA, Burd R, Cayton J, Bollmann SR, Blouin MS, Spaan JM, Hoffmann FG, Ogara G, Rawago F, Andiego K, Mulonga B, Odhiambo M, Loker ES, Laidemitt MR, Lu L, Iriarte A, Odiere M, Steinauer ML. The genome and transcriptome of the snail Biomphalaria sudanica s.l.: Immune gene diversification and highly polymorphic genomic regions in an important African vector of Schistosoma mansoni. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565203. [PMID: 37961413 PMCID: PMC10635097 DOI: 10.1101/2023.11.01.565203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Control and elimination of schistosomiasis is an arduous task, with current strategies proving inadequate to break transmission. Exploration of genetic approaches to interrupt Schistosoma mansoni transmission, the causative agent for human intestinal schistosomiasis in sub-Saharan Africa and South America, has led to genomic research of the snail vector hosts of the genus Biomphalaria. Few complete genomic resources exist, with African Biomphalaria species being particularly underrepresented despite this being where the majority of S. mansoni infections occur. Here we generate and annotate the first genome assembly of Biomphalaria sudanica sensu lato, a species responsible for S. mansoni transmission in lake and marsh habitats of the African Rift Valley. Supported by whole-genome diversity data among five inbred lines, we describe orthologs of immune-relevant gene regions in the South American vector B. glabrata and present a bioinformatic pipeline to identify candidate novel pathogen recognition receptors (PRRs). Results De novo genome and transcriptome assembly of inbred B. sudanica originating from the shoreline of Lake Victoria (Kisumu, Kenya) resulted in a haploid genome size of ~944.2 Mb (6732 fragments, N50=1.067 Mb), comprising 23,598 genes (BUSCO=93.6% complete). The B. sudanica genome contains orthologues to all described immune genes/regions tied to protection against S. mansoni in B. glabrata. The B. sudanica PTC2 candidate immune genomic region contained many PRR-like genes across a much wider genomic region than has been shown in B. glabrata, as well as a large inversion between species. High levels of intra-species nucleotide diversity were seen in PTC2, as well as in regions linked to PTC1 and RADres orthologues. Immune related and putative PRR gene families were significantly over-represented in the sub-set of B. sudanica genes determined as hyperdiverse, including high extracellular diversity in transmembrane genes, which could be under pathogen-mediated balancing selection. However, no overall expansion in immunity related genes were seen in African compared to South American lineages. Conclusions The B. sudanica genome and analyses presented here will facilitate future research in vector immune defense mechanisms against pathogens. This genomic/transcriptomic resource provides necessary data for the future development of molecular snail vector control/surveillance tools, facilitating schistosome transmission interruption mechanisms in Africa.
Collapse
Affiliation(s)
- Tom Pennance
- College of Osteopathic Medicine of the Pacific – Northwest, Western University of Health Sciences, Lebanon OR, USA
| | - Javier Calvelo
- Laboratorio Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | | | - Ryan Burd
- College of Osteopathic Medicine of the Pacific – Northwest, Western University of Health Sciences, Lebanon OR, USA
| | - Jared Cayton
- College of Osteopathic Medicine of the Pacific – Northwest, Western University of Health Sciences, Lebanon OR, USA
| | | | | | - Johannie M. Spaan
- College of Osteopathic Medicine of the Pacific – Northwest, Western University of Health Sciences, Lebanon OR, USA
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS USA
| | - George Ogara
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Fredrick Rawago
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Kennedy Andiego
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Boaz Mulonga
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Meredith Odhiambo
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Eric S. Loker
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico 87131, U.S.A
| | - Martina R. Laidemitt
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico 87131, U.S.A
| | - Lijun Lu
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico 87131, U.S.A
| | - Andrés Iriarte
- Laboratorio Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Maurice Odiere
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS USA
| | - Michelle L. Steinauer
- College of Osteopathic Medicine of the Pacific – Northwest, Western University of Health Sciences, Lebanon OR, USA
| |
Collapse
|
11
|
Tsamir-Rimon M, Borenstein E. A Manifold-Based Framework for Studying the Dynamics of the Vaginal Microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.556518. [PMID: 37732273 PMCID: PMC10508760 DOI: 10.1101/2023.09.06.556518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The vaginal bacterial community plays a crucial role in preventing infections. The composition of this community can be classified into five main groups, termed community state types (CSTs). Four of these CSTs, which are primarily consisted of Lactobacillus species, are considered healthy, while the fifth, which is composed of non-Lactobacillus populations, is considered less protective. This latter CST is often considered to represent a state termed Bacterial vaginosis (BV) - a common disease condition associated with unpleasant symptoms and increased susceptibility to sexually transmitted diseases. However, the exact mechanisms underlying BV development are not yet fully understood, including specifically, the dynamics of the vaginal microbiome in BV, and the possible routes it may take from a healthy to a BV state. This study aims to identify the progression from healthy Lactobacillus-dominant populations to symptomatic BV by analyzing 8,026 vaginal samples and using a manifold-detection framework. This approach is inspired by single-cell analysis and aims to identify low-dimensional trajectories in the high-dimensional composition space. This framework further order samples along these trajectories and assign a score (pseudo-time) to each sample based on its proximity to the BV state. Our results reveal distinct routes of progression between healthy and BV state for each CST, with pseudo-time scores correlating with community diversity and quantifying the health state of each sample. BV indicators, including Nugent score, positive Amsel's test, and several Amsel's criteria, can also be successfully predicted based on pseudo-time scores. Additionally, Gardnerella vaginalis can be identified as a key taxon in BV development using this approach, with increased abundance in samples with high pseudo-time, indicating an unhealthier state across all BV-development routes on the manifold. Taken together, these findings demonstrate how manifold detection can be used to successfully characterizes the progression from healthy Lactobacillus-dominant populations to BV and to accurately quantify the health condition of new samples along the route of BV development.
Collapse
Affiliation(s)
| | - Elhanan Borenstein
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- School of Computer Science, Tel Aviv University, Tel Aviv, Israel
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
12
|
Delaveris CS, Wang CL, Riley NM, Li S, Kulkarni RU, Bertozzi CR. Microglia mediate contact-independent neuronal pruning via secreted Neuraminidase-3 associated with extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554214. [PMID: 37662421 PMCID: PMC10473657 DOI: 10.1101/2023.08.21.554214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Neurons communicate with each other through electrochemical transmission at synapses. Microglia, the resident immune cells of the central nervous system, can prune these synapses through a variety of contact-dependent and -independent means. Microglial secretion of active sialidase enzymes upon exposure to inflammatory stimuli is one unexplored mechanism of pruning. Recent work from our lab showed that treatment of neurons with bacterial sialidases disrupts neuronal network connectivity. Here, we find that activated microglia secrete Neuraminidase-3 (Neu3) associated with fusogenic extracellular vesicles. Furthermore, we show Neu3 mediates contact-independent pruning of neurons and subsequent disruption of neuronal networks through neuronal glycocalyx remodeling. We observe that NEU3 is transcriptionally upregulated upon exposure to inflammatory stimuli, and that a genetic knock-out of NEU3 abrogates the sialidase activity of inflammatory microglial secretions. Moreover, we demonstrate that Neu3 is associated with a subpopulation of extracellular vesicles, possibly exosomes, that are secreted by microglia upon inflammatory insult. Finally, we demonstrate that Neu3 is both necessary and sufficient to both desialylate neurons and decrease neuronal network connectivity. These results implicate Neu3 in remodeling of the glycocalyx leading to aberrant network-level activity of neurons, with implications in neuroinflammatory diseases such as Parkinson's disease and Alzheimer's disease.
Collapse
Affiliation(s)
- Corleone S. Delaveris
- Stanford University, Department of Chemistry and Sarafan ChEM-H, Stanford, CA 94305, USA
| | - Catherine L. Wang
- Stanford University, Department of Chemistry and Sarafan ChEM-H, Stanford, CA 94305, USA
| | - Nicholas M. Riley
- Stanford University, Department of Chemistry and Sarafan ChEM-H, Stanford, CA 94305, USA
| | - Sherry Li
- Stanford University, Department of Chemistry and Sarafan ChEM-H, Stanford, CA 94305, USA
| | - Rishikesh U. Kulkarni
- Stanford University, Department of Chemistry and Sarafan ChEM-H, Stanford, CA 94305, USA
| | - Carolyn R. Bertozzi
- Stanford University, Department of Chemistry and Sarafan ChEM-H, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford, CA 94305 USA
| |
Collapse
|
13
|
Fontenele AJ, Sooter JS, Norman VK, Gautam SH, Shew WL. Low dimensional criticality embedded in high dimensional awake brain dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522896. [PMID: 37546833 PMCID: PMC10401950 DOI: 10.1101/2023.01.05.522896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Whether cortical neurons operate in a strongly or weakly correlated dynamical regime determines fundamental information processing capabilities and has fueled decades of debate. Here we offer a resolution of this debate; we show that two important dynamical regimes, typically considered incompatible, can coexist in the same local cortical circuit by separating them into two different subspaces. In awake mouse motor cortex, we find a low-dimensional subspace with large fluctuations consistent with criticality - a dynamical regime with moderate correlations and multi-scale information capacity and transmission. Orthogonal to this critical subspace, we find a high-dimensional subspace containing a desynchronized dynamical regime, which may optimize input discrimination. The critical subspace is apparent only at long timescales, which explains discrepancies among some previous studies. Using a computational model, we show that the emergence of a low-dimensional critical subspace at large timescale agrees with established theory of critical dynamics. Our results suggest that cortex leverages its high dimensionality to multiplex dynamical regimes across different subspaces.
Collapse
Affiliation(s)
- Antonio J. Fontenele
- UA Integrative Systems Neuroscience Group, Department of Physics, University of Arkansas, Fayetteville, AR, USA, 72701
| | - J. Samuel Sooter
- UA Integrative Systems Neuroscience Group, Department of Physics, University of Arkansas, Fayetteville, AR, USA, 72701
| | - V. Kindler Norman
- UA Integrative Systems Neuroscience Group, Department of Physics, University of Arkansas, Fayetteville, AR, USA, 72701
| | - Shree Hari Gautam
- UA Integrative Systems Neuroscience Group, Department of Physics, University of Arkansas, Fayetteville, AR, USA, 72701
| | - Woodrow L. Shew
- UA Integrative Systems Neuroscience Group, Department of Physics, University of Arkansas, Fayetteville, AR, USA, 72701
| |
Collapse
|
14
|
Yewbrey R, Mantziara M, Kornysheva K. Cortical Patterns Shift from Sequence Feature Separation during Planning to Integration during Motor Execution. J Neurosci 2023; 43:1742-1756. [PMID: 36725321 PMCID: PMC10010461 DOI: 10.1523/jneurosci.1628-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
Performing sequences of movements from memory and adapting them to changing task demands is a hallmark of skilled human behavior, from handwriting to playing a musical instrument. Prior studies showed a fine-grained tuning of cortical primary motor, premotor, and parietal regions to motor sequences: from the low-level specification of individual movements to high-level sequence features, such as sequence order and timing. However, it is not known how tuning in these regions unfolds dynamically across planning and execution. To address this, we trained 24 healthy right-handed human participants (14 females, 10 males) to produce four five-element finger press sequences with a particular finger order and timing structure in a delayed sequence production paradigm entirely from memory. Local cortical fMRI patterns during preparation and production phases were extracted from separate No-Go and Go trials, respectively, to tease out activity related to these perimovement phases. During sequence planning, premotor and parietal areas increased tuning to movement order or timing, regardless of their combinations. In contrast, patterns reflecting the unique integration of sequence features emerged in these regions during execution only, alongside timing-specific tuning in the ventral premotor, supplementary motor, and superior parietal areas. This was in line with the participants' behavioral transfer of trained timing, but not of order to new sequence feature combinations. Our findings suggest a general informational state shift from high-level feature separation to low-level feature integration within cortical regions for movement execution. Recompiling sequence features trial-by-trial during planning may enable flexible last-minute adjustment before movement initiation.SIGNIFICANCE STATEMENT Musicians and athletes can modify the timing and order of movements in a sequence trial-by-trial, allowing for a vast repertoire of flexible behaviors. How does the brain put together these high-level sequence features into an integrated whole? We found that, trial-by-trial, the control of sequence features undergoes a state shift from separation during planning to integration during execution across a network of motor-related cortical areas. These findings have implications for understanding the hierarchical control of skilled movement sequences, as well as how information in brain areas unfolds across planning and execution.
Collapse
Affiliation(s)
- Rhys Yewbrey
- Bangor Imaging Unit, Bangor University, Bangor, Wales LL57 2AS, United Kingdom
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Myrto Mantziara
- Bangor Imaging Unit, Bangor University, Bangor, Wales LL57 2AS, United Kingdom
| | - Katja Kornysheva
- Bangor Imaging Unit, Bangor University, Bangor, Wales LL57 2AS, United Kingdom
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
15
|
Ierusalimsky VN, Balaban PM, Nikitin ES. Nav1.6 but not KCa3.1 channels contribute to heterogeneity in coding abilities and dynamics of action potentials in the L5 neocortical pyramidal neurons. Biochem Biophys Res Commun 2022; 615:102-108. [DOI: 10.1016/j.bbrc.2022.05.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/14/2022] [Indexed: 12/16/2022]
|