1
|
Rad SG, Orang FN, Shadbad MA. MicroRNA networks in prolactinoma tumorigenesis: a scoping review. Cancer Cell Int 2024; 24:418. [PMID: 39702128 PMCID: PMC11660578 DOI: 10.1186/s12935-024-03529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/11/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Prolactinoma is the leading type of pituitary adenoma. Aside from the mass-like effect of prolactinoma, its hormonal effect is the main pathological cause of endocrine dysregulation and infertility. The dopamine agonist administration and surgical resection are the current mainstream anti-neoplastic treatments for affected patients; however, tumor fibrosis, tumor invasion, dopamine agonist resistance, and gain prolactinomas are clinical challenges for treating affected patients. Therefore, there is a need to develop novel treatments for these patients. Although growing evidence has highlighted the significance of dysregulated microRNA (miRNA) expression in various malignancies, no study has systematically investigated the significance of miRNA networks and their therapeutic potential in prolactinoma. For this aim, the current scoping review was performed according to the systematic reviews and meta-analyses extension for scoping reviews (PRISMA-ScR) guideline. MAIN BODY The systematic study on PubMed, Web of Science, Scopus, and Embase databases has shown that miR-200c, miR-217, miR-93a, miR-93, miR-1299, and miR-9 are the oncogenic miRNAs and miR-137, miR-145-5p, miR-197-3p, miR-29a-3p, miR-489, miR-199a-5p, miR-124, miR-212, miR-129-5p, miR-130a-3p, miR-326, miR-432, miR-548c-3p, miR-570, miR-15, miR-16, miR-26a, miR-196a2, and let-7a are tumor-suppressive miRNAs in prolactinoma tumorigenesis. CONCLUSION In summary, inhibiting the oncogenic miRNAs and ectopic expression of tumor-suppressive miRNAs can decrease prolactin secretion, reduce tumor invasion and migration, enhance dopamine agonist efficacy, and inhibit prolactinoma development. These findings can serve as a blueprint for future translational studies investigating miR-based therapeutics for prolactinoma.
Collapse
Affiliation(s)
- Sevil Ghaffarzadeh Rad
- Research Center for Evidence-based Medicine, Iranian EBM Centre: A JBI Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahdi Abdoli Shadbad
- Research Center for Evidence-based Medicine, Iranian EBM Centre: A JBI Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Adel E, Nicolas M. Potential Regulation of the Long Non-Coding RNA Metastasis-Associated Lung Adenocarcinoma Transcript1 by Estrogen in Parkinson's Disease. Life (Basel) 2024; 14:1662. [PMID: 39768369 PMCID: PMC11727754 DOI: 10.3390/life14121662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 01/16/2025] Open
Abstract
Parkinson's disease (PD) is the second-leading cause of death among neurodegenerative disease after Alzheimer's disease (AD), affecting around 2% of the population. It is expected that the incidence of PD will exceed 12 million by 2040. Meanwhile, there is a recognized difference in the phenotypical expression of the disease and response to treatment between men and women. Men have twice the incidence of PD compared to women, who have a late onset and worse prognosis that is usually associated with menopause. In addition, the incidence of PD in women is associated with the cumulative estrogen levels in their bodies. These differences are suggested to be due to the protective effect of estrogen on the brain, which cannot be given in clinical practice to improve the symptoms of the disease because of its peripheral side effects, causing cancer in both males and females in addition to the feminizing effect it has on males. As PD pathophysiology involves alteration in the expression levels of multiple LncRNAs, including metastatic-associated lung adenocarcinoma transcript 1 (MALAT1), and as estrogen has been illustrated to control the expression of MALAT1 in multiple conditions, it is worth investigating the estrogen-MALAT1 interaction in Parkinson's disease to mimic its protective effect on the brain while avoiding its peripheral side effects. The following literature review suggests the potential regulation of MALAT1 by estrogen in PD, which would enhance our understanding of the pathophysiology of the disease, improving the development of more tailored and effective treatments.
Collapse
Affiliation(s)
- Eman Adel
- Department of Biotechnology, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt;
| | - Maya Nicolas
- Institute of Global Health and Human Ecology, School of Science and Engineering, American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| |
Collapse
|
3
|
Balhara R, Verma D, Kaur R, Singh K. MYB transcription factors, their regulation and interactions with non-coding RNAs during drought stress in Brassica juncea. BMC PLANT BIOLOGY 2024; 24:999. [PMID: 39448923 PMCID: PMC11515528 DOI: 10.1186/s12870-024-05736-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Brassica juncea (L.) Czern is an important oilseed crop affected by various abiotic stresses like drought, heat, and salt. These stresses have detrimental effects on the crop's overall growth, development and yield. Various Transcription factors (TFs) are involved in regulation of plant stress response by modulating expression of stress-responsive genes. The myeloblastosis (MYB) TFs is one of the largest families of TFs associated with various developmental and biological processes such as plant growth, secondary metabolism, stress response etc. However, MYB TFs and their regulation by non-coding RNAs (ncRNAs) in response to stress have not been studied in B. juncea. Thus, we performed a detailed study on the MYB TF family and their interactions with miRNAs and Long non coding RNAs. RESULTS Computational investigation of genome and proteome data presented a comprehensive picture of the MYB genes and their protein architecture, including intron-exon organisation, conserved motif analysis, R2R3 MYB DNA-binding domains analysis, sub-cellular localization, protein-protein interaction and chromosomal locations. Phylogenetically, BjuMYBs were further classified into different subclades on the basis of topology and classification in Arabidopsis. A total of 751 MYBs were identified in B. juncea corresponding to 297 1R-BjuMYBs, 440 R2R3-BjuMYBs, 12 3R-BjuMYBs, and 2 4R-BjuMYBs types. We validated the transcriptional profiles of nine selected BjuMYBs under drought stress through RT-qPCR. Promoter analysis indicated the presence of drought-responsive cis-regulatory components. Additionally, the miRNA-MYB TF interactions was also studied, and most of the microRNAs (miRNAs) that target BjuMYBs were involved in abiotic stress response and developmental processes. Regulatory network analysis and expression patterns of lncRNA-miRNA-MYB indicated that selected long non-coding RNAs (lncRNAs) acted as strong endogenous target mimics (eTMs) of the miRNAs regulated expression of BjuMYBs under drought stress. CONCLUSIONS The present study has established preliminary groundwork of MYB TFs and their interaction with ncRNAs in B. juncea and it will help in developing drought- tolerant Brassica crops.
Collapse
Affiliation(s)
- Rinku Balhara
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Deepika Verma
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Ravneet Kaur
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Kashmir Singh
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India.
| |
Collapse
|
4
|
Villalba-Bermell P, Marquez-Molins J, Gomez G. A multispecies study reveals the diversity and potential regulatory role of long noncoding RNAs in cucurbits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:799-817. [PMID: 39254680 DOI: 10.1111/tpj.17013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/31/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024]
Abstract
Plant long noncoding RNAs (lncRNAs) exhibit features such as tissue-specific expression, spatiotemporal regulation, and stress responsiveness. Although diverse studies support the regulatory role of lncRNAs in model plants, our knowledge about lncRNAs in crops is limited. We employ a custom pipeline on a dataset of over 1000 RNA-seq samples across nine representative species of the family Cucurbitaceae to predict 91 209 nonredundant lncRNAs. The lncRNAs were characterized according to three confidence levels and classified by their genomic context into intergenic, natural antisense, intronic, and sense-overlapping. Compared with protein-coding genes, lncRNAs were, on average, expressed at low levels and displayed significantly higher specificity when considering tissue, developmental stages, and stress responsiveness. The evolutionary analysis indicates higher positional conservation than sequence conservation, probably linked to the conserved modular motifs within syntenic lncRNAs. Moreover, a positive correlation between the expression of intergenic/natural antisense lncRNAs and their closest/parental gene was observed. For those intergenic, the correlation decreases with the distance to the neighboring gene, supporting that their potential cis-regulatory effect is within a short-range. Furthermore, the analysis of developmental studies showed that a conserved NAT-lncRNA family is differentially expressed in a coordinated way with their cognate sense protein-coding genes. These genes code for proteins associated with phloem development, thus providing insights about the potential involvement of some of the identified lncRNAs in a developmental process. We expect that this extensive inventory will constitute a valuable resource for further research lines focused on elucidating the regulatory mechanisms mediated by lncRNAs in cucurbits.
Collapse
Affiliation(s)
- Pascual Villalba-Bermell
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, 46980, Paterna, Spain
| | - Joan Marquez-Molins
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, 46980, Paterna, Spain
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, 46980, Paterna, Spain
| |
Collapse
|
5
|
Sebutsoe XM, Tsotetsi NJN, Jantjies ZE, Raphela-Choma PP, Choene MS, Motadi LR. Therapeutic Strategies in Advanced Cervical Cancer Detection, Prevention and Treatment. Onco Targets Ther 2024; 17:785-801. [PMID: 39345275 PMCID: PMC11439348 DOI: 10.2147/ott.s475132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024] Open
Abstract
Cervical cancer is ranked the fourth most common cause of cancer related deaths amongst women. The situation is particularly dire in low to lower middle-income countries. It continues to affect these countries due to poor vaccine coverage and screening. Cervical cancer is mostly detected in the advanced stages leading to poor outcomes. This review focuses on the progress made to date to improve early detection and targeted therapy using both circulating RNA. Vaccine has played a major role in cervical cancer control in vaccinated young woman in mainly developed countries yet in low-income countries with challenges of 3 dose vaccination affordability, cervical cancer continues to be the second most deadly amongst women. In this review, we show the progress made in reducing cervical cancer using vaccination that in combination with other treatments that might improve survival in cervical cancer. We further show with both miRNA and siRNA that targeted therapy and specific markers might be ideal for early detection of cervical cancer in low-income countries. These markers are either upregulated or down regulated in cancer providing clue to the stage of the cancer.
Collapse
Affiliation(s)
- Xolisiwe M Sebutsoe
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | | | - Zodwa Edith Jantjies
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Portia Pheladi Raphela-Choma
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Mpho S Choene
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Lesetja R Motadi
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| |
Collapse
|
6
|
Pfeiffer P, Nilsson J, Gallud A, Baladi T, Le HN, Bood M, Lemurell M, Dahlén A, Grøtli M, Esbjörner E, Wilhelmsson L. Metabolic RNA labeling in non-engineered cells following spontaneous uptake of fluorescent nucleoside phosphate analogues. Nucleic Acids Res 2024; 52:10102-10118. [PMID: 39162218 PMCID: PMC11417403 DOI: 10.1093/nar/gkae722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
RNA and its building blocks play central roles in biology and have become increasingly important as therapeutic agents and targets. Hence, probing and understanding their dynamics in cells is important. Fluorescence microscopy offers live-cell spatiotemporal monitoring but requires labels. We present two fluorescent adenine analogue nucleoside phosphates which show spontaneous uptake and accumulation in cultured human cells, likely via nucleoside transporters, and show their potential utilization as cellular RNA labels. Upon uptake, one nucleotide analogue, 2CNqAXP, localizes to the cytosol and the nucleus. We show that it could then be incorporated into de novo synthesized cellular RNA, i.e. it was possible to achieve metabolic fluorescence RNA labeling without using genetic engineering to enhance incorporation, uptake-promoting strategies, or post-labeling through bio-orthogonal chemistries. By contrast, another nucleotide analogue, pAXP, only accumulated outside of the nucleus and was rapidly excreted. Consequently, this analogue did not incorporate into RNA. This difference in subcellular accumulation and retention results from a minor change in nucleobase chemical structure. This demonstrates the importance of careful design of nucleoside-based drugs, e.g. antivirals to direct their subcellular localization, and shows the potential of fine-tuning fluorescent base analogue structures to enhance the understanding of the function of such drugs.
Collapse
Affiliation(s)
- Pauline Pfeiffer
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
| | - Jesper R Nilsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
- LanteRNA (Stealth Labels Biotech AB), c/o Chalmers Ventures AB, Vera Sandbergs allé 8, SE-41296 Gothenburg, Sweden
| | - Audrey Gallud
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, SE-43181 Gothenburg, Sweden
| | - Tom Baladi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Hoang-Ngoan Le
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Mattias Bood
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, P.O. Box 462, SE-40530 Gothenburg, Sweden
| | - Malin Lemurell
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders Dahlén
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, P.O. Box 462, SE-40530 Gothenburg, Sweden
| | - Elin K Esbjörner
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
| |
Collapse
|
7
|
Tian D, Pei Q, Jiang H, Guo J, Ma X, Han B, Li X, Zhao K. Comprehensive analysis of the expression profiles of mRNA, lncRNA, circRNA, and miRNA in primary hair follicles of coarse sheep fetal skin. BMC Genomics 2024; 25:574. [PMID: 38849762 PMCID: PMC11161951 DOI: 10.1186/s12864-024-10427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/17/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The Qinghai Tibetan sheep, a local breed renowned for its long hair, has experienced significant deterioration in wool characteristics due to the absence of systematic breeding practices. Therefore, it is imperative to investigate the molecular mechanisms underlying follicle development in order to genetically enhance wool-related traits and safeguard the sustainable utilization of valuable germplasm resources. However, our understanding of the regulatory roles played by coding and non-coding RNAs in hair follicle development remains largely elusive. RESULTS A total of 20,874 mRNAs, 25,831 circRNAs, 4087 lncRNAs, and 794 miRNAs were annotated. Among them, we identified 58 DE lncRNAs, 325 DE circRNAs, 924 DE mRNAs, and 228 DE miRNAs during the development of medullary primary hair follicle development. GO and KEGG functional enrichment analyses revealed that the JAK-STAT, TGF-β, Hedgehog, PPAR, cGMP-PKG signaling pathway play crucial roles in regulating fibroblast and epithelial development during skin and hair follicle induction. Furthermore, the interactive network analysis additionally identified several crucial mRNA, circRNA, and lncRNA molecules associated with the process of primary hair follicle development. Ultimately, by investigating DEmir's role in the ceRNA regulatory network mechanism, we identified 113 circRNA-miRNA pairs and 14 miRNA-mRNA pairs, including IGF2BP1-miR-23-x-novel-circ-01998-MSTRG.7111.3, DPT-miR-370-y-novel-circ-005802-MSTRG.14857.1 and TSPEAR-oar-miR-370-3p-novel-circ-005802- MSTRG.10527.1. CONCLUSIONS Our study offers novel insights into the distinct expression patterns of various transcription types during hair follicle morphogenesis, establishing a solid foundation for unraveling the molecular mechanisms that drive hair development and providing a scientific basis for selectively breeding desirable wool-related traits in this specific breed.
Collapse
Affiliation(s)
- Dehong Tian
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Quanbang Pei
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha, 812300, Qinghai, China
| | - Hanjing Jiang
- Qinghai Livestock and Poultry Genetic Resources Protection and Utilization Center, Xining, 810000, Qinghai, China
| | - Jijun Guo
- General Station of Animal Husbandry of Qinghai Province, Xining , 810000, Qinghai, China
| | - Xianghua Ma
- Hainan Tibetan Autonomous Prefecture science and technology extension service center, Hainan Tibetan Autonomous Prefecture, Qinghai, 813000, China
| | - Buying Han
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Li
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Zhao
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, Qinghai, China.
| |
Collapse
|
8
|
Nejadi Orang F, Abdoli Shadbad M. Competing endogenous RNA networks and ferroptosis in cancer: novel therapeutic targets. Cell Death Dis 2024; 15:357. [PMID: 38778030 PMCID: PMC11111666 DOI: 10.1038/s41419-024-06732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
As a newly identified regulated cell death, ferroptosis is a metabolically driven process that relies on iron and is associated with polyunsaturated fatty acyl peroxidation, elevated levels of reactive oxygen species (ROS), and mitochondrial damage. This distinct regulated cell death is dysregulated in various cancers; activating ferroptosis in malignant cells increases cancer immunotherapy and chemoradiotherapy responses across different malignancies. Over the last decade, accumulating research has provided evidence of cross-talk between non-coding RNAs (ncRNAs) and competing endogenous RNA (ceRNA) networks and highlighted their significance in developing and progressing malignancies. Aside from pharmaceutical agents to regulate ferroptosis, recent studies have shed light on the potential of restoring dysregulated ferroptosis-related ceRNA networks in cancer treatment. The present study provides a comprehensive and up-to-date review of the ferroptosis significance, ferroptosis pathways, the role of ferroptosis in cancer immunotherapy and chemoradiotherapy, ceRNA biogenesis, and ferroptosis-regulating ceRNA networks in different cancers. The provided insights can offer the authorship with state-of-the-art findings and future perspectives regarding the ferroptosis and ferroptosis-related ceRNA networks and their implication in the treatment and determining the prognosis of affected patients.
Collapse
Affiliation(s)
| | - Mahdi Abdoli Shadbad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Rey F, Esposito L, Maghraby E, Mauri A, Berardo C, Bonaventura E, Tonduti D, Carelli S, Cereda C. Role of epigenetics and alterations in RNA metabolism in leukodystrophies. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1854. [PMID: 38831585 DOI: 10.1002/wrna.1854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 06/05/2024]
Abstract
Leukodystrophies are a class of rare heterogeneous disorders which affect the white matter of the brain, ultimately leading to a disruption in brain development and a damaging effect on cognitive, motor and social-communicative development. These disorders present a great clinical heterogeneity, along with a phenotypic overlap and this could be partially due to contributions from environmental stimuli. It is in this context that there is a great need to investigate what other factors may contribute to both disease insurgence and phenotypical heterogeneity, and novel evidence are raising the attention toward the study of epigenetics and transcription mechanisms that can influence the disease phenotype beyond genetics. Modulation in the epigenetics machinery including histone modifications, DNA methylation and non-coding RNAs dysregulation, could be crucial players in the development of these disorders, and moreover an aberrant RNA maturation process has been linked to leukodystrophies. Here, we provide an overview of these mechanisms hoping to supply a closer step toward the analysis of leukodystrophies not only as genetically determined but also with an added level of complexity where epigenetic dysregulation is of key relevance. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNA RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Federica Rey
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Sciences, University of Milano, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Letizia Esposito
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Sciences, University of Milano, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Erika Maghraby
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
- Department of Biology and Biotechnology "L. Spallanzani" (DBB), University of Pavia, Pavia, Italy
| | - Alessia Mauri
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Sciences, University of Milano, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Clarissa Berardo
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Sciences, University of Milano, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Eleonora Bonaventura
- Unit of Pediatric Neurology, COALA Center for Diagnosis and Treatment of Leukodystrophies, V. Buzzi Children's Hospital, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Davide Tonduti
- Unit of Pediatric Neurology, COALA Center for Diagnosis and Treatment of Leukodystrophies, V. Buzzi Children's Hospital, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Stephana Carelli
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Sciences, University of Milano, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | - Cristina Cereda
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| |
Collapse
|
10
|
Kunysz M, Cieśla M, Darmochwał-Kolarz D. Evaluation of miRNA Expression in Patients with Gestational Diabetes Mellitus: Investigating Diagnostic Potential and Clinical Implications. Diabetes Metab Syndr Obes 2024; 17:881-891. [PMID: 38414865 PMCID: PMC10898488 DOI: 10.2147/dmso.s443755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Purpose Gestational diabetes mellitus (GDM) is common pregnancy complication (8%), characterized by hyperglycemia resulting from pathological homeostatic mechanisms. There's a concerning trend of increasing GDM prevalence. New markers, particularly epigenetic ones, are sought for early detection and enhanced care. miRNA are small non-coding RNA molecules. The main goal was to investigate the potential role of miRNA (miR-16-5p, miR-222-3p, miR-21-5p) in GDM and their association with clinical features. Patients and Methods The study included 72 pregnant patients, with 42 having GDM and 30 in the control group. miRNA expression was measured using ELISA. Results There were no significant differences in miR-222-3p expression between GDM patients and the control group. The GDM group exhibited a positive correlation between miR-16-5p expression and miR-21-5p expression as well as between miR-16-5p expression and insulin resistance. In the GDM group, a positive correlation was observed between miR-21-5p expression and fasting glucose levels. Conclusion Results do not confirm the role of miR-222-3p in GDM pathogenesis or as a diagnostic marker. Additionally, a role for miR-16-5p in GDM pathogenesis was observed. Furthermore, a potential role for miR-21-5p in monitoring GDM treatment is indicated.
Collapse
Affiliation(s)
- Mateusz Kunysz
- Department of Obstetrics & Gynecology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, Rzeszow, 35-959, Poland
| | - Marek Cieśla
- College of Medical Sciences, University of Rzeszow, Rzeszow, 35-959, Poland
| | - Dorota Darmochwał-Kolarz
- Department of Obstetrics & Gynecology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, Rzeszow, 35-959, Poland
| |
Collapse
|
11
|
Dai Y, Gao X, Zhang S, Li F, Zhang H, Li G, Sun R, Zhang S, Hou X. Exploring the Regulatory Dynamics of BrFLC-Associated lncRNA in Modulating the Flowering Response of Chinese Cabbage. Int J Mol Sci 2024; 25:1924. [PMID: 38339202 PMCID: PMC10856242 DOI: 10.3390/ijms25031924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Vernalization plays a crucial role in the flowering and yield of Chinese cabbage, a process intricately influenced by long non-coding RNAs (lncRNAs). Our research focused on lncFLC1, lncFLC2a, and lncFLC2b, which emerged as key players in this process. These lncRNAs exhibited an inverse expression pattern to the flowering repressor genes FLOWERING LOCUS C 1 (BrFLC1) and FLOWERING LOCUS C 2 (BrFLC2) during vernalization, suggesting a complex regulatory mechanism. Notably, their expression in the shoot apex and leaves was confirmed through in fluorescent in situ hybridization (FISH). Furthermore, when these lncRNAs were overexpressed in Arabidopsis, a noticeable acceleration in flowering was observed, unveiling functional similarities to Arabidopsis's COLD ASSISTED INTRONIC NONCODING RNA (COOLAIR). This resemblance suggests a potentially conserved regulatory mechanism across species. This study not only enhances our understanding of lncRNAs in flowering regulation, but also opens up new possibilities for their application in agricultural practices.
Collapse
Affiliation(s)
- Yun Dai
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China;
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (S.Z.); (F.L.); (H.Z.); (G.L.); (R.S.)
| | - Xinyu Gao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (S.Z.); (F.L.); (H.Z.); (G.L.); (R.S.)
| | - Shifan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (S.Z.); (F.L.); (H.Z.); (G.L.); (R.S.)
| | - Fei Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (S.Z.); (F.L.); (H.Z.); (G.L.); (R.S.)
| | - Hui Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (S.Z.); (F.L.); (H.Z.); (G.L.); (R.S.)
| | - Guoliang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (S.Z.); (F.L.); (H.Z.); (G.L.); (R.S.)
| | - Rifei Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (S.Z.); (F.L.); (H.Z.); (G.L.); (R.S.)
| | - Shujiang Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.G.); (S.Z.); (F.L.); (H.Z.); (G.L.); (R.S.)
| | - Xilin Hou
- National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
12
|
Tang Z, Li X, Zheng Y, Liu J, Liu C, Li X. The role of competing endogenous RNA network in the development of hepatocellular carcinoma: potential therapeutic targets. Front Cell Dev Biol 2024; 12:1341999. [PMID: 38357004 PMCID: PMC10864455 DOI: 10.3389/fcell.2024.1341999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
The current situation of hepatocellular carcinoma (HCC) management is challenging due to its high incidence, mortality, recurrence and metastasis. Recent advances in gene genetic and expression regulation have unveiled the significant role of non-coding RNA (ncRNA) in various cancers. This led to the formulation of the competing endogenous RNA (ceRNA) hypothesis, which posits that both coding RNA and ncRNA, containing miRNA response elements (MRE), can share the same miRNA sequence. This results in a competitive network between ncRNAs, such as lncRNA and mRNA, allowing them to regulate each other. Extensive research has highlighted the crucial role of the ceRNA network in HCC development, impacting various cellular processes including proliferation, metastasis, cell death, angiogenesis, tumor microenvironment, organismal immunity, and chemotherapy resistance. Additionally, the ceRNA network, mediated by lncRNA or circRNA, offers potential in early diagnosis and prevention of HCC. Consequently, ceRNAs are emerging as therapeutic targets for HCC. The complexity of these gene networks aligns with the multi-target approach of traditional Chinese medicine (TCM), presenting a novel perspective for TCM in combating HCC. Research is beginning to show that TCM compounds and prescriptions can affect HCC progression through the ceRNA network, inhibiting proliferation and metastasis, and inducing apoptosis. Currently, the lncRNAs TUG1, NEAT1, and CCAT1, along with their associated ceRNA networks, are among the most promising ncRNAs for HCC research. However, this field is still in its infancy, necessitating advanced technology and extensive basic research to fully understand the ceRNA network mechanisms of TCM in HCC treatment.
Collapse
Affiliation(s)
- Ziwei Tang
- The Ninth People’s Hospital of Chongqing, Chongqing, China
| | - Xue Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanfeng Zheng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Jin Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Liu
- Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Xia Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Srivastava M, Dukeshire MR, Mir Q, Omoru OB, Manzourolajdad A, Janga SC. Experimental and computational methods for studying the dynamics of RNA-RNA interactions in SARS-COV2 genomes. Brief Funct Genomics 2024; 23:46-54. [PMID: 36752040 PMCID: PMC10799312 DOI: 10.1093/bfgp/elac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/24/2022] [Accepted: 11/11/2022] [Indexed: 02/09/2023] Open
Abstract
Long-range ribonucleic acid (RNA)-RNA interactions (RRI) are prevalent in positive-strand RNA viruses, including Beta-coronaviruses, and these take part in regulatory roles, including the regulation of sub-genomic RNA production rates. Crosslinking of interacting RNAs and short read-based deep sequencing of resulting RNA-RNA hybrids have shown that these long-range structures exist in severe acute respiratory syndrome coronavirus (SARS-CoV)-2 on both genomic and sub-genomic levels and in dynamic topologies. Furthermore, co-evolution of coronaviruses with their hosts is navigated by genetic variations made possible by its large genome, high recombination frequency and a high mutation rate. SARS-CoV-2's mutations are known to occur spontaneously during replication, and thousands of aggregate mutations have been reported since the emergence of the virus. Although many long-range RRIs have been experimentally identified using high-throughput methods for the wild-type SARS-CoV-2 strain, evolutionary trajectory of these RRIs across variants, impact of mutations on RRIs and interaction of SARS-CoV-2 RNAs with the host have been largely open questions in the field. In this review, we summarize recent computational tools and experimental methods that have been enabling the mapping of RRIs in viral genomes, with a specific focus on SARS-CoV-2. We also present available informatics resources to navigate the RRI maps and shed light on the impact of mutations on the RRI space in viral genomes. Investigating the evolution of long-range RNA interactions and that of virus-host interactions can contribute to the understanding of new and emerging variants as well as aid in developing improved RNA therapeutics critical for combating future outbreaks.
Collapse
Affiliation(s)
- Mansi Srivastava
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, 535 West Michigan Street, Indianapolis, Indiana 46202, USA
- Department of Biology, Indiana University, 1001 East 3 St, Bloomington, Indiana 47405, USA
| | - Matthew R Dukeshire
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, 535 West Michigan Street, Indianapolis, Indiana 46202, USA
| | - Quoseena Mir
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, 535 West Michigan Street, Indianapolis, Indiana 46202, USA
| | - Okiemute Beatrice Omoru
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, 535 West Michigan Street, Indianapolis, Indiana 46202, USA
| | - Amirhossein Manzourolajdad
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, 535 West Michigan Street, Indianapolis, Indiana 46202, USA
- Department of Computer Science, Colgate University, Hamilton, NY, USA
| | - Sarath Chandra Janga
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, 535 West Michigan Street, Indianapolis, Indiana 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Medical Research and Library Building, 975 West Walnut Street, Indianapolis, Indiana 46202, USA
- Centre for Computational Biology and Bioinformatics, Indiana University School of Medicine, 5021 Health Information and Translational Sciences (HITS), 410 West 10th Street, Indianapolis, Indiana 46202, USA
| |
Collapse
|
14
|
Fattahi M, Alamdari-Palangi V, Rahimi Jaberi K, Ehtiati S, Ojaghi S, Rahimi-Jaberi A, Samavarchi Tehrani S, Dang P, Movahedpour A, Hossein Khatami S. Exosomal long non-coding RNAs in glioblastoma. Clin Chim Acta 2024; 553:117705. [PMID: 38086498 DOI: 10.1016/j.cca.2023.117705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Glioblastoma multiforme (GBM) is the most prevalent primary tumor found in the central nervous system, accounting for 70% of all adult brain tumors. The median overall survival rate is one year post-diagnosis with treatment, and only four months without treatment. Current GBM diagnostic methods, such as magnetic resonance imaging (MRI), surgery, and brain biopsies, have limitations. These include difficulty distinguishing between tumor recurrence and post-surgical necrotic regions, and operative risks associated with obtaining histological samples through direct surgery or biopsies. Consequently, there is a need for rapid, inexpensive, and minimally invasive techniques for early diagnosis and improved subsequent treatment. Research has shown that tumor-derived exosomes containing various long non-coding RNAs (lncRNAs) play critical regulatory roles in immunomodulation, cancer metastasis, cancer development, and drug resistance in GBM. They regulate genes that enhance cancer growth and progression and alter the expression of several key signaling pathways. Due to the specificity and sensitivity of exosomal lncRNAs, they have the potential to be used as biomarkers for early diagnosis and prognosis, as well as to monitor a patient's response to chemotherapy for GBM. In this review, we discuss the role of exosomal lncRNAs in the pathogenesis of GBM and their potential clinical applications for early diagnosis.
Collapse
Affiliation(s)
- Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam
| | - Vahab Alamdari-Palangi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khojaste Rahimi Jaberi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Ehtiati
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Ojaghi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Rahimi-Jaberi
- Department of Neurology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sadra Samavarchi Tehrani
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Science, Tehran, Iran
| | - Phuyen Dang
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam
| | | | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Shin YJ, Kwon KS, Suh Y, Lee KP. The role of non-coding RNAs in muscle aging: regulatory mechanisms and therapeutic potential. Front Mol Biosci 2024; 10:1308274. [PMID: 38264571 PMCID: PMC10803457 DOI: 10.3389/fmolb.2023.1308274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Muscle aging is a complex physiological process that leads to the progressive decline in muscle mass and function, contributing to debilitating conditions in the elderly such as sarcopenia. In recent years, non-coding RNAs (ncRNAs) have been increasingly recognized as major regulators of muscle aging and related cellular processes. Here, we comprehensively review the emerging role of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in the regulation of muscle aging. We also discuss how targeting these ncRNAs can be explored for the development of novel interventions to combat age-related muscle decline. The insights provided in this review offer a promising avenue for future research and therapeutic strategies aimed at improving muscle health during aging.
Collapse
Affiliation(s)
- Yeo Jin Shin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ki-Sun Kwon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioscience, KRIBB School, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
- Aventi Inc., Daejeon, Republic of Korea
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, United States
- Department of Genetics and Development, Columbia University, New York, NY, United States
| | - Kwang-Pyo Lee
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioscience, KRIBB School, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
16
|
Bhattacharya S, Mahato RK, Singh S, Bhatti GK, Mastana SS, Bhatti JS. Advances and challenges in thyroid cancer: The interplay of genetic modulators, targeted therapies, and AI-driven approaches. Life Sci 2023; 332:122110. [PMID: 37734434 DOI: 10.1016/j.lfs.2023.122110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Thyroid cancer continues to exhibit a rising incidence globally, predominantly affecting women. Despite stable mortality rates, the unique characteristics of thyroid carcinoma warrant a distinct approach. Differentiated thyroid cancer, comprising most cases, is effectively managed through standard treatments such as thyroidectomy and radioiodine therapy. However, rarer variants, including anaplastic thyroid carcinoma, necessitate specialized interventions, often employing targeted therapies. Although these drugs focus on symptom management, they are not curative. This review delves into the fundamental modulators of thyroid cancers, encompassing genetic, epigenetic, and non-coding RNA factors while exploring their intricate interplay and influence. Epigenetic modifications directly affect the expression of causal genes, while long non-coding RNAs impact the function and expression of micro-RNAs, culminating in tumorigenesis. Additionally, this article provides a concise overview of the advantages and disadvantages associated with pharmacological and non-pharmacological therapeutic interventions in thyroid cancer. Furthermore, with technological advancements, integrating modern software and computing into healthcare and medical practices has become increasingly prevalent. Artificial intelligence and machine learning techniques hold the potential to predict treatment outcomes, analyze data, and develop personalized therapeutic approaches catering to patient specificity. In thyroid cancer, cutting-edge machine learning and deep learning technologies analyze factors such as ultrasonography results for tumor textures and biopsy samples from fine needle aspirations, paving the way for a more accurate and effective therapeutic landscape in the near future.
Collapse
Affiliation(s)
- Srinjan Bhattacharya
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Rahul Kumar Mahato
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Satwinder Singh
- Department of Computer Science and Technology, Central University of Punjab, Bathinda 151401, Punjab, India.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Sarabjit Singh Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Leicestershire, Loughborough LE11 3TU, UK.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India.
| |
Collapse
|
17
|
Qiu C, Feng YD, Yang X. MicroRNA-409-5p Inhibits GIST Tumorigenesis and Improves Imatinib Resistance by Targeting KDM4D Expression. Curr Med Sci 2023; 43:935-946. [PMID: 37828372 DOI: 10.1007/s11596-023-2715-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 05/11/2023] [Indexed: 10/14/2023]
Abstract
OBJECTIVE Gastrointestinal stromal tumors (GISTs) can rapidly proliferate through angiogenesis. Previous studies indicated the potential influence of microRNA on the progression of tumor immature angiogenesis. This study aimed to explore the specific mechanism by which microRNA-409-5p (miR-409-5p) contributes to GIST. METHODS To identify genes potentially involved in the development and progression of GIST, the differences of miR-409-5p between tumors and adjacent tissues were first analyzed. Following this analysis, target genes were predicted. To further investigate the function of miRNA in GIST cells, two GIST cell lines (GIST-T1 and GIST882) were transfected with lentiviruses that stably expressed miR-409-5p and scrambled miRNA (negative control). Later, the cells were subjected to Western blotting and ELSA to determine any differences in angiogenesis-related genes. RESULTS In GISTs, there was a decrease in the expression levels of miR-409-5p compared to the adjacent tissues. It was observed that the upregulation of miR-409-5p in GIST cell lines effectively inhibited the proteins hypoxia-inducible transcription factor 1β (HIF1β) and vascular endothelial growth factor A (VEGF-A). Further investigations revealed that miR-409-5p acted as an inhibitor of angiogenesis by binding to the 3'-UTR of Lysine-specific demethylase 4D (KDM4D) mRNA. Moreover, the combination of miR-409-5p with imatinib enhanced its inhibitory effect on angiogenesis. CONCLUSION This study demonstrated that the miRNA-409-5p/KDM4D/HIF1β/VEGF-A signaling pathway could serve as a novel target for the development of therapeutic strategies for the treatment of imatinib-resistance in GIST patients.
Collapse
Affiliation(s)
- Cheng Qiu
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yong-Dong Feng
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi Yang
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
18
|
Banna HA, Das NK, Ojha M, Koirala D. Advances in chaperone-assisted RNA crystallography using synthetic antibodies. BBA ADVANCES 2023; 4:100101. [PMID: 37655005 PMCID: PMC10466895 DOI: 10.1016/j.bbadva.2023.100101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
RNA molecules play essential roles in many biological functions, from gene expression regulation, cellular growth, and metabolism to catalysis. They frequently fold into three-dimensional structures to perform their functions. Therefore, determining RNA structure represents a key step for understanding the structure-function relationships and developing RNA-targeted therapeutics. X-ray crystallography remains a method of choice for determining high-resolution RNA structures, but it has been challenging due to difficulties associated with RNA crystallization and phasing. Several natural and synthetic RNA binding proteins have been used to facilitate RNA crystallography. Having unique properties to help crystal packing and phasing, synthetic antibody fragments, specifically the Fabs, have emerged as promising RNA crystallization chaperones, and so far, over a dozen of RNA structures have been solved using this strategy. Nevertheless, multiple steps in this approach need to be improved, including the recombinant expression of these anti-RNA Fabs, to warrant the full potential of these synthetic Fabs as RNA crystallization chaperones. This review highlights the nuts and bolts and recent advances in the chaperone-assisted RNA crystallography approach, specifically emphasizing the Fab antibody fragments as RNA crystallization chaperones.
Collapse
Affiliation(s)
- Hasan Al Banna
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Naba Krishna Das
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Manju Ojha
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Deepak Koirala
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
19
|
Kuscu C, Mallisetty Y, Naik S, Han Z, Berta CJ, Kuscu C, Kovesdy CP, Sumida K. Circulating microRNA Profiles for Premature Cardiovascular Death in Patients with Kidney Failure with Replacement Therapy. J Clin Med 2023; 12:5010. [PMID: 37568412 PMCID: PMC10419472 DOI: 10.3390/jcm12155010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
INTRODUCTION Patients with kidney failure with replacement therapy (KFRT) suffer from a disproportionately high cardiovascular disease burden. Circulating small non-coding RNAs (c-sncRNAs) have emerged as novel epigenetic regulators and are suggested as novel biomarkers and therapeutic targets for cardiovascular disease; however, little is known about the associations of c-sncRNAs with premature cardiovascular death in KFRT. METHODS In a pilot case-control study of 50 hemodialysis patients who died of cardiovascular events as cases, and 50 matched hemodialysis controls who remained alive during a median follow-up of 2.0 years, we performed c-sncRNAs profiles using next-generation sequencing to identify differentially expressed circulating microRNAs (c-miRNAs) between the plasma of cases and that of controls. mRNA target prediction and pathway enrichment analysis were performed to examine the functional relevance of differentially expressed c-miRNAs to cardiovascular pathophysiology. The association of differentially expressed c-miRNAs with cardiovascular mortality was examined using multivariable conditional logistic regression. RESULTS The patient characteristics were similar between cases and controls, with a mean age of 63 years, 48% male, and 54% African American in both groups. We detected a total of 613 miRNAs in the plasma, among which five miRNAs (i.e., miR-129-1-5p, miR-500b-3p, miR-125b-1-3p, miR-3648-2-5p, and miR-3150b-3p) were identified to be differentially expressed between cases and controls with cut-offs of p < 0.05 and log2 fold-change (log2FC) > 1. When using more stringent cut-offs of p-adjusted < 0.05 and log2FC > 1, only miR-129-1-5p remained significantly differentially expressed, with higher levels of miR-129-1-5p in the cases than in the controls. The pathway enrichment analysis using predicted miR-129-1-5p mRNA targets demonstrated enrichment in adrenergic signaling in cardiomyocytes, arrhythmogenic right ventricular cardiomyopathy, and oxytocin signaling pathways. In parallel, the circulating miR-129-1-5p levels were significantly associated with the risk of cardiovascular death (adjusted OR [95% CI], 1.68 [1.01-2.81] for one increase in log-transformed miR-129-1-5p counts), independent of potential confounders. CONCLUSIONS Circulating miR-129-1-5p may serve as a novel biomarker for premature cardiovascular death in KFRT.
Collapse
Affiliation(s)
- Canan Kuscu
- Transplant Research Institute, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.N.); (C.K.)
| | - Yamini Mallisetty
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Y.M.); (Z.H.); (C.J.B.); (C.P.K.)
| | - Surabhi Naik
- Transplant Research Institute, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.N.); (C.K.)
| | - Zhongji Han
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Y.M.); (Z.H.); (C.J.B.); (C.P.K.)
| | - Caleb J. Berta
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Y.M.); (Z.H.); (C.J.B.); (C.P.K.)
| | - Cem Kuscu
- Transplant Research Institute, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.N.); (C.K.)
| | - Csaba P. Kovesdy
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Y.M.); (Z.H.); (C.J.B.); (C.P.K.)
- Nephrology Section, Memphis VA Medical Center, Memphis, TN 38104, USA
| | - Keiichi Sumida
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Y.M.); (Z.H.); (C.J.B.); (C.P.K.)
| |
Collapse
|
20
|
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, Gingeras TR, Guttman M, Hirose T, Huarte M, Johnson R, Kanduri C, Kapranov P, Lawrence JB, Lee JT, Mendell JT, Mercer TR, Moore KJ, Nakagawa S, Rinn JL, Spector DL, Ulitsky I, Wan Y, Wilusz JE, Wu M. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol 2023; 24:430-447. [PMID: 36596869 PMCID: PMC10213152 DOI: 10.1038/s41580-022-00566-8] [Citation(s) in RCA: 923] [Impact Index Per Article: 461.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia.
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia.
| | - Paulo P Amaral
- INSPER Institute of Education and Research, São Paulo, Brazil
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Technopole, Milan, Italy
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamics Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ling-Ling Chen
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Maite Huarte
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra, Pamplona, Spain
| | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Philipp Kapranov
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen, China
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joshua T Mendell
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Timothy R Mercer
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Kathryn J Moore
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - David L Spector
- Cold Spring Harbour Laboratory, Cold Spring Harbour, NY, USA
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yue Wan
- Laboratory of RNA Genomics and Structure, Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Lv R, Liu X, Zhang Y, Dong N, Wang X, He Y, Yue H, Yin Q. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct Target Ther 2023; 8:218. [PMID: 37230968 DOI: 10.1038/s41392-023-01496-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a common breathing disorder in sleep in which the airways narrow or collapse during sleep, causing obstructive sleep apnea. The prevalence of OSAS continues to rise worldwide, particularly in middle-aged and elderly individuals. The mechanism of upper airway collapse is incompletely understood but is associated with several factors, including obesity, craniofacial changes, altered muscle function in the upper airway, pharyngeal neuropathy, and fluid shifts to the neck. The main characteristics of OSAS are recurrent pauses in respiration, which lead to intermittent hypoxia (IH) and hypercapnia, accompanied by blood oxygen desaturation and arousal during sleep, which sharply increases the risk of several diseases. This paper first briefly describes the epidemiology, incidence, and pathophysiological mechanisms of OSAS. Next, the alterations in relevant signaling pathways induced by IH are systematically reviewed and discussed. For example, IH can induce gut microbiota (GM) dysbiosis, impair the intestinal barrier, and alter intestinal metabolites. These mechanisms ultimately lead to secondary oxidative stress, systemic inflammation, and sympathetic activation. We then summarize the effects of IH on disease pathogenesis, including cardiocerebrovascular disorders, neurological disorders, metabolic diseases, cancer, reproductive disorders, and COVID-19. Finally, different therapeutic strategies for OSAS caused by different causes are proposed. Multidisciplinary approaches and shared decision-making are necessary for the successful treatment of OSAS in the future, but more randomized controlled trials are needed for further evaluation to define what treatments are best for specific OSAS patients.
Collapse
Affiliation(s)
- Renjun Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xueying Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yue Zhang
- Department of Geriatrics, the 2nd Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Na Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yao He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Hongmei Yue
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
22
|
Bayraktar E, Bayraktar R, Oztatlici H, Lopez-Berestein G, Amero P, Rodriguez-Aguayo C. Targeting miRNAs and Other Non-Coding RNAs as a Therapeutic Approach: An Update. Noncoding RNA 2023; 9:27. [PMID: 37104009 PMCID: PMC10145226 DOI: 10.3390/ncrna9020027] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Since the discovery of the first microRNAs (miRNAs, miRs), the understanding of miRNA biology has expanded substantially. miRNAs are involved and described as master regulators of the major hallmarks of cancer, including cell differentiation, proliferation, survival, the cell cycle, invasion, and metastasis. Experimental data indicate that cancer phenotypes can be modified by targeting miRNA expression, and because miRNAs act as tumor suppressors or oncogenes (oncomiRs), they have emerged as attractive tools and, more importantly, as a new class of targets for drug development in cancer therapeutics. With the use of miRNA mimics or molecules targeting miRNAs (i.e., small-molecule inhibitors such as anti-miRS), these therapeutics have shown promise in preclinical settings. Some miRNA-targeted therapeutics have been extended to clinical development, such as the mimic of miRNA-34 for treating cancer. Here, we discuss insights into the role of miRNAs and other non-coding RNAs in tumorigenesis and resistance and summarize some recent successful systemic delivery approaches and recent developments in miRNAs as targets for anticancer drug development. Furthermore, we provide a comprehensive overview of mimics and inhibitors that are in clinical trials and finally a list of clinical trials based on miRNAs.
Collapse
Affiliation(s)
- Emine Bayraktar
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Recep Bayraktar
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hulya Oztatlici
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Histology and Embryology, Gaziantep University, Gaziantep 27310, Turkey
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
23
|
Bouz Mkabaah L, Davey MG, Lennon JC, Bouz G, Miller N, Kerin MJ. Assessing the Role of MicroRNAs in Predicting Breast Cancer Recurrence-A Systematic Review. Int J Mol Sci 2023; 24:7115. [PMID: 37108278 PMCID: PMC10138898 DOI: 10.3390/ijms24087115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Identifying patients likely to develop breast cancer recurrence remains a challenge. Thus, the discovery of biomarkers capable of diagnosing recurrence is of the utmost importance. MiRNAs are small, non-coding RNA molecules which are known to regulate genetic expression and have previously demonstrated relevance as biomarkers in malignancy. To perform a systematic review evaluating the role of miRNAs in predicting breast cancer recurrence. A formal systematic search of PubMed, Scopus, Web of Science, and Cochrane databases was performed. This search was performed according to the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) checklist. A total of 19 studies involving 2287 patients were included. These studies identified 44 miRNAs which predicted breast cancer recurrence. Results from nine studies assessed miRNAs in tumour tissues (47.4%), eight studies included circulating miRNAs (42.1%), and two studies assessed both tumour and circulating miRNAs (10.5%). Increased expression of 25 miRNAs were identified in patients who developed recurrence, and decreased expression of 14 miRNAs. Interestingly, five miRNAs (miR-17-5p, miR-93-5p, miR-130a-3p, miR-155, and miR-375) had discordant expression levels, with previous studies indicating both increased and reduced expression levels of these biomarkers predicting recurrence. MiRNA expression patterns have the ability to predict breast cancer recurrence. These findings may be used in future translational research studies to identify patients with breast cancer recurrence to improve oncological and survival outcomes for our prospective patients.
Collapse
Affiliation(s)
- Luis Bouz Mkabaah
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, H91 YR71 Galway, Ireland; (L.B.M.); (J.C.L.)
| | - Matthew G. Davey
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, H91 YR71 Galway, Ireland; (L.B.M.); (J.C.L.)
| | - James C. Lennon
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, H91 YR71 Galway, Ireland; (L.B.M.); (J.C.L.)
| | - Ghada Bouz
- Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic
| | - Nicola Miller
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, H91 YR71 Galway, Ireland; (L.B.M.); (J.C.L.)
| | - Michael J. Kerin
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, H91 YR71 Galway, Ireland; (L.B.M.); (J.C.L.)
| |
Collapse
|
24
|
Xu H, Li C, Xu C, Zhang J. Chance promoter activities illuminate the origins of eukaryotic intergenic transcriptions. Nat Commun 2023; 14:1826. [PMID: 37005399 PMCID: PMC10067814 DOI: 10.1038/s41467-023-37610-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/23/2023] [Indexed: 04/04/2023] Open
Abstract
It is debated whether the pervasive intergenic transcription from eukaryotic genomes has functional significance or simply reflects the promiscuity of RNA polymerases. We approach this question by comparing chance promoter activities with the expression levels of intergenic regions in the model eukaryote Saccharomyces cerevisiae. We build a library of over 105 strains, each carrying a 120-nucleotide, chromosomally integrated, completely random sequence driving the potential transcription of a barcode. Quantifying the RNA concentration of each barcode in two environments reveals that 41-63% of random sequences have significant, albeit usually low, promoter activities. Therefore, even in eukaryotes, where the presence of chromatin is thought to repress transcription, chance transcription is prevalent. We find that only 1-5% of yeast intergenic transcriptions are unattributable to chance promoter activities or neighboring gene expressions, and these transcriptions exhibit higher-than-expected environment-specificity. These findings suggest that only a minute fraction of intergenic transcription is functional in yeast.
Collapse
Affiliation(s)
- Haiqing Xu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Chuan Li
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Microsoft, Redmond, WA, USA
| | - Chuan Xu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Zhan T, Cheng X, Zhu Q, Han Z, Zhu K, Tan J, Liu M, Chen W, Chen X, Chen X, Tian X, Huang X. LncRNA LOC105369504 inhibits tumor proliferation and metastasis in colorectal cancer by regulating PSPC1. Cell Death Discov 2023; 9:89. [PMID: 36894530 PMCID: PMC9998613 DOI: 10.1038/s41420-023-01384-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
There is growing evidence that long non-coding RNAs (lncRNAs) are significant contributors to the epigenetic mechanisms implicated in the emergence, progression and metastasis of the colorectal cancer (CRC), but many remain underexplored. A novel lncRNA LOC105369504, was identified to be a potential functional lncRNA by microarray analysis. In CRC, the expression of LOC105369504 was markedly decreased and resulted in distinct variations in proliferation, invasion, migration and epithelial-mesenchymal transition (EMT) in vivo and in vitro. This study showed that LOC105369504 bound to the protein of paraspeckles compound 1 (PSPC1) directly and regulated its stability using the ubiquitin-proteasome pathway in CRC cells. The suppression of CRC by LOC105369504 could be reversed through PSPC1 overexpression.This study showed that in CRC, LOC105369504 was under-regulated and as a novel lncRNA, LOC105369504 exerted tumor suppressive activity to suppress the proliferation together with metastasis in CRC cells through the regulation of PSPC1. These results offer new perspectives on the lncRNA effect on the progression of CRC.
Collapse
Affiliation(s)
- Ting Zhan
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Xueting Cheng
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Qingxi Zhu
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Zheng Han
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Kejing Zhu
- Department of Pharmacy, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Jie Tan
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Men Liu
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Wei Chen
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Xiaoli Chen
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Xiaohong Chen
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China
| | - Xia Tian
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China.
| | - Xiaodong Huang
- Department of Gastroenterology, WuHan Third Hospital (Tongren hospital of WuHan University), 430060, Wuhan, China.
| |
Collapse
|
26
|
Wang X, Fan H, Wang B, Yuan F. Research progress on the roles of lncRNAs in plant development and stress responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1138901. [PMID: 36959944 PMCID: PMC10028117 DOI: 10.3389/fpls.2023.1138901] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Long non-coding RNAs (lncRNAs) are RNAs of more than 200 nucleotides in length that are not (or very rarely) translated into proteins. In eukaryotes, lncRNAs regulate gene expression at the transcriptional, post-transcriptional, and epigenetic levels. lncRNAs are categorized according to their genomic position and molecular mechanism. This review summarized the characteristics and mechanisms of plant lncRNAs involved in vegetative growth, reproduction, and stress responses. Our discussion and model provide a theoretical basis for further studies of lncRNAs in plant breeding.
Collapse
Affiliation(s)
| | | | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
| |
Collapse
|
27
|
Mattick JS. RNA out of the mist. Trends Genet 2023; 39:187-207. [PMID: 36528415 DOI: 10.1016/j.tig.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/08/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022]
Abstract
RNA has long been regarded primarily as the intermediate between genes and proteins. It was a surprise then to discover that eukaryotic genes are mosaics of mRNA sequences interrupted by large tracts of transcribed but untranslated sequences, and that multicellular organisms also express many long 'intergenic' and antisense noncoding RNAs (lncRNAs). The identification of small RNAs that regulate mRNA translation and half-life did not disturb the prevailing view that animals and plant genomes are full of evolutionary debris and that their development is mainly supervised by transcription factors. Gathering evidence to the contrary involved addressing the low conservation, expression, and genetic visibility of lncRNAs, demonstrating their cell-specific roles in cell and developmental biology, and their association with chromatin-modifying complexes and phase-separated domains. The emerging picture is that most lncRNAs are the products of genetic loci termed 'enhancers', which marshal generic effector proteins to their sites of action to control cell fate decisions during development.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW 2052, Australia; UNSW RNA Institute, UNSW, Sydney, NSW 2052, Australia.
| |
Collapse
|
28
|
Zou C, Guo Z, Zhao S, Chen J, Zhang C, Han H. Genome-wide analysis of long non-coding RNAs in sugar beet ( Beta vulgaris L.) under drought stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1118011. [PMID: 36866366 PMCID: PMC9971629 DOI: 10.3389/fpls.2023.1118011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Drought stress is one of the most severe abiotic stresses that restrict global crop production. Long non-coding RNAs (lncRNAs) have been proved to play a key role in response to drought stress. However, genome-wide identification and characterization of drought-responsive lncRNAs in sugar beet is still lacking. Thus, the present study focused on analyzing lncRNAs in sugar beet under drought stress. We identified 32017 reliable lncRNAs in sugar beet by strand-specific high-throughput sequencing. A total of 386 differentially expressed lncRNAs (DElncRNAs) were found under drought stress. The most significantly upregulated and downregulated lncRNAs were TCONS_00055787 (upregulated by more than 6000 fold) and TCONS_00038334 (downregulated by more than 18000 fold), respectively. Quantitative real-time PCR results exhibited a high concordance with RNA sequencing data, which conformed that the expression patterns of lncRNAs based on RNA sequencing were highly reliable. In addition, we predicted 2353 and 9041 transcripts that were estimated to be the cis- and trans-target genes of the drought-responsive lncRNAs. As revealed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the target genes of DElncRNAs were significantly enriched in organelle subcompartment, thylakoid, endopeptidase activity, catalytic activity, developmental process, lipid metabolic process, RNA polymerase activity, transferase activity, flavonoid biosynthesis and several other terms associated with abiotic stress tolerance. Moreover, 42 DElncRNAs were predicted as potential miRNA target mimics. LncRNAs have important effects on plant adaptation to drought conditions through the interaction with protein-encoding genes. The present study leads to greater insights into lncRNA biology and offers candidate regulators for improving the drought tolerance of sugar beet cultivars at the genetic level.
Collapse
|
29
|
Zhao NN, Yu XD, Tian X, Xu Q, Zhang CY. Mix-and-Detection Assay with Multiple Cyclic Enzymatic Repairing Amplification for Rapid and Ultrasensitive Detection of Long Noncoding RNAs in Breast Tissues. Anal Chem 2023; 95:3082-3088. [PMID: 36692970 DOI: 10.1021/acs.analchem.2c05353] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Long noncoding RNAs (lncRNAs) are valuable biomarkers and therapeutic targets, and they play essential roles in various pathological and biological processes. So far, the reported lncRNA assays usually suffer from unsatisfactory sensitivity and time-consuming procedures. Herein, we develop a mix-and-read assay based on multiple cyclic enzymatic repairing amplification (ERA) for sensitive and rapid detection of mammalian metastasis-associated lung adenocarcinoma transcript 1 (lncRNA MALAT1). In this assay, we design two three-way junction (3WJ) probes including a 3WJ template and a 3WJ primer to specifically recognize lncRNA MALAT1, and the formation of a stable 3WJ structure induces cyclic ERA to generate triggers. The resulting triggers subsequently hybridize with a free 3WJ template and act as primers to initiate new rounds of cyclic ERA, generating abundant triggers. The hybridization of triggers with signal probes forms stable double-stranded DNA duplexes that can be specifically cleaved by apurinic/apyrimidinic endonuclease 1 to produce a high fluorescence signal. This assay can be carried out in a mix-and-read manner within 10 min under an isothermal condition (50 °C), which is the rapidest and simplest method reported so far for the lncRNA MALAT1 assay. This method can sensitively detect lncRNA MALAT1 with a limit of detection of 0.87 aM, and it can accurately measure endogenous lncRNA MALAT1 at the single-cell level. Moreover, this method can distinguish lncRNA MALAT1 expression in breast cancer patient tissues and their corresponding healthy adjacent tissues. Importantly, the extension of this assay to different RNAs detection can be achieved by simply replacing the corresponding target recognition sequences.
Collapse
Affiliation(s)
- Ning-Ning Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xiao-Di Yu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xiaorui Tian
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| |
Collapse
|
30
|
Yu M, Xue S, Chen X, Wu K, Ju L, Tang J, Xiong A, Chen X, Ying X. Long Non-coding RNA UCA1a Promotes Proliferation via PKM2 in Cervical Cancer. Reprod Sci 2023; 30:601-614. [PMID: 35927414 DOI: 10.1007/s43032-022-01042-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/12/2022] [Indexed: 01/17/2023]
Abstract
Cervical cancer is a common malignancy that affects women worldwide. The long non-coding RNA (lncRNA) urothelial cancer-associated 1a (UCA1a) is reported to be significantly upregulated in cervical cancer. However, the exact role of UCA1a in cervical cancer remains unknown. This study aimed to identify two core promoter regions in UCA1a, which are essential for CEBPA-dependent transcription and FOXL1-, FOXL4-, and FOXL6-dependent activation, respectively. RNA sequencing results showed that overexpression of UCA1a resulted in extensive changes in the gene expression profile of HeLa cells, especially in the signaling pathway that regulates tumorgenesis. Mass spectrometry assay was conducted to show that pyruvate kinase M2 (PKM2) was a UCA1a-interacting protein. The 400 ~ 800 nt long region of UCA1a at the 5' end and the A1B domain of PKM2 were critical for the UCA1a-PKM2 interaction. Functional assays were performed to show that PKM2 was sufficient and necessary for UCA1a-induced proliferation of HeLa cells, which was partly due to the regulating of nuclear translocation and stabilization of PKM2. These findings provide a novel mechanism for UCA1a to regulate Hela cells by ubiquitination degradation of PKM2 and suggest that UCA1a may play a key role in the progression of cervical cancer.
Collapse
Affiliation(s)
- Minmin Yu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China. .,Department of Obstetrics and Gynecology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China.
| | - Songlin Xue
- Department of Obstetrics and Gynecology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Xin Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Kaihua Wu
- Department of Obstetrics and Gynecology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Lili Ju
- Department of Obstetrics and Gynecology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Juan Tang
- Department of Obstetrics and Gynecology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Aiwei Xiong
- Department of Obstetrics and Gynecology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Xiaoxiang Chen
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research &, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China.
| | - Xiaoyan Ying
- Department of Obstetrics and Gynecology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China.
| |
Collapse
|
31
|
Sandamalika WMG, Liyanage DS, Lim C, Yang H, Lee S, Jeong T, Wan Q, Lee J. Differential gene expression of red-spotted grouper (Epinephelus akaara) in response to lipopolysaccharide, poly I:C, and nervous necrosis virus revealed by RNA-seq data. FISH & SHELLFISH IMMUNOLOGY 2022; 131:939-944. [PMID: 36356858 DOI: 10.1016/j.fsi.2022.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Red-spotted grouper (Epinephelus akaara) is a popular aquaculture species with high commercial value in the food industry. However, some infectious diseases may cause mass mortality in cultural practice. Therefore, it is important to understand the immune responses of red-spotted groupers upon pathogenic invasion to develop successful disease prevention mechanisms. Here, we analyzed the transcriptomic profiles of red-spotted grouper head kidney stimulated with lipopolysaccharide (LPS), polyinosinic:polycytidylic acid (poly I:C), and nervous necrosis virus (NNV) and identified differentially expressed genes (DEGs) using RNA-sequencing technology. Cluster analysis of the identified DEGs showed DEG distribution in nine separate clusters based on their expression patterns. However, significant upregulation of most DEGs was observed 6 h after poly I:C stimulation. The DEGs were functionally annotated using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, which revealed significant expression of many immune-related signaling pathways, including antiviral, protein translation, cellular protein catabolic process, inflammatory responses, DNA repair, and cell division. Furthermore, selected DEGs were validated by quantitative real-time PCR, confirming the reliability of our findings. Collectively, this study provides insight into the immune responses of red-spotted groupers, thereby expanding the understanding of fish immunity.
Collapse
Affiliation(s)
- W M Gayashani Sandamalika
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Chaehyeon Lim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sukkyoung Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
32
|
He X, Chen J, Zhou J, Mao A, Xu W, Zhu H, Pan Q, Zhao Y, Zhang N, Wang L, Wang M, Liu Z, Zhu W, Wang L. LncRNA-EWSAT1 promotes hepatocellular carcinoma metastasis via activation of the Src-YAP signaling axis. FASEB J 2022; 36:e22663. [PMID: 36421017 DOI: 10.1096/fj.202200825r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/15/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022]
Abstract
Regardless of the improvements in diagnostic and therapeutic methods, the clinical outcomes of hepatocellular carcinoma (HCC) patients remain poor. Although accumulating evidence indicates that lncRNAs (long noncoding RNAs) are essential within the control of tumorigenesis and the metastasis of cancer, the underlying mechanisms remain largely unknown. This work explored the pattern of expression and functional significance of a newly found lncRNA, Ewing sarcoma-associated transcript 1 (EWSAT1), in HCC metastasis. The results indicated that EWSAT1 was upregulated significantly in HCC relative to that in normal tissues and was correlated with an aggressive phenotype and low patient survival. Functional experiments demonstrated that EWSAT1 could promote proliferation and HCC cell metastasis both in vitro and in vivo. Mechanistically, EWSAT1 binds directly to Yes-associated protein (YAP), promotes Sarcoma gene (Src)-induced phosphorylation of YAP, facilitates nuclear translocation of YAP, and consequently, activates the transcription of Hippo-YAP signaling target genes involved in cancer evolution. This study found that EWSAT1 plays a crucial role in HCC metastasis and that it has the potential to be a prognosis biomarker and a target for therapeutics.
Collapse
Affiliation(s)
- Xigan He
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinggui Chen
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiamin Zhou
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Anrong Mao
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiqi Xu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongxu Zhu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qi Pan
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiming Zhao
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ning Zhang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Longrong Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Miao Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zeyang Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Weiping Zhu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Wang B, Wang X, Zheng X, Han Y, Du X. JSCSNCP-LMA: a method for predicting the association of lncRNA-miRNA. Sci Rep 2022; 12:17030. [PMID: 36220862 PMCID: PMC9552706 DOI: 10.1038/s41598-022-21243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/26/2022] [Indexed: 12/29/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have long been considered the "white elephant" on the genome because they lack the ability to encode proteins. However, in recent years, more and more biological experiments and clinical reports have proved that ncRNAs account for a large proportion in organisms. At the same time, they play a decisive role in the biological processes such as gene expression and cell growth and development. Recently, it has been found that short sequence non-coding RNA(miRNA) and long sequence non-coding RNA(lncRNA) can regulate each other, which plays an important role in various complex human diseases. In this paper, we used a new method (JSCSNCP-LMA) to predict lncRNA-miRNA with unknown associations. This method combined Jaccard similarity algorithm, self-tuning spectral clustering similarity algorithm, cosine similarity algorithm and known lncRNA-miRNA association networks, and used the consistency projection to complete the final prediction. The results showed that the AUC values of JSCSNCP-LMA in fivefold cross validation (fivefold CV) and leave-one-out cross validation (LOOCV) were 0.9145 and 0.9268, respectively. Compared with other models, we have successfully proved its superiority and good extensibility. Meanwhile, the model also used three different lncRNA-miRNA datasets in the fivefold CV experiment and obtained good results with AUC values of 0.9145, 0.9662 and 0.9505, respectively. Therefore, JSCSNCP-LMA will help to predict the associations between lncRNA and miRNA.
Collapse
Affiliation(s)
- Bo Wang
- grid.412616.60000 0001 0002 2355College of Computer and Control Engineering, Qiqihar University, Qiqihar, 161006 People’s Republic of China
| | - Xinwei Wang
- grid.412616.60000 0001 0002 2355College of Computer and Control Engineering, Qiqihar University, Qiqihar, 161006 People’s Republic of China
| | - Xiaodong Zheng
- grid.412616.60000 0001 0002 2355College of Computer and Control Engineering, Qiqihar University, Qiqihar, 161006 People’s Republic of China
| | - Yu Han
- grid.412616.60000 0001 0002 2355College of Computer and Control Engineering, Qiqihar University, Qiqihar, 161006 People’s Republic of China
| | - Xiaoxin Du
- grid.412616.60000 0001 0002 2355College of Computer and Control Engineering, Qiqihar University, Qiqihar, 161006 People’s Republic of China
| |
Collapse
|
34
|
Li N, Liu T, Guo F, Yang J, Shi Y, Wang S, Sun D. Identification of long non-coding RNA-microRNA-mRNA regulatory modules and their potential roles in drought stress response in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1011064. [PMID: 36304395 PMCID: PMC9592863 DOI: 10.3389/fpls.2022.1011064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/23/2022] [Indexed: 06/12/2023]
Abstract
Drought is one of the most severe abiotic stresses that influence wheat production across the globe. Understanding the molecular regulatory network of wheat in response to drought is of great importance in molecular breeding. Noncoding RNAs influence plant development and resistance to abiotic stresses by regulating gene expression. In this study, whole-transcriptome sequencing was performed on the seedlings of two wheat varieties with contrasting levels of drought tolerance under drought and control conditions to identify long noncoding RNAs (lncRNAs), micro RNAs (miRNAs), and mRNAs related to drought stress and explore the potential lncRNA-miRNA-mRNA regulatory modules in controlling wheat drought stress response. A total of 1515 differentially expressed lncRNAs (DELs), 209 differentially expressed miRNAs (DEMs), and 20462 differentially expressed genes (DEGs) were identified. Of the 20462 DEGs, 1025 were identified as potential wheat drought resistance-related DEGs. Based on the regulatory relationship and expression patterns of DELs, DEMs, and DEGs, 10 DEL-DEM-DEG regulatory modules related to wheat drought stress response were screened, and preliminary expression verification of two important candidate modules was performed. Our results revealed the possible roles of lncRNA-miRNA-mRNA modules in regulatory networks related to drought tolerance and provided useful information as valuable genomic resources in molecular breeding of wheat.
Collapse
|
35
|
Entezari M, Taheriazam A, Orouei S, Fallah S, Sanaei A, Hejazi ES, Kakavand A, Rezaei S, Heidari H, Behroozaghdam M, Daneshi S, Salimimoghadam S, Mirzaei S, Hashemi M, Samarghandian S. LncRNA-miRNA axis in tumor progression and therapy response: An emphasis on molecular interactions and therapeutic interventions. Biomed Pharmacother 2022; 154:113609. [PMID: 36037786 DOI: 10.1016/j.biopha.2022.113609] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 02/06/2023] Open
Abstract
Epigenetic factors are critical regulators of biological and pathological mechanisms and they could interact with different molecular pathways. Targeting epigenetic factors has been an idea approach in disease therapy, especially cancer. Accumulating evidence has highlighted function of long non-coding RNAs (lncRNAs) as epigenetic factors in cancer initiation and development and has focused on their association with downstream targets. microRNAs (miRNAs) are the most well-known targets of lncRNAs and present review focuses on lncRNA-miRNA axis in malignancy and therapy resistance of tumors. LncRNA-miRNA regulates cell death mechanisms such as apoptosis and autophagy in cancers. This axis affects tumor metastasis via regulating EMT and MMPs. Besides, lncRNA-miRNA axis determines sensitivity of tumor cells to chemotherapy, radiotherapy and immunotherapy. Based on the studies, lncRNAs can be affected by drugs and genetic tools in cancer therapy and this may affect expression level of miRNAs as their downstream targets, leading to cancer suppression/progression. LncRNAs have both tumor-promoting and tumor-suppressor functions in cancer and this unique function of lncRNAs has complicated their implication in tumor therapy. LncRNA-miRNA axis can also affect other signaling networks in cancer such as PI3K/Akt, STAT3, Wnt/β-catenin and EZH2 among others. Notably, lncRNA/miRNA axis can be considered as a signature for diagnosis and prognosis in cancers.
Collapse
Affiliation(s)
- Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Sima Orouei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Islamic Republic of Iran
| | - Shayan Fallah
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Arezoo Sanaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Hajar Heidari
- Department of Biomedical Sciences School of Public Health University at Albany State University of New York, Albany, NY 12208, USA
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Islamic Republic of Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Islamic Republic of Iran
| | - Sepideh Mirzaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Islamic Republic of Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Islamic Republic of Iran.
| |
Collapse
|
36
|
Zhou L, Wang X, Yu S, Tan YL, Tan ZJ. FebRNA: An automated fragment-ensemble-based model for building RNA 3D structures. Biophys J 2022; 121:3381-3392. [PMID: 35978551 PMCID: PMC9515226 DOI: 10.1016/j.bpj.2022.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Knowledge of RNA three-dimensional (3D) structures is critical to understanding the important biological functions of RNAs. Although various structure prediction models have been developed, the high-accuracy predictions of RNA 3D structures are still limited to the RNAs with short lengths or with simple topology. In this work, we proposed a new model, namely FebRNA, for building RNA 3D structures through fragment assembly based on coarse-grained (CG) fragment ensembles. Specifically, FebRNA is composed of four processes: establishing the library of different types of non-redundant CG fragment ensembles regardless of the sequences, building CG 3D structure ensemble through fragment assembly, identifying top-scored CG structures through a specific CG scoring function, and rebuilding the all-atom structures from the top-scored CG ones. Extensive examination against different types of RNA structures indicates that FebRNA consistently gives the reliable predictions on RNA 3D structures, including pseudoknots, three-way junctions, four-way and five-way junctions, and RNAs in the RNA-Puzzles. FebRNA is available on the Web site: https://github.com/Tan-group/FebRNA.
Collapse
Affiliation(s)
- Li Zhou
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xunxun Wang
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Shixiong Yu
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ya-Lan Tan
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430073, China.
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro & Nano-structures of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
37
|
Ponting CP, Haerty W. Genome-Wide Analysis of Human Long Noncoding RNAs: A Provocative Review. Annu Rev Genomics Hum Genet 2022; 23:153-172. [PMID: 35395170 DOI: 10.1146/annurev-genom-112921-123710] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Do long noncoding RNAs (lncRNAs) contribute little or substantively to human biology? To address how lncRNA loci and their transcripts, structures, interactions, and functions contribute to human traits and disease, we adopt a genome-wide perspective. We intend to provoke alternative interpretation of questionable evidence and thorough inquiry into unsubstantiated claims. We discuss pitfalls of lncRNA experimental and computational methods as well as opposing interpretations of their results. The majority of evidence, we argue, indicates that most lncRNA transcript models reflect transcriptional noise or provide minor regulatory roles, leaving relatively few human lncRNAs that contribute centrally to human development, physiology, or behavior. These important few tend to be spliced and better conserved but lack a simple syntax relating sequence to structure and mechanism, and so resist simple categorization. This genome-wide view should help investigators prioritize individual lncRNAs based on their likely contribution to human biology.
Collapse
Affiliation(s)
- Chris P Ponting
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| | | |
Collapse
|
38
|
Li X, Yu K, Li F, Lu W, Wang Y, Zhang W, Bai Y. Novel Method of Full-Length RNA-seq That Expands the Identification of Non-Polyadenylated RNAs Using Nanopore Sequencing. Anal Chem 2022; 94:12342-12351. [PMID: 36018770 DOI: 10.1021/acs.analchem.2c01128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The occurrence of diseases displayed transcriptome alteration, including both coding and non-coding transcripts. The third-generation sequencing (TGS) technologies allow for intensive and comprehensive research of the transcriptome. However, the present standard TGS RNA sequencing method is unable to detect many of the non-polyadenylated [non-poly(A)] RNAs. To obtain more complete transcriptome information, we presented a new comprehensive sequencing approach by performing conventional poly(A) RNA-sequencing combined with the sequencing of non-poly(A) RNA fraction which was tailed by poly(U) on HepG2 and HL-7702 cell lines, enabling the detection of multiple categories of non-poly(A) RNAs excluded by the existing standard approach. Moreover, the length distribution of the full-splice match transcripts was longer than that assembled by short-reads, which contributed to characterizing alternative splicing events and provided a comprehensive portrait of transcriptional complexity. Besides the detection of genes with differential expression patterns in the poly(A) library between HepG2 and HL-7702, we also found a cancer-related non-coding gene in the poly(U) data, that is, growth arrest special 5 (GAS5). Collectively, our results suggested that the novel method effectively captured both poly(A) and non-poly(A) transcripts in the tested cell lines and allowed a deeper exploration of the transcriptome.
Collapse
Affiliation(s)
- Xiaohan Li
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Kequan Yu
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Fuyu Li
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenxiang Lu
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Ying Wang
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Weizhong Zhang
- Department of Ophthalmology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yunfei Bai
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
39
|
Zhang Y, Du XK, Liu WJ, Liu M, Zhang CY. Programmable Ligation-Transcription Circuit-Driven Cascade Amplification Machinery for Multiple Long Noncoding RNAs Detection in Lung Tissues. Anal Chem 2022; 94:10573-10578. [PMID: 35867839 DOI: 10.1021/acs.analchem.2c02685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The measurement of long noncoding RNAs (lncRNAs) is essential to diagnosis and treatment of various diseases such as cancers. Herein, we develop a simple method to simultaneously detect multiple lncRNAs using programmable ligation-transcription circuit-driven cascade amplification and single-molecule counting. The presence of targets lncRNA HOTAIR and lncRNA MALAT1 activates the ligation-transcription circuits to produce two corresponding functional RNAs. The functional RNAs then cyclically initiate the digestion of signal probes by duplex-specific nuclease to liberate Cy5 and Cy3 molecules. After magnetic separation, the liberated Cy5 and Cy3 molecules are measured by single-molecule counting. In this assay, a single lncRNA can activate ligation-transcription circuit to generate abundant functional RNAs, endowing this assay with high sensitivity. Integration of single-molecule counting ensures the high sensitivity. This method shows extremely high sensitivity with a limit of detection (LOD) of 0.043 aM for HOX gene antisense intergenic RNA (lncRNA HOTAIR) and 0.126 aM for mammalian metastasis-related lung adenocarcinoma transcript 1 (lncRNA MALAT1). Importantly, this method enables simultaneous measurement of multiple endogenous lncRNAs at the single-cell level, and it may discriminate the expressions of various lncRNA in lung tumor tissues of nonsmall cell lung cancer (NSCLC) patients and their corresponding healthy adjacent tissues, offering a promising platform for clinical diagnosis and biomedical research.
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.,College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Xue-Ke Du
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Wen-Jing Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
40
|
Transcriptional Interference Regulates the Evolutionary Development of Speech. Genes (Basel) 2022; 13:genes13071195. [PMID: 35885978 PMCID: PMC9323761 DOI: 10.3390/genes13071195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
The human capacity to speak is fundamental to our advanced intellectual, technological and social development. Yet so very little is known regarding the evolutionary genetics of speech or its relationship with the broader aspects of evolutionary development in primates. In this study, we describe a large family with evolutionary retrograde development of the larynx and wrist. The family presented with severe speech impairment and incremental retrograde elongations of the pisiform in the wrist that limited wrist rotation from 180° to 90° as in primitive primates. To our surprise, we found that a previously unknown primate-specific gene TOSPEAK had been disrupted in the family. TOSPEAK emerged de novo in an ancestor of extant primates across a 540 kb region of the genome with a pre-existing highly conserved long-range laryngeal enhancer for a neighbouring bone morphogenetic protein gene GDF6. We used transgenic mouse modelling to identify two additional GDF6 long-range enhancers within TOSPEAK that regulate GDF6 expression in the wrist. Disruption of TOSPEAK in the affected family blocked the transcription of TOSPEAK across the 3 GDF6 enhancers in association with a reduction in GDF6 expression and retrograde development of the larynx and wrist. Furthermore, we describe how TOSPEAK developed a human-specific promoter through the expansion of a penta-nucleotide direct repeat that first emerged de novo in the promoter of TOSPEAK in gibbon. This repeat subsequently expanded incrementally in higher hominids to form an overlapping series of Sp1/KLF transcription factor consensus binding sites in human that correlated with incremental increases in the promoter strength of TOSPEAK with human having the strongest promoter. Our research indicates a dual evolutionary role for the incremental increases in TOSPEAK transcriptional interference of GDF6 enhancers in the incremental evolutionary development of the wrist and larynx in hominids and the human capacity to speak and their retrogression with the reduction of TOSPEAK transcription in the affected family.
Collapse
|
41
|
Liu F, Cao L, Zhang Y, Xia X, Ji Y. LncRNA LIFR-AS1 overexpression suppressed the progression of serous ovarian carcinoma. J Clin Lab Anal 2022; 36:e25470. [PMID: 35778954 PMCID: PMC9396205 DOI: 10.1002/jcla.24570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
Background Serous ovarian carcinoma (SOC) is a common malignant tumor in female reproductive system. Long noncoding RNA (lncRNA) LIFR‐AS1 is a tumor suppressor gene in colorectal cancer, but its effect and underlying mechanism in SOC are still unclear. Therefore, this study focuses on unveiling the regulatory mechanism of LIFR‐AS1 in SOC. Methods The relationship between LIFR‐AS1 expression and prognosis of SOC patients was analyzed by TCGA database and Starbase, and then, the LIFR‐AS1 expression in SOC tissues and cells was detected by quantitative real‐time PCR (qRT‐PCR) and in situ hybridization (ISH). Besides, the relationship between LIFR‐AS1 and clinical characteristics was analyzed. Also, the effects of LIFR‐AS1 on the biological behaviors of SOC cells were measured by Cell Counting Kit‐8, colony formation, and wound‐healing and Transwell assays, respectively. Western blot and qRT‐PCR were employed to determine the protein expressions of genes related to proliferation (PCNA), apoptosis (cleaved caspase‐3), epithelial‐mesenchymal transition (E‐cadherin, N‐cadherin, and Snail). Results LIFR‐AS1 was lowly expressed in SOC, which was correlated with the poor prognosis of SOC patients. Low expression of LIFR‐AS1 in SOC was associated with the tumor size, clinical stage, lymph node metastasis, and distant metastasis. LIFR‐AS1 overexpression promoted the expressions of cleaved caspase‐3 and E‐cadherin while suppressing the malignant behaviors (proliferation, migration, and invasion) of SOC cells, the expressions of PCNA, N‐cadherin, and Snail. Besides, silencing LIFR‐AS1 exerted the effects opposite to overexpressed LIFR‐AS1. Conclusion LIFR‐AS1 overexpression inhibits biological behaviors of SOC cells, which may be a new therapeutic method.
Collapse
Affiliation(s)
- Fang Liu
- Department of Gynecology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Linyan Cao
- Department of Gynecology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yufang Zhang
- Department of Gynecology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xinyi Xia
- Department of Gynecology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yanhua Ji
- Department of Gynecology, The Fourth People's Hospital of Tongxiang, Jiaxing, China
| |
Collapse
|
42
|
Liu S, Li Y. LncRNA HAND2-AS1 attenuates glioma cell proliferation, invasion and migration by targeting CDK6. Neurol Res 2022; 44:677-683. [PMID: 35548927 DOI: 10.1080/01616412.2022.2035620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Long non-coding RNA (lncRNA) HAND2-AS1 has been indicated to play biological roles in several cancers. However, whether HAND2-AS1 could exert its role in glioma remains unknown. We aimed to investigate the function of HAND2-AS1 in the proliferation, invasion and migration and to explore its underlying molecular mechanism in glioma cells. METHODS Reverse transcription-quantitative polymerase chain reaction analysis was conducted to determine the expression of HAND2-AS1 and cyclin-dependent kinases 6 (CDK6) in tissues or cells. Western blot analysis was used to detect the CDK6 protein expression. CCK-8 assay was adopted to determine the proliferation in glioma cell lines. Transwell assay was taken to evaluate the invasion and migration in glioma cell lines. RESULTS Our results revealed that HAND2-AS1 expression was significantly downregulated in the glioma tissues and cell lines. Moreover, overexpression of HAND2-AS1 attenuated the proliferation, invasion, and migration in glioma cell lines. However, overexpression of CDK6 could partially block the inhibitory role of HAND2-AS1 on cell proliferation as well as cell invasion and migration in glioma cell lines. CONCLUSION LncRNA HAND2-AS1 may play a critical anti-tumorigenic role in glioma by negatively regulating CDK6 expression.
Collapse
Affiliation(s)
- Songlin Liu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Yifeng Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
43
|
Lu YM, Guo YR, Zhou MY, Wang Y. Expression and clinical significance of lncRNA BC041954 in ovarian cancer. Exp Ther Med 2022; 23:408. [PMID: 35619633 DOI: 10.3892/etm.2022.11335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/26/2020] [Indexed: 12/24/2022] Open
Affiliation(s)
- Yan-Ming Lu
- Department of Gynecology and Obstetrics, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110003, P.R. China
| | - Ya-Ru Guo
- Department of Gynecology and Obstetrics, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110003, P.R. China
| | - Meng-Ya Zhou
- Department of Gynecology and Obstetrics, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110003, P.R. China
| | - Yue Wang
- Department of Gynecology and Obstetrics, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110003, P.R. China
| |
Collapse
|
44
|
Aryee DNT, Fock V, Kapoor U, Radic-Sarikas B, Kovar H. Zooming in on Long Non-Coding RNAs in Ewing Sarcoma Pathogenesis. Cells 2022; 11:1267. [PMID: 35455947 PMCID: PMC9032025 DOI: 10.3390/cells11081267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Ewing sarcoma (ES) is a rare aggressive cancer of bone and soft tissue that is mainly characterized by a reciprocal chromosomal translocation. As a result, about 90% of cases express the EWS-FLI1 fusion protein that has been shown to function as an aberrant transcription factor driving sarcomagenesis. ES is the second most common malignant bone tumor in children and young adults. Current treatment modalities include dose-intensified chemo- and radiotherapy, as well as surgery. Despite these strategies, patients who present with metastasis or relapse still have dismal prognosis, warranting a better understanding of treatment resistant-disease biology in order to generate better prognostic and therapeutic tools. Since the genomes of ES tumors are relatively quiet and stable, exploring the contributions of epigenetic mechanisms in the initiation and progression of the disease becomes inevitable. The search for novel biomarkers and potential therapeutic targets of cancer metastasis and chemotherapeutic drug resistance is increasingly focusing on long non-coding RNAs (lncRNAs). Recent advances in genome analysis by high throughput sequencing have immensely expanded and advanced our knowledge of lncRNAs. They are non-protein coding RNA species with multiple biological functions that have been shown to be dysregulated in many diseases and are emerging as crucial players in cancer development. Understanding the various roles of lncRNAs in tumorigenesis and metastasis would determine eclectic avenues to establish therapeutic and diagnostic targets. In ES, some lncRNAs have been implicated in cell proliferation, migration and invasion, features that make them suitable as relevant biomarkers and therapeutic targets. In this review, we comprehensively discuss known lncRNAs implicated in ES that could serve as potential biomarkers and therapeutic targets of the disease. Though some current reviews have discussed non-coding RNAs in ES, to our knowledge, this is the first review focusing exclusively on ES-associated lncRNAs.
Collapse
Affiliation(s)
- Dave N T Aryee
- St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Valerie Fock
- St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
| | - Utkarsh Kapoor
- St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
| | - Branka Radic-Sarikas
- St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
- Department of Pediatric Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Heinrich Kovar
- St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
45
|
Li X, Sun M, Cheng A, Zheng G. LncRNA GAS5 regulates migration and epithelial-to-mesenchymal transition in lens epithelial cells via the miR-204-3p/TGFBR1 axis. J Transl Med 2022; 102:452-460. [PMID: 34916611 DOI: 10.1038/s41374-021-00713-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetic cataract (DC) is a major ocular complication secondary to diabetes mellitus. The epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) is an important event in DC progression. Long non-coding RNAs (lncRNAs) and microRNAs are involved in various biological processes and disorders. The aim of this study was to investigate the roles of lncRNA growth arrest-specific transcript 5 (GAS5) and microRNA-204-3p (miR-204-3p) deregulation in the pathogenic mechanism of high glucose (HG)-stimulated LECs. The results show that GAS5 was up-regulated, whereas miR-204-3p was down-regulated in anterior lens capsule tissues of DC patients and in HG-treated LECs compared to their controls, respectively. Functional experiments suggest that the lentivirus-mediated depletion of GAS5, as well as overexpression of miR-204-3p, suppressed migration and EMT in HG-treated LECs. Further mechanistic studies revealed that lncRNA GAS5/miR-204-3p/type 1 receptor of transforming growth factor-beta (TGFBR1) has a regulatory role in the process. Collectively, we demonstrated that dysregulation of GAS5 affects lens epithelial cell migration and EMT under HG conditions via the miR-204-3p/TGFBR1 axis. The current findings may provide new insights into the molecular mechanisms of DC development.
Collapse
Affiliation(s)
- Xiao Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, Henan, China
| | - Miaomiao Sun
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, Henan, China
| | - Anran Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, Henan, China
| | - Guangying Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
46
|
Huang M, Ye X, Imakura A, Sakurai T. Sequential reinforcement active feature learning for gene signature identification in renal cell carcinoma. J Biomed Inform 2022; 128:104049. [DOI: 10.1016/j.jbi.2022.104049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/03/2022] [Accepted: 03/06/2022] [Indexed: 10/18/2022]
|
47
|
Ghafouri-Fard S, Najafi S, Hussen BM, Ganjo AR, Taheri M, Samadian M. DLX6-AS1: A Long Non-coding RNA With Oncogenic Features. Front Cell Dev Biol 2022; 10:746443. [PMID: 35281110 PMCID: PMC8916230 DOI: 10.3389/fcell.2022.746443] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/04/2022] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a heterogeneous group of ncRNAs with characteristic size of more than 200 nucleotides. An increasing number of lncRNAs have been found to be dysregulated in many human diseases particularly cancer. However, their role in carcinogenesis is not precisely understood. DLX6-AS1 is an lncRNAs which has been unveiled to be up-regulated in various number of cancers. In different cell studies, DLX6-AS1 has shown oncogenic role via promoting oncogenic phenotype of cancer cell lines. Increase in tumor cell proliferation, migration, invasion, and EMT while suppressing apoptosis in cancer cells are the effects of DLX6-AS1 in development and progression of cancer. In the majority of cell experiment, mediator miRNAs have been identified which are sponged and negatively regulated by DLX6-AS1, and they in turn regulate expression of a number of transcription factors, eventually affecting signaling pathways involved in carcinogenesis. These pathways form axes through which DLX6-AS1 promotes carcinogenicity of cancer cells. Xenograft animal studies, also have confirmed enhancing effect of DLX6-AS1 on tumor growth and metastasis. Clinical evaluations in cancerous patients have also shown increased expression of DLX6-AS1 in tumor tissues compared to healthy tissues. High DLX6-AS1 expression has shown positive association with advanced clinicopathological features in cancerous patients. Survival analyses have demonstrated correlation between high DLX6-AS1 expression and shorter survival. In cox regression analysis, DLX6-AS1 has been found as an independent prognostic factor for patients with various types of cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Aryan R. Ganjo
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri, ; Mohammad Samadian,
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Mohammad Samadian,
| |
Collapse
|
48
|
Olabayo Olatubosun M, Abubakar MB, Batiha GES, Malami I, Ibrahim KG, Abubakar B, Bello MB, Alexiou A, Imam MU. LncRNA SNHG15: A potential therapeutic target in the treatment of colorectal cancer. Chem Biol Drug Des 2022; 101:1138-1150. [PMID: 35191201 DOI: 10.1111/cbdd.14036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/20/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
The global burden of colorectal cancer (CRC) is increasing annually. CRC could develop from genetic and phenotypic factors involving changes in gene expression. Incredibly, the human genome transcribes into non-coding RNAs, among which long non-coding RNAs (lncRNAs) signify the most crucial part of the transcriptome in multicellular organisms. lncRNAs affect gene expression at multiple levels, from transcription to protein localization and stability. Recent studies have implicated lncRNA small nucleolar RNA host gene 15 (SNHG15) in cancers occurrence and progression. Previously, an indication suggests SNHG15 overexpression triggers proliferation, metastasis, and impedes apoptosis in CRC. Further, through its activity of binding micro-RNAs, lncRNA SNHG15 modulates genes associated with CRC progression and promotes CRC resistance to chemotherapeutic drugs. Here we reviewed recent findings on the various mechanisms and roles of lncRNA SNHG15 implicated in CRC tumorigenesis. We further highlight how SNHG15 plays a vital role in regulating critical pathways linked to the development and progression of CRC. Finally, we highlight how SNHG15 can be modulated for CRC treatments and the various therapeutic strategies to be implored when targeting SNHG15 in the context of CRC treatments. Findings from these studies present SNHG15 as a potential therapeutic target for preventing and treating CRC.
Collapse
Affiliation(s)
- Mutolib Olabayo Olatubosun
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, Usmanu Danfodiyo University, P.M.B 2346, Sokoto, Nigeria.,Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria
| | - Murtala Bello Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria.,Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, P.M.B, 2254, Sokoto, Nigeria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Ibrahim Malami
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria.,Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P.M.B 2346, Sokoto, Nigeria
| | - Kasimu Ghandi Ibrahim
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria.,Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, P.M.B, 2254, Sokoto, Nigeria
| | - Bilyaminu Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria.,Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P.M.B 2346, Sokoto, Nigeria
| | - Muhammad Bashir Bello
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria.,Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, Hebersham, Australia.,AFNP Med Austria, Wien, Austria
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, P.M.B. 2346, Sokoto, Nigeria.,Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, P.M.B, 2254, Sokoto, Nigeria
| |
Collapse
|
49
|
Nilsson EE, Ben Maamar M, Skinner MK. Role of epigenetic transgenerational inheritance in generational toxicology. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac001. [PMID: 35186326 PMCID: PMC8848501 DOI: 10.1093/eep/dvac001] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/04/2021] [Accepted: 02/03/2022] [Indexed: 05/27/2023]
Abstract
Many environmental toxicants have been shown to be associated with the transgenerational inheritance of increased disease susceptibility. This review describes the generational toxicity of some of these chemicals and their role in the induction of epigenetic transgenerational inheritance of disease. Epigenetic factors include DNA methylation, histone modifications, retention of histones in sperm, changes to chromatin structure, and expression of non-coding RNAs. For toxicant-induced epigenetic transgenerational inheritance to occur, exposure to a toxicant must result in epigenetic changes to germ cells (sperm or eggs) since it is the germ cells that carry molecular information to subsequent generations. In addition, the epigenetic changes induced in transgenerational generation animals must cause alterations in gene expression in these animals' somatic cells. In some cases of generational toxicology, negligible changes are seen in the directly exposed generations, but increased disease rates are seen in transgenerational descendants. Governmental policies regulating toxicant exposure should take generational effects into account. A new approach that takes into consideration generational toxicity will be needed to protect our future populations.
Collapse
Affiliation(s)
- Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Michael K Skinner
- **Correspondence address. Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA. Tel: +509-335-1524; E-mail:
| |
Collapse
|
50
|
Fujii Y, Amatya VJ, Kushitani K, Suzuki R, Kai Y, Kambara T, Takeshima Y. Downregulation of lncRNA PVT1 inhibits proliferation and migration of mesothelioma cells by targeting FOXM1. Oncol Rep 2021; 47:27. [PMID: 34859258 PMCID: PMC8674703 DOI: 10.3892/or.2021.8238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/12/2021] [Indexed: 11/08/2022] Open
Abstract
Malignant mesothelioma is a highly aggressive tumor, and an effective strategy for its treatment is not yet available. Long non-coding RNAs (lncRNAs) have been reported to be associated with various biological processes, including the regulation of gene expression of cancer-related pathways. Among various lncRNAs, plasmacytoma variant translocation 1 (PVT1) acts as a tumor promoter in several human cancers, but its mechanism of action has not yet been elucidated. Increased PVT1 expression was identified in ACC-MESO-1, ACC-MESO-4, CRL-5915, and CRL-5946 mesothelioma cell lines. PVT1 expression was investigated in mesothelioma cell lines by reverse transcription-quantitative polymerase chain reaction and its functional analysis by cell proliferation, cell cycle, cell migration, and cell invasion assays, as well as western blot analysis of downstream target genes. Knockdown of PVT1 expression in these cell lines by small interfering RNA transfection resulted in decreased cell proliferation and migration and increased the proportion of cells in the G2/M phase. The results of reverse transcription-quantitative polymerase chain reaction analysis revealed that PVT1 knockdown in mesothelioma cell lines caused the downregulation of Forkhead box M1 (FOXM1) expression, while the results of western blot analysis revealed that this knockdown reduced FOXM1 expression at the protein level. In addition, combined knockdown of PVT1 and FOXM1 decreased the proliferation of mesothelioma cell lines. In conclusion, PVT1 and FOXM1 were involved in the proliferation of cancer cells. Therefore, PVT1-FOXM1 pathways may be considered as candidate targets for the treatment of malignant mesothelioma.
Collapse
Affiliation(s)
- Yutaro Fujii
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Vishwa Jeet Amatya
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Kei Kushitani
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Rui Suzuki
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Yuichiro Kai
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Takahiro Kambara
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Yukio Takeshima
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| |
Collapse
|