1
|
Yuan Y, Liu Y, Han L, Li Y, Qi Y. An RdDM-independent function of Pol V transcripts in gene regulation and plant defence. NATURE PLANTS 2024; 10:1562-1575. [PMID: 39187700 DOI: 10.1038/s41477-024-01774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024]
Abstract
RNA polymerase V (Pol V) and Pol IV are known to be specialized for RNA-directed DNA methylation (RdDM). Here we report that Pol V, but not Pol IV, regulates hundreds of genes including jasmonic acid-responsive genes and confers plant defence to Botrytis cinerea and Spodoptera exigua. About half of the Pol V-regulated genes are associated with Pol V transcripts (PVTs). We thus hypothesized that some PVTs could regulate gene expression in an RdDM-independent manner. To test this hypothesis, we studied three PVTs, PVT-ERF5a/b and PVT-ERF6, as models. PVT-ERF5a/b and PVT-ERF6 are transcribed from the upstream regions of ERF5 and ERF6 and positively regulate their transcription, thereby regulating plant defence. Such regulation involves PVT-dependent H3K4me3 deposition and requires the DRD1-DMS3-RDM1 complex that mediates Pol V recruitment to the target loci. These findings highlight an unprecedented role for PVTs in regulating gene transcription, apart from serving as scaffold RNAs to direct DNA methylation.
Collapse
Affiliation(s)
- Yuxiang Yuan
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yujie Liu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lu Han
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
- New Cornerstone Science Laboratory, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Martinho C. From RdDM to plant defence. NATURE PLANTS 2024; 10:1442-1443. [PMID: 39349616 DOI: 10.1038/s41477-024-01806-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2024]
Affiliation(s)
- Claudia Martinho
- School of Life Sciences, Division of Plant Sciences, University of Dundee, James Hutton Institute, Dundee, UK.
| |
Collapse
|
3
|
Thousands of high-quality sequencing samples fail to show meaningful correlation between 5S and 45S ribosomal DNA arrays in humans. Sci Rep 2021; 11:449. [PMID: 33432083 PMCID: PMC7801704 DOI: 10.1038/s41598-020-80049-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/15/2020] [Indexed: 11/08/2022] Open
Abstract
The ribosomal RNA genes (rDNA) are tandemly arrayed in most eukaryotes and exhibit vast copy number variation. There is growing interest in integrating this variation into genotype-phenotype associations. Here, we explored a possible association of rDNA copy number variation with autism spectrum disorder and found no difference between probands and unaffected siblings. Because short-read sequencing estimates of rDNA copy number are error prone, we sought to validate our 45S estimates. Previous studies reported tightly correlated, concerted copy number variation between the 45S and 5S arrays, which should enable the validation of 45S copy number estimates with pulsed-field gel-verified 5S copy numbers. Here, we show that the previously reported strong concerted copy number variation may be an artifact of variable data quality in the earlier published 1000 Genomes Project sequences. We failed to detect a meaningful correlation between 45S and 5S copy numbers in thousands of samples from the high-coverage Simons Simplex Collection dataset as well as in the recent high-coverage 1000 Genomes Project sequences. Our findings illustrate the challenge of genotyping repetitive DNA regions accurately and call into question the accuracy of recently published studies of rDNA copy number variation in cancer that relied on diverse publicly available resources for sequence data.
Collapse
|
4
|
Simon L, Rabanal FA, Dubos T, Oliver C, Lauber D, Poulet A, Vogt A, Mandlbauer A, Le Goff S, Sommer A, Duborjal H, Tatout C, Probst AV. Genetic and epigenetic variation in 5S ribosomal RNA genes reveals genome dynamics in Arabidopsis thaliana. Nucleic Acids Res 2019. [PMID: 29518237 PMCID: PMC5887818 DOI: 10.1093/nar/gky163] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Organized in tandem repeat arrays in most eukaryotes and transcribed by RNA polymerase III, expression of 5S rRNA genes is under epigenetic control. To unveil mechanisms of transcriptional regulation, we obtained here in depth sequence information on 5S rRNA genes from the Arabidopsis thaliana genome and identified differential enrichment in epigenetic marks between the three 5S rDNA loci situated on chromosomes 3, 4 and 5. We reveal the chromosome 5 locus as the major source of an atypical, long 5S rRNA transcript characteristic of an open chromatin structure. 5S rRNA genes from this locus translocated in the Landsberg erecta ecotype as shown by linkage mapping and chromosome-specific FISH analysis. These variations in 5S rDNA locus organization cause changes in the spatial arrangement of chromosomes in the nucleus. Furthermore, 5S rRNA gene arrangements are highly dynamic with alterations in chromosomal positions through translocations in certain mutants of the RNA-directed DNA methylation pathway and important copy number variations among ecotypes. Finally, variations in 5S rRNA gene sequence, chromatin organization and transcripts indicate differential usage of 5S rDNA loci in distinct ecotypes. We suggest that both the usage of existing and new 5S rDNA loci resulting from translocations may impact neighboring chromatin organization.
Collapse
Affiliation(s)
- Lauriane Simon
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001 Clermont-Ferrand, France
| | - Fernando A Rabanal
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Tristan Dubos
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001 Clermont-Ferrand, France
| | - Cecilia Oliver
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Damien Lauber
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001 Clermont-Ferrand, France
| | - Axel Poulet
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001 Clermont-Ferrand, France
| | - Alexander Vogt
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Ariane Mandlbauer
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Samuel Le Goff
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001 Clermont-Ferrand, France
| | - Andreas Sommer
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Hervé Duborjal
- Plant Engineering Platform, BIOGEMMA, Route d'Ennezat Centre de Recherche de Chappes, 63720 Chappes, France
| | - Christophe Tatout
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001 Clermont-Ferrand, France
| | - Aline V Probst
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001 Clermont-Ferrand, France
| |
Collapse
|
5
|
Liu L, Yan X, Kong X, Zhao Y, Gong Z, Jin JB, Guo Y. Transcriptional Gene Silencing Maintained by OTS1 SUMO Protease Requires a DNA-Dependent Polymerase V-Dependent Pathway. PLANT PHYSIOLOGY 2017; 173:655-667. [PMID: 27852949 PMCID: PMC5210737 DOI: 10.1104/pp.16.01365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/14/2016] [Indexed: 05/21/2023]
Abstract
The expression of genes with aberrant structure is prevented at both the transcriptional and posttranscriptional regulation levels. Aberrant gene silencing at the posttranscriptional level is well studied; however, it is not well understood how aberrant genes are silenced at the transcriptional level. In this study, through genetic screening a transgenic report line that harbors an aberrant gene (35S-LUC, lacking 3'-untranslated region [3'-UTR]) and lacks luciferase (LUC) activity, we identify that the small ubiquitin-like modifier (SUMO) protease OTS1 gene is required for maintaining the silence of the reporter 35S-LUC and an endogenous mutator-like element MULE-F19G14 at the transcriptional level, which requires DNA-dependent RNA polymerase (Pol) V and DDR complex, but not Pol IV. The increased transcripts in ots1 mutants are terminated by the 3'-UTRs of downstream genes. In addition to ots1 mutations, mutations in several known or putative SUMO proteases and two SUMO E3 ligases, SIZ1 and MMS21, have similar effects on this silencing regulation. Taken together, our results reveal that the enzymes involved in the SUMOylation process restrain aberrant gene transcription by using a downstream gene 3'-UTR, and this regulation requires a functional Pol V-dependent pathway in Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.L., X.Y., Y.Z., Z.G., Y.G.); and
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China (X.K., J.B.J.)
| | - Xiaojing Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.L., X.Y., Y.Z., Z.G., Y.G.); and
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China (X.K., J.B.J.)
| | - Xiangxiong Kong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.L., X.Y., Y.Z., Z.G., Y.G.); and
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China (X.K., J.B.J.)
| | - Yiqiang Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.L., X.Y., Y.Z., Z.G., Y.G.); and
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China (X.K., J.B.J.)
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.L., X.Y., Y.Z., Z.G., Y.G.); and
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China (X.K., J.B.J.)
| | - Jing Bo Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.L., X.Y., Y.Z., Z.G., Y.G.); and
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China (X.K., J.B.J.)
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (L.L., X.Y., Y.Z., Z.G., Y.G.); and
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China (X.K., J.B.J.)
| |
Collapse
|
6
|
Lachowiec J, Queitsch C, Kliebenstein DJ. Molecular mechanisms governing differential robustness of development and environmental responses in plants. ANNALS OF BOTANY 2016; 117:795-809. [PMID: 26473020 PMCID: PMC4845800 DOI: 10.1093/aob/mcv151] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/08/2015] [Accepted: 08/25/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Robustness to genetic and environmental perturbation is a salient feature of multicellular organisms. Loss of developmental robustness can lead to severe phenotypic defects and fitness loss. However, perfect robustness, i.e. no variation at all, is evolutionarily unfit as organisms must be able to change phenotype to properly respond to changing environments and biotic challenges. Plasticity is the ability to adjust phenotypes predictably in response to specific environmental stimuli, which can be considered a transient shift allowing an organism to move from one robust phenotypic state to another. Plants, as sessile organisms that undergo continuous development, are particularly dependent on an exquisite fine-tuning of the processes that balance robustness and plasticity to maximize fitness. SCOPE AND CONCLUSIONS This paper reviews recently identified mechanisms, both systems-level and molecular, that modulate robustness, and discusses their implications for the optimization of plant fitness. Robustness in living systems arises from the structure of genetic networks, the specific molecular functions of the underlying genes, and their interactions. This very same network responsible for the robustness of specific developmental states also has to be built such that it enables plastic yet robust shifts in response to environmental changes. In plants, the interactions and functions of signal transduction pathways activated by phytohormones and the tendency for plants to tolerate whole-genome duplications, tandem gene duplication and hybridization are emerging as major regulators of robustness in development. Despite their obvious implications for plant evolution and plant breeding, the mechanistic underpinnings by which plants modulate precise levels of robustness, plasticity and evolvability in networks controlling different phenotypes are under-studied.
Collapse
Affiliation(s)
- Jennifer Lachowiec
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48197, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, 3720 15th Avenue NE, Seattle, WA 98155, USA
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA and DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| |
Collapse
|
7
|
Naydenov M, Baev V, Apostolova E, Gospodinova N, Sablok G, Gozmanova M, Yahubyan G. High-temperature effect on genes engaged in DNA methylation and affected by DNA methylation in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 87:102-8. [PMID: 25576840 DOI: 10.1016/j.plaphy.2014.12.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/31/2014] [Indexed: 05/20/2023]
Abstract
Along with its essential role in the maintenance of genome integrity, DNA methylation takes part in regulation of genes which are important for plant development and stress response. In plants, DNA methylation process can be directed by small RNAs in process known as RNA-directed DNA methylation (RdDM) involving two plant-specific RNA polymerases - PolIV and PolV. The aim of the present study was to investigate the effect of heat stress on the expression of genes encoding key players in DNA methylation - DNA methyltransferase (MET1, CMT3, and DRM2), the largest subunits of PoIIV and PolV (NRPD1 and NRPE1 respectively) and the DNA demethylase ROS1. We also examined the high-temperature effect on two protein-coding genes - At3g50770 and At5g43260 whose promoters contain transposon insertions and are affected by DNA-methylation, as well as on the AtSN1, a SINE-like retrotransposon. To assess the involvement of PolIV and PolV in heat stress response, the promoter methylation status and transcript levels of these genes were compared between wild type and double mutant lacking NRPD1 and NRPE1. The results demonstrate coordinated up-regulation of the DRM2, NRPD1 and NRPE1 in response to high temperature and suggest that PolIV and/or PolV might be required for the induction of DRM2 expression under heat stress. The ROS1 expression was confirmed to be suppressed in the mutant lacking active PolIV and PolV that might be a consequence of abolished DNA methylation. The increased expression of At3g50770 in response to elevated temperature correlated with reduced promoter DNA methylation, while the stress response of At5g43260 did not show inverse correlation between promoter methylation and gene expression. Our results also imply that PolIV and/or PolV could regulate gene expression under stress conditions not only through RdDM but also by acting in other regulatory processes.
Collapse
Affiliation(s)
- Mladen Naydenov
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen St, 4000 Plovdiv, Bulgaria
| | - Vesselin Baev
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen St, 4000 Plovdiv, Bulgaria
| | - Elena Apostolova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen St, 4000 Plovdiv, Bulgaria
| | - Nadezhda Gospodinova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen St, 4000 Plovdiv, Bulgaria
| | - Gaurav Sablok
- Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, IASMA, San Michele 38010, Italy
| | - Mariyana Gozmanova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen St, 4000 Plovdiv, Bulgaria
| | - Galina Yahubyan
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen St, 4000 Plovdiv, Bulgaria.
| |
Collapse
|
8
|
Del Prete S, Arpón J, Sakai K, Andrey P, Gaudin V. Nuclear architecture and chromatin dynamics in interphase nuclei of Arabidopsis thaliana. Cytogenet Genome Res 2014; 143:28-50. [PMID: 24992956 DOI: 10.1159/000363724] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The interphase cell nucleus is extraordinarily complex, ordered, and dynamic. In the last decade, remarkable progress has been made in deciphering the functional organisation of the cell nucleus, and intricate relationships between genome functions (transcription, DNA repair, or replication) and various nuclear compartments have been revealed. In this review, we describe the architecture of the Arabidopsis thaliana interphase cell nucleus and discuss the dynamic nature of its organisation. We underline the need for further developments in quantitative and modelling approaches to nuclear organization.
Collapse
Affiliation(s)
- Stefania Del Prete
- INRA, UMR1318-AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), INRA-Centre de Versailles-Grignon, Versailles, France
| | | | | | | | | |
Collapse
|
9
|
Small RNAs and heritable epigenetic variation in plants. Trends Cell Biol 2013; 24:100-7. [PMID: 24012194 DOI: 10.1016/j.tcb.2013.08.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 12/20/2022]
Abstract
Recent studies suggest that inheritance of phenotypes in plants is more likely to involve epigenetics than in mammals. There are two reasons for this difference. First, there is a RNA-based system in plants involving small (s)RNAs that influences de novo establishment and maintenance of DNA methylation at many sites in plant genomes. These regions of methylated DNA are epigenetic marks with the potential to affect gene expression that are transmitted between dividing cells of the same generation. Second, unlike mammals, DNA methyltransferases in plants are active during gametogenesis and embryogenesis so that patterns of DNA methylation can persist from parent to progeny and do not need to be reset. We discuss how the effects of stress and genome interactions in hybrid plants are two systems that illustrate how RNA-based mechanisms can influence heritable phenotypes in plants.
Collapse
|
10
|
Shin JH, Wang HLV, Lee J, Dinwiddie BL, Belostotsky DA, Chekanova JA. The role of the Arabidopsis Exosome in siRNA-independent silencing of heterochromatic loci. PLoS Genet 2013; 9:e1003411. [PMID: 23555312 PMCID: PMC3610620 DOI: 10.1371/journal.pgen.1003411] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/11/2013] [Indexed: 01/08/2023] Open
Abstract
The exosome functions throughout eukaryotic RNA metabolism and has a prominent role in gene silencing in yeast. In Arabidopsis, exosome regulates expression of a "hidden" transcriptome layer from centromeric, pericentromeric, and other heterochromatic loci that are also controlled by small (sm)RNA-based de novo DNA methylation (RdDM). However, the relationship between exosome and smRNAs in gene silencing in Arabidopsis remains unexplored. To investigate whether exosome interacts with RdDM, we profiled Arabidopsis smRNAs by deep sequencing in exosome and RdDM mutants and also analyzed RdDM-controlled loci. We found that exosome loss had a very minor effect on global smRNA populations, suggesting that, in contrast to fission yeast, in Arabidopsis the exosome does not control the spurious entry of RNAs into smRNA pathways. Exosome defects resulted in decreased histone H3K9 dimethylation at RdDM-controlled loci, without affecting smRNAs or DNA methylation. Exosome also exhibits a strong genetic interaction with RNA Pol V, but not Pol IV, and physically associates with transcripts produced from the scaffold RNAs generating region. We also show that two Arabidopsis rrp6 homologues act in gene silencing. Our data suggest that Arabidopsis exosome may act in parallel with RdDM in gene silencing, by epigenetic effects on chromatin structure, not through siRNAs or DNA methylation.
Collapse
Affiliation(s)
- Jun-Hye Shin
- School of Biological Sciences, University of Missouri–Kansas City, Kansas City, Missouri, United States of America
| | - Hsiao-Lin V. Wang
- School of Biological Sciences, University of Missouri–Kansas City, Kansas City, Missouri, United States of America
| | - Jinwon Lee
- School of Biological Sciences, University of Missouri–Kansas City, Kansas City, Missouri, United States of America
| | - Brandon L. Dinwiddie
- School of Biological Sciences, University of Missouri–Kansas City, Kansas City, Missouri, United States of America
| | - Dmitry A. Belostotsky
- School of Biological Sciences, University of Missouri–Kansas City, Kansas City, Missouri, United States of America
| | - Julia A. Chekanova
- School of Biological Sciences, University of Missouri–Kansas City, Kansas City, Missouri, United States of America
- * E-mail:
| |
Collapse
|
11
|
Benoit M, Layat E, Tourmente S, Probst AV. Heterochromatin dynamics during developmental transitions in Arabidopsis - a focus on ribosomal DNA loci. Gene 2013; 526:39-45. [PMID: 23410919 DOI: 10.1016/j.gene.2013.01.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/16/2013] [Accepted: 01/23/2013] [Indexed: 01/01/2023]
Abstract
The Arabidopsis chromosomes contain conspicuous heterochromatin domains comprising the repetitive 45S and 5S ribosomal DNA loci as well as centromeric and pericentromeric repeats that organize into chromocenters during interphase. During developmental phase transitions such as seed maturation, germination, seedling growth and flowering that require large-scale reprogramming of gene expression patterns, the organization of repetitive sequences into chromocenters dynamically changes. Here we illustrate recent studies that shed light on the heterochromatin dynamics in cotyledons, the first aerial tissues preformed in the embryo, and in true leaves. We will summarize available data for the 5S rDNA repeat loci, in particular their chromatin organization and expression dynamics during the first days of post-germination development, and discuss how the plant accommodates 5S rRNA transcription during large-scale chromatin reorganization events.
Collapse
Affiliation(s)
- Matthias Benoit
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 24 Avenue des Landais, BP 80026, 63171 Aubière Cedex, France.
| | | | | | | |
Collapse
|
12
|
Zhang H, Zhu JK. Seeing the forest for the trees: a wide perspective on RNA-directed DNA methylation. Genes Dev 2012; 26:1769-73. [PMID: 22895250 DOI: 10.1101/gad.200410.112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this issue of Genes & Development, Wierzbicki and colleagues (pp. 1825-1836) examine the current model of RNA-directed DNA methylation (RdDM) by determining genome-wide distributions of RNA polymerase V (Pol V) occupancy, siRNAs, and DNA methylation. Their data support the key role of base-pairing between Pol V transcripts and siRNAs in targeting de novo DNA methylation. Importantly, the study also reveals unexpected complexity and provides a global view of the RdDM pathway.
Collapse
Affiliation(s)
- Huiming Zhang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
13
|
Pinpointing a puzzling polymerase. Nat Struct Mol Biol 2012; 19:865-6. [DOI: 10.1038/nsmb.2374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Layat E, Cotterell S, Vaillant I, Yukawa Y, Tutois S, Tourmente S. Transcript levels, alternative splicing and proteolytic cleavage of TFIIIA control 5S rRNA accumulation during Arabidopsis thaliana development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:35-44. [PMID: 22353599 DOI: 10.1111/j.1365-313x.2012.04948.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Ribosome biogenesis is critical for eukaryotic cells and requires coordinated synthesis of the protein and rRNA moieties of the ribosome, which are therefore highly regulated. 5S ribosomal RNA, an essential component of the large ribosomal subunit, is transcribed by RNA polymerase III and specifically requires transcription factor IIIA (TFIIIA). To obtain insight into the regulation of 5S rRNA transcription, we have investigated the expression of 5S rRNA and the exon-skipped (ES) and exon-including (EI) TFIIIA transcripts, two transcript isoforms that result from alternative splicing of the TFIIIA gene, and TFIIIA protein amounts with respect to requirements for 5S rRNA during development. We show that 5S rRNA quantities are regulated through distinct but complementary mechanisms operating through transcriptional and post-transcriptional control of TFIIIA transcripts as well as at the post-translational level through proteolytic cleavage of the TFIIIA protein. During the reproductive phase, high expression of the TFIIIA gene together with low proteolytic cleavage contributes to accumulation of functional, full-length TFIIIA protein, and results in 5S rRNA accumulation in the seed. In contrast, just after germination, the levels of TFIIIA-encoding transcripts are low and stable. Full-length TFIIIA protein is undetectable, and the level of 5S rRNA stored in the embryo progressively decreases. After day 4, in correlation with the reorganization of 5S rDNA chromatin to a mature state, full-length TFIIIA protein with transcriptional activity accumulates and permits de novo transcription of 5S rRNA.
Collapse
Affiliation(s)
- Elodie Layat
- CNRS, UMR 6293 GReD, Clermont Université, INSERM U1103, 24 Avenue des Landais, BP 80026, 63171 Aubière Cedex, France
| | | | | | | | | | | |
Collapse
|
15
|
Layat E, Sáez-Vásquez J, Tourmente S. Regulation of Pol I-transcribed 45S rDNA and Pol III-transcribed 5S rDNA in Arabidopsis. PLANT & CELL PHYSIOLOGY 2012; 53:267-76. [PMID: 22173098 DOI: 10.1093/pcp/pcr177] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The 18S, 5.8S and 25S rRNAs, which result from the 45S precursor, together with 5S rRNAs, are central components of the ribosome. The integration of one molecule of each rRNA per ribosome necessitates an elaborate coordination between transcriptions of the two ribosomal DNA (rDNA) families. Even though 5S rDNA is transcribed by RNA polymerase III and 45S rDNA by RNA polymerase I, the two rDNA families present certain similarities in their transcriptional regulation. This review aims to compare 5S and 45S rRNA genes in the plant model Arabidopsis thaliana in terms of organization, transcription and regulation, and draws parallels between the two rDNA families.
Collapse
Affiliation(s)
- Elodie Layat
- CNRS, UMR 6247 GReD, Clermont Université, INSERM U931, Aubière, France
| | | | | |
Collapse
|
16
|
López A, Ramírez V, García-Andrade J, Flors V, Vera P. The RNA silencing enzyme RNA polymerase v is required for plant immunity. PLoS Genet 2011; 7:e1002434. [PMID: 22242006 PMCID: PMC3248562 DOI: 10.1371/journal.pgen.1002434] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 11/08/2011] [Indexed: 11/19/2022] Open
Abstract
RNA-directed DNA methylation (RdDM) is an epigenetic control mechanism driven by small interfering RNAs (siRNAs) that influence gene function. In plants, little is known of the involvement of the RdDM pathway in regulating traits related to immune responses. In a genetic screen designed to reveal factors regulating immunity in Arabidopsis thaliana, we identified NRPD2 as the OVEREXPRESSOR OF CATIONIC PEROXIDASE 1 (OCP1). NRPD2 encodes the second largest subunit of the plant-specific RNA Polymerases IV and V (Pol IV and Pol V), which are crucial for the RdDM pathway. The ocp1 and nrpd2 mutants showed increases in disease susceptibility when confronted with the necrotrophic fungal pathogens Botrytis cinerea and Plectosphaerella cucumerina. Studies were extended to other mutants affected in different steps of the RdDM pathway, such as nrpd1, nrpe1, ago4, drd1, rdr2, and drm1drm2 mutants. Our results indicate that all the mutants studied, with the exception of nrpd1, phenocopy the nrpd2 mutants; and they suggest that, while Pol V complex is required for plant immunity, Pol IV appears dispensable. Moreover, Pol V defective mutants, but not Pol IV mutants, show enhanced disease resistance towards the bacterial pathogen Pseudomonas syringae DC3000. Interestingly, salicylic acid (SA)-mediated defenses effective against PsDC3000 are enhanced in Pol V defective mutants, whereas jasmonic acid (JA)-mediated defenses that protect against fungi are reduced. Chromatin immunoprecipitation analysis revealed that, through differential histone modifications, SA-related defense genes are poised for enhanced activation in Pol V defective mutants and provide clues for understanding the regulation of gene priming during defense. Our results highlight the importance of epigenetic control as an additional layer of complexity in the regulation of plant immunity and point towards multiple components of the RdDM pathway being involved in plant immunity based on genetic evidence, but whether this is a direct or indirect effect on disease-related genes is unclear.
Collapse
Affiliation(s)
- Ana López
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Valencia, Spain
| | - Vicente Ramírez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Valencia, Spain
| | - Javier García-Andrade
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Valencia, Spain
| | - Victor Flors
- Department of Experimental Sciences, Universidad Jaume I, Castellón, Spain
| | - Pablo Vera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Valencia, Spain
- * E-mail:
| |
Collapse
|
17
|
Haag JR, Pikaard CS. Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nat Rev Mol Cell Biol 2011; 12:483-92. [PMID: 21779025 DOI: 10.1038/nrm3152] [Citation(s) in RCA: 288] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In all eukaryotes, nuclear DNA-dependent RNA polymerases I, II and III synthesize the myriad RNAs that are essential for life. Remarkably, plants have evolved two additional multisubunit RNA polymerases, RNA polymerases IV and V, which orchestrate non-coding RNA-mediated gene silencing processes affecting development, transposon taming, antiviral defence and allelic crosstalk. Biochemical details concerning the templates and products of RNA polymerases IV and V are lacking. However, their subunit compositions reveal that they evolved as specialized forms of RNA polymerase II, which provides the unique opportunity to study the functional diversification of a eukaryotic RNA polymerase family.
Collapse
Affiliation(s)
- Jeremy R Haag
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
18
|
Simon SA, Meyers BC. Small RNA-mediated epigenetic modifications in plants. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:148-55. [PMID: 21159545 DOI: 10.1016/j.pbi.2010.11.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 11/16/2010] [Accepted: 11/17/2010] [Indexed: 05/21/2023]
Abstract
Epigenetic modifications in plants can be directed and mediated by small RNAs (sRNAs). This regulation is composed of a highly interactive network of sRNA-directed DNA methylation, histone, and chromatin modifications, all of which control transcription. Identification and functional characterization of components of the siRNA-directed DNA methylation pathway have provided insights into epigenetic pathways that form heterochromatin and into chromatin-based pathways for gene silencing, paramutation, genetic imprinting, and epigenetic reprogramming. Next-generation sequencing technologies have facilitated new discoveries and have helped create a basic blueprint of the plant epigenome. As the multiple layers of epigenetic regulation in plants are dissected, a more comprehensive understanding of the biological importance of epigenetic marks and states has been developed.
Collapse
Affiliation(s)
- Stacey A Simon
- Department of Plant and Soil Sciences & Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | | |
Collapse
|
19
|
Sáez-Vásquez J, Gadal O. Genome organization and function: a view from yeast and Arabidopsis. MOLECULAR PLANT 2010; 3:678-690. [PMID: 20601371 DOI: 10.1093/mp/ssq034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Recent progress in understanding higher-order chromatin organization in the nucleus has been considerable. From single gene to chromosome territory, realistic biophysical models can now accurately predict some of the structural feature of cell nuclei. Despite growing evidence of a deterministic nuclear organization, the physiological consequence of spatial genome organization is still unclear. In the simple eukaryotic model, Saccharomyces cerevisiae, clear correlation between gene position and transcription has been established. In this review, we will focus on higher-order chromatin organization in yeast with respect to the nuclear envelope and nucleolus. In Arabidopsis thaliana, a model plant for which we have a complete genome sequence, chromosome territory (CT) arrangement and somatic homologous pairing in interphase nuclei seem to occur randomly. Since chromosomes containing nucleolar organizer regions associate more frequently to form a single nucleolar structure, as in yeast, the nucleolus seems to play a major role in organizing nuclear space. Recent findings have begun to elucidate how plant regulatory factors, such as chromatin remodeling or histone chaperones, affect the chromatin state of ribosomal DNA genes located in two distinct CT arrangements in the nucleus. The functional outcome of yeast nuclear organization allowed us to propose how nuclear organization might contribute to a novel type of epigenetic regulation: the spatial regulation of transcription.
Collapse
Affiliation(s)
- Julio Sáez-Vásquez
- LGDP-UMR 5096 CNRS-IRD-Université de Perpignan via Domitia, 58 Av. Paul Alduy, 66860 Perpignan, France
| | | |
Collapse
|
20
|
RNA-mediated trans-communication can establish paramutation at the b1 locus in maize. Proc Natl Acad Sci U S A 2010; 107:12986-91. [PMID: 20616013 DOI: 10.1073/pnas.1007972107] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Paramutation is the epigenetic transfer of information between alleles that leads to the heritable change of expression of one allele. Paramutation at the b1 locus in maize requires seven noncoding tandem repeat (b1TR) sequences located approximately 100 kb upstream of the transcription start site of b1, and mutations in several genes required for paramutation implicate an RNA-mediated mechanism. The mediator of paramutation (mop1) gene, which encodes a protein closely related to RNA-dependent RNA polymerases, is absolutely required for paramutation. Herein, we investigate the potential function of mop1 and the siRNAs that are produced from the b1TR sequences. Production of siRNAs from the b1TR sequences depends on a functional mop1 gene, but transcription of the repeats is not dependent on mop1. Further nuclear transcription assays suggest that the b1TR sequences are likely transcribed predominantly by RNA polymerase II. To address whether production of b1TR-siRNAs correlated with paramutation, we examined siRNA production in alleles that cannot undergo paramutation. Alleles that cannot participate in paramutation also produce b1TR-siRNAs, suggesting that b1TR-siRNAs are not sufficient for paramutation in the tissues analyzed. However, when b1TR-siRNAs are produced from a transgene expressing a hairpin RNA, b1 paramutation can be recapitulated. We hypothesize that either the b1TR-siRNAs or the dsRNA template mediates the trans-communication between the alleles that establishes paramutation. In addition, we uncovered a role for mop1 in the biogenesis of a subset of microRNAs (miRNAs) and show that it functions at the level of production of the primary miRNA transcripts.
Collapse
|