1
|
Zhang J, Cao R, Zhu X, Zhou H, Wang S. Distinct attentional characteristics of neurons with visual feature coding in the primate brain. SCIENCE ADVANCES 2025; 11:eadq0332. [PMID: 40117351 PMCID: PMC11927616 DOI: 10.1126/sciadv.adq0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 02/14/2025] [Indexed: 03/23/2025]
Abstract
Visual attention and object recognition are two critical cognitive functions that shape our perception of the world. While these neural processes converge in the temporal cortex, the nature of their interactions remains largely unclear. Here, we systematically investigated the interplay between visual attention and stimulus feature coding by training macaques to perform a free-gaze visual search task with natural stimuli. Recording from a large number of units across multiple brain areas, we found that units exhibiting visual feature coding showed stronger attentional modulation of responses and spike-local field potential coherence than units without feature coding. Across brain areas, attention directed toward search targets enhanced the neuronal pattern separation of stimuli, with this enhancement more pronounced for units encoding visual features. Together, our results suggest a complex interplay between visual feature and attention coding in the primate brain, likely driven by interactions between brain areas engaged in these processes.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Peng Cheng Laboratory, Shenzhen 518000, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Runnan Cao
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Xiaocang Zhu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huihui Zhou
- Peng Cheng Laboratory, Shenzhen 518000, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shuo Wang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
2
|
Nikolaev AR, Meghanathan RN, van Leeuwen C. Refixation behavior in naturalistic viewing: Methods, mechanisms, and neural correlates. Atten Percept Psychophys 2025; 87:25-49. [PMID: 38169029 PMCID: PMC11845542 DOI: 10.3758/s13414-023-02836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
When freely viewing a scene, the eyes often return to previously visited locations. By tracking eye movements and coregistering eye movements and EEG, such refixations are shown to have multiple roles: repairing insufficient encoding from precursor fixations, supporting ongoing viewing by resampling relevant locations prioritized by precursor fixations, and aiding the construction of memory representations. All these functions of refixation behavior are understood to be underpinned by three oculomotor and cognitive systems and their associated brain structures. First, immediate saccade planning prior to refixations involves attentional selection of candidate locations to revisit. This process is likely supported by the dorsal attentional network. Second, visual working memory, involved in maintaining task-related information, is likely supported by the visual cortex. Third, higher-order relevance of scene locations, which depends on general knowledge and understanding of scene meaning, is likely supported by the hippocampal memory system. Working together, these structures bring about viewing behavior that balances exploring previously unvisited areas of a scene with exploiting visited areas through refixations.
Collapse
Affiliation(s)
- Andrey R Nikolaev
- Department of Psychology, Lund University, Box 213, 22100, Lund, Sweden.
- Brain & Cognition Research Unit, KU Leuven-University of Leuven, Leuven, Belgium.
| | | | - Cees van Leeuwen
- Brain & Cognition Research Unit, KU Leuven-University of Leuven, Leuven, Belgium
- Center for Cognitive Science, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
3
|
Xiao W, Sharma S, Kreiman G, Livingstone MS. Feature-selective responses in macaque visual cortex follow eye movements during natural vision. Nat Neurosci 2024; 27:1157-1166. [PMID: 38684892 PMCID: PMC11156562 DOI: 10.1038/s41593-024-01631-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
In natural vision, primates actively move their eyes several times per second via saccades. It remains unclear whether, during this active looking, visual neurons exhibit classical retinotopic properties, anticipate gaze shifts or mirror the stable quality of perception, especially in complex natural scenes. Here, we let 13 monkeys freely view thousands of natural images across 4.6 million fixations, recorded 883 h of neuronal responses in six areas spanning primary visual to anterior inferior temporal cortex and analyzed spatial, temporal and featural selectivity in these responses. Face neurons tracked their receptive field contents, indicated by category-selective responses. Self-consistency analysis showed that general feature-selective responses also followed eye movements and remained gaze-dependent over seconds of viewing the same image. Computational models of feature-selective responses located retinotopic receptive fields during free viewing. We found limited evidence for feature-selective predictive remapping and no viewing-history integration. Thus, ventral visual neurons represent the world in a predominantly eye-centered reference frame during natural vision.
Collapse
Affiliation(s)
- Will Xiao
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| | - Saloni Sharma
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Gabriel Kreiman
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
4
|
Azadi R, Lopez E, Taubert J, Patterson A, Afraz A. Inactivation of face-selective neurons alters eye movements when free viewing faces. Proc Natl Acad Sci U S A 2024; 121:e2309906121. [PMID: 38198528 PMCID: PMC10801883 DOI: 10.1073/pnas.2309906121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/06/2023] [Indexed: 01/12/2024] Open
Abstract
During free viewing, faces attract gaze and induce specific fixation patterns corresponding to the facial features. This suggests that neurons encoding the facial features are in the causal chain that steers the eyes. However, there is no physiological evidence to support a mechanistic link between face-encoding neurons in high-level visual areas and the oculomotor system. In this study, we targeted the middle face patches of the inferior temporal (IT) cortex in two macaque monkeys using an functional magnetic resonance imaging (fMRI) localizer. We then utilized muscimol microinjection to unilaterally suppress IT neural activity inside and outside the face patches and recorded eye movements while the animals free viewing natural scenes. Inactivation of the face-selective neurons altered the pattern of eye movements on faces: The monkeys found faces in the scene but neglected the eye contralateral to the inactivation hemisphere. These findings reveal the causal contribution of the high-level visual cortex in eye movements.
Collapse
Affiliation(s)
- Reza Azadi
- Unit on Neurons, Circuits and Behavior, Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD20892
| | - Emily Lopez
- Unit on Neurons, Circuits and Behavior, Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD20892
| | - Jessica Taubert
- Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD20892
- School of Psychology, The University of Queensland, Brisbane, QLD4072, Australia
| | - Amanda Patterson
- Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD20892
| | - Arash Afraz
- Unit on Neurons, Circuits and Behavior, Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD20892
| |
Collapse
|
5
|
Azadi R, Lopez E, Taubert J, Patterson A, Afraz A. Inactivation of face selective neurons alters eye movements when free viewing faces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.20.544678. [PMID: 37502993 PMCID: PMC10370202 DOI: 10.1101/2023.06.20.544678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
During free viewing, faces attract gaze and induce specific fixation patterns corresponding to the facial features. This suggests that neurons encoding the facial features are in the causal chain that steers the eyes. However, there is no physiological evidence to support a mechanistic link between face encoding neurons in high-level visual areas and the oculomotor system. In this study, we targeted the middle face patches of inferior temporal (IT) cortex in two macaque monkeys using an fMRI localizer. We then utilized muscimol microinjection to unilaterally suppress IT neural activity inside and outside the face patches and recorded eye movements while the animals free viewing natural scenes. Inactivation of the face selective neurons altered the pattern of eye movements on faces: the monkeys found faces in the scene but neglected the eye contralateral to the inactivation hemisphere. These findings reveal the causal contribution of the high-level visual cortex in eye movements. Significance It has been shown, for more than half a century, that eye movements follow distinctive patterns when free viewing faces. This suggests causal involvement of the face-encoding visual neurons in the eye movements. However, the literature is scant of evidence for this possibility and has focused mostly on the link between low-level image saliency and eye movements. Here, for the first time, we bring causal evidence showing how face-selective neurons in inferior temporal cortex inform and steer eye movements when free viewing faces.
Collapse
|