1
|
An Z, Jiang A, Chen J. Toward understanding the role of genomic repeat elements in neurodegenerative diseases. Neural Regen Res 2025; 20:646-659. [PMID: 38886931 PMCID: PMC11433896 DOI: 10.4103/nrr.nrr-d-23-01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 03/02/2024] [Indexed: 06/20/2024] Open
Abstract
Neurodegenerative diseases cause great medical and economic burdens for both patients and society; however, the complex molecular mechanisms thereof are not yet well understood. With the development of high-coverage sequencing technology, researchers have started to notice that genomic repeat regions, previously neglected in search of disease culprits, are active contributors to multiple neurodegenerative diseases. In this review, we describe the association between repeat element variants and multiple degenerative diseases through genome-wide association studies and targeted sequencing. We discuss the identification of disease-relevant repeat element variants, further powered by the advancement of long-read sequencing technologies and their related tools, and summarize recent findings in the molecular mechanisms of repeat element variants in brain degeneration, such as those causing transcriptional silencing or RNA-mediated gain of toxic function. Furthermore, we describe how in silico predictions using innovative computational models, such as deep learning language models, could enhance and accelerate our understanding of the functional impact of repeat element variants. Finally, we discuss future directions to advance current findings for a better understanding of neurodegenerative diseases and the clinical applications of genomic repeat elements.
Collapse
Affiliation(s)
- Zhengyu An
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Aidi Jiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jingqi Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| |
Collapse
|
2
|
Nietz AK, Popa LS, Carter RE, Gerhart ML, Manikonda K, Ranum LPW, Ebner TJ. Cerebral cortical functional hyperconnectivity in a mouse model of spinocerebellar ataxia type 8 (SCA8). Neurobiol Dis 2025; 206:106795. [PMID: 39788161 PMCID: PMC11951115 DOI: 10.1016/j.nbd.2025.106795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/18/2024] [Accepted: 01/04/2025] [Indexed: 01/12/2025] Open
Abstract
Spinocerebellar Ataxia Type 8 (SCA8) is an inherited neurodegenerative disease caused by a bidirectionally expressed CTG•CAG expansion mutation in the ATXN8 and ATXN8OS genes. While SCA8 patients have motor abnormalities, patients may also exhibit psychiatric symptoms and cognitive dysfunction. It is difficult to elucidate how the disease alters brain function in areas with little or no degeneration producing both motor and cognitive symptoms. Using transparent polymer skulls and CNS-wide GCaMP6f expression, we studied neocortical networks throughout SCA8 progression using wide-field Ca2+ imaging in a transgenic mouse model of SCA8. Compared to wild-type controls, neocortical networks in SCA8+ mice were hyperconnected globally, which leads to network configurations with increased global efficiency and centrality. At the regional level, significant network changes occurred in nearly all cortical regions, however mainly involved sensory and association cortices. Changes in functional connectivity in anterior motor regions worsened later in the disease. Near perfect decoding of animal genotype was obtained using a generalized linear model based on canonical correlation strengths between activity in cortical regions. The major contributors to decoding were concentrated in the somatosensory, higher visual and retrosplenial cortices and occasionally extended into the motor regions, demonstrating that the areas with the largest network changes are predictive of disease state.
Collapse
Affiliation(s)
- Angela K Nietz
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laurentiu S Popa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Russell E Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Morgan L Gerhart
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Keerthi Manikonda
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laura P W Ranum
- Center for Neurogenetics, Department of Molecular Genetics & Microbiology, College of Medicine, McKnight Brain Institute, Genetics Institute and Fixel Institute, University of Florida, Gainesville, FL 32610, USA
| | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
3
|
Aliyeva A, Lennon CD, Cleary JD, Shorrock HK, Berglund JA. Dysregulation of alternative splicing is a transcriptomic feature of patient-derived fibroblasts from CAG repeat expansion spinocerebellar ataxias. Hum Mol Genet 2025; 34:239-250. [PMID: 39589088 PMCID: PMC11792238 DOI: 10.1093/hmg/ddae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024] Open
Abstract
The spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of rare dominantly inherited neurodegenerative diseases characterized by progressive ataxia. The most common mutation seen across the SCAs is a CAG repeat expansion, causative for SCA1, 2, 3, 6, 7, 12 and 17. We recently identified dysregulation of alternative splicing as a novel, presymptomatic transcriptomic hallmark in mouse models of SCAs 1, 3 and 7. In order to understand if dysregulation of alternative splicing is a transcriptomic feature of patient-derived cell models of CAG SCAs, we performed RNA sequencing and transcriptomic analysis in patient-derived fibroblast cell lines of SCAs 1, 3 and 7. We identified widespread and robust dysregulation of alternative splicing across all CAG expansion SCA lines investigated, with disease relevant pathways affected, such as microtubule-based processes, transcriptional regulation, and DNA damage and repair. Novel disease-relevant alternative splicing events were validated across patient-derived fibroblast lines from multiple CAG SCAs and CAG containing reporter cell lines. Together this study demonstrates that dysregulation of alternative splicing represents a novel and shared pathogenic process in CAG expansion SCA1, 3 and 7 and can potentially be used as a biomarker across patient models of this group of devastating neurodegenerative diseases.
Collapse
Affiliation(s)
- Asmer Aliyeva
- RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
- Department of Biological Sciences, University at Albany, 1400 Washington Avenue, State University of New York, Albany, NY 12222, United States
| | - Claudia D Lennon
- RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - John D Cleary
- RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Hannah K Shorrock
- RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
- Department of Biological Sciences, University at Albany, 1400 Washington Avenue, State University of New York, Albany, NY 12222, United States
| | - J Andrew Berglund
- RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
- Department of Biological Sciences, University at Albany, 1400 Washington Avenue, State University of New York, Albany, NY 12222, United States
| |
Collapse
|
4
|
Dansereau SJ, Cui H, Dartawan RP, Sheng J. The Plethora of RNA-Protein Interactions Model a Basis for RNA Therapies. Genes (Basel) 2025; 16:48. [PMID: 39858595 PMCID: PMC11765398 DOI: 10.3390/genes16010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
The notion of RNA-based therapeutics has gained wide attractions in both academic and commercial institutions. RNA is a polymer of nucleic acids that has been proven to be impressively versatile, dating to its hypothesized RNA World origins, evidenced by its enzymatic roles in facilitating DNA replication, mRNA decay, and protein synthesis. This is underscored through the activities of riboswitches, spliceosomes, ribosomes, and telomerases. Given its broad range of interactions within the cell, RNA can be targeted by a therapeutic or modified as a pharmacologic scaffold for diseases such as nucleotide repeat disorders, infectious diseases, and cancer. RNA therapeutic techniques that have been researched include, but are not limited to, CRISPR/Cas gene editing, anti-sense oligonucleotides (ASOs), siRNA, small molecule treatments, and RNA aptamers. The knowledge gleaned from studying RNA-centric mechanisms will inevitably improve the design of RNA-based therapeutics. Building on this understanding, we explore the physiological diversity of RNA functions, examine specific dysfunctions, such as splicing errors and viral interactions, and discuss their therapeutic implications.
Collapse
Affiliation(s)
| | | | | | - Jia Sheng
- Department of Chemistry, The RNA Institute, University at Albany, SUNY, 1400 Washington Ave Extension, Albany, NY 12222, USA; (S.J.D.); (H.C.)
| |
Collapse
|
5
|
Pan F, Xu P, Roland C, Sagui C, Weninger K. Structural and Dynamical Properties of Nucleic Acid Hairpins Implicated in Trinucleotide Repeat Expansion Diseases. Biomolecules 2024; 14:1278. [PMID: 39456210 PMCID: PMC11505666 DOI: 10.3390/biom14101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Dynamic mutations in some human genes containing trinucleotide repeats are associated with severe neurodegenerative and neuromuscular disorders-known as Trinucleotide (or Triplet) Repeat Expansion Diseases (TREDs)-which arise when the repeat number of triplets expands beyond a critical threshold. While the mechanisms causing the DNA triplet expansion are complex and remain largely unknown, it is now recognized that the expandable repeats lead to the formation of nucleotide configurations with atypical structural characteristics that play a crucial role in TREDs. These nonstandard nucleic acid forms include single-stranded hairpins, Z-DNA, triplex structures, G-quartets and slipped-stranded duplexes. Of these, hairpin structures are the most prolific and are associated with the largest number of TREDs and have therefore been the focus of recent single-molecule FRET experiments and molecular dynamics investigations. Here, we review the structural and dynamical properties of nucleic acid hairpins that have emerged from these studies and the implications for repeat expansion mechanisms. The focus will be on CAG, GAC, CTG and GTC hairpins and their stems, their atomistic structures, their stability, and the important role played by structural interrupts.
Collapse
Affiliation(s)
- Feng Pan
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Pengning Xu
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
| |
Collapse
|
6
|
Uguen K, Michaud JL, Génin E. Short Tandem Repeats in the era of next-generation sequencing: from historical loci to population databases. Eur J Hum Genet 2024; 32:1037-1044. [PMID: 38982300 PMCID: PMC11369099 DOI: 10.1038/s41431-024-01666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
In this study, we explore the landscape of short tandem repeats (STRs) within the human genome through the lens of evolving technologies to detect genomic variations. STRs, which encompass approximately 3% of our genomic DNA, are crucial for understanding human genetic diversity, disease mechanisms, and evolutionary biology. The advent of high-throughput sequencing methods has revolutionized our ability to accurately map and analyze STRs, highlighting their significance in genetic disorders, forensic science, and population genetics. We review the current available methodologies for STR analysis, the challenges in interpreting STR variations across different populations, and the implications of STRs in medical genetics. Our findings underscore the urgent need for comprehensive STR databases that reflect the genetic diversity of global populations, facilitating the interpretation of STR data in clinical diagnostics, genetic research, and forensic applications. This work sets the stage for future studies aimed at harnessing STR variations to elucidate complex genetic traits and diseases, reinforcing the importance of integrating STRs into genetic research and clinical practice.
Collapse
Affiliation(s)
- Kevin Uguen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.
- Service de Génétique Médicale et Biologie de la Reproduction, CHU de Brest, Brest, France.
- CHU Sainte-Justine Azrieli Research Centre, Montréal, QC, Canada.
| | - Jacques L Michaud
- CHU Sainte-Justine Azrieli Research Centre, Montréal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | | |
Collapse
|
7
|
Peng S, Cai X, Chen J, Sun J, Lai B, Chang M, Xing L. The role of CELF family in neurodevelopment and neurodevelopmental disorders. Neurobiol Dis 2024; 197:106525. [PMID: 38729272 DOI: 10.1016/j.nbd.2024.106525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/26/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024] Open
Abstract
RNA-binding proteins (RBPs) bind to RNAs and are crucial for regulating RNA splicing, stability, translation, and transport. Among these proteins, the CUGBP Elav-like family (CELF) is a highly conserved group crucial for posttranscriptional regulation by binding to CUG repeats. Comprising CELF1-6, this family exhibits diverse expression patterns and functions. Dysregulation of CELF has been implicated in various neural disorders, encompassing both neurodegenerative and neurodevelopmental conditions, such as Alzheimer's disease and autism. This article aims to provide a comprehensive summary of the CELF family's role in neurodevelopment and neurodevelopmental disorders. Understanding CELF's mechanisms may offer clues for potential therapeutic strategies by regulating their targets in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Siwan Peng
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Xinyi Cai
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Junpeng Chen
- School of Nursing and Rehabilitation, Nantong University, China
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Biqin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Min Chang
- School of Education Science, Nantong University, Nantong 226019, China.
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China.
| |
Collapse
|
8
|
Rajan-Babu IS, Dolzhenko E, Eberle MA, Friedman JM. Sequence composition changes in short tandem repeats: heterogeneity, detection, mechanisms and clinical implications. Nat Rev Genet 2024; 25:476-499. [PMID: 38467784 DOI: 10.1038/s41576-024-00696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/13/2024]
Abstract
Short tandem repeats (STRs) are a class of repetitive elements, composed of tandem arrays of 1-6 base pair sequence motifs, that comprise a substantial fraction of the human genome. STR expansions can cause a wide range of neurological and neuromuscular conditions, known as repeat expansion disorders, whose age of onset, severity, penetrance and/or clinical phenotype are influenced by the length of the repeats and their sequence composition. The presence of non-canonical motifs, depending on the type, frequency and position within the repeat tract, can alter clinical outcomes by modifying somatic and intergenerational repeat stability, gene expression and mutant transcript-mediated and/or protein-mediated toxicities. Here, we review the diverse structural conformations of repeat expansions, technological advances for the characterization of changes in sequence composition, their clinical correlations and the impact on disease mechanisms.
Collapse
Affiliation(s)
- Indhu-Shree Rajan-Babu
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada.
| | | | | | - Jan M Friedman
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Nietz AK, Popa LS, Carter RE, Gerhart ML, Manikonda K, Ranum LP, Ebner TJ. Cerebral cortical functional hyperconnectivity in a mouse model of spinocerebellar ataxia type 8 (SCA8). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599947. [PMID: 38948725 PMCID: PMC11212952 DOI: 10.1101/2024.06.20.599947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Spinocerebellar Ataxia Type 8 (SCA8) is an inherited neurodegenerative disease caused by a bidirectionally expressed CTG●CAG expansion mutation in the ATXN-8 and ATXN8-OS genes. While primarily a motor disorder, psychiatric and cognitive symptoms have been reported. It is difficult to elucidate how the disease alters brain function in areas with little or no degeneration producing both motor and cognitive symptoms. Using transparent polymer skulls and CNS-wide GCaMP6f expression, we studied neocortical networks throughout SCA8 progression using wide-field Ca2+ imaging in a transgenic mouse model of SCA8. We observed that neocortical networks in SCA8+ mice were hyperconnected globally which led to network configurations with increased global efficiency and centrality. At the regional level, significant network changes occurred in nearly all cortical regions, however mainly involved sensory and association cortices. Changes in functional connectivity in anterior motor regions worsened later in the disease. Near perfect decoding of animal genotype was obtained using a generalized linear model based on canonical correlation strengths between activity in cortical regions. The major contributors to decoding were concentrated in the somatosensory, higher visual and retrosplenial cortices and occasionally extended into the motor regions, demonstrating that the areas with the largest network changes are predictive of disease state.
Collapse
Affiliation(s)
- Angela K. Nietz
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Laurentiu S. Popa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Russell E. Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Morgan L Gerhart
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Keerthi Manikonda
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Laura P.W. Ranum
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
10
|
Shorrock HK, Lennon CD, Aliyeva A, Davey EE, DeMeo CC, Pritchard CE, Planco L, Velez JM, Mascorro-Huamancaja A, Shin DS, Cleary JD, Berglund JA. Widespread alternative splicing dysregulation occurs presymptomatically in CAG expansion spinocerebellar ataxias. Brain 2024; 147:486-504. [PMID: 37776516 PMCID: PMC10834251 DOI: 10.1093/brain/awad329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/31/2023] [Accepted: 09/03/2023] [Indexed: 10/02/2023] Open
Abstract
The spinocerebellar ataxias (SCAs) are a group of dominantly inherited neurodegenerative diseases, several of which are caused by CAG expansion mutations (SCAs 1, 2, 3, 6, 7 and 12) and more broadly belong to the large family of over 40 microsatellite expansion diseases. While dysregulation of alternative splicing is a well defined driver of disease pathogenesis across several microsatellite diseases, the contribution of alternative splicing in CAG expansion SCAs is poorly understood. Furthermore, despite extensive studies on differential gene expression, there remains a gap in our understanding of presymptomatic transcriptomic drivers of disease. We sought to address these knowledge gaps through a comprehensive study of 29 publicly available RNA-sequencing datasets. We identified that dysregulation of alternative splicing is widespread across CAG expansion mouse models of SCAs 1, 3 and 7. These changes were detected presymptomatically, persisted throughout disease progression, were repeat length-dependent, and were present in brain regions implicated in SCA pathogenesis including the cerebellum, pons and medulla. Across disease progression, changes in alternative splicing occurred in genes that function in pathways and processes known to be impaired in SCAs, such as ion channels, synaptic signalling, transcriptional regulation and the cytoskeleton. We validated several key alternative splicing events with known functional consequences, including Trpc3 exon 9 and Kcnma1 exon 23b, in the Atxn1154Q/2Q mouse model. Finally, we demonstrated that alternative splicing dysregulation is responsive to therapeutic intervention in CAG expansion SCAs with Atxn1 targeting antisense oligonucleotide rescuing key splicing events. Taken together, these data demonstrate that widespread presymptomatic dysregulation of alternative splicing in CAG expansion SCAs may contribute to disease onset, early neuronal dysfunction and may represent novel biomarkers across this devastating group of neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Claudia D Lennon
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | - Asmer Aliyeva
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
- Department of Biology, University at Albany—SUNY, Albany, NY 12222, USA
| | - Emily E Davey
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | - Cristina C DeMeo
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | | | - Lori Planco
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | - Jose M Velez
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
- Department of Biology, University at Albany—SUNY, Albany, NY 12222, USA
| | | | - Damian S Shin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - John D Cleary
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | - J Andrew Berglund
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
- Department of Biology, University at Albany—SUNY, Albany, NY 12222, USA
| |
Collapse
|
11
|
Atrian F, Ramirez P, De Mange J, Marquez M, Gonzalez EM, Minaya M, Karch CM, Frost B. m6A-dependent circular RNA formation mediates tau-induced neurotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577211. [PMID: 38328044 PMCID: PMC10849734 DOI: 10.1101/2024.01.25.577211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Circular RNAs (circRNAs), covalently closed RNA molecules that form due to back-splicing of RNA transcripts, have recently been implicated in Alzheimer's disease and related tauopathies. circRNAs are regulated by N6-methyladenosine (m6A) RNA methylation, can serve as "sponges" for proteins and RNAs, and can be translated into protein via a cap-independent mechanism. Mechanisms underlying circRNA dysregulation in tauopathies and causal relationships between circRNA and neurodegeneration are currently unknown. In the current study, we aimed to determine whether pathogenic forms of tau drive circRNA dysregulation and whether such dysregulation causally mediates neurodegeneration. We identify circRNAs that are differentially expressed in the brain of a Drosophila model of tauopathy and in induced pluripotent stem cell (iPSC)-derived neurons carrying a tau mutation associated with autosomal dominant tauopathy. We leverage Drosophila to discover that depletion of circular forms of muscleblind (circMbl), a circRNA that is particularly abundant in brains of tau transgenic Drosophila, significantly suppresses tau neurotoxicity, suggesting that tau-induced circMbl elevation is neurotoxic. We detect a general elevation of m6A RNA methylation and circRNA methylation in tau transgenic Drosophila and find that tau-induced m6A methylation is a mechanistic driver of circMbl formation. Interestingly, we find that circRNA and m6A RNA accumulate within nuclear envelope invaginations of tau transgenic Drosophila and in iPSC-derived cerebral organoid models of tauopathy. Taken together, our studies add critical new insight into the mechanisms underlying circRNA dysregulation in tauopathy and identify m6A-modified circRNA as a causal factor contributing to neurodegeneration. These findings add to a growing literature implicating pathogenic forms of tau as drivers of altered RNA metabolism.
Collapse
Affiliation(s)
- Farzaneh Atrian
- Sam & Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX
- Department of Cell Systems and Anatomy, San Antonio, TX
- University of Texas Health San Antonio, San Antonio, TX
| | - Paulino Ramirez
- Sam & Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX
- Department of Cell Systems and Anatomy, San Antonio, TX
- University of Texas Health San Antonio, San Antonio, TX
| | - Jasmine De Mange
- Sam & Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX
- Department of Cell Systems and Anatomy, San Antonio, TX
- University of Texas Health San Antonio, San Antonio, TX
| | - Marissa Marquez
- Sam & Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX
- Department of Cell Systems and Anatomy, San Antonio, TX
- University of Texas Health San Antonio, San Antonio, TX
| | - Elias M. Gonzalez
- Sam & Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX
- Department of Cell Systems and Anatomy, San Antonio, TX
- University of Texas Health San Antonio, San Antonio, TX
| | - Miguel Minaya
- Department of Psychiatry, Washington University, St Louis, MO
| | | | - Bess Frost
- Sam & Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX
- Department of Cell Systems and Anatomy, San Antonio, TX
- University of Texas Health San Antonio, San Antonio, TX
| |
Collapse
|
12
|
Kumar M, Tyagi N, Faruq M. The molecular mechanisms of spinocerebellar ataxias for DNA repeat expansion in disease. Emerg Top Life Sci 2023; 7:289-312. [PMID: 37668011 DOI: 10.1042/etls20230013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Spinocerebellar ataxias (SCAs) are a heterogenous group of neurodegenerative disorders which commonly inherited in an autosomal dominant manner. They cause muscle incoordination due to degeneration of the cerebellum and other parts of nervous system. Out of all the characterized (>50) SCAs, 14 SCAs are caused due to microsatellite repeat expansion mutations. Repeat expansions can result in toxic protein gain-of-function, protein loss-of-function, and/or RNA gain-of-function effects. The location and the nature of mutation modulate the underlying disease pathophysiology resulting in varying disease manifestations. Potential toxic effects of these mutations likely affect key major cellular processes such as transcriptional regulation, mitochondrial functioning, ion channel dysfunction and synaptic transmission. Involvement of several common pathways suggests interlinked function of genes implicated in the disease pathogenesis. A better understanding of the shared and distinct molecular pathogenic mechanisms in these diseases is required to develop targeted therapeutic tools and interventions for disease management. The prime focus of this review is to elaborate on how expanded 'CAG' repeats contribute to the common modes of neurotoxicity and their possible therapeutic targets in management of such devastating disorders.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Nishu Tyagi
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Mohammed Faruq
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| |
Collapse
|
13
|
Sarasamma S, Karim A, Orengo JP. Zebrafish Models of Rare Neurological Diseases like Spinocerebellar Ataxias (SCAs): Advantages and Limitations. BIOLOGY 2023; 12:1322. [PMID: 37887032 PMCID: PMC10604122 DOI: 10.3390/biology12101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
Spinocerebellar ataxia (SCA) is a heterogeneous group of rare familial neurodegenerative disorders that share the key feature of cerebellar ataxia. Clinical heterogeneity, diverse gene mutations and complex neuropathology pose significant challenges for developing effective disease-modifying therapies in SCAs. Without a deep understanding of the molecular mechanisms involved for each SCA, we cannot succeed in developing targeted therapies. Animal models are our best tool to address these issues and several have been generated to study the pathological conditions of SCAs. Among them, zebrafish (Danio rerio) models are emerging as a powerful tool for in vivo study of SCAs, as well as rapid drug screens. In this review, we will summarize recent progress in using zebrafish to study the pathology of SCAs. We will discuss recent advancements on how zebrafish models can further clarify underlying genetic, neuroanatomical, and behavioral pathogenic mechanisms of disease. We highlight their usefulness in rapid drug discovery and large screens. Finally, we will discuss the advantages and limitations of this in vivo model to develop tailored therapeutic strategies for SCA.
Collapse
Affiliation(s)
- Sreeja Sarasamma
- Departments of Neurology and Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Anwarul Karim
- School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - James P. Orengo
- Departments of Neurology and Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
14
|
Fakharzadeh A, Qu J, Pan F, Sagui C, Roland C. Structure and Dynamics of DNA and RNA Double Helices Formed by d(CTG), d(GTC), r(CUG), and r(GUC) Trinucleotide Repeats and Associated DNA-RNA Hybrids. J Phys Chem B 2023; 127:7907-7924. [PMID: 37681731 PMCID: PMC10519205 DOI: 10.1021/acs.jpcb.3c03538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/11/2023] [Indexed: 09/09/2023]
Abstract
Myotonic dystrophy type 1 is the most frequent form of muscular dystrophy in adults caused by an abnormal expansion of the CTG trinucleotide. Both the expanded DNA and the expanded CUG RNA transcript can fold into hairpins. Co-transcriptional formation of stable RNA·DNA hybrids can also enhance the instability of repeat tracts. We performed molecular dynamics simulations of homoduplexes associated with the disease, d(CTG)n and r(CUG)n, and their corresponding r(CAG)n:d(CTG)n and r(CUG)n:d(CAG)n hybrids that can form under bidirectional transcription and of non-pathological d(GTC)n and d(GUC)n homoduplexes. We characterized their conformations, stability, and dynamics and found that the U·U and T·T mismatches are dynamic, favoring anti-anti conformations inside the helical core, followed by anti-syn and syn-syn conformations. For DNA, the secondary minima in the non-expanding d(GTC)n helices are deeper, wider, and longer-lived than those in d(CTG)n, which constitutes another biophysical factor further differentiating the expanding and non-expanding sequences. The hybrid helices are closer to A-RNA, with the A-T and A-U pairs forming two stable Watson-Crick hydrogen bonds. The neutralizing ion distribution around the non-canonical pairs is also described.
Collapse
Affiliation(s)
- Ashkan Fakharzadeh
- Department
of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Jing Qu
- Department
of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Feng Pan
- Department
of Statistics, Florida State University, Tallahassee, Florida 32306, USA
| | - Celeste Sagui
- Department
of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Christopher Roland
- Department
of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| |
Collapse
|
15
|
Nitschke L, Hu RC, Miller A, Lucas L, Cooper T. Alternative splicing mediates the compensatory upregulation of MBNL2 upon MBNL1 loss-of-function. Nucleic Acids Res 2023; 51:1245-1259. [PMID: 36617982 PMCID: PMC9943662 DOI: 10.1093/nar/gkac1219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/05/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
Loss of gene function can be compensated by paralogs with redundant functions. An example of such compensation are the paralogs of the Muscleblind-Like (MBNL) family of RNA-binding proteins that are sequestered and lose their function in Myotonic Dystrophy Type 1 (DM1). Loss of MBNL1 increases the levels of its paralog MBNL2 in tissues where Mbnl2 expression is low, allowing MBNL2 to functionally compensate for MBNL1 loss. Here, we show that loss of MBNL1 increases the inclusion of Mbnl2 exon 6 and exon 9. We find that inclusion of Mbnl2 exon 6 increases the translocation of MBNL2 to the nucleus, while the inclusion of Mbnl2 exon 9 shifts the reading frame to an alternative C-terminus. We show that the C-terminus lacking exon 9 contains a PEST domain which causes proteasomal degradation. Loss of MBNL1 increases the inclusion of exon 9, resulting in an alternative C-terminus lacking the PEST domain and the increase of MBNL2. We further find that the compensatory mechanism is active in a mouse DM1 model. Together, this study uncovers the compensatory mechanism by which loss of MBNL1 upregulates its paralog MBNL2 and highlights a potential role of the compensatory mechanism in DM1.
Collapse
Affiliation(s)
- Larissa Nitschke
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rong-Chi Hu
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrew N Miller
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lathan Lucas
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Chemical, Physical & Structural Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas A Cooper
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
16
|
Xuan C, Yang E, Zhao S, Xu J, Li P, Zhang Y, Jiang Z, Ding X. Regulation of LncRNAs and microRNAs in neuronal development and disease. PeerJ 2023; 11:e15197. [PMID: 37038472 PMCID: PMC10082570 DOI: 10.7717/peerj.15197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/15/2023] [Indexed: 04/12/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are RNAs that do not encode proteins but play important roles in regulating cellular processes. Multiple studies over the past decade have demonstrated the role of microRNAs (miRNAs) in cancer, in which some miRNAs can act as biomarkers or provide therapy target. Accumulating evidence also points to the importance of long non-coding RNAs (lncRNAs) in regulating miRNA-mRNA networks. An increasing number of ncRNAs have been shown to be involved in the regulation of cellular processes, and dysregulation of ncRNAs often heralds disease. As the population ages, the incidence of neurodegenerative diseases is increasing, placing enormous pressure on global health systems. Given the excellent performance of ncRNAs in early cancer screening and treatment, here we attempted to aggregate and analyze the regulatory functions of ncRNAs in neuronal development and disease. In this review, we summarize current knowledge on ncRNA taxonomy, biogenesis, and function, and discuss current research progress on ncRNAs in relation to neuronal development, differentiation, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Cheng Xuan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
| | - Enyu Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
| | - Shuo Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
| | - Juan Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
| | - Peihang Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
| | - Yaping Zhang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang Province, China
| | - Zhenggang Jiang
- Department of Science Research and Information Management, Zhejiang Provincial Centers for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Xianfeng Ding
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
17
|
Younger DS. Neurogenetic motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:183-250. [PMID: 37562870 DOI: 10.1016/b978-0-323-98818-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Advances in the field of neurogenetics have practical applications in rapid diagnosis on blood and body fluids to extract DNA, obviating the need for invasive investigations. The ability to obtain a presymptomatic diagnosis through genetic screening and biomarkers can be a guide to life-saving disease-modifying therapy or enzyme replacement therapy to compensate for the deficient disease-causing enzyme. The benefits of a comprehensive neurogenetic evaluation extend to family members in whom identification of the causal gene defect ensures carrier detection and at-risk counseling for future generations. This chapter explores the many facets of the neurogenetic evaluation in adult and pediatric motor disorders as a primer for later chapters in this volume and a roadmap for the future applications of genetics in neurology.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
18
|
Fisher E, Feng J. RNA splicing regulators play critical roles in neurogenesis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1728. [PMID: 35388651 DOI: 10.1002/wrna.1728] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Alternative RNA splicing increases transcript diversity in different cell types and under varying conditions. It is executed with the help of RNA splicing regulators (RSRs), which are operationally defined as RNA-binding proteins (RBPs) that regulate alternative splicing, but not directly catalyzing the chemical reactions of splicing. By systematically searching for RBPs and manually identifying those that regulate splicing, we curated 305 RSRs in the human genome. Surprisingly, most of the RSRs are involved in neurogenesis. Among these RSRs, we focus on nine families (PTBP, NOVA, RBFOX, ELAVL, CELF, DBHS, MSI, PCBP, and MBNL) that play essential roles in the neurogenic pathway. A better understanding of their functions will provide novel insights into the role of splicing in brain development, health, and disease. This comprehensive review serves as a stepping-stone to explore the diverse and complex set of RSRs as fundamental regulators of neural development. This article is categorized under: RNA-Based Catalysis > RNA Catalysis in Splicing and Translation RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Emily Fisher
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York, USA
- Veterans Affairs Western New York Healthcare System, Buffalo, New York, USA
| | - Jian Feng
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York, USA
- Veterans Affairs Western New York Healthcare System, Buffalo, New York, USA
| |
Collapse
|
19
|
Development of Therapeutic Approaches for Myotonic Dystrophies Type 1 and Type 2. Int J Mol Sci 2022; 23:ijms231810491. [PMID: 36142405 PMCID: PMC9499601 DOI: 10.3390/ijms231810491] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Myotonic Dystrophies type 1 (DM1) and type 2 (DM2) are complex multisystem diseases without disease-based therapies. These disorders are caused by the expansions of unstable CTG (DM1) and CCTG (DM2) repeats outside of the coding regions of the disease genes: DMPK in DM1 and CNBP in DM2. Multiple clinical and molecular studies provided a consensus for DM1 pathogenesis, showing that the molecular pathophysiology of DM1 is associated with the toxicity of RNA CUG repeats, which cause multiple disturbances in RNA metabolism in patients' cells. As a result, splicing, translation, RNA stability and transcription of multiple genes are misregulated in DM1 cells. While mutant CCUG repeats are the main cause of DM2, additional factors might play a role in DM2 pathogenesis. This review describes current progress in the translation of mechanistic knowledge in DM1 and DM2 to clinical trials, with a focus on the development of disease-specific therapies for patients with adult forms of DM1 and congenital DM1 (CDM1).
Collapse
|
20
|
Braun M, Shoshani S, Teixeira J, Mellul Shtern A, Miller M, Granot Z, Fischer SE, Garcia SMA, Tabach Y. Asymmetric inheritance of RNA toxicity in C. elegans expressing CTG repeats. iScience 2022; 25:104246. [PMID: 35494247 PMCID: PMC9051633 DOI: 10.1016/j.isci.2022.104246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
Nucleotide repeat expansions are a hallmark of over 40 neurodegenerative diseases and cause RNA toxicity and multisystemic symptoms that worsen with age. Through an unclear mechanism, RNA toxicity can trigger severe disease manifestation in infants if the repeats are inherited from their mother. Here we use Caenorhabditis elegans bearing expanded CUG repeats to show that this asymmetric intergenerational inheritance of toxicity contributes to disease pathogenesis. In addition, we show that this mechanism is dependent on small RNA pathways with maternal repeat-derived small RNAs causing transcriptomic changes in the offspring, reduced motility, and shortened lifespan. We rescued the toxicity phenotypes in the offspring by perturbing the RNAi machinery in the affected hermaphrodites. This points to a novel mechanism linking maternal bias and the RNAi machinery and suggests that toxic RNA is transmitted to offspring, causing disease phenotypes through intergenerational epigenetic inheritance. Maternal origin of expanded CUG repeats induces RNA toxicity in Caenorhabditis elegans offspring Offspring of affected hermaphrodites show molecular and phenotypic disease phenotypes The RNAi machinery is directly related to the maternal inheritance of RNA toxicity Altering the RNAi machinery in affected hermaphrodites rescues toxicity in offspring
Collapse
Affiliation(s)
- Maya Braun
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Shachar Shoshani
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Joana Teixeira
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790 Finland
| | - Anna Mellul Shtern
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Maya Miller
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Sylvia E.J. Fischer
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Susana M.D. A. Garcia
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790 Finland
- Corresponding author
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Corresponding author
| |
Collapse
|
21
|
Arandel L, Matloka M, Klein AF, Rau F, Sureau A, Ney M, Cordier A, Kondili M, Polay-Espinoza M, Naouar N, Ferry A, Lemaitre M, Begard S, Colin M, Lamarre C, Tran H, Buée L, Marie J, Sergeant N, Furling D. Reversal of RNA toxicity in myotonic dystrophy via a decoy RNA-binding protein with high affinity for expanded CUG repeats. Nat Biomed Eng 2022; 6:207-220. [PMID: 35145256 DOI: 10.1038/s41551-021-00838-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/07/2021] [Indexed: 12/19/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is an RNA-dominant disease whose pathogenesis stems from the functional loss of muscleblind-like RNA-binding proteins (RBPs), which causes the formation of alternative-splicing defects. The loss of functional muscleblind-like protein 1 (MBNL1) results from its nuclear sequestration by mutant transcripts containing pathogenic expanded CUG repeats (CUGexp). Here we show that an RBP engineered to act as a decoy for CUGexp reverses the toxicity of the mutant transcripts. In vitro, the binding of the RBP decoy to CUGexp in immortalized muscle cells derived from a patient with DM1 released sequestered endogenous MBNL1 from nuclear RNA foci, restored MBNL1 activity, and corrected the transcriptomic signature of DM1. In mice with DM1, the local or systemic delivery of the RBP decoy via an adeno-associated virus into the animals' skeletal muscle led to the long-lasting correction of the splicing defects and to ameliorated disease pathology. Our findings support the development of decoy RBPs with high binding affinities for expanded RNA repeats as a therapeutic strategy for myotonic dystrophies.
Collapse
Affiliation(s)
- Ludovic Arandel
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Magdalena Matloka
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Arnaud F Klein
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Frédérique Rau
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Alain Sureau
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Michel Ney
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Aurélien Cordier
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Maria Kondili
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Micaela Polay-Espinoza
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Naira Naouar
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Arnaud Ferry
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Mégane Lemaitre
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.,Sorbonne Université, Inserm, Phénotypage du petit animal, Paris, France
| | - Séverine Begard
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France
| | - Morvane Colin
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France
| | - Chloé Lamarre
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France
| | - Hélène Tran
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France
| | - Luc Buée
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France
| | - Joëlle Marie
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Nicolas Sergeant
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France.
| | - Denis Furling
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.
| |
Collapse
|
22
|
Loureiro JR, Castro AF, Figueiredo AS, Silveira I. Molecular Mechanisms in Pentanucleotide Repeat Diseases. Cells 2022; 11:cells11020205. [PMID: 35053321 PMCID: PMC8773600 DOI: 10.3390/cells11020205] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
The number of neurodegenerative diseases resulting from repeat expansion has increased extraordinarily in recent years. In several of these pathologies, the repeat can be transcribed in RNA from both DNA strands producing, at least, one toxic RNA repeat that causes neurodegeneration by a complex mechanism. Recently, seven diseases have been found caused by a novel intronic pentanucleotide repeat in distinct genes encoding proteins highly expressed in the cerebellum. These disorders are clinically heterogeneous being characterized by impaired motor function, resulting from ataxia or epilepsy. The role that apparently normal proteins from these mutant genes play in these pathologies is not known. However, recent advances in previously known spinocerebellar ataxias originated by abnormal non-coding pentanucleotide repeats point to a gain of a toxic function by the pathogenic repeat-containing RNA that abnormally forms nuclear foci with RNA-binding proteins. In cells, RNA foci have been shown to be formed by phase separation. Moreover, the field of repeat expansions has lately achieved an extraordinary progress with the discovery that RNA repeats, polyglutamine, and polyalanine proteins are crucial for the formation of nuclear membraneless organelles by phase separation, which is perturbed when they are expanded. This review will cover the amazing advances on repeat diseases.
Collapse
Affiliation(s)
- Joana R. Loureiro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (J.R.L.); (A.F.C.); (A.S.F.)
- Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana F. Castro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (J.R.L.); (A.F.C.); (A.S.F.)
- Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana S. Figueiredo
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (J.R.L.); (A.F.C.); (A.S.F.)
- Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Isabel Silveira
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (J.R.L.); (A.F.C.); (A.S.F.)
- Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +351-2240-8800
| |
Collapse
|
23
|
Ochs ME, McWhirter RM, Unckless RL, Miller DM, Lundquist EA. Caenorhabditis elegans ETR-1/CELF has broad effects on the muscle cell transcriptome, including genes that regulate translation and neuroblast migration. BMC Genomics 2022; 23:13. [PMID: 34986795 PMCID: PMC8734324 DOI: 10.1186/s12864-021-08217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/23/2021] [Indexed: 11/18/2022] Open
Abstract
Migration of neuroblasts and neurons from their birthplace is central to the formation of neural circuits and networks. ETR-1 is the Caenorhabditis elegans homolog of the CELF1 (CUGBP, ELAV-like family 1) RNA-processing factor involved in neuromuscular disorders. etr-1 regulates body wall muscle differentiation. Our previous work showed that etr-1 in muscle has a non-autonomous role in neuronal migration, suggesting that ETR-1 is involved in the production of a signal emanating from body wall muscle that controls neuroblast migration and that interacts with Wnt signaling. etr-1 is extensively alternatively-spliced, and we identified the viable etr-1(lq61) mutant, caused by a stop codon in alternatively-spliced exon 8 and only affecting etr-1 isoforms containing exon 8. We took advantage of viable etr-1(lq61) to identify potential RNA targets of ETR-1 in body wall muscle using a combination of fluorescence activated cell sorting (FACS) of body wall muscles from wild-type and etr-1(lq61) and subsequent RNA-seq. This analysis revealed genes whose splicing and transcript levels were controlled by ETR-1 exon 8 isoforms, and represented a broad spectrum of genes involved in muscle differentiation, myofilament lattice structure, and physiology. Genes with transcripts underrepresented in etr-1(lq61) included those involved in ribosome function and translation, similar to potential CELF1 targets identified in chick cardiomyocytes. This suggests that at least some targets of ETR-1 might be conserved in vertebrates, and that ETR-1 might generally stimulate translation in muscles. As proof-of-principle, a functional analysis of a subset of ETR-1 targets revealed genes involved in AQR and PQR neuronal migration. One such gene, lev-11/tropomyosin, requires ETR-1 for alternative splicing, and another, unc-52/perlecan, requires ETR-1 for the production of long isoforms containing 3' exons. In sum, these studies identified gene targets of ETR-1/CELF1 in muscles, which included genes involved in muscle development and physiology, and genes with novel roles in neuronal migration.
Collapse
Affiliation(s)
- Matthew E Ochs
- Program in Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Rebecca M McWhirter
- Department of Cell and Developmental Biology and Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37203, USA
| | - Robert L Unckless
- Program in Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - David M Miller
- Department of Cell and Developmental Biology and Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37203, USA
| | - Erik A Lundquist
- Program in Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
24
|
Castelli LM, Benson BC, Huang WP, Lin YH, Hautbergue GM. RNA Helicases in Microsatellite Repeat Expansion Disorders and Neurodegeneration. Front Genet 2022; 13:886563. [PMID: 35646086 PMCID: PMC9133428 DOI: 10.3389/fgene.2022.886563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Short repeated sequences of 3-6 nucleotides are causing a growing number of over 50 microsatellite expansion disorders, which mainly present with neurodegenerative features. Although considered rare diseases in relation to the relatively low number of cases, these primarily adult-onset conditions, often debilitating and fatal in absence of a cure, collectively pose a large burden on healthcare systems in an ageing world population. The pathological mechanisms driving disease onset are complex implicating several non-exclusive mechanisms of neuronal injury linked to RNA and protein toxic gain- and loss- of functions. Adding to the complexity of pathogenesis, microsatellite repeat expansions are polymorphic and found in coding as well as in non-coding regions of genes. They form secondary and tertiary structures involving G-quadruplexes and atypical helices in repeated GC-rich sequences. Unwinding of these structures by RNA helicases plays multiple roles in the expression of genes including repeat-associated non-AUG (RAN) translation of polymeric-repeat proteins with aggregating and cytotoxic properties. Here, we will briefly review the pathogenic mechanisms mediated by microsatellite repeat expansions prior to focus on the RNA helicases eIF4A, DDX3X and DHX36 which act as modifiers of RAN translation in C9ORF72-linked amyotrophic lateral sclerosis/frontotemporal dementia (C9ORF72-ALS/FTD) and Fragile X-associated tremor/ataxia syndrome (FXTAS). We will further review the RNA helicases DDX5/17, DHX9, Dicer and UPF1 which play additional roles in the dysregulation of RNA metabolism in repeat expansion disorders. In addition, we will contrast these with the roles of other RNA helicases such as DDX19/20, senataxin and others which have been associated with neurodegeneration independently of microsatellite repeat expansions. Finally, we will discuss the challenges and potential opportunities that are associated with the targeting of RNA helicases for the development of future therapeutic approaches.
Collapse
Affiliation(s)
- Lydia M Castelli
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Bridget C Benson
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Wan-Ping Huang
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
25
|
Mishra R, Bansal A, Mishra A. LISTERIN E3 Ubiquitin Ligase and Ribosome-Associated Quality Control (RQC) Mechanism. Mol Neurobiol 2021; 58:6593-6609. [PMID: 34590243 DOI: 10.1007/s12035-021-02564-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/12/2021] [Indexed: 01/09/2023]
Abstract
According to cellular demands, ribosomes synthesize and maintain the desired pool of proteins inside the cell. However, sometimes due to defects in ribosomal machinery and faulty mRNAs, these nascent polypeptides are constantly under threat to become non-functional. In such conditions, cells acquire the help of ribosome-associated quality control mechanisms (RQC) to eliminate such aberrant nascent proteins. The primary regulator of RQC is RING domain containing LISTERIN E3 ubiquitin ligase, which is associated with ribosomes and alleviates non-stop proteins-associated stress in cells. Mouse RING finger protein E3 ubiquitin ligase LISTERIN is crucial for embryonic development, and a loss in its function causes neurodegeneration. LISTERIN is overexpressed in the mouse brain and spinal cord regions, and its perturbed functions generate neurological and motor deficits, but the mechanism of the same is unclear. Overall, LISTERIN is crucial for brain health and brain development. The present article systematically describes the detailed nature, molecular functions, and cellular physiological characterization of LISTERIN E3 ubiquitin ligase. Improve comprehension of LISTERIN's neurological roles may uncover pathways linked with neurodegeneration, which in turn might elucidate a promising novel therapeutic intervention against human neurodegenerative diseases.
Collapse
Affiliation(s)
- Ribhav Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India
| | - Anurag Bansal
- Center for Converging Technologies, Jaipur, University of Rajasthan, Jaipur, 302001, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India.
| |
Collapse
|
26
|
Perez BA, Shorrock HK, Banez‐Coronel M, Zu T, Romano LEL, Laboissonniere LA, Reid T, Ikeda Y, Reddy K, Gomez CM, Bird T, Ashizawa T, Schut LJ, Brusco A, Berglund JA, Hasholt LF, Nielsen JE, Subramony SH, Ranum LPW. CCG•CGG interruptions in high-penetrance SCA8 families increase RAN translation and protein toxicity. EMBO Mol Med 2021; 13:e14095. [PMID: 34632710 PMCID: PMC8573593 DOI: 10.15252/emmm.202114095] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/28/2022] Open
Abstract
Spinocerebellar ataxia type 8 (SCA8), a dominantly inherited neurodegenerative disorder caused by a CTG•CAG expansion, is unusual because most individuals that carry the mutation do not develop ataxia. To understand the variable penetrance of SCA8, we studied the molecular differences between highly penetrant families and more common sporadic cases (82%) using a large cohort of SCA8 families (n = 77). We show that repeat expansion mutations from individuals with multiple affected family members have CCG•CGG interruptions at a higher frequency than sporadic SCA8 cases and that the number of CCG•CGG interruptions correlates with age at onset. At the molecular level, CCG•CGG interruptions increase RNA hairpin stability, and in cell culture experiments, increase p-eIF2α and polyAla and polySer RAN protein levels. Additionally, CCG•CGG interruptions, which encode arginine interruptions in the polyGln frame, increase toxicity of the resulting proteins. In summary, SCA8 CCG•CGG interruptions increase polyAla and polySer RAN protein levels, polyGln protein toxicity, and disease penetrance and provide novel insight into the molecular differences between SCA8 families with high vs. low disease penetrance.
Collapse
Affiliation(s)
- Barbara A Perez
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Hannah K Shorrock
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Monica Banez‐Coronel
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Tao Zu
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Lisa EL Romano
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Lauren A Laboissonniere
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Tammy Reid
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Yoshio Ikeda
- Department of NeurologyGunma UniversityMaebashiJapan
| | - Kaalak Reddy
- RNA InstituteUniversity at Albany–SUNYAlbanyNYUSA
| | | | - Thomas Bird
- Department of NeurologyUniversity of WashingtonSeattleWAUSA
- Geriatrics Research SectionVA Puget Sound Health Care SystemSeattleWAUSA
| | - Tetsuo Ashizawa
- Department of NeurologyHouston Methodist Research InstituteHoustonTXUSA
| | | | - Alfredo Brusco
- Department of Medical SciencesUniversity of TorinoTorinoItaly
- Medical Genetics Units“Città della Salute e della Scienza” University HospitalTorinoItaly
| | - J Andrew Berglund
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- RNA InstituteUniversity at Albany–SUNYAlbanyNYUSA
| | - Lis F Hasholt
- Institute of Cellular and Molecular MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Jorgen E Nielsen
- Department of NeurologyRigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - SH Subramony
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- McKnight Brain InstituteUniversity of FloridaGainesvilleFLUSA
| | - Laura PW Ranum
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
- McKnight Brain InstituteUniversity of FloridaGainesvilleFLUSA
- Genetics InstituteUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
27
|
Liguori F, Amadio S, Volonté C. Fly for ALS: Drosophila modeling on the route to amyotrophic lateral sclerosis modifiers. Cell Mol Life Sci 2021; 78:6143-6160. [PMID: 34322715 PMCID: PMC11072332 DOI: 10.1007/s00018-021-03905-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare, devastating disease, causing movement impairment, respiratory failure and ultimate death. A plethora of genetic, cellular and molecular mechanisms are involved in ALS signature, although the initiating causes and progressive pathological events are far from being understood. Drosophila research has produced seminal discoveries for more than a century and has been successfully used in the past 25 years to untangle the process of ALS pathogenesis, and recognize potential markers and novel strategies for therapeutic solutions. This review will provide an updated view of several ALS modifiers validated in C9ORF72, SOD1, FUS, TDP-43 and Ataxin-2 Drosophila models. We will discuss basic and preclinical findings, illustrating recent developments and novel breakthroughs, also depicting unsettled challenges and limitations in the Drosophila-ALS field. We intend to stimulate a renewed debate on Drosophila as a screening route to identify more successful disease modifiers and neuroprotective agents.
Collapse
Affiliation(s)
- Francesco Liguori
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy
| | - Susanna Amadio
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy
| | - Cinzia Volonté
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy.
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (IASI-CNR), Via dei Taurini 19, 00185, Rome, Italy.
| |
Collapse
|
28
|
Bhatti GK, Khullar N, Sidhu IS, Navik US, Reddy AP, Reddy PH, Bhatti JS. Emerging role of non-coding RNA in health and disease. Metab Brain Dis 2021; 36:1119-1134. [PMID: 33881724 PMCID: PMC8058498 DOI: 10.1007/s11011-021-00739-y] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022]
Abstract
Human diseases have always been a significant turf of concern since the origin of mankind. It is cardinal to know the cause, treatment, and cure for every disease condition. With the advent and advancement in technology, the molecular arena at the microscopic level to study the mechanism, progression, and therapy is more rational and authentic pave than a macroscopic approach. Non-coding RNAs (ncRNAs) have now emerged as indispensable players in the diagnosis, development, and therapeutics of every abnormality concerning physiology, pathology, genetics, epigenetics, oncology, and developmental diseases. This is a comprehensive attempt to collate all the existing and proven strategies, techniques, mechanisms of genetic disorders including Silver Russell Syndrome, Fascio- scapula humeral muscular dystrophy, cardiovascular diseases (atherosclerosis, cardiac fibrosis, hypertension, etc.), neurodegenerative diseases (Spino-cerebral ataxia type 7, Spino-cerebral ataxia type 8, Spinal muscular atrophy, Opitz-Kaveggia syndrome, etc.) cancers (cervix, breast, lung cancer, etc.), and infectious diseases (viral) studied so far. This article encompasses discovery, biogenesis, classification, and evolutionary prospects of the existence of this junk RNA along with the integrated networks involving chromatin remodelling, dosage compensation, genome imprinting, splicing regulation, post-translational regulation and proteomics. In conclusion, all the major human diseases are discussed with a facilitated technology transfer, advancements, loopholes, and tentative future research prospects have also been proposed.
Collapse
Affiliation(s)
- Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, Punjab India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab India
| | | | - Uma Shanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | | | - P. Hemachandra Reddy
- Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX USA
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX USA
- Departments of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX USA
- Cell Biology & Biochemistry, Neuroscience & Pharmacology, Neurology, Public Health, School of Health Professions, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430 USA
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
29
|
Yang S, Lim KH, Kim SH, Joo JY. Molecular landscape of long noncoding RNAs in brain disorders. Mol Psychiatry 2021; 26:1060-1074. [PMID: 33173194 DOI: 10.1038/s41380-020-00947-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/28/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023]
Abstract
According to current paradigms, various risk factors, such as genetic mutations, oxidative stress, neural network dysfunction, and abnormal protein degradation, contribute to the progression of brain disorders. Through the cooperation of gene transcripts in biological processes, the study of noncoding RNAs can lead to insights into the cause and treatment of brain disorders. Recently, long noncoding RNAs (lncRNAs) which are longer than 200 nucleotides in length have been suggested as key factors in various brain disorders. Accumulating evidence suggests the potential of lncRNAs as diagnostic or prognostic biomarkers and therapeutic targets. High-throughput screening-based sequencing has been instrumental in identification of lncRNAs that demand new approaches to understanding the progression of brain disorders. In this review, we discuss the recent progress in the study of lncRNAs, and addresses the pathogenesis of brain disorders that involve lncRNAs and describes the associations of lncRNAs with neurodegenerative disorders such as Alzheimer disease (AD), Parkinson disease (PD), and neurodevelopmental disorders. We also discuss potential targets of lncRNAs and their promise as novel therapeutics and biomarkers in brain disorders.
Collapse
Affiliation(s)
- Sumin Yang
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Key-Hwan Lim
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Sung-Hyun Kim
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Jae-Yeol Joo
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea.
| |
Collapse
|
30
|
Castro AF, Loureiro JR, Bessa J, Silveira I. Antisense Transcription across Nucleotide Repeat Expansions in Neurodegenerative and Neuromuscular Diseases: Progress and Mysteries. Genes (Basel) 2020; 11:E1418. [PMID: 33261024 PMCID: PMC7760973 DOI: 10.3390/genes11121418] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Unstable repeat expansions and insertions cause more than 30 neurodegenerative and neuromuscular diseases. Remarkably, bidirectional transcription of repeat expansions has been identified in at least 14 of these diseases. More remarkably, a growing number of studies has been showing that both sense and antisense repeat RNAs are able to dysregulate important cellular pathways, contributing together to the observed clinical phenotype. Notably, antisense repeat RNAs from spinocerebellar ataxia type 7, myotonic dystrophy type 1, Huntington's disease and frontotemporal dementia/amyotrophic lateral sclerosis associated genes have been implicated in transcriptional regulation of sense gene expression, acting either at a transcriptional or posttranscriptional level. The recent evidence that antisense repeat RNAs could modulate gene expression broadens our understanding of the pathogenic pathways and adds more complexity to the development of therapeutic strategies for these disorders. In this review, we cover the amazing progress made in the understanding of the pathogenic mechanisms associated with repeat expansion neurodegenerative and neuromuscular diseases with a focus on the impact of antisense repeat transcription in the development of efficient therapies.
Collapse
Affiliation(s)
- Ana F. Castro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
- ICBAS, Universidade do Porto, 4050-313 Porto, Portugal
| | - Joana R. Loureiro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
| | - José Bessa
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
- Vertebrate Development and Regeneration Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Isabel Silveira
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
| |
Collapse
|
31
|
Schwartz JL, Jones KL, Yeo GW. Repeat RNA expansion disorders of the nervous system: post-transcriptional mechanisms and therapeutic strategies. Crit Rev Biochem Mol Biol 2020; 56:31-53. [PMID: 33172304 PMCID: PMC8192115 DOI: 10.1080/10409238.2020.1841726] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dozens of incurable neurological disorders result from expansion of short repeat sequences in both coding and non-coding regions of the transcriptome. Short repeat expansions underlie microsatellite repeat expansion (MRE) disorders including myotonic dystrophy (DM1, CUG50–3,500 in DMPK; DM2, CCTG75–11,000 in ZNF9), fragile X tremor ataxia syndrome (FXTAS, CGG50–200 in FMR1), spinal bulbar muscular atrophy (SBMA, CAG40–55 in AR), Huntington’s disease (HD, CAG36–121 in HTT), C9ORF72-amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD and C9-ALS/FTD, GGGGCC in C9ORF72), and many others, like ataxias. Recent research has highlighted several mechanisms that may contribute to pathology in this heterogeneous class of neurological MRE disorders – bidirectional transcription, intranuclear RNA foci, and repeat associated non-AUG (RAN) translation – which are the subject of this review. Additionally, many MRE disorders share similar underlying molecular pathologies that have been recently targeted in experimental and preclinical contexts. We discuss the therapeutic potential of versatile therapeutic strategies that may selectively target disrupted RNA-based processes and may be readily adaptable for the treatment of multiple MRE disorders. Collectively, the strategies under consideration for treatment of multiple MRE disorders include reducing levels of toxic RNA, preventing RNA foci formation, and eliminating the downstream cellular toxicity associated with peptide repeats produced by RAN translation. While treatments are still lacking for the majority of MRE disorders, several promising therapeutic strategies have emerged and will be evaluated within this review.
Collapse
Affiliation(s)
- Joshua L Schwartz
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Krysten Leigh Jones
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
32
|
The Predicted RNA-Binding Protein ETR-1/CELF1 Acts in Muscles To Regulate Neuroblast Migration in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2020; 10:2365-2376. [PMID: 32398235 PMCID: PMC7341121 DOI: 10.1534/g3.120.401182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuroblast migration is a critical aspect of nervous system development (e.g., neural crest migration). In an unbiased forward genetic screen, we identified a novel player in neuroblast migration, the ETR-1/CELF1 RNA binding protein. CELF1 RNA binding proteins are involved in multiple aspects of RNA processing including alternative splicing, stability, and translation. We find that a specific mutation in alternatively-spliced exon 8 results in migration defects of the AQR and PQR neurons, and not the embryonic lethality and body wall muscle defects of complete knockdown of the locus. Surprisingly, ETR-1 was required in body wall muscle cells for AQR/PQR migration (i.e., it acts cell non-autonomously). Genetic interactions indicate that ETR-1 acts with Wnt signaling, either in the Wnt pathway or in a parallel pathway. Possibly, ETR-1 is involved in the production of a Wnt signal or a parallel signal by the body wall muscles that controls AQR and PQR neuronal migration. In humans, CELF1 is involved in a number of neuromuscular disorders. If the role of ETR-1/CELF1 is conserved, these disorders might also involve cell or neuronal migration. Finally, we describe a technique of amplicon sequencing to detect rare, cell-specific genome edits by CRISPR/Cas9 in vivo (CRISPR-seq) as an alternative to the T7E1 assay.
Collapse
|
33
|
Carazo F, Romero JP, Rubio A. Upstream analysis of alternative splicing: a review of computational approaches to predict context-dependent splicing factors. Brief Bioinform 2020; 20:1358-1375. [PMID: 29390045 DOI: 10.1093/bib/bby005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
Alternative splicing (AS) has shown to play a pivotal role in the development of diseases, including cancer. Specifically, all the hallmarks of cancer (angiogenesis, cell immortality, avoiding immune system response, etc.) are found to have a counterpart in aberrant splicing of key genes. Identifying the context-specific regulators of splicing provides valuable information to find new biomarkers, as well as to define alternative therapeutic strategies. The computational models to identify these regulators are not trivial and require three conceptual steps: the detection of AS events, the identification of splicing factors that potentially regulate these events and the contextualization of these pieces of information for a specific experiment. In this work, we review the different algorithmic methodologies developed for each of these tasks. Main weaknesses and strengths of the different steps of the pipeline are discussed. Finally, a case study is detailed to help the reader be aware of the potential and limitations of this computational approach.
Collapse
|
34
|
Chen X, Sun YZ, Guan NN, Qu J, Huang ZA, Zhu ZX, Li JQ. Computational models for lncRNA function prediction and functional similarity calculation. Brief Funct Genomics 2020; 18:58-82. [PMID: 30247501 DOI: 10.1093/bfgp/ely031] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/17/2018] [Accepted: 08/30/2018] [Indexed: 02/01/2023] Open
Abstract
From transcriptional noise to dark matter of biology, the rapidly changing view of long non-coding RNA (lncRNA) leads to deep understanding of human complex diseases induced by abnormal expression of lncRNAs. There is urgent need to discern potential functional roles of lncRNAs for further study of pathology, diagnosis, therapy, prognosis, prevention of human complex disease and disease biomarker detection at lncRNA level. Computational models are anticipated to be an effective way to combine current related databases for predicting most potential lncRNA functions and calculating lncRNA functional similarity on the large scale. In this review, we firstly illustrated the biological function of lncRNAs from five biological processes and briefly depicted the relationship between mutations or dysfunctions of lncRNAs and human complex diseases involving cancers, nervous system disorders and others. Then, 17 publicly available lncRNA function-related databases containing four types of functional information content were introduced. Based on these databases, dozens of developed computational models are emerging to help characterize the functional roles of lncRNAs. We therefore systematically described and classified both 16 lncRNA function prediction models and 9 lncRNA functional similarity calculation models into 8 types for highlighting their core algorithm and process. Finally, we concluded with discussions about the advantages and limitations of these computational models and future directions of lncRNA function prediction and functional similarity calculation. We believe that constructing systematic functional annotation systems is essential to strengthen the prediction accuracy of computational models, which will accelerate the identification process of novel lncRNA functions in the future.
Collapse
Affiliation(s)
- Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Ya-Zhou Sun
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Na-Na Guan
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Jia Qu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Zhi-An Huang
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Ze-Xuan Zhu
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Jian-Qiang Li
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
35
|
Swinnen B, Robberecht W, Van Den Bosch L. RNA toxicity in non-coding repeat expansion disorders. EMBO J 2020; 39:e101112. [PMID: 31721251 PMCID: PMC6939197 DOI: 10.15252/embj.2018101112] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Several neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia (SCA) are caused by non-coding nucleotide repeat expansions. Different pathogenic mechanisms may underlie these non-coding repeat expansion disorders. While gain-of-function mechanisms, such as toxicity associated with expression of repeat RNA or toxicity associated with repeat-associated non-ATG (RAN) products, are most frequently connected with these disorders, loss-of-function mechanisms have also been implicated. We review the different pathways that have been linked to non-coding repeat expansion disorders such as C9ORF72-linked ALS/frontotemporal dementia (FTD), myotonic dystrophy, fragile X tremor/ataxia syndrome (FXTAS), SCA, and Huntington's disease-like 2. We discuss modes of RNA toxicity focusing on the identity and the interacting partners of the toxic RNA species. Using the C9ORF72 ALS/FTD paradigm, we further explore the efforts and different methods used to disentangle RNA vs. RAN toxicity. Overall, we conclude that there is ample evidence for a role of RNA toxicity in non-coding repeat expansion diseases.
Collapse
Affiliation(s)
- Bart Swinnen
- Department of NeurosciencesExperimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Laboratory of NeurobiologyVIB, Center for Brain & Disease ResearchLeuvenBelgium
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Wim Robberecht
- Department of NeurosciencesExperimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Laboratory of NeurobiologyVIB, Center for Brain & Disease ResearchLeuvenBelgium
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Ludo Van Den Bosch
- Department of NeurosciencesExperimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Laboratory of NeurobiologyVIB, Center for Brain & Disease ResearchLeuvenBelgium
| |
Collapse
|
36
|
Bogomazova AN, Eremeev AV, Pozmogova GE, Lagarkova MA. The Role of Mutant RNA in the Pathogenesis of Huntington’s Disease and Other Polyglutamine Diseases. Mol Biol 2019. [DOI: 10.1134/s0026893319060037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Lalonde R, Strazielle C. Motor Performances of Spontaneous and Genetically Modified Mutants with Cerebellar Atrophy. THE CEREBELLUM 2019; 18:615-634. [PMID: 30820866 DOI: 10.1007/s12311-019-01017-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chance discovery of spontaneous mutants with atrophy of the cerebellar cortex has unearthed genes involved in optimizing motor coordination. Rotorod, stationary beam, and suspended wire tests are useful in delineating behavioral phenotypes of spontaneous mutants with cerebellar atrophy such as Grid2Lc, Grid2ho, Rorasg, Agtpbp1pcd, Relnrl, and Dab1scm. Likewise, transgenic or null mutants serving as experimental models of spinocerebellar ataxia (SCA) are phenotyped with the same tests. Among experimental models of autosomal dominant SCA, rotorod deficits were reported in SCA1 to 3, SCA5 to 8, SCA14, SCA17, and SCA27 and stationary beam deficits in SCA1 to 3, SCA5, SCA6, SCA13, SCA17, and SCA27. Beam tests are sensitive to experimental therapies of various kinds including molecules affecting glutamate signaling, mesenchymal stem cells, anti-oligomer antibodies, lentiviral vectors carrying genes, interfering RNAs, or neurotrophic factors, and interbreeding with other mutants.
Collapse
Affiliation(s)
- Robert Lalonde
- Department of Psychology, University of Rouen, 76821, Mont-Saint-Aignan Cedex, France.
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, and Pathogens EA7300, and CHRU of Nancy, University of Lorraine, 54500, Vandoeuvre-les-Nancy, France
| |
Collapse
|
38
|
Casci I, Krishnamurthy K, Kour S, Tripathy V, Ramesh N, Anderson EN, Marrone L, Grant RA, Oliver S, Gochenaur L, Patel K, Sterneckert J, Gleixner AM, Donnelly CJ, Ruepp MD, Sini AM, Zuccaro E, Pennuto M, Pasinelli P, Pandey UB. Muscleblind acts as a modifier of FUS toxicity by modulating stress granule dynamics and SMN localization. Nat Commun 2019; 10:5583. [PMID: 31811140 PMCID: PMC6898697 DOI: 10.1038/s41467-019-13383-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
Mutations in fused in sarcoma (FUS) lead to amyotrophic lateral sclerosis (ALS) with varying ages of onset, progression and severity. This suggests that unknown genetic factors contribute to disease pathogenesis. Here we show the identification of muscleblind as a novel modifier of FUS-mediated neurodegeneration in vivo. Muscleblind regulates cytoplasmic mislocalization of mutant FUS and subsequent accumulation in stress granules, dendritic morphology and toxicity in mammalian neuronal and human iPSC-derived neurons. Interestingly, genetic modulation of endogenous muscleblind was sufficient to restore survival motor neuron (SMN) protein localization in neurons expressing pathogenic mutations in FUS, suggesting a potential mode of suppression of FUS toxicity. Upregulation of SMN suppressed FUS toxicity in Drosophila and primary cortical neurons, indicating a link between FUS and SMN. Our data provide in vivo evidence that muscleblind is a dominant modifier of FUS-mediated neurodegeneration by regulating FUS-mediated ALS pathogenesis.
Collapse
Affiliation(s)
- Ian Casci
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Karthik Krishnamurthy
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Jefferson University, Philadelphia, PA, USA
| | - Sukhleen Kour
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Vadreenath Tripathy
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Nandini Ramesh
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Lara Marrone
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Rogan A Grant
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Stacie Oliver
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Lauren Gochenaur
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Krishani Patel
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jared Sterneckert
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Amanda M Gleixner
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Live Like Lou Center for ALS Research, Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christopher J Donnelly
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Live Like Lou Center for ALS Research, Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marc-David Ruepp
- UK Dementia Research Institute at King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9NU, UK
| | - Antonella M Sini
- Department of Biomedical Sciences (DBS), University of Padova, Padova, Italy
| | - Emanuela Zuccaro
- Department of Biomedical Sciences (DBS), University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Maria Pennuto
- Department of Biomedical Sciences (DBS), University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Piera Pasinelli
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Jefferson University, Philadelphia, PA, USA
| | - Udai Bhan Pandey
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA.
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
39
|
López Castel A, Overby SJ, Artero R. MicroRNA-Based Therapeutic Perspectives in Myotonic Dystrophy. Int J Mol Sci 2019; 20:ijms20225600. [PMID: 31717488 PMCID: PMC6888406 DOI: 10.3390/ijms20225600] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022] Open
Abstract
Myotonic dystrophy involves two types of chronically debilitating rare neuromuscular diseases: type 1 (DM1) and type 2 (DM2). Both share similarities in molecular cause, clinical signs, and symptoms with DM2 patients usually displaying milder phenotypes. It is well documented that key clinical symptoms in DM are associated with a strong mis-regulation of RNA metabolism observed in patient’s cells. This mis-regulation is triggered by two leading DM-linked events: the sequestration of Muscleblind-like proteins (MBNL) and the mis-regulation of the CUGBP RNA-Binding Protein Elav-Like Family Member 1 (CELF1) that cause significant alterations to their important functions in RNA processing. It has been suggested that DM1 may be treatable through endogenous modulation of the expression of MBNL and CELF1 proteins. In this study, we analyzed the recent identification of the involvement of microRNA (miRNA) molecules in DM and focus on the modulation of these miRNAs to therapeutically restore normal MBNL or CELF1 function. We also discuss additional prospective miRNA targets, the use of miRNAs as disease biomarkers, and additional promising miRNA-based and miRNA-targeting drug development strategies. This review provides a unifying overview of the dispersed data on miRNA available in the context of DM.
Collapse
Affiliation(s)
- Arturo López Castel
- Translational Genomics Group, Incliva Health Research Institute, Burjassot, 46100 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (Eri Biotecmed), University of Valencia, Burjassot, 46100 Valencia, Spain
- Correspondence: (A.L.C.); (R.A.)
| | - Sarah Joann Overby
- Translational Genomics Group, Incliva Health Research Institute, Burjassot, 46100 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (Eri Biotecmed), University of Valencia, Burjassot, 46100 Valencia, Spain
| | - Rubén Artero
- Translational Genomics Group, Incliva Health Research Institute, Burjassot, 46100 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (Eri Biotecmed), University of Valencia, Burjassot, 46100 Valencia, Spain
- Correspondence: (A.L.C.); (R.A.)
| |
Collapse
|
40
|
Lee KY, Chang HC, Seah C, Lee LJ. Deprivation of Muscleblind-Like Proteins Causes Deficits in Cortical Neuron Distribution and Morphological Changes in Dendritic Spines and Postsynaptic Densities. Front Neuroanat 2019; 13:75. [PMID: 31417371 PMCID: PMC6682673 DOI: 10.3389/fnana.2019.00075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
Myotonic dystrophy (Dystrophia Myotonica; DM) is the most common adult-onset muscular dystrophy and its brain symptoms seriously affect patients’ quality of life. It is caused by extended (CTG)n expansions at 3′-UTR of DMPK gene (DM type 1, DM1) or (CCTG)n repeats in the intron 1 of CNBP gene (DM type 2, DM2) and the sequestration of Muscleblind-like (MBNL) family proteins by transcribed (CUG)n RNA hairpin is the main pathogenic mechanism for DM. The MBNL proteins are splicing factors regulating posttranscriptional RNA during development. Previously, Mbnl knockout (KO) mouse lines showed molecular and phenotypic evidence that recapitulate DM brains, however, detailed morphological study has not yet been accomplished. In our studies, control (Mbnl1+/+; Mbnl2cond/cond; Nestin-Cre−/−), Mbnl2 conditional KO (2KO, Mbnl1+/+; Mbnl2cond/cond; Nestin-Cre+/−) and Mbnl1/2 double KO (DKO, Mbnl1ΔE3/ΔE3; Mbnl2cond/cond; Nestin-Cre+/−) mice were generated by crossing three individual lines. Immunohistochemistry for evaluating density and distribution of cortical neurons; Golgi staining for depicting the dendrites/dendritic spines; and electron microscopy for analyzing postsynaptic ultrastructure were performed. We found distributional defects in cortical neurons, reduction in dendritic complexity, immature dendritic spines and alterations of postsynaptic densities (PSDs) in the mutants. In conclusion, loss of function of Mbnl1/2 caused fundamental defects affecting neuronal distribution, dendritic morphology and postsynaptic architectures that are reminiscent of predominantly immature and fetal phenotypes in DM patients.
Collapse
Affiliation(s)
- Kuang-Yung Lee
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ho-Ching Chang
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Carol Seah
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
41
|
Hale MA, Richardson JI, Day RC, McConnell OL, Arboleda J, Wang ET, Berglund JA. An engineered RNA binding protein with improved splicing regulation. Nucleic Acids Res 2019; 46:3152-3168. [PMID: 29309648 PMCID: PMC5888374 DOI: 10.1093/nar/gkx1304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 12/19/2017] [Indexed: 01/08/2023] Open
Abstract
The muscleblind-like (MBNL) family of proteins are key developmental regulators of alternative splicing. Sequestration of MBNL proteins by expanded CUG/CCUG repeat RNA transcripts is a major pathogenic mechanism in the neuromuscular disorder myotonic dystrophy (DM). MBNL1 contains four zinc finger (ZF) motifs that form two tandem RNA binding domains (ZF1-2 and ZF3-4) which each bind YGCY RNA motifs. In an effort to determine the differences in function between these domains, we designed and characterized synthetic MBNL proteins with duplicate ZF1-2 or ZF3-4 domains, referred to as MBNL-AA and MBNL-BB, respectively. Analysis of splicing regulation revealed that MBNL-AA had up to 5-fold increased splicing activity while MBNL-BB had 4-fold decreased activity compared to a MBNL protein with the canonical arrangement of zinc finger domains. RNA binding analysis revealed that the variations in splicing activity are due to differences in RNA binding specificities between the two ZF domains rather than binding affinity. Our findings indicate that ZF1-2 drives splicing regulation via recognition of YGCY RNA motifs while ZF3-4 acts as a general RNA binding domain. Our studies suggest that synthetic MBNL proteins with improved or altered splicing activity have the potential to be used as both tools for investigating splicing regulation and protein therapeutics for DM and other microsatellite diseases.
Collapse
Affiliation(s)
- Melissa A Hale
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.,Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| | - Jared I Richardson
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.,Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| | - Ryan C Day
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.,Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| | - Ona L McConnell
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Juan Arboleda
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Eric T Wang
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - J Andrew Berglund
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.,Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
42
|
Pan F, Zhang Y, Man VH, Roland C, Sagui C. E-motif formed by extrahelical cytosine bases in DNA homoduplexes of trinucleotide and hexanucleotide repeats. Nucleic Acids Res 2019; 46:942-955. [PMID: 29190385 PMCID: PMC5778509 DOI: 10.1093/nar/gkx1186] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/13/2017] [Indexed: 12/01/2022] Open
Abstract
Atypical DNA secondary structures play an important role in expandable trinucleotide repeat (TR) and hexanucleotide repeat (HR) diseases. The cytosine mismatches in C-rich homoduplexes and hairpin stems are weakly bonded; experiments show that for certain sequences these may flip out of the helix core, forming an unusual structure termed an ‘e-motif’. We have performed molecular dynamics simulations of C-rich TR and HR DNA homoduplexes in order to characterize the conformations, stability and dynamics of formation of the e-motif, where the mismatched cytosines symmetrically flip out in the minor groove, pointing their base moieties towards the 5′-direction in each strand. TRs have two non-equivalent reading frames, (GCC)n and (CCG)n; while HRs have three: (CCCGGC)n, (CGGCCC)n, (CCCCGG)n. We define three types of pseudo basepair steps related to the mismatches and show that the e-motif is only stable in (GCC)n and (CCCGGC)n homoduplexes due to the favorable stacking of pseudo GpC steps (whose nature depends on whether TRs or HRs are involved) and the formation of hydrogen bonds between the mismatched cytosine at position i and the cytosine (TRs) or guanine (HRs) at position i − 2 along the same strand. We also characterize the extended e-motif, where all mismatched cytosines are extruded, their extra-helical stacking additionally stabilizing the homoduplexes.
Collapse
Affiliation(s)
- Feng Pan
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Yuan Zhang
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Viet Hoang Man
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| |
Collapse
|
43
|
Hale MA, Johnson NE, Berglund JA. Repeat-associated RNA structure and aberrant splicing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194405. [PMID: 31323433 DOI: 10.1016/j.bbagrm.2019.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Over 30 hereditary disorders attributed to the expansion of microsatellite repeats have been identified. Despite variant nucleotide content, number of consecutive repeats, and different locations in the genome, many of these diseases have pathogenic RNA gain-of-function mechanisms. The repeat-containing RNAs can form structures in vitro predicted to contribute to the disease through assembly of intracellular RNA aggregates termed foci. The expanded repeat RNAs within these foci sequester RNA binding proteins (RBPs) with important roles in the regulation of RNA metabolism, most notably alternative splicing (AS). These deleterious interactions lead to downstream alterations in transcriptome-wide AS directly linked with disease symptoms. This review summarizes existing knowledge about the association between the repeat RNA structures and RBPs as well as the resulting aberrant AS patterns, specifically in the context of myotonic dystrophy. The connection between toxic, structured RNAs and dysregulation of AS in other repeat expansion diseases is also discussed. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Melissa A Hale
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nicholas E Johnson
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - J Andrew Berglund
- The RNA Institute, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA.
| |
Collapse
|
44
|
Sznajder ŁJ, Swanson MS. Short Tandem Repeat Expansions and RNA-Mediated Pathogenesis in Myotonic Dystrophy. Int J Mol Sci 2019; 20:ijms20133365. [PMID: 31323950 PMCID: PMC6651174 DOI: 10.3390/ijms20133365] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 12/23/2022] Open
Abstract
Short tandem repeat (STR) or microsatellite, expansions underlie more than 50 hereditary neurological, neuromuscular and other diseases, including myotonic dystrophy types 1 (DM1) and 2 (DM2). Current disease models for DM1 and DM2 propose a common pathomechanism, whereby the transcription of mutant DMPK (DM1) and CNBP (DM2) genes results in the synthesis of CUG and CCUG repeat expansion (CUGexp, CCUGexp) RNAs, respectively. These CUGexp and CCUGexp RNAs are toxic since they promote the assembly of ribonucleoprotein (RNP) complexes or RNA foci, leading to sequestration of Muscleblind-like (MBNL) proteins in the nucleus and global dysregulation of the processing, localization and stability of MBNL target RNAs. STR expansion RNAs also form phase-separated gel-like droplets both in vitro and in transiently transfected cells, implicating RNA-RNA multivalent interactions as drivers of RNA foci formation. Importantly, the nucleation and growth of these nuclear foci and transcript misprocessing are reversible processes and thus amenable to therapeutic intervention. In this review, we provide an overview of potential DM1 and DM2 pathomechanisms, followed by a discussion of MBNL functions in RNA processing and how multivalent interactions between expanded STR RNAs and RNA-binding proteins (RBPs) promote RNA foci assembly.
Collapse
Affiliation(s)
- Łukasz J Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA.
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
45
|
Banez-Coronel M, Ranum LPW. Repeat-associated non-AUG (RAN) translation: insights from pathology. J Transl Med 2019; 99:929-942. [PMID: 30918326 PMCID: PMC7219275 DOI: 10.1038/s41374-019-0241-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
More than 40 different neurological diseases are caused by microsatellite repeat expansions. Since the discovery of repeat-associated non-AUG (RAN) translation by Zu et al. in 2011, nine expansion disorders have been identified as RAN-positive diseases. RAN proteins are translated from different types of nucleotide repeat expansions and can be produced from both sense and antisense transcripts. In some diseases, RAN proteins have been shown to accumulate in affected brain regions. Here we review the pathological and molecular aspects associated with RAN protein accumulation for each particular disorder, the correlation between disease pathology and the available in vivo models and the common aspects shared by some of the newly discovered RAN proteins.
Collapse
Affiliation(s)
- Monica Banez-Coronel
- Center for NeuroGenetics, University of Florida, Gainesville, FL, 32610, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610, USA
| | - Laura P W Ranum
- Center for NeuroGenetics, University of Florida, Gainesville, FL, 32610, USA.
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
46
|
Rodriguez CM, Todd PK. New pathologic mechanisms in nucleotide repeat expansion disorders. Neurobiol Dis 2019; 130:104515. [PMID: 31229686 DOI: 10.1016/j.nbd.2019.104515] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/07/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022] Open
Abstract
Tandem microsatellite repeats are common throughout the human genome and intrinsically unstable, exhibiting expansions and contractions both somatically and across generations. Instability in a small subset of these repeats are currently linked to human disease, although recent findings suggest more disease-causing repeats await discovery. These nucleotide repeat expansion disorders (NREDs) primarily affect the nervous system and commonly lead to neurodegeneration through toxic protein gain-of-function, protein loss-of-function, and toxic RNA gain-of-function mechanisms. However, the lines between these categories have blurred with recent findings of unconventional Repeat Associated Non-AUG (RAN) translation from putatively non-coding regions of the genome. Here we review two emerging topics in NREDs: 1) The mechanisms by which RAN translation occurs and its role in disease pathogenesis and 2) How nucleotide repeats as RNA and translated proteins influence liquid-liquid phase separation, membraneless organelle dynamics, and nucleocytoplasmic transport. We examine these topics with a particular eye on two repeats: the CGG repeat expansion responsible for Fragile X syndrome and Fragile X-associated Tremor Ataxia Syndrome (FXTAS) and the intronic GGGGCC repeat expansion in C9orf72, the most common inherited cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Our thesis is that these emerging disease mechanisms can inform a broader understanding of the native roles of microsatellites in cellular function and that aberrations in these native processes provide clues to novel therapeutic strategies for these currently untreatable disorders.
Collapse
Affiliation(s)
- C M Rodriguez
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - P K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
47
|
Sparber P, Filatova A, Khantemirova M, Skoblov M. The role of long non-coding RNAs in the pathogenesis of hereditary diseases. BMC Med Genomics 2019; 12:42. [PMID: 30871545 PMCID: PMC6416829 DOI: 10.1186/s12920-019-0487-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Thousands of long non-coding RNA (lncRNA) genes are annotated in the human genome. Recent studies showed the key role of lncRNAs in a variety of fundamental cellular processes. Dysregulation of lncRNAs can drive tumorigenesis and they are now considered to be a promising therapeutic target in cancer. However, how lncRNAs contribute to the development of hereditary diseases in human is still mostly unknown. Results This review is focused on hereditary diseases in the pathogenesis of which long non-coding RNAs play an important role. Conclusions Fundamental research in the field of molecular genetics of lncRNA is necessary for a more complete understanding of their significance. Future research will help translate this knowledge into clinical practice which will not only lead to an increase in the diagnostic rate but also in the future can help with the development of etiotropic treatments for hereditary diseases.
Collapse
Affiliation(s)
- Peter Sparber
- Research Center for Medical Genetics, Moscow, Russia.
| | | | - Mira Khantemirova
- Novosibirsk State University, Novosibirsk, Russia.,Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Mikhail Skoblov
- Research Center for Medical Genetics, Moscow, Russia.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
48
|
Repeat-Associated Non-ATG Translation in Neurological Diseases. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a033019. [PMID: 29891563 DOI: 10.1101/cshperspect.a033019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
More than 40 different neurological diseases are caused by microsatellite repeat expansions that locate within translated or untranslated gene regions, including 5' and 3' untranslated regions (UTRs), introns, and protein-coding regions. Expansion mutations are transcribed bidirectionally and have been shown to give rise to proteins, which are synthesized from three reading frames in the absence of an AUG initiation codon through a novel process called repeat-associated non-ATG (RAN) translation. RAN proteins, which were first described in spinocerebellar ataxia type 8 (SCA8) and myotonic dystrophy type 1 (DM1), have now been reported in a growing list of microsatellite expansion diseases. This article reviews what is currently known about RAN proteins in microsatellite expansion diseases and experiments that provide clues on how RAN translation is regulated.
Collapse
|
49
|
Darnell JC, Mele A, Hung KYS, Darnell RB. Mapping of In Vivo RNA-Binding Sites by Ultraviolet (UV)-Cross-Linking Immunoprecipitation (CLIP). Cold Spring Harb Protoc 2018; 2018:2018/12/pdb.top097931. [PMID: 30510132 DOI: 10.1101/pdb.top097931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RNA "CLIP" (cross-linking immunoprecipitation), the method by which RNA-protein complexes are covalently cross-linked and purified and the RNA sequenced, has attracted attention as a powerful means of developing genome-wide maps of direct, functional RNA-protein interaction sites. These maps have been used to identify points of regulation, and they hold promise for understanding the dynamics of RNA regulation in normal cell function and its dysregulation in disease.
Collapse
|
50
|
Abstract
Microsatellite expansions cause more than 40 neurological disorders, including Huntington's disease, myotonic dystrophy, and C9ORF72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD). These repeat expansion mutations can produce repeat-associated non-ATG (RAN) proteins in all three reading frames, which accumulate in disease-relevant tissues. There has been considerable interest in RAN protein products and their downstream consequences, particularly for the dipeptide proteins found in C9ORF72 ALS/FTD. Understanding how RAN translation occurs, what cellular factors contribute to RAN protein accumulation, and how these proteins contribute to disease should lead to a better understanding of the basic mechanisms of gene expression and human disease.
Collapse
Affiliation(s)
- John Douglas Cleary
- From the Center for NeuroGenetics
- Departments of Molecular Genetics and Microbiology and
- Genetics Institute, and
| | - Amrutha Pattamatta
- From the Center for NeuroGenetics
- Departments of Molecular Genetics and Microbiology and
- Genetics Institute, and
| | - Laura P W Ranum
- From the Center for NeuroGenetics,
- Departments of Molecular Genetics and Microbiology and
- Genetics Institute, and
- Neurology, College of Medicine
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| |
Collapse
|