1
|
Jussupow A, Bartley D, Lapidus LJ, Feig M. COCOMO2: A Coarse-Grained Model for Interacting Folded and Disordered Proteins. J Chem Theory Comput 2025; 21:2095-2107. [PMID: 39908323 PMCID: PMC11866933 DOI: 10.1021/acs.jctc.4c01460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
Biomolecular interactions are essential in many biological processes, including complex formation and phase separation processes. Coarse-grained computational models are especially valuable for studying such processes via simulation. Here, we present COCOMO2, an updated residue-based coarse-grained model that extends its applicability from intrinsically disordered peptides to folded proteins. This is accomplished with the introduction of a surface exposure scaling factor, which adjusts interaction strengths based on solvent accessibility, to enable the more realistic modeling of interactions involving folded domains without additional computational costs. COCOMO2 was parametrized directly with solubility and phase separation data to improve its performance on predicting concentration-dependent phase separation for a broader range of biomolecular systems compared to the original version. COCOMO2 enables new applications including the study of condensates that involve IDPs together with folded domains and the study of complex assembly processes. COCOMO2 also provides an expanded foundation for the development of multiscale approaches for modeling biomolecular interactions that span from residue-level to atomistic resolution.
Collapse
Affiliation(s)
- Alexander Jussupow
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Divya Bartley
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Lisa J. Lapidus
- Department
of Physics and Astronomy, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Michael Feig
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
2
|
Vallbracht M, Bodmer BS, Fischer K, Makroczyova J, Winter SL, Wendt L, Wachsmuth-Melm M, Hoenen T, Chlanda P. Nucleocapsid assembly drives Ebola viral factory maturation and dispersion. Cell 2025; 188:704-720.e17. [PMID: 39742805 DOI: 10.1016/j.cell.2024.11.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 09/11/2024] [Accepted: 11/15/2024] [Indexed: 01/04/2025]
Abstract
Replication and genome encapsidation of many negative-sense RNA viruses take place in virus-induced membraneless organelles termed viral factories (VFs). Although liquid properties of VFs are believed to control the transition from genome replication to nucleocapsid (NC) assembly, VF maturation and interactions with the cellular environment remain elusive. Here, we apply in situ cryo-correlative light and electron tomography to follow NC assembly and changes in VF morphology and their liquid properties during Ebola virus infection. We show that viral NCs transition from loosely packed helical assemblies in early VFs to compact cylinders that arrange into highly organized parallel bundles later in infection. Early VFs associate with intermediate filaments and are devoid of other host material but become progressively accessible to cellular components. Our data suggest that this process is coupled to VF solidification, loss of sphericity, and dispersion and promotes cytoplasmic exposure of NCs to facilitate their transport to budding sites.
Collapse
Affiliation(s)
- Melina Vallbracht
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany.
| | - Bianca S Bodmer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Konstantin Fischer
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany
| | - Jana Makroczyova
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany
| | - Sophie L Winter
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany
| | - Lisa Wendt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Moritz Wachsmuth-Melm
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Petr Chlanda
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
3
|
Jussupow A, Bartley D, Lapidus LJ, Feig M. COCOMO2: A coarse-grained model for interacting folded and disordered proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620916. [PMID: 39554101 PMCID: PMC11565878 DOI: 10.1101/2024.10.29.620916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Biomolecular interactions are essential in many biological processes, including complex formation and phase separation processes. Coarse-grained computational models are especially valuable for studying such processes via simulation. Here, we present COCOMO2, an updated residue-based coarse-grained model that extends its applicability from intrinsically disordered peptides to folded proteins. This is accomplished with the introduction of a surface exposure scaling factor, which adjusts interaction strengths based on solvent accessibility, to enable the more realistic modeling of interactions involving folded domains without additional computational costs. COCOMO2 was parameterized directly with solubility and phase separation data to improve its performance on predicting concentration-dependent phase separation for a broader range of biomolecular systems compared to the original version. COCOMO2 enables new applications including the study of condensates that involve IDPs together with folded domains and the study of complex assembly processes. COCOMO2 also provides an expanded foundation for the development of multi-scale approaches for modeling biomolecular interactions that span from residue-level to atomistic resolution.
Collapse
Affiliation(s)
- Alexander Jussupow
- Department of Biochemistry and Molecular Biology, East Lansing, MI 48824, USA
| | - Divya Bartley
- Department of Biochemistry and Molecular Biology, East Lansing, MI 48824, USA
| | - Lisa J. Lapidus
- Department of Physics and Astronomy Michigan State University, East Lansing, MI 48824, USA
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Haller CJ, Acker J, Arguello AE, Borodavka A. Phase separation and viral factories: unveiling the physical processes supporting RNA packaging in dsRNA viruses. Biochem Soc Trans 2024; 52:2101-2112. [PMID: 39324618 PMCID: PMC11555692 DOI: 10.1042/bst20231304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
Understanding of the physicochemical properties and functions of biomolecular condensates has rapidly advanced over the past decade. More recently, many RNA viruses have been shown to form cytoplasmic replication factories, or viroplasms, via phase separation of their components, akin to numerous cellular membraneless organelles. Notably, diverse viruses from the Reoviridae family containing 10-12 segmented double-stranded RNA genomes induce the formation of viroplasms in infected cells. Little is known about the inner workings of these membraneless cytoplasmic inclusions and how they may support stoichiometric RNA assembly in viruses with segmented RNA genomes, raising questions about the roles of phase separation in coordinating viral genome packaging. Here, we discuss how the molecular composition of viroplasms determines their properties, highlighting the interplay between RNA structure, RNA remodelling, and condensate self-organisation. Advancements in RNA structural probing and theoretical modelling of condensates can reveal the mechanisms through which these ribonucleoprotein complexes support the selective enrichment and stoichiometric assembly of distinct viral RNAs.
Collapse
Affiliation(s)
- Cyril J. Haller
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, U.K
| | - Julia Acker
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, U.K
| | - A. Emilia Arguello
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, U.K
| | - Alexander Borodavka
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, U.K
- Department of Biochemistry, University of Cambridge, Cambridge, U.K
| |
Collapse
|
5
|
Laughlin PM, Young K, Gonzalez-Gutierrez G, Wang JCY, Zlotnick A. A narrow ratio of nucleic acid to SARS-CoV-2 N-protein enables phase separation. J Biol Chem 2024; 300:107831. [PMID: 39343003 PMCID: PMC11541828 DOI: 10.1016/j.jbc.2024.107831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
SARS-CoV-2 Nucleocapsid protein (N) is a viral structural protein that packages the 30 kb genomic RNA inside virions and forms condensates within infected cells through liquid-liquid phase separation (LLPS). In both soluble and condensed forms, N has accessory roles in the viral life cycle including genome replication and immunosuppression. The ability to perform these tasks depends on phase separation and its reversibility. The conditions that stabilize and destabilize N condensates and the role of N-N interactions are poorly understood. We have investigated LLPS formation and dissolution in a minimalist system comprised of N protein and an ssDNA oligomer just long enough to support assembly. The short oligo allows us to focus on the role of N-N interaction. We have developed a sensitive FRET assay to interrogate LLPS assembly reactions from the perspective of the oligonucleotide. We find that N alone can form oligomers but that oligonucleotide enables their assembly into a three-dimensional phase. At a ∼1:1 ratio of N to oligonucleotide, LLPS formation is maximal. We find that a modest excess of N or of nucleic acid causes the LLPS to break down catastrophically. Under the conditions examined here, assembly has a critical concentration of about 1 μM. The responsiveness of N condensates to their environment may have biological consequences. A better understanding of how nucleic acid modulates N-N association will shed light on condensate activity and could inform antiviral strategies targeting LLPS.
Collapse
Affiliation(s)
- Patrick M Laughlin
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| | - Kimberly Young
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| | | | - Joseph C-Y Wang
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA.
| |
Collapse
|
6
|
Barkley RJR, Crowley JC, Brodrick AJ, Zipfel WR, Parker JSL. Fluorescent protein tags affect the condensation properties of a phase-separating viral protein. Mol Biol Cell 2024; 35:ar100. [PMID: 38809580 PMCID: PMC11244164 DOI: 10.1091/mbc.e24-01-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024] Open
Abstract
Fluorescent protein (FP) tags are extensively used to visualize and characterize the properties of biomolecular condensates despite a lack of investigation into the effects of these tags on phase separation. Here, we characterized the dynamic properties of µNS, a viral protein hypothesized to undergo phase separation and the main component of mammalian orthoreovirus viral factories. Our interest in the sequence determinants and nucleation process of µNS phase separation led us to compare the size and density of condensates formed by FP::µNS to the untagged protein. We found an FP-dependent increase in droplet size and density, which suggests that FP tags can promote µNS condensation. To further assess the effect of FP tags on µNS droplet formation, we fused FP tags to µNS mutants to show that the tags could variably induce phase separation of otherwise noncondensing proteins. By comparing fluorescent constructs with untagged µNS, we identified mNeonGreen as the least artifactual FP tag that minimally perturbed µNS condensation. These results show that FP tags can promote phase separation and that some tags are more suitable for visualizing and characterizing biomolecular condensates with minimal experimental artifacts.
Collapse
Affiliation(s)
- Russell J. R. Barkley
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Jack C. Crowley
- School of Applied and Engineering Physics, College of Engineering, Cornell University, Ithaca, NY 14850
| | - Andrew J. Brodrick
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Warren R. Zipfel
- School of Applied and Engineering Physics, College of Engineering, Cornell University, Ithaca, NY 14850
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY 14850
| | - John S. L. Parker
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| |
Collapse
|
7
|
Hagan MF, Zandi R, Uetrecht C. Overview of the 2023 Physical Virology Gordon Research Conference-Viruses at Multiple Levels of Complexity. Viruses 2024; 16:895. [PMID: 38932189 PMCID: PMC11209351 DOI: 10.3390/v16060895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
This review accompanies the Special Issue on the subject of physical virology, which features work presented at the recent Gordon Research Conference (GRC) on this topic [...].
Collapse
Affiliation(s)
- Michael F. Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02453, USA
| | - Roya Zandi
- Department of Physics and Astronomy, University of California Riverside, Riverside, CA 92521, USA
| | - Charlotte Uetrecht
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen Synchrotron DESY, Leibniz Institute of Virology (LIV), 22607 Hamburg, Germany
- Institute of Chemistry and Metabolomics, University Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
8
|
Hegde O, Li T, Sharma A, Borja M, Jacobs WM, Rogers WB. Competition between Self-Assembly and Phase Separation Governs High-Temperature Condensation of a DNA Liquid. PHYSICAL REVIEW LETTERS 2024; 132:208401. [PMID: 38829088 DOI: 10.1103/physrevlett.132.208401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/21/2024] [Accepted: 04/19/2024] [Indexed: 06/05/2024]
Abstract
In many biopolymer solutions, attractive interactions that stabilize finite-sized clusters at low concentrations also promote phase separation at high concentrations. Here we study a model biopolymer system that exhibits the opposite behavior, whereby self-assembly of DNA oligonucleotides into finite-sized, stoichiometric clusters tends to inhibit phase separation. We first use microfluidics-based experiments to map a novel phase transition in which the oligonucleotides condense as the temperature increases at high concentrations of divalent cations. We then show that a theoretical model of competition between self-assembly and phase separation quantitatively predicts changes in experimental phase diagrams arising from DNA sequence perturbations. Our results point to a general mechanism by which self-assembly shapes phase boundaries in complex biopolymer solutions.
Collapse
Affiliation(s)
- Omkar Hegde
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Tianhao Li
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Anjali Sharma
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Marco Borja
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - William M Jacobs
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - W Benjamin Rogers
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
9
|
Laughlin PM, Young K, Gonzalez-Gutierrez G, Wang JC, Zlotnick A. A narrow ratio of nucleic acid to SARS-CoV-2 N-protein enables phase separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588883. [PMID: 38645044 PMCID: PMC11030382 DOI: 10.1101/2024.04.10.588883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
SARS-CoV-2 Nucleocapsid protein (N) is a viral structural protein that packages the 30kb genomic RNA inside virions and forms condensates within infected cells through liquid-liquid phase separation (LLPS). N, in both soluble and condensed forms, has accessory roles in the viral life cycle including genome replication and immunosuppression. The ability to perform these tasks depends on phase separation and its reversibility. The conditions that stabilize and destabilize N condensates and the role of N-N interactions are poorly understood. We have investigated LLPS formation and dissolution in a minimalist system comprised of N protein and an ssDNA oligomer just long enough to support assembly. The short oligo allows us to focus on the role of N-N interaction. We have developed a sensitive FRET assay to interrogate LLPS assembly reactions from the perspective of the oligonucleotide. We find that N alone can form oligomers but that oligonucleotide enables their assembly into a three-dimensional phase. At a ~1:1 ratio of N to oligonucleotide LLPS formation is maximal. We find that a modest excess of N or of nucleic acid causes the LLPS to break down catastrophically. Under the conditions examined here assembly has a critical concentration of about 1 μM. The responsiveness of N condensates to their environment may have biological consequences. A better understanding of how nucleic acid modulates N-N association will shed light on condensate activity and could inform antiviral strategies targeting LLPS.
Collapse
Affiliation(s)
| | - Kimberly Young
- Department of Molecular and Cellular Biochemistry, Indiana University
| | | | - Joseph C.Y. Wang
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University
| |
Collapse
|
10
|
Abeysinghe AADT, Young EJ, Rowland AT, Dunshee LC, Urandur S, Sullivan MO, Kerfeld CA, Keating CD. Interfacial Assembly of Bacterial Microcompartment Shell Proteins in Aqueous Multiphase Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308390. [PMID: 38037673 DOI: 10.1002/smll.202308390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/13/2023] [Indexed: 12/02/2023]
Abstract
Compartments are a fundamental feature of life, based variously on lipid membranes, protein shells, or biopolymer phase separation. Here, this combines self-assembling bacterial microcompartment (BMC) shell proteins and liquid-liquid phase separation (LLPS) to develop new forms of compartmentalization. It is found that BMC shell proteins assemble at the liquid-liquid interfaces between either 1) the dextran-rich droplets and PEG-rich continuous phase of a poly(ethyleneglycol)(PEG)/dextran aqueous two-phase system, or 2) the polypeptide-rich coacervate droplets and continuous dilute phase of a polylysine/polyaspartate complex coacervate system. Interfacial protein assemblies in the coacervate system are sensitive to the ratio of cationic to anionic polypeptides, consistent with electrostatically-driven assembly. In both systems, interfacial protein assembly competes with aggregation, with protein concentration and polycation availability impacting coating. These two LLPS systems are then combined to form a three-phase system wherein coacervate droplets are contained within dextran-rich phase droplets. Interfacial localization of BMC hexameric shell proteins is tunable in a three-phase system by changing the polyelectrolyte charge ratio. The tens-of-micron scale BMC shell protein-coated droplets introduced here can accommodate bioactive cargo such as enzymes or RNA and represent a new synthetic cell strategy for organizing biomimetic functionality.
Collapse
Affiliation(s)
| | - Eric J Young
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Andrew T Rowland
- Department of Chemistry, Pennsylvania State University, State College, PA, 16801, USA
| | - Lucas C Dunshee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Sandeep Urandur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Cheryl A Kerfeld
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Christine D Keating
- Department of Chemistry, Pennsylvania State University, State College, PA, 16801, USA
| |
Collapse
|
11
|
Eltayeb A, Al-Sarraj F, Alharbi M, Albiheyri R, Mattar EH, Abu Zeid IM, Bouback TA, Bamagoos A, Uversky VN, Rubio-Casillas A, Redwan EM. Intrinsic factors behind long COVID: IV. Hypothetical roles of the SARS-CoV-2 nucleocapsid protein and its liquid-liquid phase separation. J Cell Biochem 2024; 125:e30530. [PMID: 38349116 DOI: 10.1002/jcb.30530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 03/12/2024]
Abstract
When the SARS-CoV-2 virus infects humans, it leads to a condition called COVID-19 that has a wide spectrum of clinical manifestations, from no symptoms to acute respiratory distress syndrome. The virus initiates damage by attaching to the ACE-2 protein on the surface of endothelial cells that line the blood vessels and using these cells as hosts for replication. Reactive oxygen species levels are increased during viral replication, which leads to oxidative stress. About three-fifths (~60%) of the people who get infected with the virus eradicate it from their body after 28 days and recover their normal activity. However, a large fraction (~40%) of the people who are infected with the virus suffer from various symptoms (anosmia and/or ageusia, fatigue, cough, myalgia, cognitive impairment, insomnia, dyspnea, and tachycardia) beyond 12 weeks and are diagnosed with a syndrome called long COVID. Long-term clinical studies in a group of people who contracted SARS-CoV-2 have been contrasted with a noninfected matched group of people. A subset of infected people can be distinguished by a set of cytokine markers to have persistent, low-grade inflammation and often self-report two or more bothersome symptoms. No medication can alleviate their symptoms efficiently. Coronavirus nucleocapsid proteins have been investigated extensively as potential drug targets due to their key roles in virus replication, among which is their ability to bind their respective genomic RNAs for incorporation into emerging virions. This review highlights basic studies of the nucleocapsid protein and its ability to undergo liquid-liquid phase separation. We hypothesize that this ability of the nucleocapsid protein for phase separation may contribute to long COVID. This hypothesis unlocks new investigation angles and could potentially open novel avenues for a better understanding of long COVID and treating this condition.
Collapse
Affiliation(s)
- Ahmed Eltayeb
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faisal Al-Sarraj
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ehab H Mattar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isam M Abu Zeid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamer A Bouback
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Atif Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Moscow Region, Russia
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, Jalisco, Mexico
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco, Mexico
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|