1
|
Danguy des Déserts A, Bouchet S, Sourdille P, Servin B. Evolution of Recombination Landscapes in Diverging Populations of Bread Wheat. Genome Biol Evol 2021; 13:evab152. [PMID: 34185074 PMCID: PMC8350361 DOI: 10.1093/gbe/evab152] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
Reciprocal exchanges of DNA (crossovers) that occur during meiosis are mandatory to ensure the production of fertile gametes in sexually reproducing species. They also contribute to shuffle parental alleles into new combinations thereby fueling genetic variation and evolution. However, due to biological constraints, the recombination landscape is highly heterogeneous along the genome which limits the range of allelic combinations and the adaptability of populations. An approach to better understand the constraints on the recombination process is to study how it evolved in the past. In this work, we tackled this question by constructing recombination profiles in four diverging bread wheat (Triticum aestivum L.) populations established from 371 landraces genotyped at 200,062 SNPs. We used linkage disequilibrium (LD) patterns to estimate in each population the past distribution of recombination along the genome and characterize its fine-scale heterogeneity. At the megabase scale, recombination rates derived from LD patterns were consistent with family-based estimates obtained from a population of 406 recombinant inbred lines. Among the four populations, recombination landscapes were positively correlated between each other and shared a statistically significant proportion of highly recombinant intervals. However, this comparison also highlighted that the similarity in recombination landscapes between populations was significantly decreasing with their genetic differentiation in most regions of the genome. This observation was found to be robust to SNPs ascertainment and demography and suggests a relatively rapid evolution of factors determining the fine-scale localization of recombination in bread wheat.
Collapse
Affiliation(s)
- Alice Danguy des Déserts
- INRAE-Université Clermont-Auvergne, UMR1095, Génétique Diversité Ecophysiologie des Céréales, Clermont-Ferrand, France
| | - Sophie Bouchet
- INRAE-Université Clermont-Auvergne, UMR1095, Génétique Diversité Ecophysiologie des Céréales, Clermont-Ferrand, France
| | - Pierre Sourdille
- INRAE-Université Clermont-Auvergne, UMR1095, Génétique Diversité Ecophysiologie des Céréales, Clermont-Ferrand, France
| | - Bertrand Servin
- INRAE, Université de Toulouse, GenPhySE, Castanet-Tolosan, France
| |
Collapse
|
2
|
Zhong Z, Lin L, Chen M, Lin L, Chen X, Lin Y, Chen X, Wang Z, Norvienyeku J, Zheng H. Expression Divergence as an Evolutionary Alternative Mechanism Adopted by Two Rice Subspecies Against Rice Blast Infection. RICE (NEW YORK, N.Y.) 2019; 12:12. [PMID: 30825020 PMCID: PMC6397267 DOI: 10.1186/s12284-019-0270-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/18/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Rice (Oryza sativa L.) is one of the most important crops that serves as staple food for ~ 50% of the human population worldwide. Some important agronomic traits that allow rice to cope with numerous abiotic and biotic stresses have been selected and fixed during domestication. Knowledge on how expression divergence of genes gradually contributes to phenotypic differentiation in response to biotic stress and their contribution to rice population speciation is still limited. RESULTS Here, we explored gene expression divergence between a japonica rice cultivar Nipponbare and an indica rice cultivar 93-11 in response to invasion by the filamentous ascomycete fungus Magnaporthe oryzae (Pyricularia oryzae), a plant pathogen that causes significant loss to rice production worldwide. We investigated differentially expressed genes in the two cultivars and observed that evolutionarily conserved orthologous genes showed highly variable expression patterns under rice blast infection. Analysis of promoter region of these differentially expressed orthologous genes revealed the existence of cis-regulatory elements associated with the differentiated expression pattern of these genes in the two rice cultivars. Further comparison of these regions in global rice population indicated their fixation and close relationship with rice population divergence. CONCLUSION We proposed that variation in the expression patterns of these orthologous genes mediated by cis-regulatory elements in the two rice cultivars, may constitute an alternative evolutionary mechanism that distinguishes these two genetically and ecologically divergent rice cultivars in response to M. oryzae infection.
Collapse
Affiliation(s)
- Zhenhui Zhong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Lianyu Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Meilian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Lili Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xiaofeng Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yahong Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xi Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108 China
| | - Justice Norvienyeku
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Huakun Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
3
|
Reddy UK, Nimmakayala P, Abburi VL, Reddy CVCM, Saminathan T, Percy RG, Yu JZ, Frelichowski J, Udall JA, Page JT, Zhang D, Shehzad T, Paterson AH. Genome-wide divergence, haplotype distribution and population demographic histories for Gossypium hirsutum and Gossypium barbadense as revealed by genome-anchored SNPs. Sci Rep 2017; 7:41285. [PMID: 28128280 PMCID: PMC5269598 DOI: 10.1038/srep41285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/19/2016] [Indexed: 11/08/2022] Open
Abstract
Use of 10,129 singleton SNPs of known genomic location in tetraploid cotton provided unique opportunities to characterize genome-wide diversity among 440 Gossypium hirsutum and 219 G. barbadense cultivars and landrace accessions of widespread origin. Using the SNPs distributed genome-wide, we examined genetic diversity, haplotype distribution and linkage disequilibrium patterns in the G. hirsutum and G. barbadense genomes to clarify population demographic history. Diversity and identity-by-state analyses have revealed little sharing of alleles between the two cultivated allotetraploid genomes, with a few exceptions that indicated sporadic gene flow. We found a high number of new alleles, representing increased nucleotide diversity, on chromosomes 1 and 2 in cultivated G. hirsutum as compared with low nucleotide diversity on these chromosomes in landrace G. hirsutum. In contrast, G. barbadense chromosomes showed negative Tajima's D on several chromosomes for both cultivated and landrace types, which indicate that speciation of G. barbadense itself, might have occurred with relatively narrow genetic diversity. The presence of conserved linkage disequilibrium (LD) blocks and haplotypes between G. hirsutum and G. barbadense provides strong evidence for comparable patterns of evolution in their domestication processes. Our study illustrates the potential use of population genetic techniques to identify genomic regions for domestication.
Collapse
Affiliation(s)
- Umesh K. Reddy
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - Padma Nimmakayala
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - Venkata Lakshmi Abburi
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - C. V. C. M. Reddy
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - Thangasamy Saminathan
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - Richard G. Percy
- USDA–ARS, Southern Plains Agricultural Research Center, 2881 F&B Road, College Station, TX 77845, USA
| | - John Z. Yu
- USDA–ARS, Southern Plains Agricultural Research Center, 2881 F&B Road, College Station, TX 77845, USA
| | - James Frelichowski
- USDA–ARS, Southern Plains Agricultural Research Center, 2881 F&B Road, College Station, TX 77845, USA
| | - Joshua A. Udall
- WIDB, Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602, USA
| | - Justin T. Page
- WIDB, Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602, USA
| | - Dong Zhang
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Room 228, Athens, GA 30605, USA
| | - Tariq Shehzad
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Room 228, Athens, GA 30605, USA
| | - Andrew H. Paterson
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Room 228, Athens, GA 30605, USA
| |
Collapse
|
4
|
Schweiger W, Steiner B, Vautrin S, Nussbaumer T, Siegwart G, Zamini M, Jungreithmeier F, Gratl V, Lemmens M, Mayer KFX, Bérgès H, Adam G, Buerstmayr H. Suppressed recombination and unique candidate genes in the divergent haplotype encoding Fhb1, a major Fusarium head blight resistance locus in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1607-23. [PMID: 27174222 PMCID: PMC4943984 DOI: 10.1007/s00122-016-2727-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/03/2016] [Indexed: 05/09/2023]
Abstract
Fine mapping and sequencing revealed 28 genes in the non-recombining haplotype containing Fhb1 . Of these, only a GDSL lipase gene shows a pathogen-dependent expression pattern. Fhb1 is a prominent Fusarium head blight resistance locus of wheat, which has been successfully introgressed in adapted breeding material, where it confers a significant increase in overall resistance to the causal pathogen Fusarium graminearum and the fungal virulence factor and mycotoxin deoxynivalenol. The Fhb1 region has been resolved for the susceptible wheat reference genotype Chinese Spring, yet the causal gene itself has not been identified in resistant cultivars. Here, we report the establishment of a 1 Mb contig embracing Fhb1 in the donor line CM-82036. Sequencing revealed that the region of Fhb1 deviates from the Chinese Spring reference in DNA size and gene content, which explains the repressed recombination at the locus in the performed fine mapping. Differences in genes expression between near-isogenic lines segregating for Fhb1 challenged with F. graminearum or treated with mock were investigated in a time-course experiment by RNA sequencing. Several candidate genes were identified, including a pathogen-responsive GDSL lipase absent in susceptible lines. The sequence of the Fhb1 region, the resulting list of candidate genes, and near-diagnostic KASP markers for Fhb1 constitute a valuable resource for breeding and further studies aiming to identify the gene(s) responsible for F. graminearum and deoxynivalenol resistance.
Collapse
Affiliation(s)
- W Schweiger
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria.
| | - B Steiner
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| | - S Vautrin
- French Plant Genomic Resource Centre, INRA-CNRGV, Chemin de Borde Rouge, CS 52627, 31326, Castanet Tolosan, France
| | - T Nussbaumer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Division of Computational System Biology, Department of Microbiology and Ecosystem Science, University of Vienna, 1090, Vienna, Austria
| | - G Siegwart
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
- Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 22, 3430, Tulln, Austria
| | - M Zamini
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| | - F Jungreithmeier
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| | - V Gratl
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| | - M Lemmens
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| | - K F X Mayer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - H Bérgès
- French Plant Genomic Resource Centre, INRA-CNRGV, Chemin de Borde Rouge, CS 52627, 31326, Castanet Tolosan, France
| | - G Adam
- Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 22, 3430, Tulln, Austria
| | - H Buerstmayr
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| |
Collapse
|
5
|
Rathinasabapathi P, Purushothaman N, Parani M. Genome-wide DNA polymorphisms in Kavuni, a traditional rice cultivar with nutritional and therapeutic properties. Genome 2016; 59:363-6. [PMID: 27093133 DOI: 10.1139/gen-2016-0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although rice genome was sequenced in the year 2002, efforts in resequencing the large number of available accessions, landraces, traditional cultivars, and improved varieties of this important food crop are limited. We have initiated resequencing of the traditional cultivars from India. Kavuni is an important traditional rice cultivar from South India that attracts premium price for its nutritional and therapeutic properties. Whole-genome sequencing of Kavuni using Illumina platform and SNPs analysis using Nipponbare reference genome identified 1 150 711 SNPs of which 377 381 SNPs were located in the genic regions. Non-synonymous SNPs (62 708) were distributed in 19 251 genes, and their number varied between 1 and 115 per gene. Large-effect DNA polymorphisms (7769) were present in 3475 genes. Pathway mapping of these polymorphisms revealed the involvement of genes related to carbohydrate metabolism, translation, protein-folding, and cell death. Analysis of the starch biosynthesis related genes revealed that the granule-bound starch synthase I gene had T/G SNPs at the first intron/exon junction and a two-nucleotide combination, which were reported to favour high amylose content and low glycemic index. The present study provided a valuable genomics resource to study the rice varieties with nutritional and medicinal properties.
Collapse
Affiliation(s)
- Pasupathi Rathinasabapathi
- Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu-603 203, India.,Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu-603 203, India
| | - Natarajan Purushothaman
- Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu-603 203, India.,Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu-603 203, India
| | - Madasamy Parani
- Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu-603 203, India.,Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu-603 203, India
| |
Collapse
|
6
|
Nimmakayala P, Abburi VL, Saminathan T, Almeida A, Davenport B, Davidson J, Reddy CVCM, Hankins G, Ebert A, Choi D, Stommel J, Reddy UK. Genome-Wide Divergence and Linkage Disequilibrium Analyses for Capsicum baccatum Revealed by Genome-Anchored Single Nucleotide Polymorphisms. FRONTIERS IN PLANT SCIENCE 2016; 7:1646. [PMID: 27857720 PMCID: PMC5093146 DOI: 10.3389/fpls.2016.01646] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/18/2016] [Indexed: 05/03/2023]
Abstract
Principal component analysis (PCA) with 36,621 polymorphic genome-anchored single nucleotide polymorphisms (SNPs) identified collectively for Capsicum annuum and Capsicum baccatum was used to characterize population structure and species domestication of these two important incompatible cultivated pepper species. Estimated mean nucleotide diversity (π) and Tajima's D across various chromosomes revealed biased distribution toward negative values on all chromosomes (except for chromosome 4) in cultivated C. baccatum, indicating a population bottleneck during domestication of C. baccatum. In contrast, C. annuum chromosomes showed positive π and Tajima's D on all chromosomes except chromosome 8, which may be because of domestication at multiple sites contributing to wider genetic diversity. For C. baccatum, 13,129 SNPs were available, with minor allele frequency (MAF) ≥0.05; PCA of the SNPs revealed 283 C. baccatum accessions grouped into 3 distinct clusters, for strong population structure. The fixation index (FST ) between domesticated C. annuum and C. baccatum was 0.78, which indicates genome-wide divergence. We conducted extensive linkage disequilibrium (LD) analysis of C. baccatum var. pendulum cultivars on all adjacent SNP pairs within a chromosome to identify regions of high and low LD interspersed with a genome-wide average LD block size of 99.1 kb. We characterized 1742 haplotypes containing 4420 SNPs (range 9-2 SNPs per haplotype). Genome-wide association study (GWAS) of peduncle length, a trait that differentiates wild and domesticated C. baccatum types, revealed 36 significantly associated genome-wide SNPs. Population structure, identity by state (IBS) and LD patterns across the genome will be of potential use for future GWAS of economically important traits in C. baccatum peppers.
Collapse
Affiliation(s)
- Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State UniversityInstitute, WV, USA
| | - Venkata L. Abburi
- Department of Biology, Gus R. Douglass Institute, West Virginia State UniversityInstitute, WV, USA
| | - Thangasamy Saminathan
- Department of Biology, Gus R. Douglass Institute, West Virginia State UniversityInstitute, WV, USA
| | - Aldo Almeida
- Department of Biology, Gus R. Douglass Institute, West Virginia State UniversityInstitute, WV, USA
| | - Brittany Davenport
- Department of Biology, Gus R. Douglass Institute, West Virginia State UniversityInstitute, WV, USA
| | - Joshua Davidson
- Department of Biology, Gus R. Douglass Institute, West Virginia State UniversityInstitute, WV, USA
| | | | - Gerald Hankins
- Department of Biology, Gus R. Douglass Institute, West Virginia State UniversityInstitute, WV, USA
| | - Andreas Ebert
- Genetic Resources and Seed Unit, Asian Vegetable Research and Development Center-The World Vegetable CenterTainan, Taiwan
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - John Stommel
- Genetic Improvement of Fruits and Vegetables Laboratory (United States Department of Agriculture, Agricultural Research Service)Beltsville, MD, USA
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State UniversityInstitute, WV, USA
- *Correspondence: Umesh K. Reddy
| |
Collapse
|
7
|
Rathinasabapathi P, Purushothaman N, Ramprasad VL, Parani M. Whole genome sequencing and analysis of Swarna, a widely cultivated indica rice variety with low glycemic index. Sci Rep 2015; 5:11303. [PMID: 26068787 PMCID: PMC4464077 DOI: 10.1038/srep11303] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/18/2015] [Indexed: 12/13/2022] Open
Abstract
Swarna is a popular cultivated indica rice variety with low glycemic index (GI) but its genetic basis is not known. The whole genome of Swarna was sequenced using Illumina’s paired-end technology, and the reads were mapped to the Nipponbare reference genome. Overall, 65,984 non-synonymous SNPs were identified in 20,350 genes, and in silico analysis predicted that 4,847 of them in 2,214 genes may have deleterious effect on protein functions. Polymorphisms were found in all the starch biosynthesis genes, except the gene for branching enzyme IIa. It was found that T/G SNP at position 246, ‘A’ at position 2,386, and ‘C’ at position 3,378 in the granule bound starch synthase I gene, and C/T SNP at position 1,188 in the glucose-6-phosphate translocator gene may contribute to the low GI phenotype in Swarna. All these variants were also found in the genome of another low GI indica rice variety from Columbia, Fedearroz 50. The whole genome analysis of Swarna helped to understand the genetic basis of GI in rice, which is a complex trait involving multiple factors.
Collapse
Affiliation(s)
- Pasupathi Rathinasabapathi
- Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu- 603 203, India
| | - Natarajan Purushothaman
- Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu- 603 203, India
| | | | - Madasamy Parani
- Genomics Laboratory, Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu- 603 203, India
| |
Collapse
|
8
|
A Genome-Wide Survey of Date Palm Cultivars Supports Two Major Subpopulations in Phoenix dactylifera. G3-GENES GENOMES GENETICS 2015; 5:1429-38. [PMID: 25957276 PMCID: PMC4502377 DOI: 10.1534/g3.115.018341] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The date palm (Phoenix dactylifera L.) is one of the oldest cultivated trees and is intimately tied to the history of human civilization. There are hundreds of commercial cultivars with distinct fruit shapes, colors, and sizes growing mainly in arid lands from the west of North Africa to India. The origin of date palm domestication is still uncertain, and few studies have attempted to document genetic diversity across multiple regions. We conducted genotyping-by-sequencing on 70 female cultivar samples from across the date palm–growing regions, including four Phoenix species as the outgroup. Here, for the first time, we generate genome-wide genotyping data for 13,000–65,000 SNPs in a diverse set of date palm fruit and leaf samples. Our analysis provides the first genome-wide evidence confirming recent findings that the date palm cultivars segregate into two main regions of shared genetic background from North Africa and the Arabian Gulf. We identify genomic regions with high densities of geographically segregating SNPs and also observe higher levels of allele fixation on the recently described X-chromosome than on the autosomes. Our results fit a model with two centers of earliest cultivation including date palms autochthonous to North Africa. These results adjust our understanding of human agriculture history and will provide the foundation for more directed functional studies and a better understanding of genetic diversity in date palm.
Collapse
|
9
|
Sun X, Jia Q, Guo Y, Zheng X, Liang K. Whole-genome analysis revealed the positively selected genes during the differentiation of indica and temperate japonica rice. PLoS One 2015; 10:e0119239. [PMID: 25774680 PMCID: PMC4361536 DOI: 10.1371/journal.pone.0119239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/11/2015] [Indexed: 11/19/2022] Open
Abstract
To investigate the selective pressures acting on the protein-coding genes during the differentiation of indica and japonica, all of the possible orthologous genes between the Nipponbare and 93–11 genomes were identified and compared with each other. Among these genes, 8,530 pairs had identical sequences, and 27,384 pairs shared more than 90% sequence identity. Only 2,678 pairs of genes displaying a Ka/Ks ratio significantly greater than one were revealed, and most of these genes contained only nonsynonymous sites. The genes without synonymous site were further analyzed with the SNP data of 1529 O. sativa and O. rufipogon accessions, and 1068 genes were identified to be under positive selection during the differentiation of indica and temperate japonica. The positively selected genes (PSGs) are unevenly distributed on 12 chromosomes, and the proteins encoded by the PSGs are dominant with binding, transferase and hydrolase activities, and especially enriched in the plant responses to stimuli, biological regulations, and transport processes. Meanwhile, the most PSGs of the known function and/or expression were involved in the regulation of biotic/abiotic stresses. The evidence of pervasive positive selection suggested that many factors drove the differentiation of indica and japonica, which has already started in wild rice but is much lower than in cultivated rice. Lower differentiation and less PSGs revealed between the Or-It and Or-IIIt wild rice groups implied that artificial selection provides greater contribution on the differentiation than natural selection. In addition, the phylogenetic tree constructed with positively selected sites showed that the japonica varieties exhibited more diversity than indica on differentiation, and Or-III of O. rufipogon exhibited more than Or-I.
Collapse
Affiliation(s)
- Xinli Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture & Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture & Forestry University, Fuzhou, China
- * E-mail:
| | - Qi Jia
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture & Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Yuchun Guo
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture & Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Xiujuan Zheng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture & Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Kangjing Liang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture & Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture & Forestry University, Fuzhou, China
| |
Collapse
|
10
|
Jung KH, Gho HJ, Giong HK, Chandran AKN, Nguyen QN, Choi H, Zhang T, Wang W, Kim JH, Choi HK, An G. Genome-wide identification and analysis of Japonica and Indica cultivar-preferred transcripts in rice using 983 Affymetrix array data. RICE (NEW YORK, N.Y.) 2013; 6:19. [PMID: 24280533 PMCID: PMC4883688 DOI: 10.1186/1939-8433-6-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/07/2013] [Indexed: 05/07/2023]
Abstract
BACKGROUND Accumulation of genome-wide transcriptome data provides new insight on a genomic scale which cannot be gained by analyses of individual data. The majority of rice (O. sativa) species are japonica and indica cultivars. Genome-wide identification of genes differentially expressed between japonica and indica cultivars will be very useful in understanding the domestication and evolution of rice species. RESULTS In this study, we analyzed 983 of the 1866 entries in the Affymetrix array data in the public database: 595 generated from indica and 388 from japonica rice cultivars. To discover differentially expressed genes in each cultivar, we performed significance analysis of microarrays for normalized data, and identified 490 genes preferentially expressed in japonica and 104 genes in indica. Gene Ontology analyses revealed that defense response-related genes are significantly enriched in both cultivars, indicating that japonica and indica might be under strong selection pressure for these traits during domestication. In addition, 36 (34.6%) of 104 genes preferentially expressed in indica and 256 (52.2%) of 490 genes preferentially expressed in japonica were annotated as genes of unknown function. Biotic stress overview in the MapMan toolkit revealed key elements of the signaling pathway for defense response in japonica or indica eQTLs. CONCLUSIONS The percentage of screened genes preferentially expressed in indica was 4-fold higher (34.6%) and that in japonica was 5-fold (52.2%) higher than expected (11.1%), suggesting that genes of unknown function are responsible for the novel traits that distinguish japonica and indica cultivars. The identification of 10 functionally characterized genes expressed preferentially in either japonica or indica highlights the significance of our candidate genes during the domestication of rice species. Functional analysis of the roles of individual components of stress-mediated signaling pathways will shed light on potential molecular mechanisms to improve disease resistance in rice.
Collapse
Affiliation(s)
- Ki-Hong Jung
- />Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 446-701 Republic of Korea
| | - Hyun-Jung Gho
- />Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 446-701 Republic of Korea
| | - Hoi-Khoanh Giong
- />Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 446-701 Republic of Korea
| | - Anil Kumar Nalini Chandran
- />Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 446-701 Republic of Korea
| | - Quynh-Nga Nguyen
- />Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 446-701 Republic of Korea
| | - HeeBak Choi
- />Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 446-701 Republic of Korea
| | - Tian Zhang
- />CAS-Max Planck Junior Research Group on Evolutionary Genomics, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, China
| | - Wen Wang
- />CAS-Max Planck Junior Research Group on Evolutionary Genomics, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, China
| | - Jin-Hyun Kim
- />Department of Medical Bioscience, Dong-A University, Busan, Republic of Korea
| | - Hong-Kyu Choi
- />Department of Medical Bioscience, Dong-A University, Busan, Republic of Korea
| | - Gynheung An
- />Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 446-701 Republic of Korea
| |
Collapse
|
11
|
Bimolata W, Kumar A, Sundaram RM, Laha GS, Qureshi IA, Reddy GA, Ghazi IA. Analysis of nucleotide diversity among alleles of the major bacterial blight resistance gene Xa27 in cultivars of rice (Oryza sativa) and its wild relatives. PLANTA 2013; 238:293-305. [PMID: 23652799 DOI: 10.1007/s00425-013-1891-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/23/2013] [Indexed: 05/07/2023]
Abstract
Xa27 is one of the important R-genes, effective against bacterial blight disease of rice caused by Xanthomonas oryzae pv. oryzae (Xoo). Using natural population of Oryza, we analyzed the sequence variation in the functionally important domains of Xa27 across the Oryza species. DNA sequences of Xa27 alleles from 27 rice accessions revealed higher nucleotide diversity among the reported R-genes of rice. Sequence polymorphism analysis revealed synonymous and non-synonymous mutations in addition to a number of InDels in non-coding regions of the gene. High sequence variation was observed in the promoter region including the 5'UTR with 'π' value 0.00916 and 'θ w ' = 0.01785. Comparative analysis of the identified Xa27 alleles with that of IRBB27 and IR24 indicated the operation of both positive selection (Ka/Ks > 1) and neutral selection (Ka/Ks ≈ 0). The genetic distances of alleles of the gene from Oryza nivara were nearer to IRBB27 as compared to IR24. We also found the presence of conserved and null UPT (upregulated by transcriptional activator) box in the isolated alleles. Considerable amino acid polymorphism was localized in the trans-membrane domain for which the functional significance is yet to be elucidated. However, the absence of functional UPT box in all the alleles except IRBB27 suggests the maintenance of single resistant allele throughout the natural population.
Collapse
Affiliation(s)
- Waikhom Bimolata
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, India.
| | | | | | | | | | | | | |
Collapse
|
12
|
Subbaiyan GK, Waters DLE, Katiyar SK, Sadananda AR, Vaddadi S, Henry RJ. Genome-wide DNA polymorphisms in elite indica rice inbreds discovered by whole-genome sequencing. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:623-34. [PMID: 22222031 DOI: 10.1111/j.1467-7652.2011.00676.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Advances in next-generation sequencing technologies have aided discovery of millions of genome-wide DNA polymorphisms, single nucleotide polymorphisms (SNPs) and insertions-deletions (InDels), which are an invaluable resource for marker-assisted breeding. Whole-genome resequencing of six elite indica rice inbreds (three cytoplasmic male sterile and three restorer lines) resulted in the generation of 338 million 75-bp paired-end reads, which provided 85.4% coverage of the Nipponbare genome. A total of 2 819 086 nonredundant DNA polymorphisms including 2 495 052 SNPs, 160 478 insertions and 163 556 deletions were discovered between the inbreds and Nipponbare, providing an average of 6.8 SNPs/kb across the genome. Distribution of SNPs and InDels in the chromosome was nonrandom with SNP-rich and SNP-poor regions being evident across the genome. A contiguous 4.3-Mb region on chromosome 5 with extremely low SNP density was identified. Overall, 83 262 nonsynonymous SNPs spanning 16 379 genes and 3620 nonsynonymous InDels in 2625 genes have been discovered which provide valuable insights into the basis underlying performance of the inbreds and the hybrids between these inbred combinations. SNPs and InDels discovered from this diverse set of indica rice inbreds not only enrich SNP resources for molecular breeding but also enable the study of genome-wide variations on hybrid performance.
Collapse
Affiliation(s)
- Gopala K Subbaiyan
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | | | | | | | | | | |
Collapse
|
13
|
Huang CL, Hung CY, Chiang YC, Hwang CC, Hsu TW, Huang CC, Hung KH, Tsai KC, Wang KH, Osada N, Schaal BA, Chiang TY. Footprints of natural and artificial selection for photoperiod pathway genes in Oryza. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:769-82. [PMID: 22268451 DOI: 10.1111/j.1365-313x.2012.04915.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Asian rice, Oryza sativa, consists of two major subspecies, indica and japonica, which are physiologically differentiated and adapted to different latitudes. Genes for photoperiod sensitivity are likely targets of selection along latitude. We examined the footprints of natural and artificial selections for four major genes of the photoperiod pathway, namely PHYTOCHROME B (PhyB), HEADING DATE 1 (Hd1), HEADING DATE 3a (Hd3a), and EARLY HEADING DATE 1 (Ehd1), by investigation of the patterns of nucleotide polymorphisms in cultivated and wild rice. Geographical subdivision between tropical and subtropical O. rufipogon was found for all of the photoperiod genes in plants divided by the Tropic of Cancer (TOC). All of these genes, except for PhyB, were characterized by the existence of clades that split a long time ago and that corresponded to latitudinal subdivisions, and revealed a likely diversifying selection. Ssp. indica showed close affinity to tropical O. rufipogon for all genes, while ssp. japonica, which has a much wider range of distribution, displayed complex patterns of differentiation from O. rufipogon, which reflected various agricultural needs in relation to crop yield. In japonica, all genes, except Hd3a, were genetically differentiated at the TOC, while geographical subdivision occurred at 31°N in Hd3a, probably the result of varying photoperiods. Many other features of the photoperiod genes revealed domestication signatures, which included high linkage disequilibrium (LD) within genes, the occurrence of frequent and recurrent non-functional Hd1 mutants in cultivated rice, crossovers between subtropical and tropical alleles of Hd1, and significant LD between Hd1 and Hd3a in japonica and indica.
Collapse
Affiliation(s)
- Chao-Li Huang
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Adaptive evolution of Xa21 homologs in Gramineae. Genetica 2012; 139:1465-75. [PMID: 22451352 DOI: 10.1007/s10709-012-9645-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/19/2012] [Indexed: 10/28/2022]
Abstract
The XA21 protein has broad spectrum resistance against Xanthomonas oryzae pv. oryzae. Although Xa21-mediated immunity is well characterized, little is known about the origin and evolutionary history of this gene in grasses. Therefore, we analyzed all Xa21 gene homologs in eight whole-genome sequenced rice lines, as well as in four gramineous genomes, rice, Brachypodium, sorghum and maize; using Arabidopsis Xa21 homologs as outgroups, 17, 7, 7 and 3 Xa21 homologs were detected in these four grasses, respectively. Synteny and phylogenetic analysis showed that frequent gene translocation, duplication and/or loss, have occurred at Xa21 homologous loci, suggesting that they have undergone or are undergoing rapid generation of copy number variations. Within the rice species, the high level of nucleotide diversity between Xa21-like orthologs showed a strong association with the presence/absence haplotypes, suggesting that the genetic structure of rice lines plays an important role in the variations between these Xa21-like orthologs. Strongly positive selection was detected in the core region of the leucine-rich repeat domains of the Xa21 subclade among the rice lines, indicating that the rapid gene diversification of Xa21 homologs may be a strategy for a given species to adapt to the changing spectrum of species-specific pathogens.
Collapse
|
15
|
McCouch SR, McNally KL, Wang W, Sackville Hamilton R. Genomics of gene banks: A case study in rice. AMERICAN JOURNAL OF BOTANY 2012; 99:407-23. [PMID: 22314574 DOI: 10.3732/ajb.1100385] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Only a small fraction of the naturally occurring genetic diversity available in the world's germplasm repositories has been explored to date, but this is expected to change with the advent of affordable, high-throughput genotyping and sequencing technology. It is now possible to examine genome-wide patterns of natural variation and link sequence polymorphisms with downstream phenotypic consequences. In this paper, we discuss how dramatic changes in the cost and efficiency of sequencing and genotyping are revolutionizing the way gene bank scientists approach the responsibilities of their job. Sequencing technology provides a set of tools that can be used to enhance the quality, efficiency, and cost-effectiveness of gene bank operations, the depth of scientific knowledge of gene bank holdings, and the level of public interest in natural variation. As a result, gene banks have the chance to take on new life. Previously seen as "warehouses" where seeds were diligently maintained, but evolutionarily frozen in time, gene banks could transform into vibrant research centers that actively investigate the genetic potential of their holdings. In this paper, we will discuss how genotyping and sequencing can be integrated into the activities of a modern gene bank to revolutionize the way scientists document the genetic identity of their accessions; track seed lots, varieties, and alleles; identify duplicates; and rationalize active collections, and how the availability of genomics data are likely to motivate innovative collaborations with the larger research and breeding communities to engage in systematic and rigorous phenotyping and multilocation evaluation of the genetic resources in gene banks around the world. The objective is to understand and eventually predict how variation at the DNA level helps determine the phenotypic potential of an individual or population. Leadership and vision are needed to coordinate the characterization of collections and to integrate genotypic and phenotypic information in ways that will illuminate the value of these resources. Genotyping of collections represents a powerful starting point that will enable gene banks to become more effective as stewards of crop biodiversity.
Collapse
Affiliation(s)
- Susan R McCouch
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NewYork 14853-1901, USA.
| | | | | | | |
Collapse
|
16
|
Li X, Yan W, Agrama H, Jia L, Jackson A, Moldenhauer K, Yeater K, McClung A, Wu D. Unraveling the complex trait of harvest index with association mapping in rice (Oryza sativa L.). PLoS One 2012; 7:e29350. [PMID: 22291889 PMCID: PMC3264563 DOI: 10.1371/journal.pone.0029350] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 11/27/2011] [Indexed: 11/18/2022] Open
Abstract
Harvest index is a measure of success in partitioning assimilated photosynthate. An improvement of harvest index means an increase in the economic portion of the plant. Our objective was to identify genetic markers associated with harvest index traits using 203 O. sativa accessions. The phenotyping for 14 traits was conducted in both temperate (Arkansas) and subtropical (Texas) climates and the genotyping used 154 SSRs and an indel marker. Heading, plant height and weight, and panicle length had negative correlations, while seed set and grain weight/panicle had positive correlations with harvest index across both locations. Subsequent genetic diversity and population structure analyses identified five groups in this collection, which corresponded to their geographic origins. Model comparisons revealed that different dimensions of principal components analysis (PCA) affected harvest index traits for mapping accuracy, and kinship did not help. In total, 36 markers in Arkansas and 28 markers in Texas were identified to be significantly associated with harvest index traits. Seven and two markers were consistently associated with two or more harvest index correlated traits in Arkansas and Texas, respectively. Additionally, four markers were constitutively identified at both locations, while 32 and 24 markers were identified specifically in Arkansas and Texas, respectively. Allelic analysis of four constitutive markers demonstrated that allele 253 bp of RM431 had significantly greater effect on decreasing plant height, and 390 bp of RM24011 had the greatest effect on decreasing panicle length across both locations. Many of these identified markers are located either nearby or flanking the regions where the QTLs for harvest index have been reported. Thus, the results from this association mapping study complement and enrich the information from linkage-based QTL studies and will be the basis for improving harvest index directly and indirectly in rice.
Collapse
Affiliation(s)
- Xiaobai Li
- State Key Lab of Rice Biology, International Atomic Energy Agency Collaborating Center, Zhejiang University, Hangzhou, People's Republic of China
- Institue of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, People's Republic of China
| | - Wengui Yan
- Agricultural Research Service, United States Department of Agriculture, Dale Bumpers National Rice Research Center, Stuttgart, Arkansas, United States of America
- * E-mail: (WY); (DW)
| | - Hesham Agrama
- University of Arkansas, Rice Research and Extension Center, Stuttgart, Arkansas, United States of America
| | - Limeng Jia
- State Key Lab of Rice Biology, International Atomic Energy Agency Collaborating Center, Zhejiang University, Hangzhou, People's Republic of China
- Agricultural Research Service, United States Department of Agriculture, Dale Bumpers National Rice Research Center, Stuttgart, Arkansas, United States of America
- University of Arkansas, Rice Research and Extension Center, Stuttgart, Arkansas, United States of America
| | - Aaron Jackson
- Agricultural Research Service, United States Department of Agriculture, Dale Bumpers National Rice Research Center, Stuttgart, Arkansas, United States of America
| | - Karen Moldenhauer
- University of Arkansas, Rice Research and Extension Center, Stuttgart, Arkansas, United States of America
| | - Kathleen Yeater
- Agricultural Research Service, United States Department of Agriculture, Southern Plains Area, College Station, Texas, United States of America
| | - Anna McClung
- Agricultural Research Service, United States Department of Agriculture, Dale Bumpers National Rice Research Center, Stuttgart, Arkansas, United States of America
| | - Dianxing Wu
- State Key Lab of Rice Biology, International Atomic Energy Agency Collaborating Center, Zhejiang University, Hangzhou, People's Republic of China
- * E-mail: (WY); (DW)
| |
Collapse
|
17
|
He Z, Zhai W, Wen H, Tang T, Wang Y, Lu X, Greenberg AJ, Hudson RR, Wu CI, Shi S. Two evolutionary histories in the genome of rice: the roles of domestication genes. PLoS Genet 2011; 7:e1002100. [PMID: 21695282 PMCID: PMC3111475 DOI: 10.1371/journal.pgen.1002100] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/07/2011] [Indexed: 11/19/2022] Open
Abstract
Genealogical patterns in different genomic regions may be different due to the joint influence of gene flow and selection. The existence of two subspecies of cultivated rice provides a unique opportunity for analyzing these effects during domestication. We chose 66 accessions from the three rice taxa (about 22 each from Oryza sativa indica, O. sativa japonica, and O. rufipogon) for whole-genome sequencing. In the search for the signature of selection, we focus on low diversity regions (LDRs) shared by both cultivars. We found that the genealogical histories of these overlapping LDRs are distinct from the genomic background. While indica and japonica genomes generally appear to be of independent origin, many overlapping LDRs may have originated only once, as a result of selection and subsequent introgression. Interestingly, many such LDRs contain only one candidate gene of rice domestication, and several known domestication genes have indeed been “rediscovered” by this approach. In summary, we identified 13 additional candidate genes of domestication. The origin of two cultivated rice Oryza sativa indica and O. sativa japonica has been an interesting topic in evolutionary biology. Through whole-genome sequencing, we show that the rice genome embodies two different evolutionary trajectories. Overall genome-wide pattern supports a history of independent origin of two cultivars from their wild population. However, genomic segments bearing important agronomic traits originated only once in one population and spread across all cultivars through introgression and human selection. Population genetic analysis allows us to pinpoint 13 additional candidate domestication genes.
Collapse
Affiliation(s)
- Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, China
| | - Weiwei Zhai
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Haijun Wen
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, China
| | - Tian Tang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, China
| | - Yu Wang
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Xuemei Lu
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Anthony J. Greenberg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Richard R. Hudson
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Chung-I Wu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, China
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (C-IW); (SS)
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, China
- * E-mail: (C-IW); (SS)
| |
Collapse
|
18
|
Li ZM, Zheng XM, Ge S. Genetic diversity and domestication history of African rice (Oryza glaberrima) as inferred from multiple gene sequences. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:21-31. [PMID: 21400109 DOI: 10.1007/s00122-011-1563-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 02/26/2011] [Indexed: 05/30/2023]
Abstract
Nucleotide variation in 14 unlinked nuclear genes was investigated in species-wide samples of African rice (Oryza glaberrima) and its wild progenitor (O. barthii). Average estimates of nucleotide diversity were extremely low in both species (θ (sil) = 0.0007 for O. glaberrima; θ (sil) = 0.0024 for O. barthii). About 70% less diversity was found in O. glaberrima than in its progenitor O. barthii. Coalescent simulation indicated that such dramatic reduction of nucleotide diversity in African rice could be explained mainly by a severe bottleneck during its domestication. The progenitor of African rice maintained also low genetic diversity, which may be attributed to small effective population size in O. barthii. Self-pollinating would be another factor leading to the unusually low diversity in both species. Genealogical analyses showed that all O. glaberrima accessions formed a strongly supported cluster with seven O. barthii individuals that were sampled exclusively from the proposed domestication centers of African rice. Population structure and principal component analyses found that the O. glaberrima group was homogeneous with no obvious genetic subdivision, in contrast to the heterogeneous O. barthii cluster. These findings support a single domestication origin of African rice in areas of the Upper Niger and Sahelian Rivers.
Collapse
Affiliation(s)
- Zhi-Ming Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| | | | | |
Collapse
|
19
|
Molecular evidence for a single evolutionary origin of domesticated rice. Proc Natl Acad Sci U S A 2011; 108:8351-6. [PMID: 21536870 DOI: 10.1073/pnas.1104686108] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Asian rice, Oryza sativa, is one of world's oldest and most important crop species. Rice is believed to have been domesticated ∼9,000 y ago, although debate on its origin remains contentious. A single-origin model suggests that two main subspecies of Asian rice, indica and japonica, were domesticated from the wild rice O. rufipogon. In contrast, the multiple independent domestication model proposes that these two major rice types were domesticated separately and in different parts of the species range of wild rice. This latter view has gained much support from the observation of strong genetic differentiation between indica and japonica as well as several phylogenetic studies of rice domestication. We reexamine the evolutionary history of domesticated rice by resequencing 630 gene fragments on chromosomes 8, 10, and 12 from a diverse set of wild and domesticated rice accessions. Using patterns of SNPs, we identify 20 putative selective sweeps on these chromosomes in cultivated rice. Demographic modeling based on these SNP data and a diffusion-based approach provide the strongest support for a single domestication origin of rice. Bayesian phylogenetic analyses implementing the multispecies coalescent and using previously published phylogenetic sequence datasets also point to a single origin of Asian domesticated rice. Finally, we date the origin of domestication at ∼8,200-13,500 y ago, depending on the molecular clock estimate that is used, which is consistent with known archaeological data that suggests rice was first cultivated at around this time in the Yangtze Valley of China.
Collapse
|
20
|
Patterns of sequence divergence and evolution of the S orthologous regions between Asian and African cultivated rice species. PLoS One 2011; 6:e17726. [PMID: 21423767 PMCID: PMC3053390 DOI: 10.1371/journal.pone.0017726] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 02/08/2011] [Indexed: 12/17/2022] Open
Abstract
A strong postzygotic reproductive barrier separates the recently diverged Asian and African cultivated rice species, Oryza sativa and O. glaberrima. Recently a model of genetic incompatibilities between three adjacent loci: S1A, S1 and S1B (called together the S1 regions) interacting epistatically, was postulated to cause the allelic elimination of female gametes in interspecific hybrids. Two candidate factors for the S1 locus (including a putative F-box gene) were proposed, but candidates for S1A and S1B remained undetermined. Here, to better understand the basis of the evolution of regions involved in reproductive isolation, we studied the genic and structural changes accumulated in the S1 regions between orthologous sequences. First, we established an 813 kb genomic sequence in O. glaberrima, covering completely the S1A, S1 and the majority of the S1B regions, and compared it with the orthologous regions of O. sativa. An overall strong structural conservation was observed, with the exception of three isolated regions of disturbed collinearity: (1) a local invasion of transposable elements around a putative F-box gene within S1, (2) the multiple duplication and subsequent divergence of the same F-box gene within S1A, (3) an interspecific chromosomal inversion in S1B, which restricts recombination in our O. sativa×O. glaberrima crosses. Beside these few structural variations, a uniform conservative pattern of coding sequence divergence was found all along the S1 regions. Hence, the S1 regions have undergone no drastic variation in their recent divergence and evolution between O. sativa and O. glaberrima, suggesting that a small accumulation of genic changes, following a Bateson-Dobzhansky-Muller (BDM) model, might be involved in the establishment of the sterility barrier. In this context, genetic incompatibilities involving the duplicated F-box genes as putative candidates, and a possible strengthening step involving the chromosomal inversion might participate to the reproductive barrier between Asian and African rice species.
Collapse
|
21
|
Robbins MD, Sim SC, Yang W, Van Deynze A, van der Knaap E, Joobeur T, Francis DM. Mapping and linkage disequilibrium analysis with a genome-wide collection of SNPs that detect polymorphism in cultivated tomato. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1831-45. [PMID: 21193580 PMCID: PMC3060673 DOI: 10.1093/jxb/erq367] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 09/30/2010] [Accepted: 10/26/2010] [Indexed: 05/16/2023]
Abstract
The history of tomato (Solanum lycopersicum L.) improvement includes genetic bottlenecks, wild species introgressions, and divergence into distinct market classes. This history makes tomato an excellent model to investigate the effects of selection on genome variation. A combination of linkage mapping in two F(2) populations and physical mapping with emerging genome sequence data was used to position 434 PCR-based markers including SNPs. Three-hundred-and-forty markers were used to genotype 102 tomato lines representing wild species, landraces, vintage cultivars, and contemporary (fresh market and processing) varieties. Principal component analysis confirmed genetic divergence between market classes of cultivated tomato (P <0.0001). A genome-wide survey indicated that linkage disequilibrium (LD) decays over 6-8 cM when all cultivated tomatoes, including vintage and contemporary, were considered together. Within contemporary processing varieties, LD decayed over 6-14 cM, and decay was over 3-16 cM within fresh market varieties. Significant inter-chromosomal (gametic phase) LD was detected in both fresh market and processing varieties between chromosomes 2 and 3, and 2 and 4, but in distinct chromosomal locations for each market class. Additional LD was detected between chromosomes 3 and 4, 3 and 11, and 4 and 6 in fresh market varieties and chromosomes 3 and 12 in processing varieties. These results suggest that breeding practices for market specialization in tomato have led to a genetic divergence between fresh market and processing types.
Collapse
Affiliation(s)
- Matthew D. Robbins
- Department of Horticulture and Crop Sciences, The Ohio State University, OARDC, 1680 Madison Ave. Wooster, OH 44691, USA
| | - Sung-Chur Sim
- Department of Horticulture and Crop Sciences, The Ohio State University, OARDC, 1680 Madison Ave. Wooster, OH 44691, USA
| | - Wencai Yang
- Department of Vegetable Science, College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu Haidian District, Beijing 100094, The People's Republic of China
| | - Allen Van Deynze
- Seed Biotechnology Center, University of California, Davis, 1 Shields Ave. Davis, CA 95616, USA
| | - Esther van der Knaap
- Department of Horticulture and Crop Sciences, The Ohio State University, OARDC, 1680 Madison Ave. Wooster, OH 44691, USA
| | - Tarek Joobeur
- Molecular and Cellular Imaging Center, The Ohio State University, OARDC, 1680 Madison Ave. Wooster, OH 44691, USA
| | - David M. Francis
- Department of Horticulture and Crop Sciences, The Ohio State University, OARDC, 1680 Madison Ave. Wooster, OH 44691, USA
| |
Collapse
|
22
|
Guo Y, Shen YH, Sun W, Kishino H, Xiang ZH, Zhang Z. Nucleotide diversity and selection signature in the domesticated silkworm, Bombyx mori, and wild silkworm, Bombyx mandarina. JOURNAL OF INSECT SCIENCE (ONLINE) 2011; 11:155. [PMID: 22239062 PMCID: PMC3391917 DOI: 10.1673/031.011.15501] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
To investigate the patterns of nucleotide diversity in domesticated silkworm, Bombyx mori L. (Lepidoptera: Bombycidae) and its wild relative, Chinese wild silkworm, Bombyx mandarina Moore, we sequenced nine nuclear genes. Neutrality test and coalescent simulation for these genes were performed to look at bottleneck intensity and selection signature; linkage disequilibrium (LD) within and between loci was employed to investigate allele association. As a result, B. mori lost 33-49% of nucleotide diversity relative to wild silkworm, which is similar to the loss levels found in major cultivated crops. Diversity of B. mori is significantly lower than that of B. mandarina measured as π(total) (0.01166 vs. 0.1741) or θ(W)(0.01124 vs. 0.02206). Bottleneck intensity of domesticated silkworm is 1.5 (in terms of k = N(b) /d, N(b) -bottleneck population size; d-bottleneck duration) with different durations. Gene DefA showed signature of artificial selection by all analysis methods and might experience strong artificial selection in B. mori during domestication. For nine loci, both curves of LD decay rapidly within 200 bp and drop slowly when distance is > 200 bp, although that of B. mori decays slower than B. mandarina at loci investigated. However, LD could not be estimated at DefA in B. mori and at ER in both silkworms. Elevated LD observed in B. mori may be indicator of selection and demographic events.
Collapse
Affiliation(s)
- Yi Guo
- The Key Sericultural Laboratory of Agricultural Ministry, Southwest University, Chongqing 400715, China
| | - Yi-Hong Shen
- The Key Sericultural Laboratory of Agricultural Ministry, Southwest University, Chongqing 400715, China
| | - Wei Sun
- The Key Sericultural Laboratory of Agricultural Ministry, Southwest University, Chongqing 400715, China
| | - Hirohisa Kishino
- The Laboratory of Biometrics and Bioinformatics, Graduate School of Agriculture and Life Science, The University of Tokyo, 1-1-1, Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Zhong-Huai Xiang
- The Key Sericultural Laboratory of Agricultural Ministry, Southwest University, Chongqing 400715, China
| | - Ze Zhang
- The Key Sericultural Laboratory of Agricultural Ministry, Southwest University, Chongqing 400715, China
| |
Collapse
|
23
|
Horiuchi Y, Harushima Y, Fujisawa H, Mochizuki T, Kawakita M, Sakaguchi T, Kurata N. A simple optimization can improve the performance of single feature polymorphism detection by Affymetrix expression arrays. BMC Genomics 2010; 11:315. [PMID: 20482895 PMCID: PMC2885369 DOI: 10.1186/1471-2164-11-315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 05/20/2010] [Indexed: 12/20/2022] Open
Abstract
Background High-density oligonucleotide arrays are effective tools for genotyping numerous loci simultaneously. In small genome species (genome size: < ~300 Mb), whole-genome DNA hybridization to expression arrays has been used for various applications. In large genome species, transcript hybridization to expression arrays has been used for genotyping. Although rice is a fully sequenced model plant of medium genome size (~400 Mb), there are a few examples of the use of rice oligonucleotide array as a genotyping tool. Results We compared the single feature polymorphism (SFP) detection performance of whole-genome and transcript hybridizations using the Affymetrix GeneChip® Rice Genome Array, using the rice cultivars with full genome sequence, japonica cultivar Nipponbare and indica cultivar 93-11. Both genomes were surveyed for all probe target sequences. Only completely matched 25-mer single copy probes of the Nipponbare genome were extracted, and SFPs between them and 93-11 sequences were predicted. We investigated optimum conditions for SFP detection in both whole genome and transcript hybridization using differences between perfect match and mismatch probe intensities of non-polymorphic targets, assuming that these differences are representative of those between mismatch and perfect targets. Several statistical methods of SFP detection by whole-genome hybridization were compared under the optimized conditions. Causes of false positives and negatives in SFP detection in both types of hybridization were investigated. Conclusions The optimizations allowed a more than 20% increase in true SFP detection in whole-genome hybridization and a large improvement of SFP detection performance in transcript hybridization. Significance analysis of the microarray for log-transformed raw intensities of PM probes gave the best performance in whole genome hybridization, and 22,936 true SFPs were detected with 23.58% false positives by whole genome hybridization. For transcript hybridization, stable SFP detection was achieved for highly expressed genes, and about 3,500 SFPs were detected at a high sensitivity (> 50%) in both shoot and young panicle transcripts. High SFP detection performances of both genome and transcript hybridizations indicated that microarrays of a complex genome (e.g., of Oryza sativa) can be effectively utilized for whole genome genotyping to conduct mutant mapping and analysis of quantitative traits such as gene expression levels.
Collapse
Affiliation(s)
- Youko Horiuchi
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Liu F, Xu W, Wei Q, Zhang Z, Xing Z, Tan L, Di C, Yao D, Wang C, Tan Y, Yan H, Ling Y, Sun C, Xue Y, Su Z. Gene expression profiles deciphering rice phenotypic variation between Nipponbare (Japonica) and 93-11 (Indica) during oxidative stress. PLoS One 2010; 5:e8632. [PMID: 20072620 PMCID: PMC2799674 DOI: 10.1371/journal.pone.0008632] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 12/14/2009] [Indexed: 01/04/2023] Open
Abstract
Rice is a very important food staple that feeds more than half the world's population. Two major Asian cultivated rice (Oryza sativa L.) subspecies, japonica and indica, show significant phenotypic variation in their stress responses. However, the molecular mechanisms underlying this phenotypic variation are still largely unknown. A common link among different stresses is that they produce an oxidative burst and result in an increase of reactive oxygen species (ROS). In this study, methyl viologen (MV) as a ROS agent was applied to investigate the rice oxidative stress response. We observed that 93-11 (indica) seedlings exhibited leaf senescence with severe lesions under MV treatment compared to Nipponbare (japonica). Whole-genome microarray experiments were conducted, and 1,062 probe sets were identified with gene expression level polymorphisms between the two rice cultivars in addition to differential expression under MV treatment, which were assigned as Core Intersectional Probesets (CIPs). These CIPs were analyzed by gene ontology (GO) and highlighted with enrichment GO terms related to toxin and oxidative stress responses as well as other responses. These GO term-enriched genes of the CIPs include glutathine S-transferases (GSTs), P450, plant defense genes, and secondary metabolism related genes such as chalcone synthase (CHS). Further insertion/deletion (InDel) and regulatory element analyses for these identified CIPs suggested that there may be some eQTL hotspots related to oxidative stress in the rice genome, such as GST genes encoded on chromosome 10. In addition, we identified a group of marker genes individuating the japonica and indica subspecies. In summary, we developed a new strategy combining biological experiments and data mining to study the possible molecular mechanism of phenotypic variation during oxidative stress between Nipponbare and 93-11. This study will aid in the analysis of the molecular basis of quantitative traits.
Collapse
Affiliation(s)
- Fengxia Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Flint-Garcia SA, Bodnar AL, Scott MP. Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009. [PMID: 19701625 DOI: 10.1007/s00122-009-1115-1111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
All crop species have been domesticated from their wild relatives, and geneticists are just now beginning to understand the consequences of artificial (human) selection on agronomic traits that are relevant today. The primary consequence is a basal loss of diversity across the genome, and an additional reduction in diversity for genes underlying traits targeted by selection. An understanding of attributes of the wild relatives may provide insight into target traits and valuable allelic variants for modern agriculture. This is especially true for maize (Zea mays ssp. mays), where its wild ancestor, teosinte (Z. mays ssp. parviglumis), is so strikingly different than modern maize. One obvious target of selection is the size and composition of the kernel. We evaluated kernel characteristics, kernel composition, and zein profiles for a diverse set of modern inbred lines, teosinte accessions, and landraces, the intermediate between inbreds and teosinte. We found that teosinte has very small seeds, but twice the protein content of landraces and inbred lines. Teosinte has a higher average alpha zein content (nearly 89% of total zeins as compared to 72% for inbred lines and 76% for landraces), and there are many novel alcohol-soluble proteins in teosinte relative to the other two germplasm groups. Nearly every zein protein varied in abundance among the germplasm groups, especially the methionine-rich delta zein protein, and the gamma zeins. Teosinte and landraces harbor phenotypic variation that will facilitate genetic dissection of kernel traits and grain quality, ultimately leading to improvement via traditional plant breeding and/or genetic engineering.
Collapse
|
26
|
Flint-Garcia SA, Bodnar AL, Scott MP. Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:1129-42. [PMID: 19701625 DOI: 10.1007/s00122-009-1115-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 07/20/2009] [Indexed: 05/06/2023]
Abstract
All crop species have been domesticated from their wild relatives, and geneticists are just now beginning to understand the consequences of artificial (human) selection on agronomic traits that are relevant today. The primary consequence is a basal loss of diversity across the genome, and an additional reduction in diversity for genes underlying traits targeted by selection. An understanding of attributes of the wild relatives may provide insight into target traits and valuable allelic variants for modern agriculture. This is especially true for maize (Zea mays ssp. mays), where its wild ancestor, teosinte (Z. mays ssp. parviglumis), is so strikingly different than modern maize. One obvious target of selection is the size and composition of the kernel. We evaluated kernel characteristics, kernel composition, and zein profiles for a diverse set of modern inbred lines, teosinte accessions, and landraces, the intermediate between inbreds and teosinte. We found that teosinte has very small seeds, but twice the protein content of landraces and inbred lines. Teosinte has a higher average alpha zein content (nearly 89% of total zeins as compared to 72% for inbred lines and 76% for landraces), and there are many novel alcohol-soluble proteins in teosinte relative to the other two germplasm groups. Nearly every zein protein varied in abundance among the germplasm groups, especially the methionine-rich delta zein protein, and the gamma zeins. Teosinte and landraces harbor phenotypic variation that will facilitate genetic dissection of kernel traits and grain quality, ultimately leading to improvement via traditional plant breeding and/or genetic engineering.
Collapse
|
27
|
Subspecies-specific intron length polymorphism markers reveal clear genetic differentiation in common wild rice (Oryza rufipogon L.) in relation to the domestication of cultivated rice (O. sativa L.). J Genet Genomics 2009; 36:435-42. [DOI: 10.1016/s1673-8527(08)60133-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Revised: 03/01/2009] [Accepted: 03/17/2009] [Indexed: 11/20/2022]
|
28
|
Genetic signature of rice domestication shown by a variety of genes. J Mol Evol 2009; 68:393-402. [PMID: 19290563 DOI: 10.1007/s00239-009-9217-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 02/14/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
Cultivated rice was domesticated from common wild rice. However, little is known about genetic adaptation under domestication. We investigated the nucleotide variation of both cultivated rice and its wild progenitors at 22 R-gene and 10 non-R-gene loci. A significant regression was observed between wild rice and rice cultivars in their polymorphic levels, particularly in their nonsynonymous substitutions (theta ( a )). Our data also showed that a similar proportion (approximately 60%) of nucleotide variation in wild rice was retained in cultivated rice in both R-genes and non-R-genes. Interestingly, the slope always was >1 and the intercept always >0 in linear regressions when a cultivar's polymorphism was x-axis. The slope and intercept values can provide a basis by which to estimate the founder effect and the strength of artificial direct selection. A larger founder effect than previously reported and a strong direct-selection effect were shown in rice genes. In addition, two-directional selection was commonly found in differentiated genes between indica and japonica rice subspecies. This kind of selection may explain the mosaic origins of indica and japonica rice subspecies. Furthermore, in most R-genes, no significant differentiation between cultivated and wild rice was detected. We found evidence for genetic introgression from wild rice, which may have played an important role during the domestication of rice R-genes.
Collapse
|
29
|
Yu Y, Tang T, Qian Q, Wang Y, Yan M, Zeng D, Han B, Wu CI, Shi S, Li J. Independent losses of function in a polyphenol oxidase in rice: differentiation in grain discoloration between subspecies and the role of positive selection under domestication. THE PLANT CELL 2008; 20:2946-59. [PMID: 19033526 PMCID: PMC2613672 DOI: 10.1105/tpc.108.060426] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Asian rice (Oryza sativa) cultivars originated from wild rice and can be divided into two subspecies by several criteria, one of which is the phenol reaction (PHR) phenotype. Grains of indica cultivars turn brown in a phenol solution that accelerates a similar process that occurs during prolonged storage. By contrast, the grains of japonica do not discolor. This distinction may reflect the divergent domestication of these two subspecies. The PHR is controlled by a single gene, Phr1; here, we report the cloning of Phr1, which encodes a polyphenol oxidase. The Phr1 gene is indeed responsible for the PHR phenotype, as transformation with a functional Phr1 can complement a PHR negative cultivar. Phr1 is defective in all japonica lines but functional in nearly all indica and wild strains. Phylogenetic analysis showed that the defects in Phr1 arose independently three times. The multiple recent origins and rapid spread of phr1 in japonica suggest the action of positive selection, which is further supported by several population genetic tests. This case may hence represent an example of artificial selection driving the differentiation among domesticated varieties.
Collapse
MESH Headings
- Amino Acid Sequence
- Catechol Oxidase/genetics
- Cloning, Molecular
- Crops, Agricultural/genetics
- DNA, Plant/genetics
- Evolution, Molecular
- Genes, Plant
- Genetic Complementation Test
- Genetics, Population
- Molecular Sequence Data
- Mutation
- Oryza/genetics
- Phylogeny
- Plant Proteins/genetics
- Plant Structures/genetics
- Plants, Genetically Modified/genetics
- Polymorphism, Genetic
- Selection, Genetic
- Sequence Analysis, DNA
- Species Specificity
Collapse
Affiliation(s)
- Yanchun Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Huang X, Lu G, Zhao Q, Liu X, Han B. Genome-wide analysis of transposon insertion polymorphisms reveals intraspecific variation in cultivated rice. PLANT PHYSIOLOGY 2008; 148:25-40. [PMID: 18650402 PMCID: PMC2528094 DOI: 10.1104/pp.108.121491] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 07/17/2008] [Indexed: 05/18/2023]
Abstract
Insertions and precise eliminations of transposable elements generated numerous transposon insertion polymorphisms (TIPs) in rice (Oryza sativa). We observed that TIPs represent more than 50% of large insertions and deletions (>100 bp) in the rice genome. Using a comparative genomic approach, we identified 2,041 TIPs between the genomes of two cultivars, japonica Nipponbare and indica 93-11. We also identified 691 TIPs between Nipponbare and indica Guangluai 4 in the 23-Mb collinear regions of chromosome 4. Among them, retrotransposon-based insertion polymorphisms were used to reveal the evolutionary relationships of these three cultivars. Our conservative estimates suggest that the TIPs generated approximately 14% of the genomic DNA sequence differences between subspecies indica and japonica. It was also found that more than 10% of TIPs were located in expressed gene regions, representing an important source of genetic variation. Transcript evidence implies that these TIPs induced a series of genetic differences between two subspecies, including interrupting host genes, creating different expression forms, drastically changing intron length, and affecting expression levels of adjacent genes. These analyses provide genome-wide insights into evolutionary history and genetic variation of rice.
Collapse
Affiliation(s)
- Xuehui Huang
- National Center for Gene Research and Institute of Plant Physiology and Ecology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, China
| | | | | | | | | |
Collapse
|
31
|
Bourgis F, Guyot R, Gherbi H, Tailliez E, Amabile I, Salse J, Lorieux M, Delseny M, Ghesquière A. Characterization of the major fragance gene from an aromatic japonica rice and analysis of its diversity in Asian cultivated rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:353-68. [PMID: 18491070 PMCID: PMC2470208 DOI: 10.1007/s00122-008-0780-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 04/12/2008] [Indexed: 05/19/2023]
Abstract
In Asian cultivated rice (Oryza sativa L.), aroma is one of the most valuable traits in grain quality and 2-ACP is the main volatile compound contributing to the characteristic popcorn-like odour of aromatic rices. Although the major locus for grain fragrance (frg gene) has been described recently in Basmati rice, this gene has not been characterised in true japonica varieties and molecular information available on the genetic diversity and evolutionary origin of this gene among the different varieties is still limited. Here we report on characterisation of the frg gene in the Azucena variety, one of the few aromatic japonica cultivars. We used a RIL population from a cross between Azucena and IR64, a non-aromatic indica, the reference genomic sequence of Nipponbare (japonica) and 93-11 (indica) as well as an Azucena BAC library, to identify the major fragance gene in Azucena. We thus identified a betaine aldehyde dehydrogenase gene, badh2, as the candidate locus responsible for aroma, which presented exactly the same mutation as that identified in Basmati and Jasmine-like rices. Comparative genomic analyses showed very high sequence conservation between Azucena and Nipponbare BADH2, and a MITE was identified in the promotor region of the BADH2 allele in 93-11. The badh2 mutation and MITE were surveyed in a representative rice collection, including traditional aromatic and non-aromatic rice varieties, and strongly suggested a monophylogenetic origin of this badh2 mutation in Asian cultivated rices. Altogether these new data are discussed here in the light of current hypotheses on the origin of rice genetic diversity.
Collapse
Affiliation(s)
- F. Bourgis
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Perpignan, France
- Centre IRD de Montpellier, Avenue Agropolis, BP64501, 34394 Montpellier, France
| | - R. Guyot
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Perpignan, France
- Centre IRD de Montpellier, Avenue Agropolis, BP64501, 34394 Montpellier, France
| | - H. Gherbi
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Perpignan, France
- Centre IRD de Montpellier, Avenue Agropolis, BP64501, 34394 Montpellier, France
| | - E. Tailliez
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Perpignan, France
- Centre IRD de Montpellier, Avenue Agropolis, BP64501, 34394 Montpellier, France
| | - I. Amabile
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Perpignan, France
- Centre IRD de Montpellier, Avenue Agropolis, BP64501, 34394 Montpellier, France
| | - J. Salse
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Perpignan, France
- Université de Perpignan Via Domitia, 52 avenue Paul Alduy, 66860 Perpignan, France
- Present Address: UMR 1095 INRA-UBP ASP Amélioration et Santé des Plantes, Domaine de Crouelle, 63039 Clermont Ferrand, France
| | - M. Lorieux
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Perpignan, France
- Centre IRD de Montpellier, Avenue Agropolis, BP64501, 34394 Montpellier, France
| | - M. Delseny
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Perpignan, France
- Université de Perpignan Via Domitia, 52 avenue Paul Alduy, 66860 Perpignan, France
| | - A. Ghesquière
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Perpignan, France
- Centre IRD de Montpellier, Avenue Agropolis, BP64501, 34394 Montpellier, France
| |
Collapse
|
32
|
Molecular evolution of the Pi-ta gene resistant to rice blast in wild rice (Oryza rufipogon). Genetics 2008; 179:1527-38. [PMID: 18622033 DOI: 10.1534/genetics.108.089805] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rice blast disease resistance to the fungal pathogen Magnaporthe grisea is triggered by a physical interaction between the protein products of the host R (resistance) gene, Pi-ta, and the pathogen Avr (avirulence) gene, AVR-pita. The genotype variation and resistant/susceptible phenotype at the Pi-ta locus of wild rice (Oryza rufipogon), the ancestor of cultivated rice (O. sativa), was surveyed in 36 locations worldwide to study the molecular evolution and functional adaptation of the Pi-ta gene. The low nucleotide polymorphism of the Pi-ta gene of O. rufipogon was similar to that of O. sativa, but greatly differed from what has been reported for other O. rufipogon genes. The haplotypes can be subdivided into two divergent haplogroups named H1 and H2. H1 is derived from H2, with nearly no variation and at a low frequency. H2 is common and is the ancestral form. The leucine-rich repeat (LRR) domain has a high pi(non)/pi(syn) ratio, and the low polymorphism of the Pi-ta gene might have primarily been caused by recurrent selective sweep and constraint by other putative physiological functions. Meanwhile, we provide data to show that the amino acid Ala-918 of H1 in the LRR domain has a close relationship with the resistant phenotype. H1 might have recently arisen during rice domestication and may be associated with the scenario of a blast pathogen-host shift from Italian millet to rice.
Collapse
|
33
|
Schierup MH, Vekemans X. Genomic consequences of selection on self-incompatibility genes. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:116-122. [PMID: 18316239 DOI: 10.1016/j.pbi.2008.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 01/16/2008] [Accepted: 01/17/2008] [Indexed: 05/26/2023]
Abstract
Frequency-dependent selection at plant self-incompatibility systems is inherent and well understood theoretically. A self-incompatibility locus leads to a strong peak of diversity in the genome, to a unique distribution of diversity across the species and possibly to increased introgression between closely related species. We review recent empirical studies demonstrating these features and relate the empirical findings to theoretical predictions. We show how these features are being exploited in searches for other genes under multi-allelic balancing selection and for inference on recent breakdown of self-incompatibility.
Collapse
Affiliation(s)
- Mikkel Heide Schierup
- Bioinformatics Research Center and Department of Biology, University of Aarhus, Hoegh Guldbergs Gade 10, 8000 Aarhus C, Denmark.
| | | |
Collapse
|
34
|
Kovach MJ, McCouch SR. Leveraging natural diversity: back through the bottleneck. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:193-200. [PMID: 18313975 DOI: 10.1016/j.pbi.2007.12.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 11/20/2007] [Accepted: 12/13/2007] [Indexed: 05/24/2023]
Abstract
Plant breeders have long recognized the existence of useful genetic variation in the wild ancestors of our domesticated crop species. In cultivated rice (Oryza sativa), crosses between high-yielding elite cultivars and low-yielding wild accessions often give rise to superior offspring, with wild alleles conferring increased performance in the context of the elite cultivar genetic background. Because the breeding value of wild germplasm cannot be determined by examining the performance of wild accessions, a phylogenetic approach is recommended to determine which interspecific combinations are most likely to be useful in a breeding program. As we deepen our understanding of how genetic diversity is partitioned within and between cultivated and wild gene pools of Oryza, breeders will have increased power to make predictions about the most efficient strategies for utilizing wild germplasm for rice improvement.
Collapse
Affiliation(s)
- M J Kovach
- Department of Plant Breeding and Genetics, 162 Emerson Hall, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
35
|
Kim H, Hurwitz B, Yu Y, Collura K, Gill N, SanMiguel P, Mullikin JC, Maher C, Nelson W, Wissotski M, Braidotti M, Kudrna D, Goicoechea JL, Stein L, Ware D, Jackson SA, Soderlund C, Wing RA. Construction, alignment and analysis of twelve framework physical maps that represent the ten genome types of the genus Oryza. Genome Biol 2008; 9:R45. [PMID: 18304353 PMCID: PMC2374706 DOI: 10.1186/gb-2008-9-2-r45] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/12/2008] [Accepted: 02/28/2008] [Indexed: 01/31/2023] Open
Abstract
Bacterial artificial chromosome (BAC) fingerprint and end-sequenced physical maps representing the ten genome types of Oryza are presented We describe the establishment and analysis of a genus-wide comparative framework composed of 12 bacterial artificial chromosome fingerprint and end-sequenced physical maps representing the 10 genome types of Oryza aligned to the O. sativa ssp. japonica reference genome sequence. Over 932 Mb of end sequence was analyzed for repeats, simple sequence repeats, miRNA and single nucleotide variations, providing the most extensive analysis of Oryza sequence to date.
Collapse
Affiliation(s)
- HyeRan Kim
- Arizona Genomics Institute, Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Genetic Diversity in Wild Relatives of Rice and Domestication Events. RICE BIOLOGY IN THE GENOMICS ERA 2008. [DOI: 10.1007/978-3-540-74250-0_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
37
|
Archak S, Nagaraju J. Computational prediction of rice (Oryza sativa) miRNA targets. GENOMICS, PROTEOMICS & BIOINFORMATICS 2007; 5:196-206. [PMID: 18267301 PMCID: PMC5054203 DOI: 10.1016/s1672-0229(08)60007-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Bioinformatic approaches have complemented experimental efforts to inventorize plant miRNA targets. We carried out global computational analysis of rice (Oryza sativa) transcriptome to generate a comprehensive list of putative miRNA targets. Our predictions (684 unique transcripts) showed that rice miRNAs mediate regulation of diverse functions including transcription (41%), catalysis (28%), binding (18%), and transporter activity (11%). Among the predicted targets, 61.7% hits were in coding regions and nearly 72% targets had a solitary miRNA hit. The study predicted more than 70 novel targets of 34 miRNAs putatively regulating functions like stress-response, catalysis, and binding. It was observed that more than half (55%) of the targets were conserved between O. sativa indica and O. sativa japonica. Members of 31 miRNA families were found to possess conserved targets between rice and at least one of other grass family members. About 44% of the unique targets were common between two dissimilar miRNA prediction algorithms. Such an extent of cross-species conservation and algorithmic consensus confers confidence in the list of rice miRNA targets predicted in this study.
Collapse
Affiliation(s)
| | - J. Nagaraju
- Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076, India
| |
Collapse
|
38
|
Sang T, Ge S. Genetics and phylogenetics of rice domestication. Curr Opin Genet Dev 2007; 17:533-8. [PMID: 17988855 DOI: 10.1016/j.gde.2007.09.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 09/07/2007] [Accepted: 09/20/2007] [Indexed: 11/19/2022]
Abstract
With genetically divergent cultivars and ecologically distinct wild progenitors, rice has posed a great challenge to the genetic and phylogenetic studies of the origin and evolution of crop species. A growing body of phylogenetic evidence suggested that the diverged genomic backgrounds of indica and japonica rice cultivars were derived independently from genetically distinct wild populations. However, a domestication gene, sh4, which was responsible for the reduction of grain shattering, seems to have originated only once, and it is now fixed in both cultivars. Two models have been proposed to reconcile these data. Whereas the 'combination model' emphasizes the importance of early introgression between independently domesticated cultivars, the 'snowballing model' emphasizes the importance of introgression from local populations of wild species into an ancestral domesticated population. In either case, the domestication of rice was a dynamic process.
Collapse
Affiliation(s)
- Tao Sang
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
39
|
New insights into the history of rice domestication. Trends Genet 2007; 23:578-87. [DOI: 10.1016/j.tig.2007.08.012] [Citation(s) in RCA: 357] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 08/16/2007] [Accepted: 08/21/2007] [Indexed: 11/18/2022]
|
40
|
|
41
|
Dinka SJ, Campbell MA, Demers T, Raizada MN. Predicting the size of the progeny mapping population required to positionally clone a gene. Genetics 2007; 176:2035-54. [PMID: 17565938 PMCID: PMC1950612 DOI: 10.1534/genetics.107.074377] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A key frustration during positional gene cloning (map-based cloning) is that the size of the progeny mapping population is difficult to predict, because the meiotic recombination frequency varies along chromosomes. We describe a detailed methodology to improve this prediction using rice (Oryza sativa L.) as a model system. We derived and/or validated, then fine-tuned, equations that estimate the mapping population size by comparing these theoretical estimates to 41 successful positional cloning attempts. We then used each validated equation to test whether neighborhood meiotic recombination frequencies extracted from a reference RFLP map can help researchers predict the mapping population size. We developed a meiotic recombination frequency map (MRFM) for approximately 1400 marker intervals in rice and anchored each published allele onto an interval on this map. We show that neighborhood recombination frequencies (R-map, >280-kb segments) extracted from the MRFM, in conjunction with the validated formulas, better predicted the mapping population size than the genome-wide average recombination frequency (R-avg), with improved results whether the recombination frequency was calculated as genes/cM or kb/cM. Our results offer a detailed road map for better predicting mapping population size in diverse eukaryotes, but useful predictions will require robust recombination frequency maps based on sampling more progeny.
Collapse
Affiliation(s)
- Stephen J Dinka
- Department of Plant Agriculture, University of Guelph, 50 Stone Road, Guelph, Ontario, Canada
| | | | | | | |
Collapse
|