1
|
Chergintsev DA, Solovieva AD, Atabekova AK, Lezzhov AA, Golyshev SA, Morozov SY, Solovyev AG. Properties of Plant Virus Protein Encoded by the 5'-Proximal Gene of Tetra-Cistron Movement Block. Int J Mol Sci 2023; 24:14144. [PMID: 37762447 PMCID: PMC10532019 DOI: 10.3390/ijms241814144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
To move from cell to cell through plasmodesmata, many plant viruses require the concerted action of two or more movement proteins (MPs) encoded by transport gene modules of virus genomes. A tetra-cistron movement block (TCMB) is a newly discovered transport module comprising four genes. TCMB encodes three proteins, which are similar to MPs of the transport module known as the "triple gene block", and a protein unrelated to known viral MPs and containing a double-stranded RNA (dsRNA)-binding domain similar to that found in a family of cell proteins, including AtDRB4 and AtHYL1. Here, the latter TCMB protein, named vDRB for virus dsRNA-binding protein, is shown to bind both dsRNA and single-stranded RNA in vitro. In a turnip crinkle virus-based assay, vDRB exhibits the properties of a viral suppressor of RNA silencing (VSR). In the context of potato virus X infection, vDRB significantly decreases the number and size of "dark green islands", regions of local antiviral silencing, supporting the VSR function of vDRB. Nevertheless, vDRB does not exhibit the VSR properties in non-viral transient expression assays. Taken together, the data presented here indicate that vDRB is an RNA-binding protein exhibiting VSR functions in the context of viral infection.
Collapse
Affiliation(s)
- Denis A. Chergintsev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.A.C.); (A.K.A.); (A.A.L.); (S.A.G.); (S.Y.M.)
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia;
| | - Anna D. Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia;
| | - Anastasia K. Atabekova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.A.C.); (A.K.A.); (A.A.L.); (S.A.G.); (S.Y.M.)
| | - Alexander A. Lezzhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.A.C.); (A.K.A.); (A.A.L.); (S.A.G.); (S.Y.M.)
| | - Sergei A. Golyshev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.A.C.); (A.K.A.); (A.A.L.); (S.A.G.); (S.Y.M.)
| | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.A.C.); (A.K.A.); (A.A.L.); (S.A.G.); (S.Y.M.)
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia;
| | - Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.A.C.); (A.K.A.); (A.A.L.); (S.A.G.); (S.Y.M.)
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
2
|
Xu Y, Chen X. microRNA biogenesis and stabilization in plants. FUNDAMENTAL RESEARCH 2023; 3:707-717. [PMID: 38933298 PMCID: PMC11197542 DOI: 10.1016/j.fmre.2023.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
MicroRNAs (miRNAs) are short endogenous non-coding RNAs that regulate gene expression at the post-transcriptional level in a broad range of eukaryotic species. In animals, it is estimated that more than 60% of mammalian genes are targets of miRNAs, with miRNAs regulating cellular processes such as differentiation and proliferation. In plants, miRNAs regulate gene expression and play essential roles in diverse biological processes, including growth, development, and stress responses. Arabidopsis mutants with defective miRNA biogenesis are embryo lethal, and abnormal expression of miRNAs can cause severe developmental phenotypes. It is therefore crucial that the homeostasis of miRNAs is tightly regulated. In this review, we summarize the key mechanisms of plant miRNA biogenesis and stabilization. We provide an update on nuclear proteins with functions in miRNA biogenesis and proteins linking miRNA biogenesis to environmental triggers.
Collapse
Affiliation(s)
- Ye Xu
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, United States
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, United States
| | - Xuemei Chen
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, United States
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, United States
- School of Life Sciences, Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Huang X, Wei J, Wu D, Mi N, Fang S, Xiao Y, Li Y. Silencing of SlDRB1 gene reduces resistance to tomato yellow leaf curl virus (TYLCV) in tomato ( Solanum lycopersicum). PLANT SIGNALING & BEHAVIOR 2022; 17:2149942. [PMID: 36453197 PMCID: PMC9718546 DOI: 10.1080/15592324.2022.2149942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Double-stranded RNA-binding proteins are small molecules in the RNA interference (RNAi) pathway that form the RNAi machinery together with the Dicer-like protein (DCL) as a cofactor. This machinery cuts double-stranded RNA (dsRNA) to form multiple small interfering RNAs (siRNAs). Our goal was to clarify the function of DRB in tomato resistant to TYLCV. In this experiment, the expression of the SlDRB1 and SlDRB4 genes was analyzed in tomato leaves by qPCR, and the function of SlDRB1 and SlDRB4 in resistance to TYLCV was investigated by virus-induced gene silencing (VIGS). Then, peroxidase activity was determined. The results showed that the expression of SlDRB1 gradually increased after inoculation of 'dwarf tomato' plants with tomato yellow leaf curl virus (TYLCV), but this gene was suppressed after 28 days. Resistance to TYLCV was significantly weakened after silencing of the SlDRB1 gene. However, there were no significant expression differences in SlDRB4 after TYLCV inoculation. Our study showed that silencing SlDRB1 attenuated the ability of tomato plants to resist virus infection; therefore, SlDRB1 may play a key role in the defense against TYLCV in tomato plants, whereas SlDRB4 is likely not involved in this defense response. Taken together, These results suggest that the DRB gene is involved in the mechanism of antiviral activity.
Collapse
Affiliation(s)
- Xin Huang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Jianming Wei
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Dan Wu
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Na Mi
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Sili Fang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Yao Xiao
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Yunzhou Li
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Gelaw TA, Sanan-Mishra N. Non-Coding RNAs in Response to Drought Stress. Int J Mol Sci 2021; 22:12519. [PMID: 34830399 PMCID: PMC8621352 DOI: 10.3390/ijms222212519] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Drought stress causes changes in the morphological, physiological, biochemical and molecular characteristics of plants. The response to drought in different plants may vary from avoidance, tolerance and escape to recovery from stress. This response is genetically programmed and regulated in a very complex yet synchronized manner. The crucial genetic regulations mediated by non-coding RNAs (ncRNAs) have emerged as game-changers in modulating the plant responses to drought and other abiotic stresses. The ncRNAs interact with their targets to form potentially subtle regulatory networks that control multiple genes to determine the overall response of plants. Many long and small drought-responsive ncRNAs have been identified and characterized in different plant varieties. The miRNA-based research is better documented, while lncRNA and transposon-derived RNAs are relatively new, and their cellular role is beginning to be understood. In this review, we have compiled the information on the categorization of non-coding RNAs based on their biogenesis and function. We also discuss the available literature on the role of long and small non-coding RNAs in mitigating drought stress in plants.
Collapse
Affiliation(s)
- Temesgen Assefa Gelaw
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
- Department of Biotechnology, College of Natural and Computational Science, Debre Birhan University, Debre Birhan P.O. Box 445, Ethiopia
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
| |
Collapse
|
5
|
Ariel FD, Manavella PA. When junk DNA turns functional: transposon-derived non-coding RNAs in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4132-4143. [PMID: 33606874 DOI: 10.1093/jxb/erab073] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/12/2021] [Indexed: 05/05/2023]
Abstract
Transposable elements (TEs) are major contributors to genome complexity in eukaryotes. TE mobilization may cause genome instability, although it can also drive genome diversity throughout evolution. TE transposition may influence the transcriptional activity of neighboring genes by modulating the epigenomic profile of the region or by altering the relative position of regulatory elements. Notably, TEs have emerged in the last few years as an important source of functional long and small non-coding RNAs. A plethora of small RNAs derived from TEs have been linked to the trans regulation of gene activity at the transcriptional and post-transcriptional levels. Furthermore, TE-derived long non-coding RNAs have been shown to modulate gene expression by interacting with protein partners, sequestering active small RNAs, and forming duplexes with DNA or other RNA molecules. In this review, we summarize our current knowledge of the functional and mechanistic paradigms of TE-derived long and small non-coding RNAs and discuss their role in plant development and evolution.
Collapse
Affiliation(s)
- Federico D Ariel
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Pablo A Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| |
Collapse
|
6
|
Meng X, Li A, Yu B, Li S. Interplay between miRNAs and lncRNAs: Mode of action and biological roles in plant development and stress adaptation. Comput Struct Biotechnol J 2021; 19:2567-2574. [PMID: 34025943 PMCID: PMC8114054 DOI: 10.1016/j.csbj.2021.04.062] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 11/28/2022] Open
Abstract
Plants employ sophisticated mechanisms to control developmental processes and to cope with environmental changes at transcriptional and post-transcriptional levels. MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs), two classes of endogenous noncoding RNAs, are key regulators of gene expression in plants. Recent studies have identified the interplay between miRNAs and lncRNAs as a novel regulatory layer of gene expression in plants. On one hand, miRNAs target lncRNAs for the production of phased small interfering RNAs (phasiRNAs). On the other hand, lncRNAs serve as origin of miRNAs or regulate the accumulation or activity of miRNAs at transcription and post-transcriptional levels. Theses lncRNA-miRNA interplays are crucial for plant development, physiology and responses to biotic and abiotic stresses. In this review, we summarize recent advances in the biological roles, interaction mechanisms and computational predication methods of the interplay between miRNAs and lncRNAs in plants.
Collapse
Affiliation(s)
- Xiangxiang Meng
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Aixia Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bin Yu
- School of Biological Sciences & Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA
| | - Shengjun Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
7
|
Abstract
MicroRNAs (miRNAs) are essential non-coding riboregulators of gene expression in plants and animals. In plants, miRNAs guide their effector protein named ARGONAUTE (AGO) to find target RNAs for gene silencing through target RNA cleavage or translational inhibition. miRNAs are derived from primary miRNA transcripts (pri-miRNAs), most of which are transcribed by the DNA-dependent RNA polymerase II. In plants, an RNase III enzyme DICER-LIKE1-containing complex processes pri-miRNAs in the nucleus into miRNAs. To ensure proper function of miRNAs, plants use multiple mechanisms to control miRNA accumulation. On one hand, pri-miRNA levels are controlled through transcription and stability. On the other hand, the activities of the DCL1 complex are regulated by many protein factors at transcriptional, post-transcriptional and post-translational levels. Notably, recent studies reveal that pri-miRNA structure/sequence features and modifications also play important roles in miRNA biogenesis. In this review, we summarize recent progresses on the mechanisms regulating miRNA biogenesis.
Collapse
Affiliation(s)
- Mu Li
- School of Biological Sciences & Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska USA
| | - Bin Yu
- School of Biological Sciences & Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska USA
| |
Collapse
|
8
|
Wang J, Mei J, Ren G. Plant microRNAs: Biogenesis, Homeostasis, and Degradation. FRONTIERS IN PLANT SCIENCE 2019; 10:360. [PMID: 30972093 PMCID: PMC6445950 DOI: 10.3389/fpls.2019.00360] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/07/2019] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs), a class of endogenous, tiny, non-coding RNAs, are master regulators of gene expression among most eukaryotes. Intracellular miRNA abundance is regulated under multiple levels of control including transcription, processing, RNA modification, RNA-induced silencing complex (RISC) assembly, miRNA-target interaction, and turnover. In this review, we summarize our current understanding of the molecular components and mechanisms that influence miRNA biogenesis, homeostasis, and degradation in plants. We also make comparisons with findings from other organisms where necessary.
Collapse
Affiliation(s)
| | | | - Guodong Ren
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Lou S, Sun T, Li H, Hu Z. Mechanisms of microRNA-mediated gene regulation in unicellular model alga Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:244. [PMID: 30202439 PMCID: PMC6129010 DOI: 10.1186/s13068-018-1249-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/31/2018] [Indexed: 05/30/2023]
Abstract
MicroRNAs are a class of endogenous non-coding RNAs that play a vital role in post-transcriptional gene regulation in eukaryotic cells. In plants and animals, miRNAs are implicated in diverse roles ranging from immunity against viral infections, developmental pathways, molecular pathology of cancer and regulation of protein expression. However, the role of miRNAs in the unicellular model green alga Chlamydomonas reinhardtii remains unclear. The mode of action of miRNA-induced gene silencing in C. reinhardtii is very similar to that of higher eukaryotes, in terms of the activation of the RNA-induced silencing complex and mRNA targeting. Certain studies indicate that destabilization of mRNAs and mRNA turnover could be the major possible functions of miRNAs in eukaryotic algae. Here, we summarize recent findings that have advanced our understanding of miRNA regulatory mechanisms in C. reinhardtii.
Collapse
Affiliation(s)
- Sulin Lou
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Key Laboratory of Optoeletronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoeletronic Engineering, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Ting Sun
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Key Laboratory of Optoeletronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoeletronic Engineering, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Hui Li
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Zhangli Hu
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| |
Collapse
|
10
|
Sex Determination in Ceratopteris richardii Is Accompanied by Transcriptome Changes That Drive Epigenetic Reprogramming of the Young Gametophyte. G3-GENES GENOMES GENETICS 2018; 8:2205-2214. [PMID: 29720393 PMCID: PMC6027899 DOI: 10.1534/g3.118.200292] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The fern Ceratopteris richardii is an important model for studies of sex determination and gamete differentiation in homosporous plants. Here we use RNA-seq to de novo assemble a transcriptome and identify genes differentially expressed in young gametophytes as their sex is determined by the presence or absence of the male-inducing pheromone called antheridiogen. Of the 1,163 consensus differentially expressed genes identified, the vast majority (1,030) are up-regulated in gametophytes treated with antheridiogen. GO term enrichment analyses of these DEGs reveals that a large number of genes involved in epigenetic reprogramming of the gametophyte genome are up-regulated by the pheromone. Additional hormone response and development genes are also up-regulated by the pheromone. This C. richardii gametophyte transcriptome and gene expression dataset will prove useful for studies focusing on sex determination and differentiation in plants.
Collapse
|
11
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
12
|
Intron Lariat RNA Inhibits MicroRNA Biogenesis by Sequestering the Dicing Complex in Arabidopsis. PLoS Genet 2016; 12:e1006422. [PMID: 27870853 PMCID: PMC5147768 DOI: 10.1371/journal.pgen.1006422] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 10/12/2016] [Indexed: 11/19/2022] Open
Abstract
Lariat RNAs formed as by-products of splicing are quickly degraded by the RNA debranching enzyme 1 (DBR1), leading to their turnover. Null dbr1 mutants in both animals and plants are embryo lethal, but the mechanism underlying the lethality remains unclear. Here we characterized a weak mutant allele of DBR1 in Arabidopsis, dbr1-2, and showed that a global increase in lariat RNAs was unexpectedly accompanied by a genome-wide reduction in miRNA accumulation. The dbr1-2 mutation had no effects on expression of miRNA biogenesis genes or primary miRNAs (pri-miRNAs), but the association of pri-miRNAs with the DCL1/HYL1 dicing complex was impaired. Lariat RNAs were associated with the DCL1/HYL1 dicing complex in vivo and competitively inhibited the binding of HYL1 with pri-miRNA. Consistent with the impacts of lariat RNAs on miRNA biogenesis, over-expression of lariat RNAs reduced miRNA accumulation. Lariat RNAs localized in nuclear bodies, and partially co-localize with HYL1, and both DCL1 and HYL1 were mis-localized in dbr1-2. Together with our findings that nearly four hundred lariat RNAs exist in wild type plants and that these lariat RNAs also associate with the DCL1/HYL1 dicing complex in vivo, we thus propose that lariat RNAs, as decoys, inhibit miRNA processing, suggesting a hitherto unknown layer of regulation in miRNA biogenesis. It is known that lariat RNAs formed during pre-mRNA splicing are debranched by DBR1 (RNA debranching enzyme 1). Loss of function of DBR1 causes embryo lethality in both animals and plants. In animals, some debranched lariat RNAs could be further processed into mirtron miRNAs, a class of nonconventional miRNAs that bypass the microprocessor for their biogenesis. However, no mirtron has been functionally validated in plants, and how the accumulation of lariat RNA in dbr1 results in embryo lethality remains unclear. Here, we show that DBR1 is necessary for the regulation of genome-wide miRNA biogenesis in plants. By investigating the correlation between lariat RNA accumulation and miRNA processing, we showed that the DBR1-mediated lariat RNA debranching process provides a safeguard role for the binding of the dicing complex with miRNA precursors. As both the DBR1-mediated lariat RNA debranching process and miRNA biogenesis are common features in higher eukaryotes, the finding that lariat RNAs sequester the dicing complex in plants may have a broad implications for the non-coding RNA field.
Collapse
|
13
|
Abstract
The use of artificial microRNAs (amiRNAs) is still a relatively new technique in molecular biology with a wide range of applications in life sciences. Here, we describe the silencing of the CBP80/ABH1 gene in Solanum tuberosum with the use of amiRNA. The CBP80/ABH1 protein is part of the Cap Binding Complex (CBC), which is involved in plant responses to drought stress conditions. Transformed plants with a decreased level of CBP80/ABH1 display increased tolerance to water shortage conditions. We describe how to design amiRNA with the Web MicroRNA Designer platform in detail. Additionally, we explain how to perform all steps of a procedure aiming to obtain transgenic potato plants with the use of designed amiRNA, through callus tissue regeneration and Agrobacterium tumefaciens strain LBA4404 as a transgene carrier.
Collapse
|
14
|
Zhang S, Liu Y, Yu B. New insights into pri-miRNA processing and accumulation in plants. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:533-45. [PMID: 26119101 DOI: 10.1002/wrna.1292] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/12/2015] [Accepted: 05/22/2015] [Indexed: 12/31/2022]
Abstract
MicroRNAs (miRNAs) regulate many biological processes such as development, metabolism, and others. They are processed from their primary transcripts called primary miRNA transcripts (pri-miRNAs) by the processor complex containing the RNAse III enzyme, DICER-LIKE1 (DCL1), in plants. Consequently, miRNA biogenesis is controlled through altering pri-miRNA accumulation and processing, which is crucial for plant development and adaptation to environmental changes. Plant pri-miRNAs are transcribed by DNA-dependent RNA polymerase II (Pol II) and their levels are determined through transcription and degradation, whereas pri-miRNA processing is affected by its structure, splicing, alternative splicing, loading to the processor and the processor activity, which involve in many accessory proteins. Here, we summarize recent progresses related to pri-miRNA transcription, stability, and processing in plants.
Collapse
Affiliation(s)
- Shuxin Zhang
- Center for Plant Science Innovation & School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.,State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yuhui Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences & Key Laboratory of Agricultural Genomics, Ministry of Agriculture, Beijing, China
| | - Bin Yu
- Center for Plant Science Innovation & School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
15
|
Shivaprasad PV, Hohn T, Akbergenov R. Biochemical requirements for two Dicer-like activities from wheat germ. PLoS One 2015; 10:e0116736. [PMID: 25615604 PMCID: PMC4304710 DOI: 10.1371/journal.pone.0116736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/14/2014] [Indexed: 12/22/2022] Open
Abstract
RNA silencing pathways were first discovered in plants. Through genetic analysis, it has been established that the key silencing components called Dicer-like (DCL) genes have been shown to cooperatively process RNA substrates of multiple origin into distinct 21, 22 and 24 nt small RNAs. However, only few detailed biochemical analysis of the corresponding complexes has been carried out in plants, mainly due to the large unstable complexes that are hard to obtain or reconstitute in heterologous systems. Reconstitution of activity needs thorough understanding of all protein partners in the complex, something that is still an ongoing process in plant systems. Here, we use biochemical analysis to uncover properties of two previously identified native dicer-like activities from wheat germ. We find that standard wheat germ extract contains Dicer-like enzymes that convert double-stranded RNA (dsRNA) into two classes of small interfering RNAs of 21 and 24 nt in size. The 21 nt dicing activity, likely an siRNA producing complex known as DCL4, is 950 kDa-1.2 mDa in size and is highly unstable during purification processes but has a rather vast range for activity. On the contrary, the 24 nt dicing complex, likely the DCL3 activity, is relatively stable and comparatively smaller in size, but has stricter conditions for effective processing of dsRNA substrates. While both activities could process completely complementary dsRNA albeit with varying abilities, we show that DCL3-like 24 nt producing activity is equally good in processing incompletely complementary RNAs.
Collapse
Affiliation(s)
| | - Thomas Hohn
- Department of Plant Physiology, Botanical Institute, University of Basel, Basel, Switzerland
| | - Rashid Akbergenov
- Institute for Medical Microbiology, University of Zurich, Zurich, Switzerland
- * E-mail: (PVS); (RA)
| |
Collapse
|
16
|
Xie M, Zhang S, Yu B. microRNA biogenesis, degradation and activity in plants. Cell Mol Life Sci 2015; 72:87-99. [PMID: 25209320 PMCID: PMC11113746 DOI: 10.1007/s00018-014-1728-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/13/2014] [Accepted: 09/04/2014] [Indexed: 12/11/2022]
Abstract
microRNAs (miRNAs) are important regulators of gene expression. After excised from primary miRNA transcript by dicer-like1 (DCL1, an RNAse III enzyme), miRNAs bind and guide their effector protein named argonaute 1 (AGO1) to silence the expression of target RNAs containing their complementary sequences in plants. miRNA levels and activities are tightly controlled to ensure their functions in various biological processes such as development, metabolism and responses to abiotic and biotic stresses. Studies have identified many factors that involve in miRNA accumulation and activities. Characterization of these factors in turn greatly improves our understanding of the processes related to miRNAs. Here, we review recent progress of mechanisms underlying miRNA expression and functions in plants.
Collapse
Affiliation(s)
- Meng Xie
- Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588–0660 USA
| | - Shuxin Zhang
- Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588–0660 USA
| | - Bin Yu
- Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588–0660 USA
| |
Collapse
|
17
|
Martínez de Alba AE, Elvira-Matelot E, Vaucheret H. Gene silencing in plants: a diversity of pathways. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1300-8. [PMID: 24185199 DOI: 10.1016/j.bbagrm.2013.10.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 10/22/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022]
Abstract
Eukaryotic organisms have evolved a variety of gene silencing pathways in which small RNAs, 20- to 30-nucleotides in length, repress the expression of sequence homologous genes at the transcriptional or post-transcriptional levels. In plants, RNA silencing pathways play important roles in regulating development and response to both biotic and abiotic stresses. The molecular basis of these complex and interconnected pathways has emerged only in recent years with the identification of many of the genes necessary for the biogenesis and action of small RNAs. This review covers the diversity of RNA silencing pathways identified in plants.
Collapse
|
18
|
Raczynska KD, Stepien A, Kierzkowski D, Kalak M, Bajczyk M, McNicol J, Simpson CG, Szweykowska-Kulinska Z, Brown JWS, Jarmolowski A. The SERRATE protein is involved in alternative splicing in Arabidopsis thaliana. Nucleic Acids Res 2013; 42:1224-44. [PMID: 24137006 PMCID: PMC3902902 DOI: 10.1093/nar/gkt894] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
How alternative splicing (AS) is regulated in plants has not yet been elucidated. Previously, we have shown that the nuclear cap-binding protein complex (AtCBC) is involved in AS in Arabidopsis thaliana. Here we show that both subunits of AtCBC (AtCBP20 and AtCBP80) interact with SERRATE (AtSE), a protein involved in the microRNA biogenesis pathway. Moreover, using a high-resolution reverse transcriptase-polymerase chain reaction AS system we have found that AtSE influences AS in a similar way to the cap-binding complex (CBC), preferentially affecting selection of 5′ splice site of first introns. The AtSE protein acts in cooperation with AtCBC: many changes observed in the mutant lacking the correct SERRATE activity were common to those observed in the cbp mutants. Interestingly, significant changes in AS of some genes were also observed in other mutants of plant microRNA biogenesis pathway, hyl1-2 and dcl1-7, but a majority of them did not correspond to the changes observed in the se-1 mutant. Thus, the role of SERRATE in AS regulation is distinct from that of HYL1 and DCL1, and is similar to the regulation of AS in which CBC is involved.
Collapse
Affiliation(s)
- Katarzyna Dorota Raczynska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland, Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland, Max Planck Institute for Plant Breading Research, 50829, Germany, Biomathematics and Statistics Scotland (BioSS), James Hutton Institute, Dundee DD2 5DA, Scotland, UK, Cell and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, Scotland, UK and Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, Scotland, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Plant microRNAs and development. J Genet Genomics 2013; 40:217-30. [PMID: 23706297 DOI: 10.1016/j.jgg.2013.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 03/15/2013] [Accepted: 04/02/2013] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) are a class of about 20-24 nt small non-coding RNAs that can regulate their target gene expression transcriptionally and posttranscriptionally. There are an increasing number of studies describing the identification of new components and regulatory mechanisms involved in the miRNA biogenesis and effector pathway as well as new functions of miRNAs in plant development. This review mainly focuses on the components involved in this pathway, and the developmental defects associated with the corresponding mutations. Some functions of important miRNAs in plant development, together with the modes of miRNA action, are also discussed in this review to describe the recent advance in this area.
Collapse
|
20
|
Zhan S, Lukens L. Protein-coding cis-natural antisense transcripts have high and broad expression in Arabidopsis. PLANT PHYSIOLOGY 2013; 161:2171-80. [PMID: 23457227 PMCID: PMC3613485 DOI: 10.1104/pp.112.212100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Pairs of genes within eukaryotic genomes are often located on opposite DNA strands such that transcription generates cis-natural sense antisense transcripts (cis-NATs). This orientation of genes has been associated with the biogenesis of splice variants and natural antisense small RNAs. Here, in an analysis of currently available data, we report that within Arabidopsis (Arabidopsis thaliana), protein-coding cis-NATs are also characterized by high abundance, high coexpression, and broad expression. Our results suggest that a permissive chromatin environment may have led to the proximity of these genes. Compared with other genes, cis-NAT-encoding genes have enriched low-nucleosome-density regions, high levels of histone H3 lysine-9 acetylation, and low levels of H3 lysine-27 trimethylation. Promoters associated with broadly expressed genes are preferentially found in the 5' regulatory sequences of cis-NAT-encoding genes. Our results further suggest that natural antisense small RNA production from cis-NATs is limited. Small RNAs sequenced from natural antisense small RNA biogenesis mutants including dcl1, dcl2, dcl3, and rdr6 map to cis-NATs as frequently as small RNAs sequenced from wild-type plants. Future work will investigate if the positive transcriptional regulation of overlapping protein-coding genes contributes to the prevalence of these genes within other eukaryotic genomes.
Collapse
|
21
|
Rogers K, Chen X. microRNA biogenesis and turnover in plants. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2013; 77:183-94. [PMID: 23439913 DOI: 10.1101/sqb.2013.77.014530] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
microRNAs (miRNAs) are short RNAs that regulate gene expression in eukaryotes. The biogenesis and turnover of miRNAs determine their spatiotemporal accumulation within tissues. miRNA biogenesis is a multistep process that entails transcription, processing, nuclear export, and formation of the miRNA-ARGONAUTE complex. Factors that perform each of these steps have been identified. Generation of mature miRNAs from primary transcripts, i.e., miRNA processing, is a key step in miRNA biogenesis. Our understanding of miRNA processing has expanded beyond the enzyme that performs the reactions, as more and more additional factors that impact the efficiency and accuracy of miRNA processing are uncovered. In contrast to miRNA biogenesis, miRNA turnover is an important but poorly understood process that contributes to the steady-state levels of miRNAs. Enzymes responsible for miRNA degradation have only recently been identified. This review describes the processes of miRNA maturation and degradation in plants.
Collapse
Affiliation(s)
- K Rogers
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
22
|
Bucher E, Reinders J, Mirouze M. Epigenetic control of transposon transcription and mobility in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:503-10. [PMID: 22940592 DOI: 10.1016/j.pbi.2012.08.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/16/2012] [Indexed: 05/23/2023]
Abstract
The mobility of genetic elements called transposable elements (TEs) was discovered half a century ago by Barbara McClintock. Although she had recognized them as chromosomal controlling elements, for much of the consequent time TEs were primarily considered as parasites of the host genome. However the recent explosion of discoveries in the fields of genomics and epigenetics have unambiguously shown the importance of TEs in genome function and evolution. Bursts of endogenous TEs have been reported in plants with epigenetic misregulation, revealing the molecular mechanisms underlying their control. We review here the different steps in TE invasion of the host genome involving epigenetic control and environmental stress responses. As TEs propagate in plant genomes and attract epigenetic marks, their neo-insertions can lead to the formation of new, heritable epigenetic variants (epialleles) of genes in their vicinity and impact on host gene regulatory networks. The epigenetic interplay between TE and genes thus plays a crucial role in the TE-host co-evolution.
Collapse
Affiliation(s)
- Etienne Bucher
- Botanical Institute, University of Basel, Hebelstrasse 1, 4056 Basel, Switzerland.
| | | | | |
Collapse
|
23
|
Ren G, Yu B. Post-transcriptional control of miRNA abundance in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2012; 7:1443-6. [PMID: 22960761 PMCID: PMC3548868 DOI: 10.4161/psb.21956] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs (small RNAs) that are 20-24nt in length and predominantly repress gene expression at post-transcriptional levels. They regulate many biological processes including development, metabolism and physiology. Numerous studies have revealed that the steady-state levels of miRNA are under sophisticated control to ensure their proper function. In this review, we summarize recent advances on regulation of miRNA processing and stability in plants.
Collapse
Affiliation(s)
| | - Bin Yu
- Correspondence to: Bin Yu,
| |
Collapse
|
24
|
Wu J, Okada T, Fukushima T, Tsudzuki T, Sugiura M, Yukawa Y. A novel hypoxic stress-responsive long non-coding RNA transcribed by RNA polymerase III in Arabidopsis. RNA Biol 2012; 9:302-13. [PMID: 22336715 DOI: 10.4161/rna.19101] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recently, a large number of non-coding RNAs (ncRNAs) have been found in a wide variety of organisms, but their biological functions are poorly understood, except for several tiny RNAs. To identify novel ncRNAs with essential functions in flowering plants, we focused attention on RNA polymerase III (Pol III) and its transcriptional activity, because most Pol III-transcribed RNAs contribute to key processes relating to cell activities, and have highly conserved promoter elements: upstream sequence elements, a TATA-like sequence, and a poly(T) stretch as a transcription terminator. After in silico prediction from the Arabidopsis genome, 20 novel ncRNAs candidates were obtained. AtR8 RNA (approx. 260 nt) and AtR18 RNA (approx. 160 nt) were identified by efficient in vitro transcription by Pol III in tobacco nuclear extracts. AtR8 RNA was conserved among six additional taxa of Brassicaceae, and the secondary structure of the RNA was also conserved among the orthologs. Abundant accumulation of AtR8 RNA was observed in the plant roots and cytosol of cultured cells. The RNA was not processed into a smaller fragment and no short open reading frame was included. Remarkably, expression of the AtR8 RNA responded negatively to hypoxic stress, and this regulation evidently differed from that of U6 snRNA.
Collapse
Affiliation(s)
- Juan Wu
- Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Rathore KS, Sundaram S, Sunilkumar G, Campbell LM, Puckhaber L, Marcel S, Palle SR, Stipanovic RD, Wedegaertner TC. Ultra-low gossypol cottonseed: generational stability of the seed-specific, RNAi-mediated phenotype and resumption of terpenoid profile following seed germination. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:174-83. [PMID: 21902797 DOI: 10.1111/j.1467-7652.2011.00652.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cottonseed, containing 22.5% protein, remains an under-utilized and under-valued resource because of the presence of toxic gossypol. RNAi-knockdown of δ-cadinene synthase gene(s) was used to engineer plants that produced ultra-low gossypol cottonseed (ULGCS). In the original study, we observed that RNAi plants, a month or older, maintain normal complement of gossypol and related terpenoids in the roots, foliage, floral organs, and young bolls. However, the terpenoid levels and profile of the RNAi lines during the early stages of germination, under normal conditions and in response to pathogen exposure, had not been examined. Results obtained in this study show that during the early stages of seed germination/seedling growth, in both non-transgenic and RNAi lines, the tissues derived directly from bulk of the seed kernel (cotyledon and hypocotyl) synthesize little, if any new terpenoids. However, the growing root tissue and the emerging true leaves of RNAi seedlings showed normal, wild-type terpenoid levels. Biochemical and molecular analyses showed that pathogen-challenged parts of RNAi seedlings are capable of launching a terpenoid-based defence response. Nine different RNAi lines were monitored for five generations. The results show that, unlike the unstable nature of antisense-mediated low seed-gossypol phenotype, the RNAi-mediated ULGCS trait exhibited multi-generational stability.
Collapse
Affiliation(s)
- Keerti S Rathore
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jakubiec A, Yang SW, Chua NH. Arabidopsis DRB4 protein in antiviral defense against Turnip yellow mosaic virus infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:14-25. [PMID: 21883552 PMCID: PMC3240694 DOI: 10.1111/j.1365-313x.2011.04765.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
RNA silencing is an important antiviral mechanism in diverse eukaryotic organisms. In Arabidopsis DICER-LIKE 4 (DCL4) is the primary antiviral Dicer, required for the production of viral small RNAs from positive-strand RNA viruses. Here, we showed that DCL4 and its interacting partner dsRNA-binding protein 4 (DRB4) participate in the antiviral response to Turnip yellow mosaic virus (TYMV), and that both proteins are required for TYMV-derived small RNA production. In addition, our results indicate that DRB4 has a negative effect on viral coat protein accumulation. Upon infection DRB4 expression was induced and DRB4 protein was recruited from the nucleus to the cytoplasm, where replication and translation of viral RNA occur. DRB4 was associated with viral RNA in vivo and directly interacted in vitro with a TYMV RNA translational enhancer, raising the possibility that DRB4 might repress viral RNA translation. In plants the role of RNA silencing in viral RNA degradation is well established, but its potential function in the regulation of viral protein levels has not yet been explored. We observed that severe infection symptoms are not necessarily correlated with enhanced viral RNA levels, but might be caused by elevated accumulation of viral proteins. Our findings suggest that the control of viral protein as well as RNA levels might be important for mounting an efficient antiviral response.
Collapse
Affiliation(s)
- Anna Jakubiec
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Seong Wook Yang
- Department of Plant Biology and Biotechnology, Faculty of Life Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Copenhagen, Denmark
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, NY 10065, USA
- To whom correspondence should be addressed. Corresponding author: Nam-Hai Chua , Fax number: 1-212-327-8327, Phone number: 1-212-327-8126
| |
Collapse
|
27
|
Pélissier T, Clavel M, Chaparro C, Pouch-Pélissier MN, Vaucheret H, Deragon JM. Double-stranded RNA binding proteins DRB2 and DRB4 have an antagonistic impact on polymerase IV-dependent siRNA levels in Arabidopsis. RNA (NEW YORK, N.Y.) 2011; 17:1502-10. [PMID: 21700726 PMCID: PMC3153974 DOI: 10.1261/rna.2680711] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/20/2011] [Indexed: 05/17/2023]
Abstract
Biogenesis of the vast majority of plant siRNAs depends on the activity of the plant-specific RNA polymerase IV (PolIV) enzyme. As part of the RNA-dependent DNA methylation (RdDM) process, PolIV-dependent siRNAs (p4-siRNAs) are loaded onto an ARGONAUTE4-containing complex and guide de novo DNA methyltransferases to target loci. Here we show that the double-stranded RNA binding proteins DRB2 and DRB4 are required for proper accumulation of p4-siRNAs. In flowers, loss of DRB2 results in increased accumulation of p4-siRNAs but not ta-siRNAs, inverted repeat (IR)-derived siRNAs, or miRNA. Loss of DRB2 does not impair uniparental expression of p4-dependent siRNAs in developing endosperm, indicating that p4-siRNA increased accumulation is not the result of the activation of the polIV pathway in the male gametophyte. In contrast to drb2, drb4 mutants exhibit reduced p4-siRNA levels, but the extent of this reduction is variable, according to the nature and size of the p4-siRNAs. Loss of DRB4 also leads to a spectacular increase of p4-independent IR-derived 24-nt siRNAs, suggesting a reallocation of factors from p4-dependent to p4-independent siRNA pathways in drb4. Opposite effects of drb2 and drb4 mutations on the accumulation of p4-siRNAs were also observed in vegetative tissues. Moreover, transgenic plants overexpressing DRB2 mimicked drb4 mutants at the morphological and molecular levels, confirming the antagonistic roles of DRB2 and DRB4.
Collapse
Affiliation(s)
- Thierry Pélissier
- Université de Perpignan Via Domitia, CNRS UMR5096 LGDP, 66860 Perpignan Cedex, France
| | - Marion Clavel
- Université de Perpignan Via Domitia, CNRS UMR5096 LGDP, 66860 Perpignan Cedex, France
| | - Cristian Chaparro
- Université de Perpignan Via Domitia, CNRS UMR5096 LGDP, 66860 Perpignan Cedex, France
| | | | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique, 78026 Versailles Cedex, France
| | - Jean-Marc Deragon
- Université de Perpignan Via Domitia, CNRS UMR5096 LGDP, 66860 Perpignan Cedex, France
- Corresponding author.E-mail
| |
Collapse
|
28
|
Abstract
Short interspersed elements (SINEs) are mobile genetic elements that invade the genomes of many eukaryotes. Since their discovery about 30 years ago, many gaps in our understanding of the biology and function of SINEs have been filled. This review summarizes the past and recent advances in the studies of SINEs. The structure and origin of SINEs as well as the processes involved in their amplification, transcription, RNA processing, reverse transcription, and integration of a SINE copy into the genome are considered. Then we focus on the significance of SINEs for the host genomes. While these genomic parasites can be deleterious to the cell, the long-term being in the genome has made SINEs a valuable source of genetic variation providing regulatory elements for gene expression, alternative splice sites, polyadenylation signals, and even functional RNA genes.
Collapse
Affiliation(s)
- Dmitri A Kramerov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | | |
Collapse
|
29
|
Abstract
The stability and translation efficiency of many messenger RNAs is regulated by microRNAs (miRNAs), which exert their effects through associated Argonaute proteins. In this issue, Zhu, Zhang, and colleagues reveal that plants also exploit miRNA binding by Argonautes as a sequestering mechanism that prevents miRNAs from fulfilling their normal roles.
Collapse
Affiliation(s)
- Pablo A Manavella
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | | | | |
Collapse
|
30
|
Gadzalski M, Sakowicz T. Novel SINEs families in Medicago truncatula and Lotus japonicus: bioinformatic analysis. Gene 2011; 480:21-7. [PMID: 21352903 DOI: 10.1016/j.gene.2011.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/01/2010] [Accepted: 01/31/2011] [Indexed: 02/02/2023]
Abstract
Although short interspersed elements (SINEs) were discovered nearly 30 years ago, the studies of these genomic repeats were mostly limited to animal genomes. Very little is known about SINEs in legumes--one of the most important plant families. Here we report identification, genomic distribution and molecular features of six novel SINE elements in Lotus japonicus (named LJ_SINE-1, -2, -3) and Medicago truncatula (MT_SINE-1, -2, -3), model species of legume. They possess all the structural features commonly found in short interspersed elements including RNA polymerase III promoter, polyA tail and flanking repeats. SINEs described here are present in low to moderate copy numbers from 150 to 3000. Bioinformatic analyses were used to searched public databases, we have shown that three of new SINE elements from M. truncatula seem to be characteristic of Medicago and Trifolium genera. Two SINE families have been found in L. japonicus and one is present in both M. truncatula and L. japonicus. In addition, we are discussing potential activities of the described elements.
Collapse
Affiliation(s)
- Marek Gadzalski
- Department of General Genetics, Plant Molecular Biology and Biotechnology, University of Lodz, Banacha 12/16, Lodz, Poland.
| | | |
Collapse
|
31
|
Global effects of the small RNA biogenesis machinery on the Arabidopsis thaliana transcriptome. Proc Natl Acad Sci U S A 2010; 107:17466-73. [PMID: 20870966 DOI: 10.1073/pnas.1012891107] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Arabidopsis thaliana, four different dicer-like (DCL) proteins have distinct but partially overlapping functions in the biogenesis of microRNAs (miRNAs) and siRNAs from longer, noncoding precursor RNAs. To analyze the impact of different components of the small RNA biogenesis machinery on the transcriptome, we subjected dcl and other mutants impaired in small RNA biogenesis to whole-genome tiling array analysis. We compared both protein-coding genes and noncoding transcripts, including most pri-miRNAs, in two tissues and several stress conditions. Our analysis revealed a surprising number of common targets in dcl1 and dcl2 dcl3 dcl4 triple mutants. Furthermore, our results suggest that the DCL1 is not only involved in miRNA action but also contributes to silencing of a subset of transposons, apparently through an effect on DNA methylation.
Collapse
|
32
|
Song L, Axtell MJ, Fedoroff NV. RNA secondary structural determinants of miRNA precursor processing in Arabidopsis. Curr Biol 2010; 20:37-41. [PMID: 20015653 DOI: 10.1016/j.cub.2009.10.076] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Revised: 10/03/2009] [Accepted: 10/29/2009] [Indexed: 11/30/2022]
Abstract
MicroRNAs (miRNAs) are excised from hairpin structures within primary miRNAs (pri-miRNAs). Most animal pri-miRNAs are processed by two cleavages, the first at a loop-distal site approximately 11 nucleotides (nt) from the end of the hairpin and the second approximately 22 nt beyond the first. To identify RNA structural determinants of miRNA processing in plants, we analyzed the functional consequences of changing the secondary structure of the lower (loop-distal), middle (miRNA:miRNA(*)), and upper (loop-proximal) stems of the hairpin in two different pri-miRNAs. Closing bulges immediately below the loop-distal cleavage sites increased the accumulation of accurately cleaved precursor miRNAs but decreased the abundance of the mature miRNAs. A pri-miRNA variant with an unpaired lower stem was not processed, and variants with a perfectly paired middle or upper stem were processed normally. Bioinformatic analysis of pri-miRNA structures, together with physical mapping of initial cleavage sites and in vitro processing of pri-miRNA, reveals that the first, loop-distal cleavage is often at a distance of approximately 15 nt from an unpaired region. Hence, a common determinant of the rate and location of the initial pri-miRNA cleavage is an imperfectly base-paired duplex of approximately 15 nt between the miRNA:miRNA(*) duplex and either a less structured region of the lower stem or its end.
Collapse
Affiliation(s)
- Liang Song
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
33
|
Identification of novel miRNAs and miRNA dependent developmental shifts of gene expression in Arabidopsis thaliana. PLoS One 2010; 5:e10157. [PMID: 20405016 PMCID: PMC2854152 DOI: 10.1371/journal.pone.0010157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Accepted: 03/01/2010] [Indexed: 02/05/2023] Open
Abstract
microRNAs (miRNAs) are small, endogenous RNAs of 20∼25 nucleotides, processed from stem-loop regions of longer RNA precursors. Plant miRNAs act as negative regulators of target mRNAs predominately by slicing target transcripts, and a number of miRNAs play important roles in development. We analyzed a number of published datasets from Arabidopsis thaliana to characterize novel miRNAs, novel miRNA targets, and miRNA-regulated developmental changes in gene expression. These data include microarray profiling data and small RNA (sRNA) deep sequencing data derived from miRNA biogenesis/transport mutants, microarray profiling data of mRNAs in a developmental series, and computational predictions of conserved genomic stem-loop structures. Our conservative analyses identified five novel mature miRNAs and seven miRNA targets, including one novel target gene. Two complementary miRNAs that target distinct mRNAs were encoded by one gene. We found that genes targeted by known miRNAs, and genes up-regulated or down-regulated in miRNA mutant inflorescences, are highly expressed in the wild type inflorescence. In addition, transcripts upregulated within the mutant inflorescences were abundant in wild type leaves and shoot meristems and low in pollen and seed. Downregulated transcripts were abundant in wild type pollen and seed and low in shoot meristems, roots and leaves. Thus, disrupting miRNA function causes the inflorescence transcriptome to resemble the leaf and meristem and to differ from pollen and seed. Applications of our computational approach to other species and the use of more liberal criteria than reported here will further expand the number of identified miRNAs and miRNA targets. Our findings suggest that miRNAs have a global role in promoting vegetative to reproductive transitions in A. thaliana.
Collapse
|
34
|
Kulshina N, Baird NJ, Ferré-D'Amaré AR. Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch. Nat Struct Mol Biol 2009; 16:1212-7. [PMID: 19898478 PMCID: PMC2925111 DOI: 10.1038/nsmb.1701] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/15/2009] [Indexed: 11/18/2022]
Abstract
The cyclic diguanylate (bis-(3'-5')-cyclic dimeric guanosine monophosphate, c-di-GMP) riboswitch is the first known example of a gene-regulatory RNA that binds a second messenger. c-di-GMP is widely used by bacteria to regulate processes ranging from biofilm formation to the expression of virulence genes. The cocrystal structure of the c-di-GMP responsive GEMM riboswitch upstream of the tfoX gene of Vibrio cholerae reveals the second messenger binding the RNA at a three-helix junction. The two-fold symmetric second messenger is recognized asymmetrically by the monomeric riboswitch using canonical and noncanonical base-pairing as well as intercalation. These interactions explain how the RNA discriminates against cyclic diadenylate (c-di-AMP), a putative bacterial second messenger. Small-angle X-ray scattering and biochemical analyses indicate that the RNA undergoes compaction and large-scale structural rearrangement in response to ligand binding, consistent with organization of the core three-helix junction of the riboswitch concomitant with binding of c-di-GMP.
Collapse
Affiliation(s)
- Nadia Kulshina
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle WA 98109-1024, USA
| | - Nathan J. Baird
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle WA 98109-1024, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle WA 98109-1024, USA
| | - Adrian R. Ferré-D'Amaré
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle WA 98109-1024, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle WA 98109-1024, USA
| |
Collapse
|
35
|
Zou J, Gong H, Yang TJ, Meng J. Retrotransposons - a major driving force in plant genome evolution and a useful tool for genome analysis. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s12892-009-0070-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Abstract
MicroRNAs (miRNAs) are key posttranscriptional regulators of eukaryotic gene expression. Plants use highly conserved as well as more recently evolved, species-specific miRNAs to control a vast array of biological processes. This Review discusses current advances in our understanding of the origin, biogenesis, and mode of action of plant miRNAs and draws comparisons with their metazoan counterparts.
Collapse
Affiliation(s)
- Olivier Voinnet
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357-Université de Strasbourg, 67084 Strasbourg, France.
| |
Collapse
|
37
|
Mallory AC, Elmayan T, Vaucheret H. MicroRNA maturation and action--the expanding roles of ARGONAUTEs. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:560-6. [PMID: 18691933 DOI: 10.1016/j.pbi.2008.06.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 06/02/2008] [Accepted: 06/17/2008] [Indexed: 05/19/2023]
Abstract
MicroRNAs are endogenously produced 21-nt riboregulators that associate with ARGONAUTE (AGO) proteins to direct mRNA cleavage or repress translation of complementary RNAs. In addition to protein-coding gene repression, miRNA-directed regulation of non-protein-coding transcripts can incite production of trans-acting siRNA (tasiRNA) populations that themselves direct mRNA repression. Arabidopsis encodes 10 AGO proteins among which, AGO1, AGO7, and AGO10 have been implicated in miRNA-guided gene repression in vivo. Recent work has shown that AGO proteins discriminate their associated small RNA populations on the basis of size and 5'-terminal nucleotide identity, extending the roles of AGO proteins beyond small RNA action. Our expanding appreciation of miRNA-directed regulation during plant development and stress adaptations has placed miRNAs at the forefront of plant biology.
Collapse
Affiliation(s)
- Allison C Mallory
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, INRA, 78026 Versailles Cedex, France.
| | | | | |
Collapse
|