1
|
Powell AM, Williams AE, Ables ET. Fusome morphogenesis is sufficient to promote female germline stem cell self-renewal in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642432. [PMID: 40161740 PMCID: PMC11952372 DOI: 10.1101/2025.03.10.642432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Many tissue-resident stem cells are retained through asymmetric cell division, a process that ensures stem cell self-renewal through each mitotic cell cycle. Asymmetric organelle distribution has been proposed as a mechanism by which stem cells are marked for long-term retention; however, it is not clear whether biased organelle localization is a cause or an effect of asymmetric division. In Drosophila females, an endoplasmic reticulum-like organelle called the fusome is continually regenerated in germline stem cells (GSCs) and associated with GSC division. Here, we report that the β-importin Tnpo-SR is essential for fusome regeneration. Depletion of Tnpo-SR disrupts cytoskeletal organization during interphase and nuclear membrane remodeling during mitosis. Tnpo-SR does not localize to microtubules, centrosomes, or the fusome, suggesting that its role in maintaining these processes is indirect. Despite this, we find that restoring fusome morphogenesis in Tnpo-SR-depleted GSCs is sufficient to rescue GSC maintenance and cell cycle progression. We conclude that Tnpo-SR functionally fusome regeneration to cell cycle progression, supporting the model that asymmetric rebuilding of fusome promotes maintenance of GSC identity and niche retention.
Collapse
Affiliation(s)
- Amanda M. Powell
- Department of Biology, East Carolina University, Greenville, NC, 27858
| | - Anna E. Williams
- Department of Biology, East Carolina University, Greenville, NC, 27858
- Current address: Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, GA, 30322
| | | |
Collapse
|
2
|
Kolotuev I, Williams A, Kizilyaprak C, Pellegrino S, Lewellyn L. Complementary Volume Electron Microscopy-based approaches reveal ultrastructural changes in germline intercellular bridges of D. melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638836. [PMID: 40027623 PMCID: PMC11870571 DOI: 10.1101/2025.02.18.638836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Intercellular bridges are essential to connect developing germline cells. The Drosophila melanogaster egg chamber is a powerful model system to study germline intercellular bridges, or ring canals (RCs). RCs connect the developing oocyte to supporting nurse cells, and defects in their stability or growth lead to infertility. Despite their importance, it has been technically difficult to use electron microscopy-based approaches to monitor changes in RC structure during oogenesis. Here, we describe the application of a complementary set of volume EM-based approaches to visualize ultrastructural changes in the germline RCs. The combination of array tomography (AT) and focused ion beam (FIB) scanning electron microscopy (SEM) has allowed us to gain insight into previously unappreciated aspects of RC structure. We were able to quantify differences in RC size and thickness within and between germ cell clusters at different developmental stages. Within a cluster, RC size correlates with lineage; the largest RCs were formed during the first division, and the smallest RCs were formed during the fourth mitotic division. We observed the formation of membrane interdigitations in the vicinity of RCs much earlier than previously reported, and reconstruction of a RC from a mid-stage EC provided insight into the 3D orientation of these extensive cell-cell contacts. Our imaging also revealed a novel membrane structure that appeared to line the interior of the RC lumen. Although the focus was on ultrastructural changes in the germline RCs, our dataset contains valuable details of additional cell types and structures, including the fusome, the germline stem cells and their niche, and the migrating border cells. This imaging framework could be applied to other tissues or samples that face similar technical challenges, where the small structure of interest is located within a large sample volume.
Collapse
Affiliation(s)
- Irina Kolotuev
- University of Lausanne, Faculté de biologie et de médecine, Electron Microscopy Facility, CH-1015 Lausanne, Switzerland
- University of Lausanne, Faculté de biologie et de médecine, Department of Biological Sciences, CH-1005 Lausanne, Switzerland
| | - Abigayle Williams
- Butler University, Department of Biological Sciences, Indianapolis, IN, USA
| | - Caroline Kizilyaprak
- University of Lausanne, Faculté de biologie et de médecine, Electron Microscopy Facility, CH-1015 Lausanne, Switzerland
| | | | - Lindsay Lewellyn
- Butler University, Department of Biological Sciences, Indianapolis, IN, USA
| |
Collapse
|
3
|
Barr J, Diegmiller R, Colonnetta MM, Ke W, Imran Alsous J, Stern T, Shvartsman SY, Schedl P. To be or not to be: orb, the fusome and oocyte specification in Drosophila. Genetics 2024; 226:iyae020. [PMID: 38345426 PMCID: PMC10990432 DOI: 10.1093/genetics/iyae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/21/2024] [Indexed: 04/05/2024] Open
Abstract
In the fruit fly Drosophila melanogaster, two cells in a cyst of 16 interconnected cells have the potential to become the oocyte, but only one of these will assume an oocyte fate as the cysts transition through regions 2a and 2b of the germarium. The mechanism of specification depends on a polarized microtubule network, a dynein dependent Egl:BicD mRNA cargo complex, a special membranous structure called the fusome and its associated proteins, and the translational regulator orb. In this work, we have investigated the role of orb and the fusome in oocyte specification. We show here that specification is a stepwise process. Initially, orb mRNAs accumulate in the two pro-oocytes in close association with the fusome. This association is accompanied by the activation of the orb autoregulatory loop, generating high levels of Orb. Subsequently, orb mRNAs become enriched in only one of the pro-oocytes, the presumptive oocyte, and this is followed, with a delay, by Orb localization to the oocyte. We find that fusome association of orb mRNAs is essential for oocyte specification in the germarium, is mediated by the orb 3' UTR, and requires Orb protein. We also show that the microtubule minus end binding protein Patronin functions downstream of orb in oocyte specification. Finally, in contrast to a previously proposed model for oocyte selection, we find that the choice of which pro-oocyte becomes the oocyte does not seem to be predetermined by the amount of fusome material in these two cells, but instead depends upon a competition for orb gene products.
Collapse
Affiliation(s)
- Justinn Barr
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rocky Diegmiller
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Megan M Colonnetta
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Wenfan Ke
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jasmin Imran Alsous
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Tomer Stern
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
4
|
Smart M, Shvartsman SY, Nunley H. A model of replicating coupled oscillators generates naturally occurring cell networks. Development 2023; 150:dev202187. [PMID: 37823332 PMCID: PMC10690053 DOI: 10.1242/dev.202187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
When a founder cell and its progeny divide with incomplete cytokinesis, a network forms in which each intercellular bridge corresponds to a past mitotic event. Such networks are required for gamete production in many animals, and different species have evolved diverse final network topologies. Although mechanisms regulating network assembly have been identified in particular organisms, we lack a quantitative framework to understand network assembly and inter-species variability. Motivated by cell networks responsible for oocyte production in invertebrates, where the final topology is typically invariant within each species, we devised a mathematical model for generating cell networks, in which each node is an oscillator and, after a full cycle, the node produces a daughter to which it remains connected. These cell cycle oscillations are transient and coupled via diffusion over the edges of the network. By variation of three biologically motivated parameters, our model generates nearly all such networks currently reported across invertebrates. Furthermore, small parameter variations can rationalize cases of intra-species variation. Because cell networks outside of the ovary often form less deterministically, we propose model generalizations to account for sources of stochasticity.
Collapse
Affiliation(s)
- Matthew Smart
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Stanislav Y. Shvartsman
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Hayden Nunley
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| |
Collapse
|
5
|
Lu W, Lakonishok M, Gelfand VI. The dynamic duo of microtubule polymerase Mini spindles/XMAP215 and cytoplasmic dynein is essential for maintaining Drosophila oocyte fate. Proc Natl Acad Sci U S A 2023; 120:e2303376120. [PMID: 37722034 PMCID: PMC10523470 DOI: 10.1073/pnas.2303376120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/11/2023] [Indexed: 09/20/2023] Open
Abstract
In many species, only one oocyte is specified among a group of interconnected germline sister cells. In Drosophila melanogaster, 16 interconnected cells form a germline cyst, where one cell differentiates into an oocyte, while the rest become nurse cells that supply the oocyte with mRNAs, proteins, and organelles through intercellular cytoplasmic bridges named ring canals via microtubule-based transport. In this study, we find that a microtubule polymerase Mini spindles (Msps), the Drosophila homolog of XMAP215, is essential for maintenance of the oocyte specification. mRNA encoding Msps is transported and concentrated in the oocyte by dynein-dependent transport along microtubules. Translated Msps stimulates microtubule polymerization in the oocyte, causing more microtubule plus ends to grow from the oocyte through the ring canals into nurse cells, further enhancing nurse cell-to-oocyte transport by dynein. Knockdown of msps blocks the oocyte growth and causes gradual loss of oocyte determinants. Thus, the Msps-dynein duo creates a positive feedback loop, ensuring oocyte fate maintenance by promoting high microtubule polymerization activity in the oocyte, and enhancing dynein-dependent nurse cell-to-oocyte transport.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Margot Lakonishok
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Vladimir I. Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| |
Collapse
|