1
|
Rangel-Chávez CP, Galán-Vásquez E, Pescador-Tapia A, Delaye L, Martínez-Antonio A. RNA polymerases in strict endosymbiont bacteria with extreme genome reduction show distinct erosions that might result in limited and differential promoter recognition. PLoS One 2021; 16:e0239350. [PMID: 34324516 PMCID: PMC8321222 DOI: 10.1371/journal.pone.0239350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 06/22/2021] [Indexed: 11/26/2022] Open
Abstract
Strict endosymbiont bacteria present high degree genome reduction, retain smaller proteins, and in some instances, lack complete functional domains compared to free-living counterparts. Until now, the mechanisms underlying these genetic reductions are not well understood. In this study, the conservation of RNA polymerases, the essential machinery for gene expression, is analyzed in endosymbiont bacteria with extreme genome reductions. We analyzed the RNA polymerase subunits to identify and define domains, subdomains, and specific amino acids involved in precise biological functions known in Escherichia coli. We also perform phylogenetic analysis and three-dimensional models over four lineages of endosymbiotic proteobacteria with the smallest genomes known to date: Candidatus Hodgkinia cicadicola, Candidatus Tremblaya phenacola, Candidatus Tremblaya Princeps, Candidatus Nasuia deltocephalinicola, and Candidatus Carsonella ruddii. We found that some Hodgkinia strains do not encode for the RNA polymerase α subunit. The rest encode genes for α, β, β', and σ subunits to form the RNA polymerase. However, 16% shorter, on average, respect their orthologous in E. coli. In the α subunit, the amino-terminal domain is the most conserved. Regarding the β and β' subunits, both the catalytic core and the assembly domains are the most conserved. However, they showed compensatory amino acid substitutions to adapt to changes in the σ subunit. Precisely, the most erosive diversity occurs within the σ subunit. We identified broad amino acid substitution even in those recognizing and binding to the -10-box promoter element. In an overall conceptual image, the RNA polymerase from Candidatus Nasuia conserved the highest similarity with Escherichia coli RNA polymerase and their σ70. It might be recognizing the two main promoter elements (-10 and -35) and the two promoter accessory elements (-10 extended and UP-element). In Candidatus Carsonella, the RNA polymerase could recognize all the promoter elements except the -10-box extended. In Candidatus Tremblaya and Hodgkinia, due to the α carboxyl-terminal domain absence, they might not recognize the UP-promoter element. We also identified the lack of the β flap-tip helix domain in most Hodgkinia's that suggests the inability to bind the -35-box promoter element.
Collapse
Affiliation(s)
- Cynthia Paola Rangel-Chávez
- Biological Engineering Laboratory, Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato Gto, México
| | - Edgardo Galán-Vásquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, CDMX, México
| | - Azucena Pescador-Tapia
- Biological Engineering Laboratory, Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato Gto, México
| | - Luis Delaye
- Evolutionary Genomics Laboratory, Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato Gto, México
| | - Agustino Martínez-Antonio
- Biological Engineering Laboratory, Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato Gto, México
| |
Collapse
|
2
|
Thairu MW, Meduri VRS, Degnan PH, Hansen AK. Natural selection shapes maintenance of orthologous sRNAs in divergent host-restricted bacterial genomes. Mol Biol Evol 2021; 38:4778-4791. [PMID: 34213555 PMCID: PMC8557413 DOI: 10.1093/molbev/msab202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Historically it has been difficult to study the evolution of bacterial small RNAs (sRNAs) across distantly related species. For example, identifying homologs of sRNAs is often difficult in genomes that have undergone multiple structural rearrangements. Also, some types of regulatory sRNAs evolve at rapid rates. The high degree of genomic synteny among divergent host-restricted bacterial lineages, including intracellular symbionts, is conducive to sRNA maintenance and homolog identification. In turn, symbiont genomes can provide us with novel insights into sRNA evolution. Here, we examine the sRNA expression profile of the obligate symbiont of psyllids, Carsonella ruddii, which has one of the smallest cellular genomes described. Using RNA-seq, we identified 36 and 32 antisense sRNAs (asRNAs) expressed by Carsonella from the psyllids Bactericera cockerelli (Carsonella-BC) and Diaphorina citri (Carsonella-DC), respectively. The majority of these asRNAs were associated with genes that are involved in essential amino acid biosynthetic pathways. Eleven of the asRNAs were conserved in both Carsonella lineages and the majority were maintained by selection. Notably, five of the corresponding coding sequences are also the targets of conserved asRNAs in a distantly related insect symbiont, Buchnera. We detected differential expression of two asRNAs for genes involved in arginine and leucine biosynthesis occurring between two distinct Carsonella-BC life stages. Using asRNAs identified in Carsonella, Buchnera, and Profftella which are all endosymbionts, and Escherichia coli, we determined that regions upstream of these asRNAs encode unique conserved patterns of AT/GC richness, GC skew, and sequence motifs which may be involved in asRNA regulation.
Collapse
Affiliation(s)
- Margaret W Thairu
- Department of Entomology, University of California, Riverside, Riverside, CA.,Department of Bacteriology, University of Wisconsin, Madison, Madison, WI
| | | | - Patrick H Degnan
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Allison K Hansen
- Department of Entomology, University of California, Riverside, Riverside, CA
| |
Collapse
|
3
|
Kędzierska B, Potrykus K, Szalewska-Pałasz A, Wodzikowska B. Insights into Transcriptional Repression of the Homologous Toxin-Antitoxin Cassettes yefM-yoeB and axe-txe. Int J Mol Sci 2020; 21:ijms21239062. [PMID: 33260607 PMCID: PMC7730913 DOI: 10.3390/ijms21239062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022] Open
Abstract
Transcriptional repression is a mechanism which enables effective gene expression switch off. The activity of most of type II toxin-antitoxin (TA) cassettes is controlled in this way. These cassettes undergo negative autoregulation by the TA protein complex which binds to the promoter/operator sequence and blocks transcription initiation of the TA operon. Precise and tight control of this process is vital to avoid uncontrolled expression of the toxin component. Here, we employed a series of in vivo and in vitro experiments to establish the molecular basis for previously observed differences in transcriptional activity and repression levels of the pyy and pat promoters which control expression of two homologous TA systems, YefM-YoeB and Axe-Txe, respectively. Transcriptional fusions of promoters with a lux reporter, together with in vitro transcription, EMSA and footprinting assays revealed that: (1) the different sequence composition of the -35 promoter element is responsible for substantial divergence in strengths of the promoters; (2) variations in repression result from the TA repressor complex acting at different steps in the transcription initiation process; (3) transcription from an additional promoter upstream of pat also contributes to the observed inefficient repression of axe-txe module. This study provides evidence that even closely related TA cassettes with high sequence similarity in the promoter/operator region may employ diverse mechanisms for transcriptional regulation of their genes.
Collapse
|
4
|
Mejía-Almonte C, Busby SJW, Wade JT, van Helden J, Arkin AP, Stormo GD, Eilbeck K, Palsson BO, Galagan JE, Collado-Vides J. Redefining fundamental concepts of transcription initiation in bacteria. Nat Rev Genet 2020; 21:699-714. [PMID: 32665585 PMCID: PMC7990032 DOI: 10.1038/s41576-020-0254-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2020] [Indexed: 12/15/2022]
Abstract
Despite enormous progress in understanding the fundamentals of bacterial gene regulation, our knowledge remains limited when compared with the number of bacterial genomes and regulatory systems to be discovered. Derived from a small number of initial studies, classic definitions for concepts of gene regulation have evolved as the number of characterized promoters has increased. Together with discoveries made using new technologies, this knowledge has led to revised generalizations and principles. In this Expert Recommendation, we suggest precise, updated definitions that support a logical, consistent conceptual framework of bacterial gene regulation, focusing on transcription initiation. The resulting concepts can be formalized by ontologies for computational modelling, laying the foundation for improved bioinformatics tools, knowledge-based resources and scientific communication. Thus, this work will help researchers construct better predictive models, with different formalisms, that will be useful in engineering, synthetic biology, microbiology and genetics.
Collapse
Affiliation(s)
- Citlalli Mejía-Almonte
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Morelos, Cuernavaca, México
| | | | - Joseph T Wade
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Jacques van Helden
- Aix-Marseille University, INSERM UMR S 1090, Theory and Approaches of Genome Complexity (TAGC), Marseille, France
- CNRS, Institut Français de Bioinformatique, IFB-core, UMS 3601, Evry, France
| | - Adam P Arkin
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Gary D Stormo
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Karen Eilbeck
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - James E Galagan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Julio Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Morelos, Cuernavaca, México.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
5
|
Synthetic gene-regulatory networks in the opportunistic human pathogen Streptococcus pneumoniae. Proc Natl Acad Sci U S A 2020; 117:27608-27619. [PMID: 33087560 PMCID: PMC7959565 DOI: 10.1073/pnas.1920015117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae is a major human pathogen responsible for enormous global morbidity and mortality. Despite this, the pneumococcus makes up part of the commensal nasopharyngeal flora. How the pneumococcus switches from this commensal to pathogenic state and causes disease is unclear and very likely involves variability in expression of its virulence factors. Here, we used synthetic biology approaches to generate complex gene-regulatory networks such as logic gates and toggle switches. We show that these networks are functional in vivo to control capsule production in an influenza-superinfection model. This opens the field of systematically testing the role of phenotypic variation in pneumococcal virulence. The approaches used here may serve as an example for synthetic biology projects in unrelated organisms. Streptococcus pneumoniae can cause disease in various human tissues and organs, including the ear, the brain, the blood, and the lung, and thus in highly diverse and dynamic environments. It is challenging to study how pneumococci control virulence factor expression, because cues of natural environments and the presence of an immune system are difficult to simulate in vitro. Here, we apply synthetic biology methods to reverse-engineer gene expression control in S. pneumoniae. A selection platform is described that allows for straightforward identification of transcriptional regulatory elements out of combinatorial libraries. We present TetR- and LacI-regulated promoters that show expression ranges of four orders of magnitude. Based on these promoters, regulatory networks of higher complexity are assembled, such as logic AND gates and IMPLY gates. We demonstrate single-copy genome-integrated toggle switches that give rise to bimodal population distributions. The tools described here can be used to mimic complex expression patterns, such as the ones found for pneumococcal virulence factors. Indeed, we were able to rewire gene expression of the capsule operon, the main pneumococcal virulence factor, to be externally inducible (YES gate) or to act as an IMPLY gate (only expressed in absence of inducer). Importantly, we demonstrate that these synthetic gene-regulatory networks are functional in an influenza A virus superinfection murine model of pneumonia, paving the way for in vivo investigations of the importance of gene expression control on the pathogenicity of S. pneumoniae.
Collapse
|
6
|
Jin L, Nawab S, Xia M, Ma X, Huo Y. Context-dependency of synthetic minimal promoters in driving gene expression: a case study. Microb Biotechnol 2019; 12:1476-1486. [PMID: 31578818 PMCID: PMC6801132 DOI: 10.1111/1751-7915.13489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
Synthetic promoters are considered ideal candidates in driving robust gene expression. Most of the available synthetic promoters are minimal promoters, for which the upstream sequence of the 5' end of the core region is usually excluded. Although the upstream sequence has been shown to mediate transcription of natural promoters, its impact on synthetic promoters has not been widely studied. Here, a library of chromosomal DNA fragments is randomly fused with the 5' end of the J23119 synthetic promoter, and the transcriptional performance of the promoter is evaluated through β-galactosidase assay, fluorescence intensity and chemical biosynthesis. Results show that changes in the upstream sequence can induce significant variation in the promoter strength of up to 5.8-fold. The effect is independent of the length of the insertions and the number of potential transcription factor binding sites. Several DNA fragments that are able to enhance the transcription of both the natural and the synthetic promoters are identified. This study indicates that the synthetic minimal promoters are susceptible to the surrounding sequence context. Therefore, the upstream sequence should be treated as an indispensable component in the design and application of synthetic promoters, or as an independent genetic part for the fine-tuning of gene expression.
Collapse
Affiliation(s)
- Liyuan Jin
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life ScienceBeijing Institute of Technology5 South Zhongguancun Street, Haidian DistrictBeijing100081China
| | - Said Nawab
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life ScienceBeijing Institute of Technology5 South Zhongguancun Street, Haidian DistrictBeijing100081China
| | - Mengli Xia
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life ScienceBeijing Institute of Technology5 South Zhongguancun Street, Haidian DistrictBeijing100081China
| | - Xiaoyan Ma
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life ScienceBeijing Institute of Technology5 South Zhongguancun Street, Haidian DistrictBeijing100081China
| | - Yi‐Xin Huo
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life ScienceBeijing Institute of Technology5 South Zhongguancun Street, Haidian DistrictBeijing100081China
- UCLA Institute for Technology Advancement (Suzhou)10 Yueliangwan Road, Suzhou Industrial ParkSuzhou215123China
| |
Collapse
|
7
|
Spatial organization of RNA polymerase and its relationship with transcription in Escherichia coli. Proc Natl Acad Sci U S A 2019; 116:20115-20123. [PMID: 31527272 DOI: 10.1073/pnas.1903968116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies have shown that RNA polymerase (RNAP) is organized into distinct clusters in Escherichia coli and Bacillus subtilis cells. Spatially organized molecular components in prokaryotic systems imply compartmentalization without the use of membranes, which may offer insights into unique functions and regulations. It has been proposed that the formation of RNAP clusters is driven by active ribosomal RNA (rRNA) transcription and that RNAP clusters function as factories for highly efficient transcription. In this work, we examined these hypotheses by investigating the spatial organization and transcription activity of RNAP in E. coli cells using quantitative superresolution imaging coupled with genetic and biochemical assays. We observed that RNAP formed distinct clusters that were engaged in active rRNA synthesis under a rich medium growth condition. Surprisingly, a large fraction of RNAP clusters persisted in the absence of high rRNA transcription activities or when the housekeeping σ70 was sequestered, and was only significantly diminished when all RNA transcription was inhibited globally. In contrast, the cellular distribution of RNAP closely followed the morphology of the underlying nucleoid under all conditions tested irrespective of the corresponding transcription activity, and RNAP redistributed into dispersed, smaller clusters when the supercoiling state of the nucleoid was perturbed. These results suggest that RNAP was organized into active transcription centers under the rich medium growth condition; its spatial arrangement at the cellular level, however, was not dependent on rRNA synthesis activity and was likely organized by the underlying nucleoid.
Collapse
|
8
|
Dual-barcoded shotgun expression library sequencing for high-throughput characterization of functional traits in bacteria. Nat Commun 2019; 10:308. [PMID: 30659179 PMCID: PMC6338753 DOI: 10.1038/s41467-018-08177-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022] Open
Abstract
A major challenge in genomics is the knowledge gap between sequence and its encoded function. Gain-of-function methods based on gene overexpression are attractive avenues for phenotype-based functional screens, but are not easily applied in high-throughput across many experimental conditions. Here, we present Dual Barcoded Shotgun Expression Library Sequencing (Dub-seq), a method that uses random DNA barcodes to greatly increase experimental throughput. As a demonstration of this approach, we construct a Dub-seq library with Escherichia coli genomic DNA, performed 155 genome-wide fitness assays in 52 experimental conditions, and identified overexpression phenotypes for 813 genes. We show that Dub-seq data is reproducible, accurately recapitulates known biology, and identifies hundreds of novel gain-of-function phenotypes for E. coli genes, a subset of which we verified with assays of individual strains. Dub-seq provides complementary information to loss-of-function approaches and will facilitate rapid and systematic functional characterization of microbial genomes. Gain of function methods based on gene overexpression are not easily applied to high-throughput screening across different experimental conditions. Here, the authors present Dub-seq, which separates overexpression library characterization from functional screening and uses random DNA barcodes to increase the experimental throughput.
Collapse
|
9
|
Abstract
Despite the central role of bacterial noncoding small RNAs (sRNAs) in posttranscriptional regulation, little is understood about their evolution. Here we compile what has been studied to date and trace a life cycle of sRNAs-from their mechanisms of emergence, through processes of change and frequent neofunctionalization, to their loss from bacterial lineages. Because they possess relatively unrestrictive structural requirements, we find that sRNA origins are varied, and include de novo emergence as well as formation from preexisting genetic elements via duplication events and horizontal gene transfer. The need for only partial complementarity to their mRNA targets facilitates apparent rapid change, which also contributes to significant challenges in tracing sRNAs across broad evolutionary distances. We document that recently emerged sRNAs in particular evolve quickly, mirroring dynamics observed in microRNAs, their functional analogs in eukaryotes. Mutations in mRNA-binding regions, transcriptional regulator or sigma factor binding sites, and protein-binding regions are all likely sources of shifting regulatory roles of sRNAs. Finally, using examples from the few evolutionary studies available, we examine cases of sRNA loss and describe how these may be the result of adaptive in addition to neutral processes. We highlight the need for more-comprehensive analyses of sRNA evolutionary patterns as a means to improve novel sRNA detection, enhance genome annotation, and deepen our understanding of regulatory networks in bacteria.
Collapse
|
10
|
Yona AH, Alm EJ, Gore J. Random sequences rapidly evolve into de novo promoters. Nat Commun 2018; 9:1530. [PMID: 29670097 PMCID: PMC5906472 DOI: 10.1038/s41467-018-04026-w] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/28/2018] [Indexed: 11/09/2022] Open
Abstract
How new functions arise de novo is a fundamental question in evolution. We studied de novo evolution of promoters in Escherichia coli by replacing the lac promoter with various random sequences of the same size (~100 bp) and evolving the cells in the presence of lactose. We find that ~60% of random sequences can evolve expression comparable to the wild-type with only one mutation, and that ~10% of random sequences can serve as active promoters even without evolution. Such a short mutational distance between random sequences and active promoters may improve the evolvability, yet may also lead to accidental promoters inside genes that interfere with normal expression. Indeed, our bioinformatic analyses indicate that E. coli was under selection to reduce accidental promoters inside genes by avoiding promoter-like sequences. We suggest that a low threshold for functionality balanced by selection against undesired targets can increase the evolvability by making new beneficial features more accessible. Bacterial promoters initiate gene transcription and have distinct sequence features. Here, the authors show that random sequences that contain no information are just on the verge of functioning as promoters in Escherichia coli.
Collapse
Affiliation(s)
- Avihu H Yona
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Eric J Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jeff Gore
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
11
|
Three tandem promoters, together with IHF, regulate growth phase dependent expression of the Escherichia coli kps capsule gene cluster. Sci Rep 2017; 7:17924. [PMID: 29263430 PMCID: PMC5738388 DOI: 10.1038/s41598-017-17891-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/01/2017] [Indexed: 02/02/2023] Open
Abstract
In this study we characterise three tandem promoters (PR1-1, PR1-2 and PR1-3) within the PR1 regulatory region of the Escherichia coli kps capsule gene cluster. Transcription from promoter PR1-2 was dependent on the activity of the upstream promoter PR1-1, which activated PR1-2 via transcription coupled DNA supercoiling. During growth at 37 °C a temporal pattern of transcription from all three promoters was observed with maximum transcriptional activity evident during mid-exponential phase followed by a sharp decrease in activity as the cells enter stationary phase. The growth phase dependent transcription was regulated by Integration Host Factor (IHF), which bound within the PR1 region to repress transcription from PR1-2 and PR1-3. This pattern of transcription was mirrored by growth phase dependent expression of the K1 capsule. Overall these data reveal a complex pattern of transcriptional regulation for an important virulence factor with IHF playing a role in regulating growth phase expression.
Collapse
|
12
|
Chromosomal organization of transcription: in a nutshell. Curr Genet 2017; 64:555-565. [PMID: 29184972 DOI: 10.1007/s00294-017-0785-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 01/25/2023]
Abstract
Early studies of transcriptional regulation focused on individual gene promoters defined specific transcription factors as central agents of genetic control. However, recent genome-wide data propelled a different view by linking spatially organized gene expression patterns to chromosomal dynamics. Therefore, the major problem in contemporary molecular genetics concerned with transcriptional gene regulation is to establish a unifying model that reconciles these two views. This problem, situated at the interface of polymer physics and network theory, requires development of an integrative methodology. In this review, we discuss recent achievements in classical model organism E. coli and provide some novel insights gained from studies of a bacterial plant pathogen, D. dadantii. We consider DNA topology and the basal transcription machinery as key actors of regulation, in which activation of functionally relevant genes is coupled to and coordinated with the establishment of extended chromosomal domains of coherent transcription. We argue that the spatial organization of genome plays a fundamental role in its own regulation.
Collapse
|
13
|
Park HJ, Lee S, Ju E, Jones JA, Choi I. Alternative transcription of sodium/bicarbonate transporter SLC4A7 gene enhanced by single nucleotide polymorphisms. Physiol Genomics 2017; 49:167-176. [PMID: 28087757 PMCID: PMC5374452 DOI: 10.1152/physiolgenomics.00112.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 12/31/2022] Open
Abstract
Genome-wide association studies have identified the single nucleotide polymorphism (SNP) rs3278 in the human SLC4A7 gene as one of the marker loci for addiction vulnerability. This marker is located in an intron of the gene, and its genomic role has been unknown. In this study, we examined rs3278 and three adjacent SNPs prevalent in alcoholics for their effects on an alternative promoter that would lead to the production of the NH2-terminally truncated protein NBCn1ΔN450, missing the first 450 amino acids. Analysis of the transcription start site database and a promoter prediction algorithm identified a cluster of three promoters in intron 7 and two short CpG-rich sites in intron 6. The promoter closest to rs3278 showed strong transcription activity in luciferase reporter gene assays. Major-to-minor allele substitution at rs3278 resulted in increased transcription activity. Equivalent substitutions at adjacent rs3772723 (intron 7) and rs13077400 (exon 8) had negligible effect; however, the substitution at nonsynonymous rs3755652 (exon 8) increased the activity by more than twofold. The concomitant substitution at rs3278/rs3755652 produced an additive effect. The rs3755652 had more profound effects on the promoter than the upstream regulatory CpG sites. The amino acid change E326K caused by rs3755652 had negligible effect on transporter function. In HEK 293 cells, NBCn1ΔN450 was expressed in plasma membranes, but at significantly lower levels than the nontruncated NBCn1-E. The pH change mediated by NBCn1ΔN450 was also low. We conclude that rs3278 and rs3755652 stimulate an alternative transcription of the SLC4A7 gene, increasing the production of a defective transporter.
Collapse
Affiliation(s)
- Hae Jeong Park
- Department of Pharmacology, Kyung Hee University School of Medicine, Seoul, South Korea; and
| | - Soojung Lee
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Eunji Ju
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Jayre A Jones
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Inyeong Choi
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
14
|
Abstract
Transcription factors (TFs) play a central role in regulating gene expression in all bacteria. Yet until recently, studies of TF binding were limited to a small number of factors at a few genomic locations. Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) provides the ability to map binding sites globally for TFs, and the scalability of the technology enables the ability to map binding sites for every DNA binding protein in a prokaryotic organism. We have developed a protocol for ChIP-Seq tailored for use with mycobacteria and an analysis pipeline for processing the resulting data. The protocol and pipeline have been used to map over 100 TFs from Mycobacterium tuberculosis, as well as numerous TFs from related mycobacteria and other bacteria. The resulting data provide evidence that the long-accepted spatial relationship between TF binding site, promoter motif, and the corresponding regulated gene may be too simple a paradigm, failing to adequately capture the variety of TF binding sites found in prokaryotes. In this article we describe the protocol and analysis pipeline, the validation of these methods, and the results of applying these methods to M. tuberculosis.
Collapse
|
15
|
AlQuraishi M, Tang S, Xia X. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system. BMC Bioinformatics 2015; 16:390. [PMID: 26586237 PMCID: PMC4653904 DOI: 10.1186/s12859-015-0819-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 11/11/2015] [Indexed: 11/28/2022] Open
Abstract
Background Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. Description We have developed an integrated affinity-structure database in which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Conclusions This database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.
Collapse
Affiliation(s)
- Mohammed AlQuraishi
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA. .,HMS Laboratory of Systems Pharmacology, Harvard Medical School, 200 Longwood Avenue, Boston, MA, 02115, USA.
| | - Shengdong Tang
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.,HMS Laboratory of Systems Pharmacology, Harvard Medical School, 200 Longwood Avenue, Boston, MA, 02115, USA
| | - Xide Xia
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.,HMS Laboratory of Systems Pharmacology, Harvard Medical School, 200 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
16
|
Cerveau N, Gilbert C, Liu C, Garrett RA, Grève P, Bouchon D, Cordaux R. Genomic context drives transcription of insertion sequences in the bacterial endosymbiont Wolbachia wVulC. Gene 2015; 564:81-6. [PMID: 25813874 DOI: 10.1016/j.gene.2015.03.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 11/24/2022]
Abstract
Transposable elements (TEs) are DNA pieces that are present in almost all the living world at variable genomic density. Due to their mobility and density, TEs are involved in a large array of genomic modifications. In eukaryotes, TE expression has been studied in detail in several species. In prokaryotes, studies of IS expression are generally linked to particular copies that induce a modification of neighboring gene expression. Here we investigated global patterns of IS transcription in the Alphaproteobacterial endosymbiont Wolbachia wVulC, using both RT-PCR and bioinformatic analyses. We detected several transcriptional promoters in all IS groups. Nevertheless, only one of the potentially functional IS groups possesses a promoter located upstream of the transposase gene, that could lead up to the production of a functional protein. We found that the majority of IS groups are expressed whatever their functional status. RT-PCR analyses indicate that the transcription of two IS groups lacking internal promoters upstream of the transposase start codon may be driven by the genomic environment. We confirmed this observation with the transcription analysis of individual copies of one IS group. These results suggest that the genomic environment is important for IS expression and it could explain, at least partly, copy number variability of the various IS groups present in the wVulC genome and, more generally, in bacterial genomes.
Collapse
Affiliation(s)
- Nicolas Cerveau
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, 5 Rue Albert Turpin, 86073 Poitiers Cedex 9, France
| | - Clément Gilbert
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, 5 Rue Albert Turpin, 86073 Poitiers Cedex 9, France
| | - Chao Liu
- Department of Biology, University of Copenhagen, 2200N Copenhagen, Denmark
| | - Roger A Garrett
- Department of Biology, University of Copenhagen, 2200N Copenhagen, Denmark
| | - Pierre Grève
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, 5 Rue Albert Turpin, 86073 Poitiers Cedex 9, France
| | - Didier Bouchon
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, 5 Rue Albert Turpin, 86073 Poitiers Cedex 9, France
| | - Richard Cordaux
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, 5 Rue Albert Turpin, 86073 Poitiers Cedex 9, France.
| |
Collapse
|
17
|
Gerganova V, Maurer S, Stoliar L, Japaridze A, Dietler G, Nasser W, Kutateladze T, Travers A, Muskhelishvili G. Upstream binding of idling RNA polymerase modulates transcription initiation from a nearby promoter. J Biol Chem 2015; 290:8095-109. [PMID: 25648898 DOI: 10.1074/jbc.m114.628131] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial gene regulatory regions often demonstrate distinctly organized arrays of RNA polymerase binding sites of ill-defined function. Previously we observed a module of closely spaced polymerase binding sites upstream of the canonical promoter of the Escherichia coli fis operon. FIS is an abundant nucleoid-associated protein involved in adjusting the chromosomal DNA topology to changing cellular physiology. Here we show that simultaneous binding of the polymerase at the canonical fis promoter and an upstream transcriptionally inactive site stabilizes a RNAP oligomeric complex in vitro. We further show that modulation of the upstream binding of RNA polymerase affects the fis promoter activity both in vivo and in vitro. The effect of the upstream RNA polymerase binding on the fis promoter activity depends on the spatial arrangement of polymerase binding sites and DNA supercoiling. Our data suggest that a specific DNA geometry of the nucleoprotein complex stabilized on concomitant binding of RNA polymerase molecules at the fis promoter and the upstream region acts as a topological device regulating the fis transcription. We propose that transcriptionally inactive RNA polymerase molecules can act as accessory factors regulating the transcription initiation from a nearby promoter.
Collapse
Affiliation(s)
- Veneta Gerganova
- From the School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Sebastian Maurer
- From the School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Liubov Stoliar
- From the School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Aleksandre Japaridze
- the Laboratory of the Physics of Living Matter, EPFL, CH-1015 Lausanne, Switzerland
| | - Giovanni Dietler
- the Laboratory of the Physics of Living Matter, EPFL, CH-1015 Lausanne, Switzerland
| | - William Nasser
- the UMR5240 CNRS/INSA/UCB, Université de Lyon, F-69003, INSA-Lyon, Villeurbanne, F-69621, France
| | - Tamara Kutateladze
- the Ivane Beritashvili Centre of Experimental Biomedicine, Gotua str.14, Tbilisi, Georgia, and
| | - Andrew Travers
- the MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 QH, United Kingdom
| | - Georgi Muskhelishvili
- From the School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany,
| |
Collapse
|
18
|
Raghavan R, Kacharia FR, Millar JA, Sislak CD, Ochman H. Genome rearrangements can make and break small RNA genes. Genome Biol Evol 2015; 7:557-66. [PMID: 25601101 PMCID: PMC4350180 DOI: 10.1093/gbe/evv009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Small RNAs (sRNAs) are short, transcribed regulatory elements that are typically encoded in the intergenic regions (IGRs) of bacterial genomes. Several sRNAs, first recognized in Escherichia coli, are conserved among enteric bacteria, but because of the regulatory roles of sRNAs, differences in sRNA repertoires might be responsible for features that differentiate closely related species. We scanned the E. coli MG1655 and Salmonella enterica Typhimurium genomes for nonsyntenic IGRs as a potential source of uncharacterized, species-specific sRNAs and found that genome rearrangements have reconfigured several IGRs causing the disruption and formation of sRNAs. Within an IGR that is present in E. coli but was disrupted in Salmonella by a translocation event is an sRNA that is associated with the FNR/CRP global regulators and influences E. coli biofilm formation. A Salmonella-specific sRNA evolved de novo through point mutations that generated a σ70 promoter sequence in an IGR that arose through genome rearrangement events. The differences in the sRNA pools among bacterial species have previously been ascribed to duplication, deletion, or horizontal acquisition. Here, we show that genomic rearrangements also contribute to this process by either disrupting sRNA-containing IGRs or creating IGRs in which novel sRNAs may evolve.
Collapse
Affiliation(s)
- Rahul Raghavan
- Department of Biology and Center for Life in Extreme Environments, Portland State University
| | - Fenil R Kacharia
- Department of Biology and Center for Life in Extreme Environments, Portland State University
| | - Jess A Millar
- Department of Biology and Center for Life in Extreme Environments, Portland State University
| | - Christine D Sislak
- Department of Biology and Center for Life in Extreme Environments, Portland State University
| | - Howard Ochman
- Department of Integrative Biology, The University of Texas at Austin
| |
Collapse
|
19
|
Abstract
Pervasive, or genome-wide, transcription has been reported in all domains of life. In bacteria, most pervasive transcription occurs antisense to protein-coding transcripts, although recently a new class of pervasive RNAs was identified that originates from within annotated genes. Initially considered to be non-functional transcriptional noise, pervasive transcription is increasingly being recognized as important in regulating gene expression. The function of pervasive transcription is an extensively debated question in the field of transcriptomics and regulatory RNA biology. Here, we highlight the most recent contributions addressing the purpose of pervasive transcription in bacteria and discuss their implications.
Collapse
Affiliation(s)
- Meghan Lybecker
- a Department of Biochemistry and Cell Biology ; Max F Perutz Laboratories; University of Vienna ; Vienna, Austria
| | | | | |
Collapse
|
20
|
Sun Z, Westermann C, Yuan J, Riedel CU. Experimental determination and characterization of the gap promoter of Bifidobacterium bifidum S17. Bioengineered 2014; 5:371-7. [PMID: 25482086 DOI: 10.4161/bioe.34423] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The DNA sequence upstream of the glyceraldehyde 3-phosphate dehydrogenase gene (gap) of various strains of bifidobacteria is used in a number of vector systems for homologous and heterologous expression in this group of bacteria. To date none of the bifidobacterial gap promoters (Pgap) have been verified experimentally. Here, we probe a range of putative bifidobacterial promoters hypothesized to show high constitutive transcriptional activity using a β-glucuronidase reporter system. In silico analysis revealed a predicted bacterial promoter upstream of the gap gene of Bifidobacterium bifidum S17. The corresponding DNA sequences was cloned into the promoter probe vector pMDY23 and yielded highest reporter activities among the promoter sequences tested confirming previous studies. Using rapid amplification of cDNA ends (5'-RACE), we identified the transcription start site (TSS) of Pgap of B. bifidum S17. The experimentally determined TSS and the associated -10 and -35 regions do not match with the promoter predicted in silico. Moreover, a potential ribosome-binding site (RBS) was identified upstream of the ATG start codon of the gap gene, which is complementary to the 3'-end of the 16S rRNA with only 1 mismatch suggesting efficient initiation of translation. Alignment of the Pgap sequences of a number of representative bifidobacteria showed a high level of conservation and the presence of -35 and -10 regions, which are similar but not identical to the consensus promoter sequences of house-keeping genes of Escherichia coli and Bacillus subtilis. Collectively, these results confirm the suitability of Pgap for high level, constitutive expression in bifidobacteria.
Collapse
Affiliation(s)
- Zhongke Sun
- a Institute of Microbiology and Biotechnology ; University of Ulm ; Ulm , Germany
| | | | | | | |
Collapse
|
21
|
López-Leal G, Tabche ML, Castillo-Ramírez S, Mendoza-Vargas A, Ramírez-Romero MA, Dávila G. RNA-Seq analysis of the multipartite genome of Rhizobium etli CE3 shows different replicon contributions under heat and saline shock. BMC Genomics 2014; 15:770. [PMID: 25201548 PMCID: PMC4167512 DOI: 10.1186/1471-2164-15-770] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/03/2014] [Indexed: 12/23/2022] Open
Abstract
Background Regulation of transcription is essential for any organism and Rhizobium etli (a multi-replicon, nitrogen-fixing symbiotic bacterium) is no exception. This bacterium is commonly found in the rhizosphere (free-living) or inside of root-nodules of the common bean (Phaseolus vulgaris) in a symbiotic relationship. Abiotic stresses, such as high soil temperatures and salinity, compromise the genetic stability of R. etli and therefore its symbiotic interaction with P. vulgaris. However, it is still unclear which genes are up- or down-regulated to cope with these stress conditions. The aim of this study was to identify the genes and non-coding RNAs (ncRNAs) that are differentially expressed under heat and saline shock, as well as the promoter regions of the up-regulated loci. Results Analysing the heat and saline shock responses of R. etli CE3 through RNA-Seq, we identified 756 and 392 differentially expressed genes, respectively, and 106 were up-regulated under both conditions. Notably, the set of genes over-expressed under either condition was preferentially encoded on plasmids, although this observation was more significant for the heat shock response. In contrast, during either saline shock or heat shock, the down-regulated genes were principally chromosomally encoded. Our functional analysis shows that genes encoding chaperone proteins were up-regulated during the heat shock response, whereas genes involved in the metabolism of compatible solutes were up-regulated following saline shock. Furthermore, we identified thirteen and nine ncRNAs that were differentially expressed under heat and saline shock, respectively, as well as eleven ncRNAs that had not been previously identified. Finally, using an in silico analysis, we studied the promoter motifs in all of the non-coding regions associated with the genes and ncRNAs up-regulated under both conditions. Conclusions Our data suggest that the replicon contribution is different for different stress responses and that the heat shock response is more complex than the saline shock response. In general, this work exemplifies how strategies that not only consider differentially regulated genes but also regulatory elements of the stress response provide a more comprehensive view of bacterial gene regulation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-770) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gamaliel López-Leal
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos C,P 62210, México.
| | | | | | | | | | | |
Collapse
|
22
|
Panyukov VV, Ozoline ON. Promoters of Escherichia coli versus promoter islands: function and structure comparison. PLoS One 2013; 8:e62601. [PMID: 23717391 PMCID: PMC3661553 DOI: 10.1371/journal.pone.0062601] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/23/2013] [Indexed: 12/21/2022] Open
Abstract
Expression of bacterial genes takes place under the control of RNA polymerase with exchangeable σ-subunits and multiple transcription factors. A typical promoter region contains one or several overlapping promoters. In the latter case promoters have the same or different σ-specificity and are often subjected to different regulatory stimuli. Genes, transcribed from multiple promoters, have on average higher expression levels. However, recently in the genome of Escherichia coli we found 78 regions with an extremely large number of potential transcription start points (promoter islands, PIs). It was shown that all PIs interact with RNA polymerase in vivo and are able to form transcriptionally competent open complexes both in vitro and in vivo but their transcriptional activity measured by oligonucleotide microarrays was very low, if any. Here we confirmed transcriptional defectiveness of PIs by analyzing the 5'-end specific RNA-seq data, but showed their ability to produce short oligos (9-14 bases). This combination of functional properties indicated a deliberate suppression of transcriptional activity within PIs. According to our data this suppression may be due to a specific conformation of the DNA double helix, which provides an ideal platform for interaction with both RNA polymerase and the histone-like nucleoid protein H-NS. The genomic DNA of E.coli contains therefore several dozen sites optimized by evolution for staying in a heterochromatin-like state. Since almost all promoter islands are associated with horizontally acquired genes, we offer them as specific components of bacterial evolution involved in acquisition of foreign genetic material by turning off the expression of toxic or useless aliens or by providing optimal promoter for beneficial genes. The putative molecular mechanism underlying the appearance of promoter islands within recipient genomes is discussed.
Collapse
Affiliation(s)
- Valeriy V. Panyukov
- Department of Bioinformatics, Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - Olga N. Ozoline
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Cell Biology, Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, Russian Federation
| |
Collapse
|
23
|
AlQuraishi M, McAdams HH. Three enhancements to the inference of statistical protein-DNA potentials. Proteins 2012; 81:426-42. [PMID: 23042633 DOI: 10.1002/prot.24201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/17/2012] [Accepted: 10/02/2012] [Indexed: 12/28/2022]
Abstract
The energetics of protein-DNA interactions are often modeled using so-called statistical potentials, that is, energy models derived from the atomic structures of protein-DNA complexes. Many statistical protein-DNA potentials based on differing theoretical assumptions have been investigated, but little attention has been paid to the types of data and the parameter estimation process used in deriving the statistical potentials. We describe three enhancements to statistical potential inference that significantly improve the accuracy of predicted protein-DNA interactions: (i) incorporation of binding energy data of protein-DNA complexes, in conjunction with their X-ray crystal structures, (ii) use of spatially-aware parameter fitting, and (iii) use of ensemble-based parameter fitting. We apply these enhancements to three widely-used statistical potentials and use the resulting enhanced potentials in a structure-based prediction of the DNA binding sites of proteins. These enhancements are directly applicable to all statistical potentials used in protein-DNA modeling, and we show that they can improve the accuracy of predicted DNA binding sites by up to 21%.
Collapse
Affiliation(s)
- Mohammed AlQuraishi
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
24
|
Engineering of Rhodococcus cell catalysts for tolerance improvement by sigma factor mutation and active plasmid partition. ACTA ACUST UNITED AC 2012; 39:1421-30. [DOI: 10.1007/s10295-012-1146-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
Abstract
Abstract
Tolerance to various stresses is a key phenotype for cell catalysts, which are used widely in bioproduction of diverse valuable chemicals. Using the Rhodococcus ruber TH strain, which exhibits high nitrile hydratase activity, as the target cell catalyst for acrylamide production, we established a method to improve cell tolerance by stably introducing global transcription perturbation. The σ70 gene (sigA) of R. ruber was cloned and randomly mutated. An R. ruber TH3/pNV-sigAM library containing additional sigA mutants was constructed and used for survival selection. The TH3/M4N1-59 mutant was selected by acrylonitrile/acrylamide double stress and exhibited a 160 % extension of the half-life of nitrile hydratase upon exposure to 40 % acrylamide. A redesigned parDEM gene was introduced to Rhodococcus to accomplish stable inheritance of plasmids. A two-batch acrylonitrile hydration reaction was performed using the engineered cells as a catalyst. Compared to TH3, the acrylamide productivity of TH3/M4N1-59DEM catalysis increased by 27.8 and 37.5 % in the first and second bioreaction batches, respectively. These data suggest a novel method for increasing the bioconversion productivity of target chemicals through sigA mutation of the cell catalyst.
Collapse
|
25
|
Abstract
Noncoding RNAs, including antisense RNAs (asRNAs) that originate from the complementary strand of protein-coding genes, are involved in the regulation of gene expression in all domains of life. Recent application of deep-sequencing technologies has revealed that the transcription of asRNAs occurs genome-wide in bacteria. Although the role of the vast majority of asRNAs remains unknown, it is often assumed that their presence implies important regulatory functions, similar to those of other noncoding RNAs. Alternatively, many antisense transcripts may be produced by chance transcription events from promoter-like sequences that result from the degenerate nature of bacterial transcription factor binding sites. To investigate the biological relevance of antisense transcripts, we compared genome-wide patterns of asRNA expression in closely related enteric bacteria, Escherichia coli and Salmonella enterica serovar Typhimurium, by performing strand-specific transcriptome sequencing. Although antisense transcripts are abundant in both species, less than 3% of asRNAs are expressed at high levels in both species, and only about 14% appear to be conserved among species. And unlike the promoters of protein-coding genes, asRNA promoters show no evidence of sequence conservation between, or even within, species. Our findings suggest that many or even most bacterial asRNAs are nonadaptive by-products of the cell’s transcription machinery. Application of high-throughput methods has revealed the expression throughout bacterial genomes of transcripts encoded on the strand complementary to protein-coding genes. Because transcription is costly, it is usually assumed that these transcripts, termed antisense RNAs (asRNAs), serve some function; however, the role of most asRNAs is unclear, raising questions about their relevance in cellular processes. Because natural selection conserves functional elements, comparisons between related species provide a method for assessing functionality genome-wide. Applying such an approach, we assayed all transcripts in two closely related bacteria, Escherichia coli and Salmonella enterica serovar Typhimurium, and demonstrate that, although the levels of genome-wide antisense transcription are similarly high in both bacteria, only a small fraction of asRNAs are shared across species. Moreover, the promoters associated with asRNAs show no evidence of sequence conservation between, or even within, species. These findings indicate that despite the genome-wide transcription of asRNAs, many of these transcripts are likely nonfunctional.
Collapse
|
26
|
Weber SDS, Sant'Anna FH, Schrank IS. Unveiling Mycoplasma hyopneumoniae promoters: sequence definition and genomic distribution. DNA Res 2012; 19:103-15. [PMID: 22334569 PMCID: PMC3325076 DOI: 10.1093/dnares/dsr045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several Mycoplasma species have had their genome completely sequenced, including four strains of the swine pathogen Mycoplasma hyopneumoniae. Nevertheless, little is known about the nucleotide sequences that control transcriptional initiation in these microorganisms. Therefore, with the objective of investigating the promoter sequences of M. hyopneumoniae, 23 transcriptional start sites (TSSs) of distinct genes were mapped. A pattern that resembles the σ70 promoter −10 element was found upstream of the TSSs. However, no −35 element was distinguished. Instead, an AT-rich periodic signal was identified. About half of the experimentally defined promoters contained the motif 5′-TRTGn-3′, which was identical to the −16 element usually found in Gram-positive bacteria. The defined promoters were utilized to build position-specific scoring matrices in order to scan putative promoters upstream of all coding sequences (CDSs) in the M. hyopneumoniae genome. Two hundred and one signals were found associated with 169 CDSs. Most of these sequences were located within 100 nucleotides of the start codons. This study has shown that the number of promoter-like sequences in the M. hyopneumoniae genome is more frequent than expected by chance, indicating that most of the sequences detected are probably biologically functional.
Collapse
Affiliation(s)
- Shana de Souto Weber
- Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | | |
Collapse
|
27
|
Galagan J, Lyubetskaya A, Gomes A. ChIP-Seq and the complexity of bacterial transcriptional regulation. Curr Top Microbiol Immunol 2012; 363:43-68. [PMID: 22983621 DOI: 10.1007/82_2012_257] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Transcription factors (TFs) play a central role in regulating gene expression in all bacteria. Yet, until recently, studies of TF binding were limited to a small number of factors at a few genomic locations. Chromatin immunoprecipitation followed by sequencing enables mapping of binding sites for TFs in a global and high-throughput fashion. The NIAID funded TB systems biology project http://www.broadinstitute.org/annotation/tbsysbio/home.html aims to map the binding sites for every transcription factor in the genome of Mycobacterium tuberculosis (MTB), the causative agent of human TB. ChIP-Seq data already released through TBDB.org have provided new insight into the mechanisms of TB pathogenesis. But in addition, data from MTB are beginning to challenge many simplifying assumptions associated with gene regulation in all bacteria. In this chapter, we review the global aspects of TF binding in MTB and discuss the implications of these data for our understanding of bacterial gene regulation. We begin by reviewing the canonical model of bacterial transcriptional regulation using the lac operon as the standard paradigm. We then review the use of ChIP-Seq to map the binding sites of DNA-binding proteins and the application of this method to mapping TF binding sites in MTB. Finally, we discuss two aspects of the binding discovered by ChIP-Seq that were unexpected given the canonical model: the substantial binding outside the proximal promoter region and the large number of weak binding sites.
Collapse
Affiliation(s)
- James Galagan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | | | | |
Collapse
|
28
|
Transcriptional regulation of the gene cluster encoding allantoinase and guanine deaminase in Klebsiella pneumoniae. J Bacteriol 2011; 193:2197-207. [PMID: 21357483 DOI: 10.1128/jb.01450-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purines can be used as the sole source of nitrogen by several strains of K. pneumoniae under aerobic conditions. The genes responsible for the assimilation of purine nitrogens are distributed in three separated clusters in the K. pneumoniae genome. Here, we characterize the cluster encompassing genes KPN_01787 to KPN_01791, which is involved in the conversion of allantoin into allantoate and in the deamination of guanine to xanthine. These genes are organized in three transcriptional units, hpxSAB, hpxC, and guaD. Gene hpxS encodes a regulatory protein of the GntR family that mediates regulation of this system by growth on allantoin. Proteins encoded by hpxB and guaD display allantoinase and guanine deaminase activity, respectively. In this cluster, hpxSAB is the most tightly regulated unit. This operon was activated by growth on allantoin as a nitrogen source; however, addition of allantoin to nitrogen excess cultures did not result in hpxSAB induction. Neither guaD nor hpxC was induced by allantoin. Expression of guaD is mainly regulated by nitrogen availability through the action of NtrC. Full induction of hpxSAB by allantoin requires both HpxS and NAC. HpxS may have a dual role, acting as a repressor in the absence of allantoin and as an activator in its presence. HpxS binds to tandem sites, S1 and S2, overlapping the -10 and -35 sequences of the hpxSAB promoter, respectively. The NAC binding site is located between S1 and S2 and partially overlaps S2. In the presence of allantoin, interplay between NAC and HpxS is proposed.
Collapse
|
29
|
Evolution of gene regulatory networks by fluctuating selection and intrinsic constraints. PLoS Comput Biol 2010; 6. [PMID: 20700492 PMCID: PMC2916849 DOI: 10.1371/journal.pcbi.1000873] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 06/30/2010] [Indexed: 11/23/2022] Open
Abstract
Various characteristics of complex gene regulatory networks (GRNs) have been discovered during the last decade, e.g., redundancy, exponential indegree distributions, scale-free outdegree distributions, mutational robustness, and evolvability. Although progress has been made in this field, it is not well understood whether these characteristics are the direct products of selection or those of other evolutionary forces such as mutational biases and biophysical constraints. To elucidate the causal factors that promoted the evolution of complex GRNs, we examined the effect of fluctuating environmental selection and some intrinsic constraining factors on GRN evolution by using an individual-based model. We found that the evolution of complex GRNs is remarkably promoted by fixation of beneficial gene duplications under unpredictably fluctuating environmental conditions and that some internal factors inherent in organisms, such as mutational bias, gene expression costs, and constraints on expression dynamics, are also important for the evolution of GRNs. The results indicate that various biological properties observed in GRNs could evolve as a result of not only adaptation to unpredictable environmental changes but also non-adaptive processes owing to the properties of the organisms themselves. Our study emphasizes that evolutionary models considering such intrinsic constraining factors should be used as null models to analyze the effect of selection on GRN evolution. Various organismal traits, including the morphology of multicellular species and metabolism in unicellular species, are determined by the amount and combinations of proteins in the cell. The complex regulatory network plays an important role in controlling the protein profiles in a cell. Recent studies have revealed that gene regulatory networks have many interesting structural and mutational features such as their scale-free structure, mutational robustness, and evolvability. However, why and how these features have emerged from evolution is unknown. In this paper, we constructed an evolutionary model of gene regulatory networks and simulated its evolution under various environmental conditions. The results show that most features of known gene regulatory networks evolve as a result of adaptation to unpredictable environmental fluctuations. In addition, some internal organismal factors, such as mutational bias, gene expression costs, and constraints on expression dynamics, are also important for GRN evolution observed in real organisms. Thus, these GRN features appear to evolve as a result of not only adaptation to unpredictable environmental changes but also non-adaptive processes owing to the properties of the organisms themselves.
Collapse
|
30
|
Genome-wide identification of transcription start sites, promoters and transcription factor binding sites in E. coli. PLoS One 2009; 4:e7526. [PMID: 19838305 PMCID: PMC2760140 DOI: 10.1371/journal.pone.0007526] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 09/28/2009] [Indexed: 11/19/2022] Open
Abstract
Despite almost 40 years of molecular genetics research in Escherichia coli a major fraction of its Transcription Start Sites (TSSs) are still unknown, limiting therefore our understanding of the regulatory circuits that control gene expression in this model organism. RegulonDB (http://regulondb.ccg.unam.mx/) is aimed at integrating the genetic regulatory network of E. coli K12 as an entirely bioinformatic project up till now. In this work, we extended its aims by generating experimental data at a genome scale on TSSs, promoters and regulatory regions. We implemented a modified 5' RACE protocol and an unbiased High Throughput Pyrosequencing Strategy (HTPS) that allowed us to map more than 1700 TSSs with high precision. From this collection, about 230 corresponded to previously reported TSSs, which helped us to benchmark both our methodologies and the accuracy of the previous mapping experiments. The other ca 1500 TSSs mapped belong to about 1000 different genes, many of them with no assigned function. We identified promoter sequences and type of sigma factors that control the expression of about 80% of these genes. As expected, the housekeeping sigma(70) was the most common type of promoter, followed by sigma(38). The majority of the putative TSSs were located between 20 to 40 nucleotides from the translational start site. Putative regulatory binding sites for transcription factors were detected upstream of many TSSs. For a few transcripts, riboswitches and small RNAs were found. Several genes also had additional TSSs within the coding region. Unexpectedly, the HTPS experiments revealed extensive antisense transcription, probably for regulatory functions. The new information in RegulonDB, now with more than 2400 experimentally determined TSSs, strengthens the accuracy of promoter prediction, operon structure, and regulatory networks and provides valuable new information that will facilitate the understanding from a global perspective the complex and intricate regulatory network that operates in E. coli.
Collapse
|
31
|
van Hijum SAFT, Medema MH, Kuipers OP. Mechanisms and evolution of control logic in prokaryotic transcriptional regulation. Microbiol Mol Biol Rev 2009; 73:481-509, Table of Contents. [PMID: 19721087 PMCID: PMC2738135 DOI: 10.1128/mmbr.00037-08] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major part of organismal complexity and versatility of prokaryotes resides in their ability to fine-tune gene expression to adequately respond to internal and external stimuli. Evolution has been very innovative in creating intricate mechanisms by which different regulatory signals operate and interact at promoters to drive gene expression. The regulation of target gene expression by transcription factors (TFs) is governed by control logic brought about by the interaction of regulators with TF binding sites (TFBSs) in cis-regulatory regions. A factor that in large part determines the strength of the response of a target to a given TF is motif stringency, the extent to which the TFBS fits the optimal TFBS sequence for a given TF. Advances in high-throughput technologies and computational genomics allow reconstruction of transcriptional regulatory networks in silico. To optimize the prediction of transcriptional regulatory networks, i.e., to separate direct regulation from indirect regulation, a thorough understanding of the control logic underlying the regulation of gene expression is required. This review summarizes the state of the art of the elements that determine the functionality of TFBSs by focusing on the molecular biological mechanisms and evolutionary origins of cis-regulatory regions.
Collapse
Affiliation(s)
- Sacha A F T van Hijum
- Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands.
| | | | | |
Collapse
|
32
|
Shavkunov KS, Masulis IS, Tutukina MN, Deev AA, Ozoline ON. Gains and unexpected lessons from genome-scale promoter mapping. Nucleic Acids Res 2009; 37:4919-31. [PMID: 19528070 PMCID: PMC2731890 DOI: 10.1093/nar/gkp490] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Potential promoters in the genome of Escherichia coli were searched by pattern recognition software PlatProm and classified on the basis of positions relative to gene borders. Beside the expected promoters located in front of the coding sequences we found a considerable amount of intragenic promoter-like signals with a putative ability to drive either antisense or alternative transcription and revealed unusual genomic regions with extremely high density of predicted transcription start points (promoter ‘islands’), some of which are located in coding sequences. PlatProm scores converted into probability of RNA polymerase binding demonstrated certain correlation with the enzyme retention registered by ChIP-on-chip technique; however, in ‘dense’ regions the value of correlation coefficient is lower than throughout the entire genome. Experimental verification confirmed the ability of RNA polymerase to interact and form multiple open complexes within promoter ‘island’ associated with appY, yet transcription efficiency was lower than might be expected. Analysis of expression data revealed the same tendency for other promoter ‘islands’, thus assuming functional relevance of non-productive RNA polymerase binding. Our data indicate that genomic DNA of E. coli is enriched by numerous unusual promoter-like sites with biological role yet to be understood.
Collapse
Affiliation(s)
- K S Shavkunov
- Institute of Cell Biophysics, of Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russian Federation
| | | | | | | | | |
Collapse
|
33
|
Krushkal J, Leang C, Barbe JF, Qu Y, Yan B, Puljic M, Adkins RM, Lovley DR. Diversity of promoter elements in a Geobacter sulfurreducens mutant adapted to disruption in electron transfer. Funct Integr Genomics 2008; 9:15-25. [DOI: 10.1007/s10142-008-0094-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 07/03/2008] [Accepted: 07/07/2008] [Indexed: 01/01/2023]
|
34
|
Sinoquet C, Demey S, Braun F. Large-scale computational and statistical analyses of high transcription potentialities in 32 prokaryotic genomes. Nucleic Acids Res 2008; 36:3332-40. [PMID: 18440978 PMCID: PMC2425493 DOI: 10.1093/nar/gkn135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This article compares 32 bacterial genomes with respect to their high transcription potentialities. The sigma70 promoter has been widely studied for Escherichia coli model and a consensus is known. Since transcriptional regulations are known to compensate for promoter weakness (i.e. when the promoter similarity with regard to the consensus is rather low), predicting functional promoters is a hard task. Instead, the research work presented here comes within the scope of investigating potentially high ORF expression, in relation with three criteria: (i) high similarity to the sigma70 consensus (namely, the consensus variant appropriate for each genome), (ii) transcription strength reinforcement through a supplementary binding site--the upstream promoter (UP) element--and (iii) enhancement through an optimal Shine-Dalgarno (SD) sequence. We show that in the AT-rich Firmicutes' genomes, frequencies of potentially strong sigma70-like promoters are exceptionally high. Besides, though they contain a low number of strong promoters (SPs), some genomes may show a high proportion of promoters harbouring an UP element. Putative SPs of lesser quality are more frequently associated with an UP element than putative strong promoters of better quality. A meaningful difference is statistically ascertained when comparing bacterial genomes with similarly AT-rich genomes generated at random; the difference is the highest for Firmicutes. Comparing some Firmicutes genomes with similarly AT-rich Proteobacteria genomes, we confirm the Firmicutes specificity. We show that this specificity is neither explained by AT-bias nor genome size bias; neither does it originate in the abundance of optimal SD sequences, a typical and significant feature of Firmicutes more thoroughly analysed in our study.
Collapse
Affiliation(s)
- Christine Sinoquet
- Computer Science Institute of Nantes-Atlantic (Lina), U.M.R. C.N.R.S. 6241, University of Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex, France.
| | | | | |
Collapse
|
35
|
SIGffRid: a tool to search for sigma factor binding sites in bacterial genomes using comparative approach and biologically driven statistics. BMC Bioinformatics 2008; 9:73. [PMID: 18237374 PMCID: PMC2375139 DOI: 10.1186/1471-2105-9-73] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 01/31/2008] [Indexed: 11/10/2022] Open
Abstract
Background Many programs have been developed to identify transcription factor binding sites. However, most of them are not able to infer two-word motifs with variable spacer lengths. This case is encountered for RNA polymerase Sigma (σ) Factor Binding Sites (SFBSs) usually composed of two boxes, called -35 and -10 in reference to the transcription initiation point. Our goal is to design an algorithm detecting SFBS by using combinational and statistical constraints deduced from biological observations. Results We describe a new approach to identify SFBSs by comparing two related bacterial genomes. The method, named SIGffRid (SIGma Factor binding sites Finder using R'MES to select Input Data), performs a simultaneous analysis of pairs of promoter regions of orthologous genes. SIGffRid uses a prior identification of over-represented patterns in whole genomes as selection criteria for potential -35 and -10 boxes. These patterns are then grouped using pairs of short seeds (of which one is possibly gapped), allowing a variable-length spacer between them. Next, the motifs are extended guided by statistical considerations, a feature that ensures a selection of motifs with statistically relevant properties. We applied our method to the pair of related bacterial genomes of Streptomyces coelicolor and Streptomyces avermitilis. Cross-check with the well-defined SFBSs of the SigR regulon in S. coelicolor is detailed, validating the algorithm. SFBSs for HrdB and BldN were also found; and the results suggested some new targets for these σ factors. In addition, consensus motifs for BldD and new SFBSs binding sites were defined, overlapping previously proposed consensuses. Relevant tests were carried out also on bacteria with moderate GC content (i.e. Escherichia coli/Salmonella typhimurium and Bacillus subtilis/Bacillus licheniformis pairs). Motifs of house-keeping σ factors were found as well as other SFBSs such as that of SigW in Bacillus strains. Conclusion We demonstrate that our approach combining statistical and biological criteria was successful to predict SFBSs. The method versatility autorizes the recognition of other kinds of two-box regulatory sites.
Collapse
|
36
|
Janga SC, Collado-Vides J. Structure and evolution of gene regulatory networks in microbial genomes. Res Microbiol 2007; 158:787-94. [PMID: 17996425 PMCID: PMC5696542 DOI: 10.1016/j.resmic.2007.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 08/07/2007] [Accepted: 09/17/2007] [Indexed: 12/24/2022]
Abstract
With the availability of genome sequences for hundreds of microbial genomes, it has become possible to address several questions from a comparative perspective to understand the structure and function of regulatory systems, at least in model organisms. Recent studies have focused on topological properties and the evolution of regulatory networks and their components. Our understanding of natural networks is paving the way to embedding synthetic regulatory systems into organisms, allowing us to expand the natural diversity of living systems to an extent we had never before anticipated.
Collapse
Affiliation(s)
- Sarath Chandra Janga
- Program of Computational Genomics, CCG-UNAM, Apdo Postal 565-A, Cuernavaca, Morelos, 62100 Mexico
| | - Julio Collado-Vides
- Program of Computational Genomics, CCG-UNAM, Apdo Postal 565-A, Cuernavaca, Morelos, 62100 Mexico
| |
Collapse
|
37
|
Froula JL, Francino MP. Selection against spurious promoter motifs correlates with translational efficiency across bacteria. PLoS One 2007; 2:e745. [PMID: 17710145 PMCID: PMC1939733 DOI: 10.1371/journal.pone.0000745] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 07/13/2007] [Indexed: 11/19/2022] Open
Abstract
Because binding of RNAP to misplaced sites could compromise the efficiency of transcription, natural selection for the optimization of gene expression should regulate the distribution of DNA motifs capable of RNAP-binding across the genome. Here we analyze the distribution of the −10 promoter motifs that bind the σ70 subunit of RNAP in 42 bacterial genomes. We show that selection on these motifs operates across the genome, maintaining an over-representation of −10 motifs in regulatory sequences while eliminating them from the nonfunctional and, in most cases, from the protein coding regions. In some genomes, however, −10 sites are over-represented in the coding sequences; these sites could induce pauses effecting regulatory roles throughout the length of a transcriptional unit. For nonfunctional sequences, the extent of motif under-representation varies across genomes in a manner that broadly correlates with the number of tRNA genes, a good indicator of translational speed and growth rate. This suggests that minimizing the time invested in gene transcription is an important selective pressure against spurious binding. However, selection against spurious binding is detectable in the reduced genomes of host-restricted bacteria that grow at slow rates, indicating that components of efficiency other than speed may also be important. Minimizing the number of RNAP molecules per cell required for transcription, and the corresponding energetic expense, may be most relevant in slow growers. These results indicate that genome-level properties affecting the efficiency of transcription and translation can respond in an integrated manner to optimize gene expression. The detection of selection against promoter motifs in nonfunctional regions also confirms previous results indicating that no sequence may evolve free of selective constraints, at least in the relatively small and unstructured genomes of bacteria.
Collapse
Affiliation(s)
- Jeffrey L. Froula
- Evolutionary Genomics Program, DOE Joint Genome Institute, Walnut Creek, California, United States of America
| | - M. Pilar Francino
- Evolutionary Genomics Program, DOE Joint Genome Institute, Walnut Creek, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|