1
|
Zhou H, Zhang Z, Velo J, Huo J, Smith S, Ho A, Saier M. Transcriptional mechanism by which IS5 activates the fucAO operon in Escherichia coli. Nucleic Acids Res 2025; 53:gkaf172. [PMID: 40066878 PMCID: PMC11894529 DOI: 10.1093/nar/gkaf172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/08/2025] [Accepted: 02/21/2025] [Indexed: 03/15/2025] Open
Abstract
The silent E. coli fucAO operon can be activated by IS5 insertion upstream of its regulatory region, allowing cellular growth on L-1,2-propanediol. Little information is available concerning the transcriptional mechanism behind IS5-mediated fucAO activation. In this study, we demonstrate the formation of a unique "fusion" promoter (Pfsn) following IS5 insertion, which drives expression of the downstream fucAO operon. Our findings indicate that this functional σ70 fusion promoter is generated using a DNA sequence carrying a Crp-binding site directly upstream of the IS5 element, followed by the otherwise inactive IS5 transposase promoter. Under non-inducing conditions, this fusion promoter contributes to full operon expression while the native operon promoter PfucAO remains silent. As a typical Class I promoter, Pfsn is independent of the fuc regulon activator FucR, but its activity is exclusively reliant on the binding of Crp-cAMP to the upstream Crp-binding site. Under inducing conditions, the presence of functional FucR can further elevate fucAO operon expression by activating the native operon promoter, PfucAO. In the latter case, Pfsn and PfucAO function independently, and contribute to operon expression to nearly the same extent. Thus, we have discovered a novel IS-dependent fusion expression system that is modulated by a transcriptional factor in bacteria.
Collapse
Affiliation(s)
- Harry Zhou
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093, United States
| | - Zhongge Zhang
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093, United States
| | - Juan Velo
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093, United States
| | - Jialu Huo
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093, United States
| | - Sofia Smith
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093, United States
| | - Allyson Ho
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093, United States
| | - Milton H Saier
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
2
|
Vázquez-Ciros OJ, Alvarez AF, Georgellis D. Identification of an ArgR-controlled promoter within the outermost region of the IS 10R mobile element. J Bacteriol 2024; 206:e0026424. [PMID: 39480091 PMCID: PMC11580472 DOI: 10.1128/jb.00264-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
The transposon Tn10 is a prevalent composite element often detected in enteric bacteria, including those obtained from clinical samples. The Tn10 is flanked by two IS10 elements that work together in mediating transposition. IS10-right (IS10R) promotes transposition, while IS10-left lacks a functional transposase and cannot transpose independently. IS10R contains a weak promoter crucial for transposase transcription (pIN), along with two outward-oriented promoters, pOUT and OUTIIp, which may influence the expression of adjacent genes flanking the transposition site. Here, we report the identification of a novel outward-facing promoter, pOUT70, and a functional translation initiation region (TIR) within the last 70 nucleotides of IS10R. Furthermore, we show that pOUT70 is negatively regulated by ArgR and positively controlled by IHF, and we demonstrate that pOUT70 enables growth phase-dependent expression of a truncated yet constitutively active version of the histidine kinase BarA. These findings underscore the significance of IS elements in enhancing downstream gene expression, and highlights the role of outward-facing promoters in derepressing virulence factors or acquiring antibiotic resistance. IMPORTANCE Mobile genetic elements are small DNA fragments that can relocate within the genome, causing either gene inactivation or enhanced gene expression. Our research identified a new functional promoter and mRNA translation region within the IS10R element, which is part of the widely distributed Tn10 transposon. We found that the global regulators ArgR and IHF control the activity of this promoter. Additionally, insertion of this mini-Tn10 derivative into the barA gene resulted in the expression of a truncated but constitutive active form of the BarA sensor kinase. Overall, our work sheds light on how mobile genetic elements could impact the physiology and virulence of opportunistic pathogenic bacteria.
Collapse
Affiliation(s)
- Oscar J. Vázquez-Ciros
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Adrián F. Alvarez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| | - Dimitris Georgellis
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
3
|
Kopkowski PW, Zhang Z, Saier MH. The effect of DNA-binding proteins on insertion sequence element transposition upstream of the bgl operon in Escherichia coli. Front Microbiol 2024; 15:1388522. [PMID: 38666260 PMCID: PMC11043490 DOI: 10.3389/fmicb.2024.1388522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The bglGFB operon in Escherichia coli K-12 strain BW25113, encoding the proteins necessary for the uptake and metabolism of β-glucosides, is normally not expressed. Insertion of either IS1 or IS5 upstream of the bgl promoter activates expression of the operon only when the cell is starving in the presence of a β-glucoside, drastically increasing transcription and allowing the cell to survive and grow using this carbon source. Details surrounding the exact mechanism and regulation of the IS insertional event remain unclear. In this work, the role of several DNA-binding proteins in how they affect the rate of insertion upstream of bgl are examined via mutation assays and protocols measuring transcription. Both Crp and IHF exert a positive effect on insertional Bgl+ mutations when present, active, and functional in the cell. Our results characterize IHF's effect in conjunction with other mutations, show that IHF's effect on IS insertion into bgl also affects other operons, and indicate that it may exert its effect by binding to and altering the DNA conformation of IS1 and IS5 in their native locations, rather than by directly influencing transposase gene expression. In contrast, the cAMP-CRP complex acts directly upon the bgl operon by binding upstream of the promoter, presumably altering local DNA into a conformation that enhances IS insertion.
Collapse
Affiliation(s)
| | - Zhongge Zhang
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Milton H. Saier
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
4
|
Zhu L, Li P, Zhang G, He Z, Tao X, Ji Y, Yang W, Zhu X, Luo W, Liao W, Chen C, Liu Y, Zhang W. Role of the ISKpn element in mediating mgrB gene mutations in ST11 hypervirulent colistin-resistant Klebsiella pneumoniae. Front Microbiol 2023; 14:1277320. [PMID: 37840706 PMCID: PMC10569121 DOI: 10.3389/fmicb.2023.1277320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Background Colistin has emerged as a last-resort therapeutic against antibiotic-resistant bacterial infections, particularly those attributed to carbapenem-resistant Enterobacteriaceae (CRE) like CRKP. Yet, alarmingly, approximately 45% of multidrug-resistant Klebsiella pneumoniae strains now manifest resistance to colistin. Through our study, we discerned that the synergy between carbapenemase and IS elements amplifies resistance in Klebsiella pneumoniae, thereby narrowing the existing therapeutic avenues. This underscores the instrumental role of IS elements in enhancing colistin resistance through mgrB disruption. Methods From 2021 to 2023, 127 colistin-resistant Klebsiella pneumoniae isolates underwent meticulous examination. We embarked on an exhaustive genetic probe, targeting genes associated with both plasmid-mediated mobile resistance-encompassing blaKPC, blaNDM, blaIMP, blaVIM, blaOXA-48-like, and mcr-1 to mcr-8-and chromosome-mediated resistance systems, including PhoP/Q, PmrA/B, and mgrB. PCR amplification revealed the presence of virulence-associated genes from the pLVPK plasmid, such as rmpA, rmpA2, iucA, iroB, and peg344. mgrB sequencing was delegated to Sangon Biotech, Shanghai, and the sequences procured were validated using BLAST. Our search for IS elements was navigated through the IS finder portal. Phenotypically, we harnessed broth microdilution (BMD) to ascertain the MICs of colistin. To sketch the clonal lineage of mgrB-mutated CoR-Kp isolates, sophisticated methodologies like MLST and PFGE were deployed. S1-PFGE unraveled the intrinsic plasmids in these isolates. Our battery of virulence assessment techniques ranged from the string test and capsular serotyping to the serum killing assay and the Galleria mellonella larval infection model. Results Among the 127 analyzed isolates, 20 showed an enlarged mgrB PCR amplicon compared to wild-type strains. These emerged over a three-year period: three in 2021, thirteen in 2022, and four in 2023. Antimicrobial susceptibility tests revealed that these isolates consistently resisted several drugs, notably TCC, TZP, CAZ, and COL. Additionally, 85% resisted both DOX and TOB. The MICs for colistin across these strains ranged between 16 to 64 mg/L, with a median of 40 mg/L. From a genetic perspective, MLST unanimously categorized these mgrB-mutated CoR-hvKp isolates as ST11. PFGE further delineated them into six distinct clusters, with clusters A and D being predominant. This distribution suggests potential horizontal and clonal genetic transmission. Intriguingly, every mgrB-mutated CoR-hvKP isolate possessed at least two virulence genes akin to the pLVPK-like virulence plasmid, with iroB and rmpA2 standing out. Their virulence was empirically validated both in vitro and in vivo. A pivotal discovery was the identification of three distinct insertion sequence (IS) elements within or near the mgrB gene. These were:ISKpn26 in eleven isolates, mainly in cluster A, with various insertion sites including +74, +125, and an upstream -35.ISKpn14 in four isolates with insertions at +93, -35, and two upstream at -60.IS903B present in five isolates, marking positions like +74, +125, +116, and -35 in the promoter region. These diverse insertions, spanning six unique locations in or near the mgrB gene, underscore its remarkable adaptability. Conclusion Our exploration spotlights the ISKpn element's paramount role in fostering mgrB gene mutations in ST11 hypervirulent colistin-resistant Klebsiella pneumoniae. Employing MLST and PFGE, we unearthed two primary genetic conduits: clonal and horizontal. A striking observation was the ubiquitous presence of the KPC carbapenemase gene in all the evaluated ST11 hypervirulent colistin-resistant Klebsiella pneumoniae strains, with a majority also harboring the NDM gene. The myriad mgrB gene insertion locales accentuate its flexibility and the overarching influence of IS elements, notably the pervasive IS5-like variants ISKpn26 and IS903B. Our revelations illuminate the escalating role of IS elements in antibiotic resistance within ST11 hypervirulent colistin-resistant Klebsiella pneumoniae, advocating for innovative interventions to counteract these burgeoning resistance paradigms given their profound ramifications for prevailing treatment modalities.
Collapse
Affiliation(s)
- Lanlan Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Ping Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Yichun People’s Hospital, Yichun, China
| | - Guangyi Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Zhiyong He
- First Clinical Medical College of Nanchang University, Nanchang University, Nanchang, China
| | - Xingyu Tao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yicheng Ji
- Department of Hospital Infection Control, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Wenjing Yang
- Department of Hospital Infection Control, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Xiaofang Zhu
- Department of Hospital Infection Control, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Wanying Luo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenjian Liao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Chuanhui Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Yang Liu
- National Regional Center for Respiratory Medicine, Jiang Xi Hospital of China-Japan Friendship Hospital, Nanchang, China
- Department of Clinical Microbiology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Wei Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Heieck K, Brück T. Localization of Insertion Sequences in Plasmids for L-Cysteine Production in E. coli. Genes (Basel) 2023; 14:1317. [PMID: 37510222 PMCID: PMC10379815 DOI: 10.3390/genes14071317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Insertion sequence elements (ISE) are often found to be responsible for the collapse of production in synthetically engineered Escherichia coli. By the transposition of ISE into the open reading frame of the synthetic pathway, E. coli cells gain selection advantage over cells expressing the metabolic burdensome production genes. Here, we present the exact entry sites of insertion sequence (IS) families 3 and 5 within plasmids for l-cysteine production in evolved E. coli populations. Furthermore, we identified an uncommon occurrence of an 8-bp direct repeat of IS5 which is atypical for this particular family, potentially indicating a new IS5 target site.
Collapse
Affiliation(s)
- Kevin Heieck
- School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Thomas Brück
- School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
6
|
Tran D, Zhang Z, Lam KJK, Saier MH. Effects of Global and Specific DNA-Binding Proteins on Transcriptional Regulation of the E. coli bgl Operon. Int J Mol Sci 2022; 23:ijms231810343. [PMID: 36142257 PMCID: PMC9499468 DOI: 10.3390/ijms231810343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Using reporter gene (lacZ) transcriptional fusions, we examined the transcriptional dependencies of the bgl promoter (Pbgl) and the entire operon regulatory region (Pbgl-bglG) on eight transcription factors as well as the inducer, salicin, and an IS5 insertion upstream of Pbgl. Crp-cAMP is the primary activator of both Pbgl and the bgl operon, while H-NS is a strong dominant operon repressor but only a weak repressor of Pbgl. H-NS may exert its repressive effect by looping the DNA at two binding sites. StpA is a relatively weak repressor in the absence of H-NS, while Fis also has a weak repressive effect. Salicin has no effect on Pbgl activity but causes a 30-fold induction of bgl operon expression. Induction depends on the activity of the BglF transporter/kinase. IS5 insertion has only a moderate effect on Pbgl but causes a much greater activation of the bgl operon expression by preventing the full repressive effects of H-NS and StpA. While several other transcription factors (BglJ, RcsB, and LeuO) have been reported to influence bgl operon transcription when overexpressed, they had little or no effect when present at wild type levels. These results indicate the important transcriptional regulatory mechanisms operative on the bgl operon in E. coli.
Collapse
|
7
|
Zhang Z, Zhou K, Tran D, Saier M. Insertion Sequence (IS) Element-Mediated Activating Mutations of the Cryptic Aromatic β-Glucoside Utilization ( BglGFB) Operon Are Promoted by the Anti-Terminator Protein (BglG) in Escherichia coli. Int J Mol Sci 2022; 23:ijms23031505. [PMID: 35163427 PMCID: PMC8836124 DOI: 10.3390/ijms23031505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 01/24/2023] Open
Abstract
The cryptic β-glucoside GFB (bglGFB) operon in Escherichia coli (E. coli) can be activated by mutations arising under starvation conditions in the presence of an aromatic β-glucoside. This may involve the insertion of an insertion sequence (IS) element into a "stress-induced DNA duplex destabilization" (SIDD) region upstream of the operon promoter, although other types of mutations can also activate the bgl operon. Here, we show that increased expression of the bglG gene, encoding a well-characterized transcriptional antiterminator, dramatically increases the frequency of both IS-mediated and IS-independent Bgl+ mutations occurring on salicin- and arbutin-containing agar plates. Both mutation rates increased with increasing levels of bglG expression but IS-mediated mutations were more prevalent at lower BglG levels. Mutations depended on the presence of both BglG and an aromatic β-glucoside, and bglG expression did not influence IS insertion in other IS-activated operons tested. The N-terminal mRNA-binding domain of BglG was essential for mutational activation, and alteration of BglG's binding site in the mRNA nearly abolished Bgl+ mutant appearances. Increased bglG expression promoted residual bgl operon expression in parallel with the increases in mutation rates. Possible mechanisms are proposed explaining how BglG enhances the frequencies of bgl operon activating mutations.
Collapse
|
8
|
Udomsinprasert W, Sakuntasri W, Jittikoon J, Chaikledkaew U, Honsawek S, Chantratita W, Wattanapokayakit S, Mahasirimongkol S. Global DNA hypomethylation of Alu and LINE-1 transposable elements as an epigenetic biomarker of anti-tuberculosis drug-induced liver injury. Emerg Microbes Infect 2021; 10:1862-1872. [PMID: 34467830 PMCID: PMC8451674 DOI: 10.1080/22221751.2021.1976079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite being highly effective, anti-tuberculosis (TB) drugs often induce adverse liver injury, anti-TB drug-induced liver injury (ATDILI), leading to treatment failure given no sensitive and selective ATDILI markers. Herein, we conducted a case–control association study to determine whether global DNA methylation of Alu and LINE-1 transposable elements responsible for genomic stability and transcriptional regulation was correlated with clinical parameters indicating ATDILI in TB patients and might serve as an ATDILI biomarker. Alu and LINE-1 methylation levels in blood leukocyte of 130 TB patients (80 ATDILI cases and 50 non-ATDILI cases) and 100 healthy controls were quantified using quantitative combined bisulfite restriction analysis. Both TB patients with and without ATDILI had significantly lower methylation levels of Alu and LINE-1 elements than healthy controls. Compared with non-ATDILI patients, Alu methylation levels were significantly decreased in ATDILI patients, commensurate with LINE-1 methylation analysis. Hypomethylation of Alu and LINE-1 measured within 1–7 days of TB treatment was independently associated with raised levels of serum aminotransferases assessed within 8–60 days of TB treatment. Receiver operating characteristic curve analysis uncovered that Alu and LINE-1 methylation levels were both more sensitive and specific for differentiating ATDILI cases from non-ATDILI cases than serum aminotransferases after starting TB treatment within 1–7 days. Kaplan-Meier analysis displayed a significant association between hypomethylation of Alu and LINE-1 elements and an increased rate of ATDILI occurrence in TB patients. Collectively, global DNA hypomethylation of Alu and LINE-1 elements would reflect ATDILI progression and might serve as novel sensitive and specific ATDILI biomarkers.
Collapse
Affiliation(s)
| | - Wanchaloem Sakuntasri
- Master of Science Program in Biopharmaceutical Sciences, Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Jiraphun Jittikoon
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Usa Chaikledkaew
- Social and Administrative Pharmacy Division, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.,Mahidol University Health Technology Assessment (MUHTA) Graduate Program, Mahidol University, Bangkok, Thailand
| | - Sittisak Honsawek
- Department of Biochemistry, Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sukanya Wattanapokayakit
- Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Genomic Medicine Centre, Nonthaburi, Thailand
| | - Surakameth Mahasirimongkol
- Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Genomic Medicine Centre, Nonthaburi, Thailand
| |
Collapse
|
9
|
Shan W, Zhang H, Kan J, Yin M, Zhang J, Wan L, Chang R, Li M. Acquired mucoid phenotype of Acinetobacter baumannii: Impact for the molecular characteristics and virulence. Microbiol Res 2021; 246:126702. [PMID: 33465557 DOI: 10.1016/j.micres.2021.126702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/23/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
Mucoid phenotype is an important adaptive defense response for Acinetobacter baumannii (A. baumannii). The aim of this study was to analyze the impact of mucoid phenotype for the molecular characteristics and virulence of A. baumannii. We observed that the colonies of mucoid A. baumannii were moist, with an elevated surface, and the wire drawing result was positive. Transmission electron microscopy data showed that the outer wall of the mucoid colonies was not smooth, had protruding pseudopodia, and was surrounded by a layer of unknown material. Antibiotic susceptibility testing showed that the mucoid strains were multidrug resistant. Notably, the mucoid phenotype and antibiotic resistance were not correlated with the amount of biofilm produced by A. baumannii. MLST data demonstrated that the mucoid A. baumannii strains belonged to type ST2. Most (82.6 %, 38/46) of the multidrug-resistant nonmucoid strains also belonged to the molecular type ST2 and to other types, including ST129, ST158, ST195, ST80 and ST3. Moreover, mucoid A. baumannii strains were more virulent than nonmucoid isolates in a mouse model. The comparative transcriptomic data indicated that 15 genes, especially IX87_RS16955 (acnA), IX87_RS10800 (XanP), IX87_RS12875 (GlmM), IX87_RS00885 and IX87_RS12395 (bfr), were possibly associated with the phenotype and virulence of mucoid A. baumannii. In conclusions, the study comprehensively describes the molecular characteristics and virulence regulatory mechanism of mucoid A. baumannii, and provides novel insights for the prevention and treatment of infections associated with these strains.
Collapse
Affiliation(s)
- Wulin Shan
- Department of Laboratory Diagnostics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, China.
| | - Huanhuan Zhang
- Department of Laboratory Diagnostics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, China
| | - Jinsong Kan
- Department of Laboratory Diagnostics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, China
| | - Meiling Yin
- Department of Laboratory Diagnostics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, China
| | - Jiayun Zhang
- Department of Laboratory Diagnostics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, China
| | - Lingling Wan
- Department of Laboratory Diagnostics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, China
| | - Renliang Chang
- Department of Laboratory Diagnostics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, China
| | - Ming Li
- Department of Laboratory Diagnostics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, China
| |
Collapse
|
10
|
Santoriello FJ, Michel L, Unterweger D, Pukatzki S. Pandemic Vibrio cholerae shuts down site-specific recombination to retain an interbacterial defence mechanism. Nat Commun 2020; 11:6246. [PMID: 33288753 PMCID: PMC7721734 DOI: 10.1038/s41467-020-20012-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 11/06/2020] [Indexed: 12/18/2022] Open
Abstract
Vibrio cholerae is an aquatic microbe that can be divided into three subtypes: harmless environmental strains, localised pathogenic strains, and pandemic strains causing global cholera outbreaks. Each type has a contact-dependent type VI secretion system (T6SS) that kills neighbouring competitors by translocating unique toxic effector proteins. Pandemic isolates possess identical effectors, indicating that T6SS effectors may affect pandemicity. Here, we show that one of the T6SS gene clusters (Aux3) exists in two states: a mobile, prophage-like element in a small subset of environmental strains, and a truncated Aux3 unique to and conserved in pandemic isolates. Environmental Aux3 can be readily excised from and integrated into the genome via site-specific recombination, whereas pandemic Aux3 recombination is reduced. Our data suggest that environmental Aux3 acquisition conferred increased competitive fitness to pre-pandemic V. cholerae, leading to grounding of the element in the chromosome and propagation throughout the pandemic clade. Vibrio cholerae uses a type VI secretion system (T6SS) to kill neighbouring competitors. Here, Santoriello et al. show that a T6SS gene cluster (Aux3) exists as a mobile, prophage-like element in some environmental strains, and as a stable truncated form in pandemic isolates. They propose that Aux3 acquisition increased competitive fitness of pre-pandemic V. cholerae.
Collapse
Affiliation(s)
- Francis J Santoriello
- Department of Immunology and Microbiology, University of Colorado Denver Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO, 80045, USA.,Department of Biology, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Lina Michel
- Department of Immunology and Microbiology, University of Colorado Denver Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO, 80045, USA.,Heidelberg University, Grabengasse 1, 69117, Heidelberg, Germany
| | - Daniel Unterweger
- Institute for Experimental Medicine, Kiel University, Michaelisstraße 5, 24105, Kiel, Germany.,Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306, Plön, Germany
| | - Stefan Pukatzki
- Department of Immunology and Microbiology, University of Colorado Denver Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO, 80045, USA. .,Department of Biology, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA.
| |
Collapse
|
11
|
Satanowski A, Dronsella B, Noor E, Vögeli B, He H, Wichmann P, Erb TJ, Lindner SN, Bar-Even A. Awakening a latent carbon fixation cycle in Escherichia coli. Nat Commun 2020; 11:5812. [PMID: 33199707 PMCID: PMC7669889 DOI: 10.1038/s41467-020-19564-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Carbon fixation is one of the most important biochemical processes. Most natural carbon fixation pathways are thought to have emerged from enzymes that originally performed other metabolic tasks. Can we recreate the emergence of a carbon fixation pathway in a heterotrophic host by recruiting only endogenous enzymes? In this study, we address this question by systematically analyzing possible carbon fixation pathways composed only of Escherichia coli native enzymes. We identify the GED (Gnd-Entner-Doudoroff) cycle as the simplest pathway that can operate with high thermodynamic driving force. This autocatalytic route is based on reductive carboxylation of ribulose 5-phosphate (Ru5P) by 6-phosphogluconate dehydrogenase (Gnd), followed by reactions of the Entner-Doudoroff pathway, gluconeogenesis, and the pentose phosphate pathway. We demonstrate the in vivo feasibility of this new-to-nature pathway by constructing E. coli gene deletion strains whose growth on pentose sugars depends on the GED shunt, a linear variant of the GED cycle which does not require the regeneration of Ru5P. Several metabolic adaptations, most importantly the increased production of NADPH, assist in establishing sufficiently high flux to sustain this growth. Our study exemplifies a trajectory for the emergence of carbon fixation in a heterotrophic organism and demonstrates a synthetic pathway of biotechnological interest.
Collapse
Affiliation(s)
- Ari Satanowski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Beau Dronsella
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Elad Noor
- Institute of Molecular Systems Biology, ETH Zürich, Otto-Stern-Weg 3, 8093, Zürich, Switzerland
| | - Bastian Vögeli
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Hai He
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Philipp Wichmann
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO), 35043, Marburg, Germany
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany.
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
12
|
Yona AH, Alm EJ, Gore J. Random sequences rapidly evolve into de novo promoters. Nat Commun 2018; 9:1530. [PMID: 29670097 PMCID: PMC5906472 DOI: 10.1038/s41467-018-04026-w] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/28/2018] [Indexed: 11/09/2022] Open
Abstract
How new functions arise de novo is a fundamental question in evolution. We studied de novo evolution of promoters in Escherichia coli by replacing the lac promoter with various random sequences of the same size (~100 bp) and evolving the cells in the presence of lactose. We find that ~60% of random sequences can evolve expression comparable to the wild-type with only one mutation, and that ~10% of random sequences can serve as active promoters even without evolution. Such a short mutational distance between random sequences and active promoters may improve the evolvability, yet may also lead to accidental promoters inside genes that interfere with normal expression. Indeed, our bioinformatic analyses indicate that E. coli was under selection to reduce accidental promoters inside genes by avoiding promoter-like sequences. We suggest that a low threshold for functionality balanced by selection against undesired targets can increase the evolvability by making new beneficial features more accessible. Bacterial promoters initiate gene transcription and have distinct sequence features. Here, the authors show that random sequences that contain no information are just on the verge of functioning as promoters in Escherichia coli.
Collapse
Affiliation(s)
- Avihu H Yona
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Eric J Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jeff Gore
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
13
|
Qin H, Lo NWS, Loo J, Lin X, Yim AKY, Tsui SKW, Lau TCK, Ip M, Chan TF. Comparative transcriptomics of multidrug-resistant Acinetobacter baumannii in response to antibiotic treatments. Sci Rep 2018; 8:3515. [PMID: 29476162 PMCID: PMC5824817 DOI: 10.1038/s41598-018-21841-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 02/05/2018] [Indexed: 11/16/2022] Open
Abstract
Multidrug-resistant Acinetobacter baumannii, a major hospital-acquired pathogen, is a serious health threat and poses a great challenge to healthcare providers. Although there have been many genomic studies on the evolution and antibiotic resistance of this species, there have been very limited transcriptome studies on its responses to antibiotics. We conducted a comparative transcriptomic study on 12 strains with different growth rates and antibiotic resistance profiles, including 3 fast-growing pan-drug-resistant strains, under separate treatment with 3 antibiotics, namely amikacin, imipenem, and meropenem. We performed deep sequencing using a strand-specific RNA-sequencing protocol, and used de novo transcriptome assembly to analyze gene expression in the form of polycistronic transcripts. Our results indicated that genes associated with transposable elements generally showed higher levels of expression under antibiotic-treated conditions, and many of these transposon-associated genes have previously been linked to drug resistance. Using co-expressed transposon genes as markers, we further identified and experimentally validated two novel genes of which overexpression conferred significant increases in amikacin resistance. To the best of our knowledge, this study represents the first comparative transcriptomic analysis of multidrug-resistant A. baumannii under different antibiotic treatments, and revealed a new relationship between transposons and antibiotic resistance.
Collapse
Affiliation(s)
- Hao Qin
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
- 3D Medicines Corporation, Shanghai, China
| | - Norman Wai-Sing Lo
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jacky Loo
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao Lin
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Aldrin Kay-Yuen Yim
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Washington University School of Medicine, Saint Louis, MO, USA
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Terrence Chi-Kong Lau
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Margaret Ip
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
14
|
Kaur R, Siozios S, Miller WJ, Rota-Stabelli O. Insertion sequence polymorphism and genomic rearrangements uncover hidden Wolbachia diversity in Drosophila suzukii and D. subpulchrella. Sci Rep 2017; 7:14815. [PMID: 29093474 PMCID: PMC5665950 DOI: 10.1038/s41598-017-13808-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/03/2017] [Indexed: 11/09/2022] Open
Abstract
Ability to distinguish between closely related Wolbachia strains is crucial for understanding the evolution of Wolbachia-host interactions and the diversity of Wolbachia-induced phenotypes. A useful model to tackle these issues is the Drosophila suzukii - Wolbachia association. D. suzukii, a destructive insect pest, harbor a non-CI inducing Wolbachia 'wSuz' closely related to the strong CI-inducing wRi strain. Multi locus sequence typing (MLST) suggests presence of genetic homogeneity across wSuz strains infecting European and American D. suzukii populations, although different Wolbachia infection frequencies and host fecundity levels have been observed in both populations. Currently, it is not clear if these differences are due to cryptic wSuz polymorphism, host background, geographical factors or a combination of all of them. Here, we have identified geographical diversity in wSuz in D. suzukii populations from different continents using a highly diagnostic set of markers based on insertion sequence (IS) site polymorphism and genomic rearrangements (GR). We further identified inter-strain diversity between Wolbachia infecting D. suzukii and its sister species D. subpulchrella (wSpc). Based on our results, we speculate that discernible wSuz variants may associate with different observed host phenotypes, a hypothesis that demands future investigation. More generally, our results demonstrate the utility of IS and GRs in discriminating closely related Wolbachia strains.
Collapse
Affiliation(s)
- Rupinder Kaur
- Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Centre of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Stefanos Siozios
- Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Wolfgang J Miller
- Centre of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Omar Rota-Stabelli
- Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, San Michele all'Adige, Italy.
| |
Collapse
|
15
|
Steinrueck M, Guet CC. Complex chromosomal neighborhood effects determine the adaptive potential of a gene under selection. eLife 2017; 6. [PMID: 28738969 PMCID: PMC5526668 DOI: 10.7554/elife.25100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/15/2017] [Indexed: 12/12/2022] Open
Abstract
How the organization of genes on a chromosome shapes adaptation is essential for understanding evolutionary paths. Here, we investigate how adaptation to rapidly increasing levels of antibiotic depends on the chromosomal neighborhood of a drug-resistance gene inserted at different positions of the Escherichia coli chromosome. Using a dual-fluorescence reporter that allows us to distinguish gene amplifications from other up-mutations, we track in real-time adaptive changes in expression of the drug-resistance gene. We find that the relative contribution of several mutation types differs systematically between loci due to properties of neighboring genes: essentiality, expression, orientation, termination, and presence of duplicates. These properties determine rate and fitness effects of gene amplification, deletions, and mutations compromising transcriptional termination. Thus, the adaptive potential of a gene under selection is a system-property with a complex genetic basis that is specific for each chromosomal locus, and it can be inferred from detailed functional and genomic data. DOI:http://dx.doi.org/10.7554/eLife.25100.001
Collapse
Affiliation(s)
| | - Călin C Guet
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
16
|
Humayun MZ, Zhang Z, Butcher AM, Moshayedi A, Saier MH. Hopping into a hot seat: Role of DNA structural features on IS5-mediated gene activation and inactivation under stress. PLoS One 2017; 12:e0180156. [PMID: 28666002 PMCID: PMC5493358 DOI: 10.1371/journal.pone.0180156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/09/2017] [Indexed: 11/30/2022] Open
Abstract
Insertion sequence elements (IS elements) are proposed to play major roles in shaping the genetic and phenotypic landscapes of prokaryotic cells. Recent evidence has raised the possibility that environmental stress conditions increase IS hopping into new sites, and often such hopping has the phenotypic effect of relieving the stress. Although stress-induced targeted mutations have been reported for a number of E. coli genes, the glpFK (glycerol utilization) and the cryptic bglGFB (β-glucoside utilization) systems are among the best characterized where the effects of IS insertion-mediated gene activation are well-characterized at the molecular level. In the glpFK system, starvation of cells incapable of utilizing glycerol leads to an IS5 insertion event that activates the glpFK operon, and enables glycerol utilization. In the case of the cryptic bglGFB operon, insertion of IS5 (and other IS elements) into a specific region in the bglG upstream sequence has the effect of activating the operon in both growing cells, and in starving cells. However, a major unanswered question in the glpFK system, the bgl system, as well as other examples, has been why the insertion events are promoted at specific locations, and how the specific stress condition (glycerol starvation for example) can be mechanistically linked to enhanced insertion at a specific locus. In this paper, we show that a specific DNA structural feature (superhelical stress-induced duplex destabilization, SIDD) is associated with "stress-induced" IS5 insertion in the glpFK, bglGFB, flhDC, fucAO and nfsB systems. We propose a speculative mechanistic model that links specific environmental conditions to the unmasking of an insertional hotspot in the glpFK system. We demonstrate that experimentally altering the predicted stability of a SIDD element in the nfsB gene significantly impacts IS5 insertion at its hotspot.
Collapse
Affiliation(s)
- M. Zafri Humayun
- Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers—New Jersey Medical School, Newark, NJ, United States of America
| | - Zhongge Zhang
- Department of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Anna M. Butcher
- Department of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Aref Moshayedi
- Department of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
17
|
Vandecraen J, Chandler M, Aertsen A, Van Houdt R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit Rev Microbiol 2017; 43:709-730. [PMID: 28407717 DOI: 10.1080/1040841x.2017.1303661] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transposable elements (TE), small mobile genetic elements unable to exist independently of the host genome, were initially believed to be exclusively deleterious genomic parasites. However, it is now clear that they play an important role as bacterial mutagenic agents, enabling the host to adapt to new environmental challenges and to colonize new niches. This review focuses on the impact of insertion sequences (IS), arguably the smallest TE, on bacterial genome plasticity and concomitant adaptability of phenotypic traits, including resistance to antibacterial agents, virulence, pathogenicity and catabolism. The direct consequence of IS transposition is the insertion of one DNA sequence into another. This event can result in gene inactivation as well as in modulation of neighbouring gene expression. The latter is usually mediated by de-repression or by the introduction of a complete or partial promoter located within the element. Furthermore, transcription and transposition of IS are affected by host factors and in some cases by environmental signals offering the host an adaptive strategy and promoting genetic variability to withstand the environmental challenges.
Collapse
Affiliation(s)
- Joachim Vandecraen
- a Microbiology Unit, Interdisciplinary Biosciences , Belgian Nuclear Research Centre (SCK•CEN) , Mol , Belgium.,b Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre , Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering , KU Leuven , Leuven , Belgium
| | - Michael Chandler
- c Laboratoire de Microbiologie et Génétique Moléculaires, Centre national de la recherche scientifique , Toulouse , France
| | - Abram Aertsen
- b Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre , Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering , KU Leuven , Leuven , Belgium
| | - Rob Van Houdt
- a Microbiology Unit, Interdisciplinary Biosciences , Belgian Nuclear Research Centre (SCK•CEN) , Mol , Belgium
| |
Collapse
|
18
|
Zhang Z, Kukita C, Humayun MZ, Saier MH. Environment-directed activation of the Escherichia coliflhDC operon by transposons. MICROBIOLOGY-SGM 2017; 163:554-569. [PMID: 28100305 DOI: 10.1099/mic.0.000426] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The flagellar system in Escherichia coli K12 is expressed under the control of the flhDC-encoded master regulator FlhDC. Transposition of insertion sequence (IS) elements to the upstream flhDC promoter region up-regulates transcription of this operon, resulting in a more rapid motility. Wang and Wood (ISME J 2011;5:1517-1525) provided evidence that insertion of IS5 into upstream activating sites occurs at higher rates in semi-solid agar media in which swarming behaviour is allowed as compared with liquid or solid media where swarming cannot occur. We confirm this conclusion and show that three IS elements, IS1, IS3 and IS5, transpose to multiple upstream sites within a 370 bp region of the flhDC operon control region. Hot spots for IS insertion correlate with positions of stress-induced DNA duplex destabilization (SIDD). We show that IS insertion occurs at maximal rates in 0.24 % agar, with rates decreasing dramatically with increasing or decreasing agar concentrations. In mixed cultures, we show that these mutations preferentially arise from the wild-type parent at frequencies of up to 3×10-3 cell-1 day-1 when the inoculated parental and co-existing IS-activated mutant cells are entering the stationary growth phase. We rigorously show that the apparent increased mutation frequencies cannot be accounted for by increased swimming or by increased growth under the selective conditions used. Thus, our data are consistent with the possibility that appropriate environmental conditions, namely those that permit but hinder flagellar rotation, result in the activation of a mutational pathway that involves IS element insertion upstream of the flhDC operon.
Collapse
Affiliation(s)
- Zhongge Zhang
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Chika Kukita
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - M Zafri Humayun
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07101-1709, USA
| | - Milton H Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
19
|
Zhang Z, Saier MH. Transposon-mediated activation of the Escherichia coli glpFK operon is inhibited by specific DNA-binding proteins: Implications for stress-induced transposition events. Mutat Res 2016; 793-794:22-31. [PMID: 27810619 DOI: 10.1016/j.mrfmmm.2016.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/18/2016] [Accepted: 10/22/2016] [Indexed: 11/16/2022]
Abstract
Escherichia coli cells deleted for the cyclic AMP (cAMP) receptor protein (Crp) gene (Δcrp) cannot utilize glycerol because cAMP-Crp is a required activator of the glycerol utilization operon, glpFK. We have previously shown that a transposon, Insertion Sequence 5 (IS5), can insert into the upstream regulatory region of the operon to activate the glpFK promoter and enable glycerol utilization. GlpR, which represses glpFK transcription, binds to the glpFK upstream region near the site of IS5 insertion and inhibits insertion. By adding cAMP to the culture medium in ΔcyaA cells, we here show that the cAMP-Crp complex, which also binds to the glpFK upstream regulatory region, inhibits IS5 hopping into the activating site. Control experiments showed that the frequencies of mutations in response to cAMP were independent of parental cell growth rate and the selection procedure. These findings led to the prediction that glpFK-activating IS5 insertions can also occur in wild-type (Crp+) cells under conditions that limit cAMP production. Accordingly, we found that IS5 insertion into the activating site in wild-type cells is elevated in the presence of glycerol and a non-metabolizable sugar analogue that lowers cytoplasmic cAMP concentrations. The resultant IS5 insertion mutants arising in this minimal medium become dominant constituents of the population after prolonged periods of growth. The results show that DNA binding transcription factors can reversibly mask a favored transposon target site, rendering a hot spot for insertion less favored. Such mechanisms could have evolved by natural selection to overcome environmental adversity.
Collapse
Affiliation(s)
- Zhongge Zhang
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States
| | - Milton H Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States.
| |
Collapse
|
20
|
Liu X, Li Y, Guo Y, Zeng Z, Li B, Wood TK, Cai X, Wang X. Physiological Function of Rac Prophage During Biofilm Formation and Regulation of Rac Excision in Escherichia coli K-12. Sci Rep 2015; 5:16074. [PMID: 26530864 PMCID: PMC4632033 DOI: 10.1038/srep16074] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/07/2015] [Indexed: 12/21/2022] Open
Abstract
Rac or rac-like prophage harbors many genes with important physiological functions, while it remains excision-proficient in several bacterial strains including Escherichia coli, Salmonella spp. and Shigella spp. Here, we found that rac excision is induced during biofilm formation, and the isogenic stain without rac is more motile and forms more biofilms in nutrient-rich medium at early stages in E. coli K-12. Additionally, the presence of rac genes increases cell lysis during biofilm development. In most E. coli strains, rac is integrated into the ttcA gene which encodes a tRNA-thioltransferase. Rac excision in E. coli K-12 leads to a functional change of TtcA, which results in reduced fitness in the presence of carbenicillin. Additionally, we demonstrate that YdaQ (renamed as XisR) is the excisionase of rac in E. coli K-12, and that rac excision is induced by the stationary sigma factor RpoS through inducing xisR expression. Taken together, our results reveal that upon rac integration, not only are new genes introduced into the host, but also there is a functional change in a host enzyme. Hence, rac excision is tightly regulated by host factors to control its stability in the host genome under different stress conditions.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Yangmei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Zhenshun Zeng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baiyuan Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-4400.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802-4400
| | - Xingsheng Cai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| |
Collapse
|
21
|
Kingston AW, Roussel-Rossin C, Dupont C, Raleigh EA. Novel recA-Independent Horizontal Gene Transfer in Escherichia coli K-12. PLoS One 2015; 10:e0130813. [PMID: 26162088 PMCID: PMC4498929 DOI: 10.1371/journal.pone.0130813] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/27/2015] [Indexed: 01/19/2023] Open
Abstract
In bacteria, mechanisms that incorporate DNA into a genome without strand-transfer proteins such as RecA play a major role in generating novelty by horizontal gene transfer. We describe a new illegitimate recombination event in Escherichia coli K-12: RecA-independent homologous replacements, with very large (megabase-length) donor patches replacing recipient DNA. A previously uncharacterized gene (yjiP) increases the frequency of RecA-independent replacement recombination. To show this, we used conjugal DNA transfer, combining a classical conjugation donor, HfrH, with modern genome engineering methods and whole genome sequencing analysis to enable interrogation of genetic dependence of integration mechanisms and characterization of recombination products. As in classical experiments, genomic DNA transfer begins at a unique position in the donor, entering the recipient via conjugation; antibiotic resistance markers are then used to select recombinant progeny. Different configurations of this system were used to compare known mechanisms for stable DNA incorporation, including homologous recombination, F'-plasmid formation, and genome duplication. A genome island of interest known as the immigration control region was specifically replaced in a minority of recombinants, at a frequency of 3 X 10(-12) CFU/recipient per hour.
Collapse
Affiliation(s)
- Anthony W. Kingston
- New England Biolabs, Ipswich, Massachusetts, 01938, United States of America
| | | | - Claire Dupont
- New England Biolabs, Ipswich, Massachusetts, 01938, United States of America
| | - Elisabeth A. Raleigh
- New England Biolabs, Ipswich, Massachusetts, 01938, United States of America
- * E-mail:
| |
Collapse
|
22
|
Saier MH. The Bacterial Phosphotransferase System: New Frontiers 50 Years after Its Discovery. J Mol Microbiol Biotechnol 2015; 25:73-8. [PMID: 26159069 DOI: 10.1159/000381215] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In 1964, Kundig, Ghosh and Roseman reported the discovery of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), which they subsequently proposed might catalyze sugar transport as well as sugar phosphorylation. What we have learned in the 50 years since its discovery is that, in addition to these primary functions, the PTS serves as a complex protein kinase system that regulates a wide variety of transport, metabolic and mutagenic processes as well as the expression of numerous genes. Recent operon- and genome-sequencing projects have revealed novel PTS protein-encoding genes, many of which have yet to be functionally defined. The current picture of the PTS is that of a complex system with ramifications in all aspects of cellular physiology. Moreover, its mosaic evolutionary history is unusual and intriguing. The PTS can be considered to serve many prokaryotes in capacities of communication and coordination, as do the nervous systems of animals.
Collapse
Affiliation(s)
- Milton H Saier
- Department of Molecular Biology, University of California at San Diego, La Jolla, Calif., USA
| |
Collapse
|
23
|
Saier MH, Zhang Z. Control of Transposon-Mediated Directed Mutation by the Escherichia coli Phosphoenolpyruvate:Sugar Phosphotransferase System. J Mol Microbiol Biotechnol 2015; 25:226-33. [PMID: 26159081 DOI: 10.1159/000375375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The phosphoenolpyruvate:sugar phosphotransferase system (PTS) has been shown to control transport, cell metabolism and gene expression. We here present results supporting the novel suggestion that in certain instances it also regulates the mutation rate. Directed mutations are defined as mutations that occur at higher frequencies when beneficial than when neutral or detrimental. To date, the occurrence of directed point mutations has not been documented and confirmed, but a few examples of transposon-mediated directed mutations have been reported. Here we focus on the first and best-studied example of directed mutation, which involves the regulation of insertion sequence-5 hopping into a specific site upstream of the glpFK glycerol utilization operon in Escherichia coli. This insertional event specifically activates expression of the glpFK operon, allowing the growth of wild-type cells with glycerol as a carbon source in the presence of nonmetabolizable glucose analogues which normally block glycerol utilization. The sugar-transporting PTS controls this process by regulating levels of cytoplasmic glycerol-3-phosphate and cyclic (c)AMP as established in previous publications. Direct involvement of the glycerol repressor, GlpR, and the cAMP receptor protein, Crp, in the regulation of transposon-mediated directed mutation has been demonstrated.
Collapse
Affiliation(s)
- Milton H Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, Calif., USA
| | | |
Collapse
|
24
|
Cerveau N, Gilbert C, Liu C, Garrett RA, Grève P, Bouchon D, Cordaux R. Genomic context drives transcription of insertion sequences in the bacterial endosymbiont Wolbachia wVulC. Gene 2015; 564:81-6. [PMID: 25813874 DOI: 10.1016/j.gene.2015.03.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 11/24/2022]
Abstract
Transposable elements (TEs) are DNA pieces that are present in almost all the living world at variable genomic density. Due to their mobility and density, TEs are involved in a large array of genomic modifications. In eukaryotes, TE expression has been studied in detail in several species. In prokaryotes, studies of IS expression are generally linked to particular copies that induce a modification of neighboring gene expression. Here we investigated global patterns of IS transcription in the Alphaproteobacterial endosymbiont Wolbachia wVulC, using both RT-PCR and bioinformatic analyses. We detected several transcriptional promoters in all IS groups. Nevertheless, only one of the potentially functional IS groups possesses a promoter located upstream of the transposase gene, that could lead up to the production of a functional protein. We found that the majority of IS groups are expressed whatever their functional status. RT-PCR analyses indicate that the transcription of two IS groups lacking internal promoters upstream of the transposase start codon may be driven by the genomic environment. We confirmed this observation with the transcription analysis of individual copies of one IS group. These results suggest that the genomic environment is important for IS expression and it could explain, at least partly, copy number variability of the various IS groups present in the wVulC genome and, more generally, in bacterial genomes.
Collapse
Affiliation(s)
- Nicolas Cerveau
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, 5 Rue Albert Turpin, 86073 Poitiers Cedex 9, France
| | - Clément Gilbert
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, 5 Rue Albert Turpin, 86073 Poitiers Cedex 9, France
| | - Chao Liu
- Department of Biology, University of Copenhagen, 2200N Copenhagen, Denmark
| | - Roger A Garrett
- Department of Biology, University of Copenhagen, 2200N Copenhagen, Denmark
| | - Pierre Grève
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, 5 Rue Albert Turpin, 86073 Poitiers Cedex 9, France
| | - Didier Bouchon
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, 5 Rue Albert Turpin, 86073 Poitiers Cedex 9, France
| | - Richard Cordaux
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, 5 Rue Albert Turpin, 86073 Poitiers Cedex 9, France.
| |
Collapse
|
25
|
Phan MD, Peters KM, Sarkar S, Forde BM, Lo AW, Stanton-Cook M, Roberts LW, Upton M, Beatson SA, Schembri MA. Third-generation cephalosporin resistance conferred by a chromosomally encoded blaCMY-23 gene in the Escherichia coli ST131 reference strain EC958. J Antimicrob Chemother 2015; 70:1969-72. [PMID: 25786480 DOI: 10.1093/jac/dkv066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/23/2015] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Escherichia coli ST131 is a globally disseminated MDR clone originally identified due to its association with the blaCTX-M-15 gene encoding an ESBL. It is thus assumed that blaCTX-M-15 is the major determinant for resistance to β-lactam antibiotics in this clone. The complete sequence of EC958, a reference strain for E. coli ST131, revealed that it contains a chromosomally located blaCMY-23 gene with an upstream ISEcp1 element as well as several additional plasmid-encoded β-lactamase genes. Here, we examined the genetic context of the blaCMY-23 element in EC958 and other E. coli ST131 strains and investigated the contribution of blaCMY-23 to EC958 resistance to a range of β-lactam antibiotics. METHODS The genetic context of blaCMY-23 and its associated mobile elements was determined by PCR and sequencing. Antibiotic susceptibility testing was performed using Etests. The activity of the blaCMY-23 promoter was assessed using lacZ reporter assays. Mutations were generated using λ-Red-recombination. RESULTS The genetic structure of the ISEcp1-IS5-blaCMY-23 mobile element was determined and localized within the betU gene on the chromosome of EC958 and five other E. coli ST131 strains. The transcription of blaCMY-23, driven by a previously defined promoter within ISEcp1, was significantly higher than other β-lactamase genes and could be induced by cefotaxime. Deletion of the blaCMY-23 gene resulted in enhanced susceptibility to cefoxitin, cefotaxime and ceftazidime. CONCLUSIONS This is the first known report to demonstrate the chromosomal location of blaCMY-23 in E. coli ST131. In EC958, CMY-23 plays a major role in resistance to third-generation cephalosporins and cephamycins.
Collapse
Affiliation(s)
- Minh-Duy Phan
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kate M Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sohinee Sarkar
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Brian M Forde
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alvin W Lo
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mitchell Stanton-Cook
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Leah W Roberts
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mathew Upton
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL4 8AA, UK
| | - Scott A Beatson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mark A Schembri
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
26
|
Jones L, Riaz S, Morales-Cruz A, Amrine KCH, McGuire B, Gubler WD, Walker MA, Cantu D. Adaptive genomic structural variation in the grape powdery mildew pathogen, Erysiphe necator. BMC Genomics 2014; 15:1081. [PMID: 25487071 PMCID: PMC4298948 DOI: 10.1186/1471-2164-15-1081] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 12/01/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Powdery mildew, caused by the obligate biotrophic fungus Erysiphe necator, is an economically important disease of grapevines worldwide. Large quantities of fungicides are used for its control, accelerating the incidence of fungicide-resistance. Copy number variations (CNVs) are unbalanced changes in the structure of the genome that have been associated with complex traits. In addition to providing the first description of the large and highly repetitive genome of E. necator, this study describes the impact of genomic structural variation on fungicide resistance in Erysiphe necator. RESULTS A shotgun approach was applied to sequence and assemble the genome of five E. necator isolates, and RNA-seq and comparative genomics were used to predict and annotate protein-coding genes. Our results show that the E. necator genome is exceptionally large and repetitive and suggest that transposable elements are responsible for genome expansion. Frequent structural variations were found between isolates and included copy number variation in EnCYP51, the target of the commonly used sterol demethylase inhibitor (DMI) fungicides. A panel of 89 additional E. necator isolates collected from diverse vineyard sites was screened for copy number variation in the EnCYP51 gene and for presence/absence of a point mutation (Y136F) known to result in higher fungicide tolerance. We show that an increase in EnCYP51 copy number is significantly more likely to be detected in isolates collected from fungicide-treated vineyards. Increased EnCYP51 copy numbers were detected with the Y136F allele, suggesting that an increase in copy number becomes advantageous only after the fungicide-tolerant allele is acquired. We also show that EnCYP51 copy number influences expression in a gene-dose dependent manner and correlates with fungal growth in the presence of a DMI fungicide. CONCLUSIONS Taken together our results show that CNV can be adaptive in the development of resistance to fungicides by providing increasing quantitative protection in a gene-dosage dependent manner. The results of this work not only demonstrate the effectiveness of using genomics to dissect complex traits in organisms with very limited molecular information, but also may have broader implications for understanding genomic dynamics in response to strong selective pressure in other pathogens with similar genome architectures.
Collapse
Affiliation(s)
- Laura Jones
- />Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - Summaira Riaz
- />Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - Abraham Morales-Cruz
- />Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - Katherine CH Amrine
- />Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - Brianna McGuire
- />Department of Plant Pathology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - W Douglas Gubler
- />Department of Plant Pathology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - M Andrew Walker
- />Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - Dario Cantu
- />Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| |
Collapse
|
27
|
Saier MH, Zhang Z. Transposon-mediated directed mutation controlled by DNA binding proteins in Escherichia coli. Front Microbiol 2014; 5:390. [PMID: 25136335 PMCID: PMC4117983 DOI: 10.3389/fmicb.2014.00390] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 07/11/2014] [Indexed: 11/17/2022] Open
Affiliation(s)
- Milton H Saier
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego La Jolla, CA, USA
| | - Zhongge Zhang
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego La Jolla, CA, USA
| |
Collapse
|
28
|
Gonçalves GAL, Oliveira PH, Gomes AG, Prather KLJ, Lewis LA, Prazeres DMF, Monteiro GA. Evidence that the insertion events of IS2 transposition are biased towards abrupt compositional shifts in target DNA and modulated by a diverse set of culture parameters. Appl Microbiol Biotechnol 2014; 98:6609-19. [PMID: 24769900 DOI: 10.1007/s00253-014-5695-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 01/29/2023]
Abstract
Insertion specificity of mobile genetic elements is a rather complex aspect of DNA transposition, which, despite much progress towards its elucidation, still remains incompletely understood. We report here the results of a meta-analysis of IS2 target sites from genomic, phage, and plasmid DNA and find that newly acquired IS2 elements are consistently inserted around abrupt DNA compositional shifts, particularly in the form of switch sites of GC skew. The results presented in this study not only corroborate our previous observations that both the insertion sequence (IS) minicircle junction and target region adopt intrinsically bent conformations in IS2, but most interestingly, extend this requirement to other families of IS elements. Using this information, we were able to pinpoint regions with high propensity for transposition and to predict and detect, de novo, a novel IS2 insertion event in the 3' region of the gfp gene of a reporter plasmid. We also found that during amplification of this plasmid, process parameters such as scale, culture growth phase, and medium composition exacerbate IS2 transposition, leading to contamination levels with potentially detrimental clinical effects. Overall, our findings provide new insights into the role of target DNA structure in the mechanism of transposition of IS elements and extend our understanding of how culture conditions are a relevant factor in the induction of genetic instability.
Collapse
Affiliation(s)
- Geisa A L Gonçalves
- Institute for Biotechnology and Bioengineering (IBB), Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease.
Collapse
|
30
|
Fambrini M, Salvini M, Basile A, Pugliesi C. Transposon-dependent induction of Vincent van Gogh's sunflowers: exceptions revealed. Genesis 2014; 52:315-27. [PMID: 24443180 DOI: 10.1002/dvg.22743] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/11/2014] [Accepted: 01/15/2014] [Indexed: 01/31/2023]
Abstract
The radiate sunflower inflorescence is composed by zygomorphic ray flowers and actinomorphic disk flowers. Studies performed on mutants identify HaCYC2c, a CYCLOIDEA (CYC)-like gene, as one of the key players controlling flower symmetry in sunflower. turf and tub mutants are characterized by a shift from zygomorphic to actinomorphic ray flowers, caused by insertion of transposable elements (TEs) in HaCYC2c gene. In dbl or Chry mutants, an insertion upstream the coding region of HaCYC2c causes the ectopic expression of the gene and the shift from actinomorphic to zygomorphic disk flowers. We focused on Chry2 mutant: a 1034 bp insertion placed 558 bp before the start codon of HaCYC2c was identified. The insertion is a truncated version of a CACTA TE. Unexpectedly, phenotypic and genetic co-segregation analysis in F2 and F3 progenies derived from the crosses Chry2 × turf and turf × Chry2 demonstrated that CACTA insertion is not always sufficient to alter the expression of HaCYC2c gene and generate Chry2 phenotype. F3 plants homozygous for the CACTA insertion displayed either HaCYC2c transcription pattern identical to wild-type plants or a normal heterogamous inflorescence. Stated these results, we conclude that a much more complex regulatory system stays behind the Chry2 phenotype.
Collapse
Affiliation(s)
- Marco Fambrini
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Pisa, Italy
| | | | | | | |
Collapse
|
31
|
Abstract
Transcriptional activation or ‘rewiring’ of silent genes is an important, yet poorly understood, phenomenon in prokaryotic genomes. Anecdotal evidence coming from experimental evolution studies in bacterial systems has shown the promptness of adaptation upon appropriate selective pressure. In many cases, a partial or complete promoter is mobilized to silent genes from elsewhere in the genome. We term hereafter such recruited regulatory sequences as Putative Mobile Promoters (PMPs) and we hypothesize they have a large impact on rapid adaptation of novel or cryptic functions. Querying all publicly available prokaryotic genomes (1362) uncovered >4000 families of highly conserved PMPs (50 to 100 long with ≥80% nt identity) in 1043 genomes from 424 different genera. The genomes with the largest number of PMP families are Anabaena variabilis (28 families), Geobacter uraniireducens (27 families) and Cyanothece PCC7424 (25 families). Family size varied from 2 to 93 homologous promoters (in Desulfurivibrio alkaliphilus). Some PMPs are present in particular species, but some are conserved across distant genera. The identified PMPs represent a conservative dataset of very recent or conserved events of mobilization of non-coding DNA and thus they constitute evidence of an extensive reservoir of recyclable regulatory sequences for rapid transcriptional rewiring.
Collapse
Affiliation(s)
- Mariana Matus-Garcia
- Department of Agrotechnology and Food Sciences, Laboratory of Systems and Synthetic Biology, Wageningen University, 6703HB Wageningen, The Netherlands
| | | | | |
Collapse
|
32
|
Fonville NC, Ward RM, Mittelman D. Stress-induced modulators of repeat instability and genome evolution. J Mol Microbiol Biotechnol 2012; 21:36-44. [PMID: 22248541 DOI: 10.1159/000332748] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Evolution hinges on the ability of organisms to adapt to their environment. A key regulator of adaptability is mutation rate, which must be balanced to maintain genome fidelity while permitting sufficient plasticity to cope with environmental changes. Multiple mechanisms govern an organism's mutation rate. Constitutive mechanisms include mutator alleles that drive global, permanent increases in mutation rates, but these changes are confined to the subpopulation that carries the mutator allele. Other mechanisms focus mutagenesis in time and space to improve the chances that adaptive mutations can spread through the population. For example, environmental stress can induce mechanisms that transiently relax the fidelity of DNA repair to bring about a temporary increase in mutation rates during times when an organism experiences a reduced fitness for its surroundings, as has been demonstrated for double-strand break repair in Escherichia coli. Still, other mechanisms control the spatial distribution of mutations by directing changes to especially mutable sequences in the genome. In eukaryotic cells, for example, the stress-sensitive chaperone Hsp90 can regulate the length of trinucleotide repeats to fine-tune gene function and can regulate the mobility of transposable elements to enable larger functional changes. Here, we review the regulation of mutation rate, with special emphasis on the roles of tandem repeats and environmental stress in genome evolution.
Collapse
|
33
|
Zhang Z, Saier MH. Transposon-mediated adaptive and directed mutations and their potential evolutionary benefits. J Mol Microbiol Biotechnol 2012; 21:59-70. [PMID: 22248543 DOI: 10.1159/000333108] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transposons, mobile genetic elements that can hop from one chromosomal location to another, are known to be both beneficial and deleterious to the cell that bears them. Their value in accelerating evolutionary adaptation is well recognized. We herein summarize published research dealing with these elements and then move on to review our own research efforts which focus on a small transposon that can induce mutations under the control of host factors in a process that phenotypically and mechanistically conforms to the definition of 'directed mutation'. Directed mutations occur at higher frequencies when they are beneficial, being induced by the stress condition that they relieve. Here, we review evidence for transposon-mediated directed mutation in Escherichia coli. Deletion mutants in the crp gene can not grow on glycerol (Glp(-)); however, these cells mutate specifically to efficient glycerol utilization (Glp(+)) at rates that are greatly enhanced by the presence of glycerol or the loss of the glycerol repressor (GlpR). These rates are greatly depressed by glucose or by glpR overexpression. Of the four tandem GlpR-binding sites (O1-O4) in the control region of the glpFK operon, O4 (downstream) specifically controls glpFK expression while O1 (upstream) controls mutation rate. Mutation is due to insertion of the small transposon IS5 into a specific site just upstream of the glpFK promoter. Mutational control by the glycerol regulon repressor GlpR is independent of the selection and assay procedures, and IS5 insertion into other gene activation sites is unaffected by the presence of glycerol or the loss of GlpR. The results establish the principle of transposon-mediated directed mutation, identify a protein responsible for its regulation, and define essential aspects of the mechanism.
Collapse
Affiliation(s)
- Zhongge Zhang
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
34
|
|
35
|
Wang L, Wang FF, Qian W. Evolutionary rewiring and reprogramming of bacterial transcription regulation. J Genet Genomics 2011; 38:279-88. [DOI: 10.1016/j.jgg.2011.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/07/2011] [Accepted: 06/07/2011] [Indexed: 11/26/2022]
|
36
|
Uliczka F, Pisano F, Schaake J, Stolz T, Rohde M, Fruth A, Strauch E, Skurnik M, Batzilla J, Rakin A, Heesemann J, Dersch P. Unique cell adhesion and invasion properties of Yersinia enterocolitica O:3, the most frequent cause of human Yersiniosis. PLoS Pathog 2011; 7:e1002117. [PMID: 21750675 PMCID: PMC3131269 DOI: 10.1371/journal.ppat.1002117] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 04/27/2011] [Indexed: 11/19/2022] Open
Abstract
Many enteric pathogens are equipped with multiple cell adhesion factors which are important for host tissue colonization and virulence. Y. enterocolitica, a common food-borne pathogen with invasive properties, uses the surface proteins invasin and YadA for host cell binding and entry. In this study, we demonstrate unique cell adhesion and invasion properties of Y. enterocolitica serotype O:3 strains, the most frequent cause of human yersiniosis, and show that these differences are mainly attributable to variations affecting the function and expression of invasin in response to temperature. In contrast to other enteric Yersinia strains, invasin production in O:3 strains is constitutive and largely enhanced compared to other Y. enterocolitica serotypes, in which invA expression is temperature-regulated and significantly reduced at 37°C. Increase of invasin levels is caused by (i) an IS1667 insertion into the invA promoter region, which includes an additional promoter and RovA and H-NS binding sites, and (ii) a P98S substitution in the invA activator protein RovA rendering the regulator less susceptible to proteolysis. Both variations were shown to influence bacterial colonization in a murine infection model. Furthermore, we found that co-expression of YadA and down-regulation of the O-antigen at 37°C is required to allow efficient internalization by the InvA protein. We conclude that even small variations in the expression of virulence factors can provoke a major difference in the virulence properties of closely related pathogens which may confer better survival or a higher pathogenic potential in a certain host or host environment.
Collapse
Affiliation(s)
- Frank Uliczka
- Department of Molecular Infection Biology, Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Fabio Pisano
- Department of Molecular Infection Biology, Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Julia Schaake
- Department of Molecular Infection Biology, Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Tatjana Stolz
- Department of Molecular Infection Biology, Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Manfred Rohde
- Department of Medical Microbiology, Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
| | | | | | - Mikael Skurnik
- Department of Bacteriology and Immunology, The Haartman Institute, University of Helsinki and Helsinki University Central Hospital Laboratory Diagnostics, Helsinki, Finland
| | - Julia Batzilla
- Max von Pettenkofer Institut, Ludwigs-Maximilians-Universität, München, Germany
| | - Alexander Rakin
- Max von Pettenkofer Institut, Ludwigs-Maximilians-Universität, München, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer Institut, Ludwigs-Maximilians-Universität, München, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
37
|
Hua-Van A, Le Rouzic A, Boutin TS, Filée J, Capy P. The struggle for life of the genome's selfish architects. Biol Direct 2011; 6:19. [PMID: 21414203 PMCID: PMC3072357 DOI: 10.1186/1745-6150-6-19] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 03/17/2011] [Indexed: 01/28/2023] Open
Abstract
Transposable elements (TEs) were first discovered more than 50 years ago, but were totally ignored for a long time. Over the last few decades they have gradually attracted increasing interest from research scientists. Initially they were viewed as totally marginal and anecdotic, but TEs have been revealed as potentially harmful parasitic entities, ubiquitous in genomes, and finally as unavoidable actors in the diversity, structure, and evolution of the genome. Since Darwin's theory of evolution, and the progress of molecular biology, transposable elements may be the discovery that has most influenced our vision of (genome) evolution. In this review, we provide a synopsis of what is known about the complex interactions that exist between transposable elements and the host genome. Numerous examples of these interactions are provided, first from the standpoint of the genome, and then from that of the transposable elements. We also explore the evolutionary aspects of TEs in the light of post-Darwinian theories of evolution.
Collapse
Affiliation(s)
- Aurélie Hua-Van
- Laboratoire Evolution, Génomes, Spéciation, CNRS UPR9034/Université Paris-Sud, Gif-sur-Yvette, France.
| | | | | | | | | |
Collapse
|
38
|
Gaffé J, McKenzie C, Maharjan RP, Coursange E, Ferenci T, Schneider D. Insertion Sequence-Driven Evolution of Escherichia coli in Chemostats. J Mol Evol 2011; 72:398-412. [DOI: 10.1007/s00239-011-9439-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/01/2011] [Indexed: 11/30/2022]
|
39
|
IS5 inserts upstream of the master motility operon flhDC in a quasi-Lamarckian way. ISME JOURNAL 2011; 5:1517-25. [PMID: 21390082 DOI: 10.1038/ismej.2011.27] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutation rates may be influenced by the environment. Here, we demonstrate that insertion sequence IS5 in Escherichia coli inserts into the upstream region of the flhDC operon in a manner that depends on whether the environment permits motility; this operon encodes the master regulator of cell motility, FlhDC, and the IS5 insertion increases motility. IS5 inserts upstream of flhD(+) when cells are grown on soft-agar plates that permit swimming motility, but does not insert upstream of this locus on hard-agar plates that do not permit swimming motility or in planktonic cultures. Furthermore, there was only one IS5 insertion event on soft-agar plates, indicating insertion of IS5 into flhDC is not due to general elevated IS5 transposition throughout the whole genome. We also show that the highly motile cells with IS5 upstream of flhD(+) have greater biofilm formation, although there is a growth cost due to the energetic burden of the enhanced motility as these highly motile cells have a lower yield in rich medium and reduced growth rate. Functional flagella are required for IS5 insertion upstream of flhD(+) as there was no IS5 insertion upstream of flhD(+) for flhD, flgK and motA mutants, and the mutation is stable. Additionally, the IS5 mutation occurs during biofilm formation, which creates genetic and phenotypic diversity. Hence, the cells appear to 'sense' whether motility is feasible before a sub-population undergoes a mutation to become hypermotile; this sensing appears related to the master transcription regulator, FlhDC.
Collapse
|
40
|
Saier, Jr. MH. Did Adaptive and Directed Mutation Evolve to Accelerate Stress-Induced Evolutionary Change? J Mol Microbiol Biotechnol 2011; 21:5-7. [DOI: 10.1159/000332746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
41
|
Cantu D, Vanzetti LS, Sumner A, Dubcovsky M, Matvienko M, Distelfeld A, Michelmore RW, Dubcovsky J. Small RNAs, DNA methylation and transposable elements in wheat. BMC Genomics 2010; 11:408. [PMID: 20584339 PMCID: PMC2996936 DOI: 10.1186/1471-2164-11-408] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 06/29/2010] [Indexed: 12/15/2022] Open
Abstract
Background More than 80% of the wheat genome is composed of transposable elements (TEs). Since active TEs can move to different locations and potentially impose a significant mutational load, their expression is suppressed in the genome via small non-coding RNAs (sRNAs). sRNAs guide silencing of TEs at the transcriptional (mainly 24-nt sRNAs) and post-transcriptional (mainly 21-nt sRNAs) levels. In this study, we report the distribution of these two types of sRNAs among the different classes of wheat TEs, the regions targeted within the TEs, and their impact on the methylation patterns of the targeted regions. Results We constructed an sRNA library from hexaploid wheat and developed a database that included our library and three other publicly available sRNA libraries from wheat. For five completely-sequenced wheat BAC contigs, most perfectly matching sRNAs represented TE sequences, suggesting that a large fraction of the wheat sRNAs originated from TEs. An analysis of all wheat TEs present in the Triticeae Repeat Sequence database showed that sRNA abundance was correlated with the estimated number of TEs within each class. Most of the sRNAs perfectly matching miniature inverted repeat transposable elements (MITEs) belonged to the 21-nt class and were mainly targeted to the terminal inverted repeats (TIRs). In contrast, most of the sRNAs matching class I and class II TEs belonged to the 24-nt class and were mainly targeted to the long terminal repeats (LTRs) in the class I TEs and to the terminal repeats in CACTA transposons. An analysis of the mutation frequency in potentially methylated sites revealed a three-fold increase in TE mutation frequency relative to intron and untranslated genic regions. This increase is consistent with wheat TEs being preferentially methylated, likely by sRNA targeting. Conclusions Our study examines the wheat epigenome in relation to known TEs. sRNA-directed transcriptional and post-transcriptional silencing plays important roles in the short-term suppression of TEs in the wheat genome, whereas DNA methylation and increased mutation rates may provide a long-term mechanism to inactivate TEs.
Collapse
Affiliation(s)
- Dario Cantu
- Department of Plant Sciences, University of California Davis, One Shields Ave, Davis, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Precise excision of IS5 from the intergenic region between the fucPIK and the fucAO operons and mutational control of fucPIK operon expression in Escherichia coli. J Bacteriol 2010; 192:2013-9. [PMID: 20097855 DOI: 10.1128/jb.01085-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Excision of transposable genetic elements from host DNA occurs at low frequencies and is usually imprecise. A common insertion sequence element in Escherichia coli, IS5, has been shown to provide various benefits to its host by inserting into specific sites. Precise excision of this element had not previously been demonstrated. Using a unique system, the fucose (fuc) regulon, in which IS5 insertion and excision result in two distinct selectable phenotypes, we have demonstrated that IS5 can precisely excise from its insertion site, restoring the wild-type phenotype. In addition to precise excision, several "suppressor" insertion, deletion, and point mutations restore the wild-type Fuc(+) phenotype to various degrees without IS5 excision. The possible bases for these observations are discussed.
Collapse
|
43
|
Abstract
Directed mutation is a proposed process that allows mutations to occur at higher frequencies when they are beneficial. Until now, the existence of such a process has been controversial. Here we describe a novel mechanism of directed mutation mediated by the transposon, IS5 in Escherichia coli. crp deletion mutants mutate specifically to glycerol utilization (Glp(+)) at rates that are enhanced by glycerol or the loss of the glycerol repressor (GlpR), depressed by glucose or glpR overexpression, and RecA-independent. Of the four tandem GlpR binding sites (O1-O4) upstream of the glpFK operon, O4 specifically controls glpFK expression while O1 primarily controls mutation rate in a process mediated by IS5 hopping to a specific site on the E. coli chromosome upstream of the glpFK promoter. IS5 insertion into other gene activation sites is unaffected by the presence of glycerol or the loss of GlpR. The results establish an example of transposon-mediated directed mutation, identify the protein responsible and define the mechanism involved.
Collapse
Affiliation(s)
- Zhongge Zhang
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Milton H Saier
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|