1
|
Greer EL, Lee SS, Prahlad V. Chromatin and epigenetics in aging biology. Genetics 2025; 230:iyaf055. [PMID: 40202900 DOI: 10.1093/genetics/iyaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/03/2025] [Indexed: 04/11/2025] Open
Abstract
This book chapter will focus on modifications to chromatin itself, how chromatin modifications are regulated, and how these modifications are deciphered by the cell to impact aging. In this chapter, we will review how chromatin modifications change with age, examine how chromatin-modifying enzymes have been shown to regulate aging and healthspan, discuss how some of these epigenetic changes are triggered and how they can regulate the lifespan of the individual and its naïve descendants, and speculate on future directions for the field.
Collapse
Affiliation(s)
- Eric Lieberman Greer
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Veena Prahlad
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
2
|
Hua X, Wang D. 6-PPD quinone at environmentally relevant concentrations induced damage on longevity in C. elegans: Mechanistic insight from inhibition in mitochondrial UPR response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176275. [PMID: 39278487 DOI: 10.1016/j.scitotenv.2024.176275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
6-PPD quinone (6-PPDQ) exists widely in water environment media, causing acute lethality to some aquatic species. Long-term exposure to 6-PPDQ reduced the lifespan of Caenorhabditis elegans. However, the molecular basis for mitochondrial control of 6-PPDQ toxicity remains largely unclear. Using HSP-6 as marker of mitochondrial unfolded protein response (mt UPR), we observed activation of mt UPR by 0.1 and 1 μg/L 6-PPDQ and inhibition in mt UPR by 10 μg/L 6-PPDQ. Additionally, increased atfs-1, ubl-5, and dve-1 expressions were caused by 0.1 and 1 μg/L 6-PPDQ and decreased expressions of these genes were induced by 10 μg/L 6-PPDQ. Neuronal and intestinal RNA interference (RNAi) of hsp-6 caused susceptibility to 6-PPDQ toxicity on longevity, and atfs-1, ubl-5, and dve-1 acted in neurons and intestine to modulate mt UPR and 6-PPDQ toxicity on longevity. Meanwhile, 6-PPDQ (1 and 10 μg/L) increased expressions of histone methyltransferase genes met-2 and set-6, and decreased expressions of histone demethylase genes jmjd-1.2 and jmjd-3.1. Neuronal RNAi of set-6 and intestinal RNAi of met-2 accelerated hsp-6, atfs-1, ubl-5, and dve-1 expressions and extended lifespan of 6-PPDQ exposed nematodes. In contrast, neuronal RNAi of jmjd-1.2 and jmjd-3.1 and intestinal RNAi of jmjd-1.2 suppressed these 4 gene expressions and reduced lifespan of 6-PPDQ exposed nematodes o. In nematodes, RNAi of hsp-6 could also enhance mitochondrial dysfunction and mitochondrial reactive oxygen species (ROS) induced by 6-PPDQ. Therefore, 6-PPDQ caused damage on longevity was associated with suppression in mt UPR, which was under regulation of certain histone methylation related signals.
Collapse
Affiliation(s)
- Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
3
|
Fukushima HS, Ikeda T, Ikeda S, Takeda H. Cell cycle length governs heterochromatin reprogramming during early development in non-mammalian vertebrates. EMBO Rep 2024; 25:3300-3323. [PMID: 38943003 PMCID: PMC11315934 DOI: 10.1038/s44319-024-00188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024] Open
Abstract
Heterochromatin marks such as H3K9me3 undergo global erasure and re-establishment after fertilization, and the proper reprogramming of H3K9me3 is essential for early development. Despite the widely conserved dynamics of heterochromatin reprogramming in invertebrates and non-mammalian vertebrates, previous studies have shown that the underlying mechanisms may differ between species. Here, we investigate the molecular mechanism of H3K9me3 dynamics in medaka (Japanese killifish, Oryzias latipes) as a non-mammalian vertebrate model, and show that rapid cell cycle during cleavage stages causes DNA replication-dependent passive erasure of H3K9me3. We also find that cell cycle slowing, toward the mid-blastula transition, permits increasing nuclear accumulation of H3K9me3 histone methyltransferase Setdb1, leading to the onset of H3K9me3 re-accumulation. We further demonstrate that cell cycle length in early development also governs H3K9me3 reprogramming in zebrafish and Xenopus laevis. Together with the previous studies in invertebrates, we propose that a cell cycle length-dependent mechanism for both global erasure and re-accumulation of H3K9me3 is conserved among rapid-cleavage species of non-mammalian vertebrates and invertebrates such as Drosophila, C. elegans, Xenopus and teleost fish.
Collapse
Affiliation(s)
- Hiroto S Fukushima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
- Center for Integrative Medical Sciences, RIKEN, Yokohama, 230-0045, Japan.
| | - Takafumi Ikeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, 603-8555, Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | - Shinra Ikeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan.
| |
Collapse
|
4
|
Yang X, Wang Z, Xu J, Zhang C, Gao P, Zhu L. Effects of dissolved organic matter on the environmental behavior and toxicity of metal nanomaterials: A review. CHEMOSPHERE 2024; 358:142208. [PMID: 38704042 DOI: 10.1016/j.chemosphere.2024.142208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Metal nanomaterials (MNMs) have been released into the environment during their usage in various products, and their environmental behaviors directly impact their toxicity. Numerous environmental factors potentially affect the behaviors and toxicity of MNMs with dissolved organic matter (DOM) playing the most essential role. Abundant facts showing contradictory results about the effects of DOM on MNMs, herein the occurrence of DOM on the environmental process change of MNMs such as dissolution, dispersion, aggregation, and surface transformation were summarized. We also reviewed the effects of MNMs on organisms and their mechanisms in the environment such as acute toxicity, oxidative stress, oxidative damage, growth inhibition, photosynthesis, reproductive toxicity, and malformation. The presence of DOM had the potential to reduce or enhance the toxicity of MNMs by altering the reactive oxygen species (ROS) generation, dissolution, stability, and electrostatic repulsion of MNMs. Furthermore, we summarized the factors that affected different toxicity including specific organisms, DOM concentration, DOM types, light conditions, detection time, and production methods of MNMs. However, the more detailed mechanism of interaction between DOM and MNMs needs further investigation.
Collapse
Affiliation(s)
- Xiaoqing Yang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhangjia Wang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Jiake Xu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Cheng Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China.
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, United States
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
5
|
Kumar SL, Mohanty A, Kumari A, Etikuppam AK, Kumar S R, Athar M, Kumar P K, Beniwal R, Potula MM, Gandham RK, Rao HBDP. Balanced spatiotemporal arrangements of histone H3 and H4 posttranslational modifications are necessary for meiotic prophase I chromosome organization. J Cell Physiol 2024; 239:e31201. [PMID: 38284481 DOI: 10.1002/jcp.31201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/30/2024]
Abstract
Dynamic nuclear architecture and chromatin organizations are the key features of the mid-prophase I in mammalian meiosis. The chromatin undergoes major changes, including meiosis-specific spatiotemporal arrangements and remodeling, the establishment of chromatin loop-axis structure, pairing, and crossing over between homologous chromosomes, any deficiencies in these events may induce genome instability, subsequently leading to failure to produce gametes and infertility. Despite the significance of chromatin structure, little is known about the location of chromatin marks and the necessity of their balance during meiosis prophase I. Here, we show a thorough cytological study of the surface-spread meiotic chromosomes of mouse spermatocytes for H3K9,14,18,23,27,36, H4K12,16 acetylation, and H3K4,9,27,36 methylation. Active acetylation and methylation marks on H3 and H4, such as H3K9ac, H3K14ac, H3K18ac, H3K36ac, H3K56ac, H4K12ac, H4K16ac, and H3K36me3 exhibited pan-nuclear localization away from heterochromatin. In comparison, repressive marks like H3K9me3 and H3K27me3 are localized to heterochromatin. Further, taking advantage of the delivery of small-molecule chemical inhibitors methotrexate (heterochromatin enhancer), heterochromatin inhibitor, anacardic acid (histone acetyltransferase inhibitor), trichostatin A (histone deacetylase inhibitor), IOX1 (JmjC demethylases inhibitor), and AZ505 (methyltransferase inhibitor) in seminiferous tubules through the rete testis route, revealed that alteration in histone modifications enhanced the centromere mislocalization, chromosome breakage, altered meiotic recombination and reduced sperm count. Specifically, IOX1 and AZ505 treatment shows severe meiotic phenotypes, including altering chromosome axis length and chromatin loop size via transcriptional regulation of meiosis-specific genes. Our findings highlight the importance of balanced chromatin modifications in meiotic prophase I chromosome organization and instability.
Collapse
Affiliation(s)
- S Lava Kumar
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Graduate Studies, Regional Center for Biotechnology, Faridabad, Haryana, India
| | - Aradhana Mohanty
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Graduate Studies, Regional Center for Biotechnology, Faridabad, Haryana, India
| | - Anjali Kumari
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Graduate Studies, Regional Center for Biotechnology, Faridabad, Haryana, India
| | - Ajith Kumar Etikuppam
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Graduate Studies, Regional Center for Biotechnology, Faridabad, Haryana, India
| | - Ranjith Kumar S
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | - Mohd Athar
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Graduate Studies, Regional Center for Biotechnology, Faridabad, Haryana, India
| | - Kiran Kumar P
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | - Rohit Beniwal
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Graduate Studies, Regional Center for Biotechnology, Faridabad, Haryana, India
| | | | - Ravi Kumar Gandham
- Division of Veterinary Biotechnology, ICAR-IVRI, Izatnagar, Bareilly, Uttar Pradesh, India
| | - H B D Prasada Rao
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| |
Collapse
|
6
|
Belew MD, Chien E, Michael WM. Characterization of factors that underlie transcriptional silencing in C. elegans oocytes. PLoS Genet 2023; 19:e1010831. [PMID: 37478128 PMCID: PMC10395837 DOI: 10.1371/journal.pgen.1010831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/15/2023] [Indexed: 07/23/2023] Open
Abstract
While it has been appreciated for decades that prophase-arrested oocytes are transcriptionally silenced on a global level, the molecular pathways that promote silencing have remained elusive. Previous work in C. elegans has shown that both topoisomerase II (TOP-2) and condensin II collaborate with the H3K9me heterochromatin pathway to silence gene expression in the germline during L1 starvation, and that the PIE-1 protein silences the genome in the P-lineage of early embryos. Here, we show that all three of these silencing systems, TOP-2/condensin II, H3K9me, and PIE-1, are required for transcriptional repression in oocytes. We find that H3K9me3 marks increase dramatically on chromatin during silencing, and that silencing is under cell cycle control. We also find that PIE-1 localizes to the nucleolus just prior to silencing, and that nucleolar dissolution during silencing is dependent on TOP-2/condensin II. Our data identify both the molecular components and the trigger for genome silencing in oocytes and establish a link between PIE-1 nucleolar residency and its ability to repress transcription.
Collapse
Affiliation(s)
- Mezmur D Belew
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, California, United States of America
| | - Emilie Chien
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, California, United States of America
| | - W Matthew Michael
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
7
|
Tabara H, Mitani S, Mochizuki M, Kohara Y, Nagata K. A small RNA system ensures accurate homologous pairing and unpaired silencing of meiotic chromosomes. EMBO J 2023; 42:e105002. [PMID: 37078421 PMCID: PMC10233376 DOI: 10.15252/embj.2020105002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
During meiosis, chromosomes with homologous partners undergo synaptonemal complex (SC)-mediated pairing, while the remaining unpaired chromosomes are heterochromatinized through unpaired silencing. Mechanisms underlying homolog recognition during SC formation are still unclear. Here, we show that the Caenorhabditis elegans Argonaute proteins, CSR-1 and its paralog CSR-2, interacting with 22G-RNAs, are required for synaptonemal complex formation with accurate homology. CSR-1 in nuclei and meiotic cohesin, constituting the SC lateral elements, were associated with nonsimple DNA repeats, including minisatellites and transposons, and weakly associated with coding genes. CSR-1-associated CeRep55 minisatellites were expressing 22G-RNAs and long noncoding (lnc) RNAs that colocalized with synaptonemal complexes on paired chromosomes and with cohesin regions of unpaired chromosomes. CeRep55 multilocus deletions reduced the efficiencies of homologous pairing and unpaired silencing, which were supported by the csr-1 activity. Moreover, CSR-1 and CSR-2 were required for proper heterochromatinization of unpaired chromosomes. These findings suggest that CSR-1 and CSR-2 play crucial roles in homology recognition, achieving accurate SC formation between chromosome pairs and condensing unpaired chromosomes by targeting repeat-derived lncRNAs.
Collapse
Affiliation(s)
- Hiroaki Tabara
- Advanced Genomics CenterNational Institute of GeneticsShizuokaJapan
- Tokyo Women's Medical UniversityTokyoJapan
- Faculty of MedicineUniversity of TsukubaIbarakiJapan
| | | | | | - Yuji Kohara
- Advanced Genomics CenterNational Institute of GeneticsShizuokaJapan
| | | |
Collapse
|
8
|
Sun L, Zhou Y, Wang C, Nie Y, Xu A, Wu L. Multi-generation reproductive toxicity of RDX and the involved signal pathways in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115074. [PMID: 37257349 DOI: 10.1016/j.ecoenv.2023.115074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
As one of the most frequently used explosives, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) can cause persistent pollution in the environment, leading to the potential ecological threat crossing the generations. In this study, we employed Caenorhabditis elegans to explore the toxic effects of RDX on the parental and offspring worms and the involved signaling pathways. Exposure up to 1000 ng/mL of RDX produced a significant increase in reactive oxygen species (ROS) production, germ cell apoptosis, and decrease in eggs laid. Various mutants were used to demonstrate the RDX-induced apoptosis signaling pathway, and the metabolism of RDX in the nematodes was found related to cytochrome P450 and GST through RNA sequencing. Exposure of parental worms to RDX produced significant reproductive toxicity in F1 and F2, but was recovered in F3 and F4. The transgenerational effects were associated with the decreased expression of met-2, spr-5, and set-2. Our findings revealed the signaling pathways related to the reproductive toxicity caused by RDX in C. elegans and their future generations, which provided the basis for further exploration of the ecological risks of energetic compounds in the environment.
Collapse
Affiliation(s)
- Lingyan Sun
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Yanping Zhou
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Chunyan Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Yaguang Nie
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| | - An Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China.
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| |
Collapse
|
9
|
Camacho JA, Welch B, Sprando RL, Hunt PR. Reproductive-Toxicity-Related Endpoints in C. elegans Are Consistent with Reduced Concern for Dimethylarsinic Acid Exposure Relative to Inorganic Arsenic. J Dev Biol 2023; 11:18. [PMID: 37218812 PMCID: PMC10204422 DOI: 10.3390/jdb11020018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Exposures to arsenic and mercury are known to pose significant threats to human health; however, the effects specific to organic vs. inorganic forms are not fully understood. Caenorhabditis elegans' (C. elegans) transparent cuticle, along with the conservation of key genetic pathways regulating developmental and reproductive toxicology (DART)-related processes such as germ stem cell renewal and differentiation, meiosis, and embryonic tissue differentiation and growth, support this model's potential to address the need for quicker and more dependable testing methods for DART hazard identification. Organic and inorganic forms of mercury and arsenic had different effects on reproductive-related endpoints in C. elegans, with methylmercury (meHgCl) having effects at lower concentrations than mercury chloride (HgCl2), and sodium arsenite (NaAsO2) having effects at lower concentrations than dimethylarsinic acid (DMA). Progeny to adult ratio changes and germline apoptosis were seen at concentrations that also affected gravid adult gross morphology. For both forms of arsenic tested, germline histone regulation was altered at concentrations below those that affected progeny/adult ratios, while concentrations for these two endpoints were similar for the mercury compounds. These C. elegans findings are consistent with corresponding mammalian data, where available, suggesting that small animal model test systems may help to fill critical data gaps by contributing to weight of evidence assessments.
Collapse
Affiliation(s)
- Jessica A. Camacho
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA
| | | | | | | |
Collapse
|
10
|
Hou X, Xu M, Zhu C, Gao J, Li M, Chen X, Sun C, Nashan B, Zang J, Zhou Y, Guang S, Feng X. Systematic characterization of chromodomain proteins reveals an H3K9me1/2 reader regulating aging in C. elegans. Nat Commun 2023; 14:1254. [PMID: 36878913 PMCID: PMC9988841 DOI: 10.1038/s41467-023-36898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
The chromatin organization modifier domain (chromodomain) is an evolutionally conserved motif across eukaryotic species. The chromodomain mainly functions as a histone methyl-lysine reader to modulate gene expression, chromatin spatial conformation and genome stability. Mutations or aberrant expression of chromodomain proteins can result in cancer and other human diseases. Here, we systematically tag chromodomain proteins with green fluorescent protein (GFP) using CRISPR/Cas9 technology in C. elegans. By combining ChIP-seq analysis and imaging, we delineate a comprehensive expression and functional map of chromodomain proteins. We then conduct a candidate-based RNAi screening and identify factors that regulate the expression and subcellular localization of the chromodomain proteins. Specifically, we reveal an H3K9me1/2 reader, CEC-5, both by in vitro biochemistry and in vivo ChIP assays. MET-2, an H3K9me1/2 writer, is required for CEC-5 association with heterochromatin. Both MET-2 and CEC-5 are required for the normal lifespan of C. elegans. Furthermore, a forward genetic screening identifies a conserved Arginine124 of CEC-5's chromodomain, which is essential for CEC-5's association with chromatin and life span regulation. Thus, our work will serve as a reference to explore chromodomain functions and regulation in C. elegans and allow potential applications in aging-related human diseases.
Collapse
Affiliation(s)
- Xinhao Hou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Mingjing Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Jianing Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Meili Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Xiangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Cheng Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Björn Nashan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Jianye Zang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China.
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China.
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 230027, Hefei, Anhui, P. R. China.
| | - Xuezhu Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China.
| |
Collapse
|
11
|
Trivedi S, Blazícková J, Silva N. PARG and BRCA1-BARD1 cooperative function regulates DNA repair pathway choice during gametogenesis. Nucleic Acids Res 2022; 50:12291-12308. [PMID: 36478097 PMCID: PMC9757042 DOI: 10.1093/nar/gkac1153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Meiotic chromosome segregation relies on programmed DNA double-strand break induction. These are in turn repaired by homologous recombination, generating physical attachments between the parental chromosomes called crossovers. A subset of breaks yields recombinant outcomes, while crossover-independent mechanisms repair the majority of lesions. The balance between different repair pathways is crucial to ensure genome integrity. We show that Caenorhabditis elegans BRC-1/BRCA1-BRD-1/BARD1 and PARG-1/PARG form a complex in vivo, essential for accurate DNA repair in the germline. Simultaneous depletion of BRC-1 and PARG-1 causes synthetic lethality due to reduced crossover formation and impaired break repair, evidenced by hindered RPA-1 removal and presence of aberrant chromatin bodies in diakinesis nuclei, whose formation depends on spo-11 function. These factors undergo a similar yet independent loading in developing oocytes, consistent with operating in different pathways. Abrogation of KU- or Theta-mediated end joining elicits opposite effects in brc-1; parg-1 doubles, suggesting a profound impact in influencing DNA repair pathway choice by BRC-1-PARG-1. Importantly, lack of PARG-1 catalytic activity suppresses untimely accumulation of RAD-51 foci in brc-1 mutants but is only partially required for fertility. Our data show that BRC-1/BRD-1-PARG-1 joint function is essential for genome integrity in meiotic cells by regulating multiple DNA repair pathways.
Collapse
Affiliation(s)
- Shalini Trivedi
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Jitka Blazícková
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Nicola Silva
- To whom correspondence should be addressed. Tel: +420 549 49 8033;
| |
Collapse
|
12
|
Li H, Zeng L, Wang C, Shi C, Li Y, Peng Y, Chen H, Zhang J, Cheng B, Chen C, Xiang M, Huang Y. Review of the toxicity and potential molecular mechanisms of parental or successive exposure to environmental pollutants in the model organism Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119927. [PMID: 35970344 DOI: 10.1016/j.envpol.2022.119927] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollutants such as heavy metals, nano/microparticles, and organic compounds have been detected in a wide range of environmental media, causing long-term exposure in various organisms and even humans through breathing, contacting, ingestion, and other routes. Long-term exposure to environmental pollutants in organisms or humans promotes exposure of offspring to parental and environmental pollutants, and subsequently results in multiple biological defects in the offspring. This review dialectically summarizes and discusses the existing studies using Caenorhabditis elegans (C. elegans) as a model organism to explore the multi/transgenerational toxicity and potential underlying molecular mechanisms induced by environmental pollutants following parental or successive exposure patterns. Parental and successive exposure to environmental pollutants induces various biological defects in C. elegans across multiple generations, including multi/transgenerational developmental toxicity, neurotoxicity, reproductive toxicity, and metabolic disturbances, which may be transmitted to progeny through reactive oxygen species-induced damage, epigenetic mechanisms, insulin/insulin-like growth factor-1 signaling pathway. This review aims to arouse researchers' interest in the multi/transgenerational toxicity of pollutants and hopes to explore the possible long-term effects of environmental pollutants on organisms and even humans, as well as to provide constructive suggestions for the safety and management of emerging alternatives.
Collapse
Affiliation(s)
- Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Lingjun Zeng
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Chongli Shi
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yeyong Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yi Peng
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Jin Zhang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Biao Cheng
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Minghui Xiang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yuan Huang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| |
Collapse
|
13
|
Legüe M, Caneo M, Aguila B, Pollak B, Calixto A. Interspecies effectors of a transgenerational memory of bacterial infection in Caenorhabditis elegans. iScience 2022; 25:104627. [PMID: 35800768 PMCID: PMC9254006 DOI: 10.1016/j.isci.2022.104627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/16/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
The inheritance of memory is an adaptive trait. Microbes challenge the immunity of organisms and trigger behavioral adaptations that can be inherited, but how bacteria produce inheritance of a trait is unknown. We use Caenorhabditis elegans and its bacteria to study the transgenerational RNA dynamics of interspecies crosstalk leading to a heritable behavior. A heritable response of C. elegans to microbes is the pathogen-induced diapause (PIDF), a state of suspended animation to evade infection. We identify RsmY, a small RNA involved in quorum sensing in Pseudomonas aeruginosa as a trigger of PIDF. The histone methyltransferase (HMT) SET-18/SMYD3 and the argonaute HRDE-1, which promotes multi-generational silencing in the germline, are also needed for PIDF initiation. The HMT SET-25/EHMT2 is necessary for memory maintenance in the transgenerational lineage. Our work is a starting point to understanding microbiome-induced inheritance of acquired traits, and the transgenerational influence of microbes in health and disease.
Collapse
Affiliation(s)
- Marcela Legüe
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
| | - Mauricio Caneo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
| | - Blanca Aguila
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
- Programa de Doctorado en Microbiología, Universidad de Chile, Santiago de Chile, Chile
| | | | - Andrea Calixto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
| |
Collapse
|
14
|
SETDB1-like MET-2 promotes transcriptional silencing and development independently of its H3K9me-associated catalytic activity. Nat Struct Mol Biol 2022; 29:85-96. [PMID: 35102319 PMCID: PMC8850192 DOI: 10.1038/s41594-021-00712-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/02/2021] [Indexed: 12/30/2022]
Abstract
Transcriptionally silenced heterochromatin bearing methylation of histone H3 on lysine 9 (H3K9me) is critical for maintaining organismal viability and tissue integrity. Here we show that in addition to ensuring H3K9me, MET-2, the Caenorhabditis elegans homolog of the SETDB1 histone methyltransferase, has a noncatalytic function that contributes to gene repression. Subnuclear foci of MET-2 coincide with H3K9me deposition, yet these foci also form when MET-2 is catalytically deficient and H3K9me is compromised. Whereas met-2 deletion triggers a loss of silencing and increased histone acetylation, foci of catalytically deficient MET-2 maintain silencing of a subset of genes, blocking acetylation on H3K9 and H3K27. In normal development, this noncatalytic MET-2 activity helps to maintain fertility. Under heat stress MET-2 foci disperse, coinciding with increased acetylation and transcriptional derepression. Our study suggests that the noncatalytic, focus-forming function of this SETDB1-like protein and its intrinsically disordered cofactor LIN-65 is physiologically relevant. Genetic and genome-wide analysis of a catalytically deficient SETDB1-like enzyme, MET-2, in Caenorhabditiselegans reveals that MET-2 promotes transcriptional silencing and fertility through both H3K9 methylation and focus formation, which blocks histone acetylation.
Collapse
|
15
|
Das S, Min S, Prahlad V. Gene bookmarking by the heat shock transcription factor programs the insulin-like signaling pathway. Mol Cell 2021; 81:4843-4860.e8. [PMID: 34648748 PMCID: PMC8642288 DOI: 10.1016/j.molcel.2021.09.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/09/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022]
Abstract
Maternal stress can have long-lasting epigenetic effects on offspring. To examine how epigenetic changes are triggered by stress, we examined the effects of activating the universal stress-responsive heat shock transcription factor HSF-1 in the germline of Caenorhabditis elegans. We show that, when activated in germ cells, HSF-1 recruits MET-2, the putative histone 3 lysine 9 (H3K9) methyltransferase responsible for repressive H3K9me2 (H3K9 dimethyl) marks in chromatin, and negatively bookmarks the insulin receptor daf-2 and other HSF-1 target genes. Increased H3K9me2 at these genes persists in adult progeny and shifts their stress response strategy away from inducible chaperone expression as a mechanism to survive stress and instead rely on decreased insulin/insulin growth factor (IGF-1)-like signaling (IIS). Depending on the duration of maternal heat stress exposure, this epigenetic memory is inherited by the next generation. Thus, paradoxically, HSF-1 recruits the germline machinery normally responsible for erasing transcriptional memory but, instead, establishes a heritable epigenetic memory of prior stress exposure.
Collapse
Affiliation(s)
- Srijit Das
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building, Iowa City, IA 52242-1324, USA
| | - Sehee Min
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building, Iowa City, IA 52242-1324, USA
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building, Iowa City, IA 52242-1324, USA; Department of Biology, 143 Biology Building, Iowa City, IA 52242-1324, USA; Iowa Neuroscience Institute, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, Iowa City, IA 52242, USA.
| |
Collapse
|
16
|
Özdemir I, Steiner FA. Transmission of chromatin states across generations in C. elegans. Semin Cell Dev Biol 2021; 127:133-141. [PMID: 34823984 DOI: 10.1016/j.semcdb.2021.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/18/2022]
Abstract
Epigenetic inheritance refers to the transmission of phenotypes across generations without affecting the genomic DNA sequence. Even though it has been documented in many species in fungi, animals and plants, the mechanisms underlying epigenetic inheritance are not fully uncovered. Epialleles, the heritable units of epigenetic information, can take the form of several biomolecules, including histones and their post-translational modifications (PTMs). Here, we review the recent advances in the understanding of the transmission of histone variants and histone PTM patterns across generations in C. elegans. We provide a general overview of the intergenerational and transgenerational inheritance of histone PTMs and their modifiers and discuss the interplay among different histone PTMs. We also evaluate soma-germ line communication and its impact on the inheritance of epigenetic traits.
Collapse
Affiliation(s)
- Isa Özdemir
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Florian A Steiner
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
17
|
Gal C, Carelli FN, Appert A, Cerrato C, Huang N, Dong Y, Murphy J, Frapporti A, Ahringer J. DREAM represses distinct targets by cooperating with different THAP domain proteins. Cell Rep 2021; 37:109835. [PMID: 34686342 PMCID: PMC8552245 DOI: 10.1016/j.celrep.2021.109835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 06/03/2021] [Accepted: 09/24/2021] [Indexed: 01/09/2023] Open
Abstract
The DREAM (dimerization partner [DP], retinoblastoma [Rb]-like, E2F, and MuvB) complex controls cellular quiescence by repressing cell-cycle and other genes, but its mechanism of action is unclear. Here, we demonstrate that two C. elegans THAP domain proteins, LIN-15B and LIN-36, co-localize with DREAM and function by different mechanisms for repression of distinct sets of targets. LIN-36 represses classical cell-cycle targets by promoting DREAM binding and gene body enrichment of H2A.Z, and we find that DREAM subunit EFL-1/E2F is specific for LIN-36 targets. In contrast, LIN-15B represses germline-specific targets in the soma by facilitating H3K9me2 promoter marking. We further find that LIN-36 and LIN-15B differently regulate DREAM binding. In humans, THAP proteins have been implicated in cell-cycle regulation by poorly understood mechanisms. We propose that THAP domain proteins are key mediators of Rb/DREAM function.
Collapse
Affiliation(s)
- Csenge Gal
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Francesco Nicola Carelli
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Alex Appert
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Chiara Cerrato
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Ni Huang
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Yan Dong
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Jane Murphy
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Andrea Frapporti
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Julie Ahringer
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
18
|
Li CL, Pu M, Wang W, Chaturbedi A, Emerson FJ, Lee SS. Region-specific H3K9me3 gain in aged somatic tissues in Caenorhabditis elegans. PLoS Genet 2021; 17:e1009432. [PMID: 34506495 PMCID: PMC8457455 DOI: 10.1371/journal.pgen.1009432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/22/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic alterations occur as organisms age, and lead to chromatin deterioration, loss of transcriptional silencing and genomic instability. Dysregulation of the epigenome has been associated with increased susceptibility to age-related disorders. In this study, we aimed to characterize the age-dependent changes of the epigenome and, in turn, to understand epigenetic processes that drive aging phenotypes. We focused on the aging-associated changes in the repressive histone marks H3K9me3 and H3K27me3 in C. elegans. We observed region-specific gain and loss of both histone marks, but the changes are more evident for H3K9me3. We further found alteration of heterochromatic boundaries in aged somatic tissues. Interestingly, we discovered that the most statistically significant changes reflected H3K9me3-marked regions that are formed during aging, and are absent in developing worms, which we termed "aging-specific repressive regions" (ASRRs). These ASRRs preferentially occur in genic regions that are marked by high levels of H3K9me2 and H3K36me2 in larval stages. Maintenance of high H3K9me2 levels in these regions have been shown to correlate with a longer lifespan. Next, we examined whether the changes in repressive histone marks lead to de-silencing of repetitive DNA elements, as reported for several other organisms. We observed increased expression of active repetitive DNA elements but not global re-activation of silent repeats in old worms, likely due to the distributed nature of repetitive elements in the C. elegans genome. Intriguingly, CELE45, a putative short interspersed nuclear element (SINE), was greatly overexpressed at old age and upon heat stress. SINEs have been suggested to regulate transcription in response to various cellular stresses in mammals. It is likely that CELE45 RNAs also play roles in stress response and aging in C. elegans. Taken together, our study revealed significant and specific age-dependent changes in repressive histone modifications and repetitive elements, providing important insights into aging biology.
Collapse
Affiliation(s)
- Cheng-Lin Li
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Mintie Pu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Wenke Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Amaresh Chaturbedi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Felicity J Emerson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
19
|
Yu CW, Luk TC, Liao VHC. Long-term nanoplastics exposure results in multi and trans-generational reproduction decline associated with germline toxicity and epigenetic regulation in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125173. [PMID: 33517056 DOI: 10.1016/j.jhazmat.2021.125173] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/10/2021] [Accepted: 01/17/2021] [Indexed: 05/21/2023]
Abstract
The environmental risk from long-term plastic pollution is growing. We investigated the multi and trans-generational reproductive toxicity of nanoplastics (NPs) in Caenorhabditis elegans and the underlying mechanisms over five generations. Following a single maternal exposure (F0) to NPs (100 nm; 1, 10, 50, or 100 mg/L) for 72 h, the subsequent generations (F1-F4) were cultured under NPs-free conditions. We showed that the total brood size was significantly reduced across all offspring generations (F1-F4). NPs accumulated in the intestine of C. elegans in the F0 generation, but not in the germline system, and not observed in subsequent generations. Chromosomal aberrations in oocytes and germline cell apoptosis were significantly elevated in the NPs-exposed F0 generation and in subsequent unexposed generations. Likewise, the expression of ced-3 was increased across generations, regulated by hypomethylation in the promoter region of ced-3 after maternal NPs exposure. Finally, NPs exposure reduced the expression of epigenesis-related genes met-2, set-2, and spr-5 and the trans-generational effects of maternal NPs exposure were not observed in met-2, set-2, and spr-5 RNAi worms. We demonstrate that a single long-term maternal NPs exposure can cause multi and trans-generational reproduction decline in C. elegans, which may be associated with germline toxicity and epigenetic regulation.
Collapse
Affiliation(s)
- Chan-Wei Yu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Tin Chi Luk
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan.
| |
Collapse
|
20
|
Kim H, Ding YH, Zhang G, Yan YH, Conte D, Dong MQ, Mello CC. HDAC1 SUMOylation promotes Argonaute-directed transcriptional silencing in C. elegans. eLife 2021; 10:e63299. [PMID: 34003109 PMCID: PMC8131101 DOI: 10.7554/elife.63299] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/23/2021] [Indexed: 12/30/2022] Open
Abstract
Eukaryotic cells use guided search to coordinately control dispersed genetic elements. Argonaute proteins and their small RNA cofactors engage nascent RNAs and chromatin-associated proteins to direct transcriptional silencing. The small ubiquitin-like modifier (SUMO) has been shown to promote the formation and maintenance of silent chromatin (called heterochromatin) in yeast, plants, and animals. Here, we show that Argonaute-directed transcriptional silencing in Caenorhabditis elegans requires SUMOylation of the type 1 histone deacetylase HDA-1. Our findings suggest how SUMOylation promotes the association of HDAC1 with chromatin remodeling factors and with a nuclear Argonaute to initiate de novo heterochromatin silencing.
Collapse
Affiliation(s)
- Heesun Kim
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Yue-He Ding
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Gangming Zhang
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Yong-Hong Yan
- National Institute of Biological SciencesBeijingChina
| | - Darryl Conte
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Meng-Qiu Dong
- National Institute of Biological SciencesBeijingChina
| | - Craig C Mello
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
21
|
Lin Z, Yuen KWY. RbAp46/48LIN-53 and HAT-1 are required for initial CENP-AHCP-3 deposition and de novo holocentromere formation on artificial chromosomes in Caenorhabditis elegans embryos. Nucleic Acids Res 2021; 49:9154-9173. [PMID: 33872374 PMCID: PMC8450102 DOI: 10.1093/nar/gkab217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Foreign DNA microinjected into the Caenorhabditis elegans syncytial gonad forms episomal extra-chromosomal arrays, or artificial chromosomes (ACs), in embryos. Short, linear DNA fragments injected concatemerize into high molecular weight (HMW) DNA arrays that are visible as punctate DAPI-stained foci in oocytes, and they undergo chromatinization and centromerization in embryos. The inner centromere, inner kinetochore and spindle checkpoint components, including AIR-2, CENP-AHCP-3, Mis18BP1KNL-2 and BUB-1, respectively, assemble onto the nascent ACs during the first mitosis. The DNA replication efficiency of ACs improves over several cell cycles, which correlates with the improvement of kinetochore bi-orientation and proper segregation of ACs. Depletion of condensin II subunits, like CAPG-2 and SMC-4, but not the replicative helicase component, MCM-2, reduces de novo CENP-AHCP-3 level on nascent ACs. Furthermore, H3K9ac, H4K5ac and H4K12ac are highly enriched on newly chromatinized ACs. RbAp46/48LIN-53 and HAT-1, which affect the acetylation of histone H3 and H4, are essential for chromatinization, de novo centromere formation and segregation competency of nascent ACs. RbAp46/48LIN-53 or HAT-1 depletion causes the loss of both CENP-AHCP-3 and Mis18BP1KNL-2 initial deposition at de novo centromeres on ACs. This phenomenon is different from centromere maintenance on endogenous chromosomes, where Mis18BP1KNL-2 functions upstream of RbAp46/48LIN-53.
Collapse
Affiliation(s)
- Zhongyang Lin
- School of Biological Sciences, The University of Hong Kong. Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong. Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| |
Collapse
|
22
|
Frolows N, Ashe A. Small RNAs and chromatin in the multigenerational epigenetic landscape of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200112. [PMID: 33866817 DOI: 10.1098/rstb.2020.0112] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
For decades, it was thought that the only heritable information transmitted from one individual to another was that encoded in the DNA sequence. However, it has become increasingly clear that this is not the case and that the transmission of molecules from within the cytoplasm of the gamete also plays a significant role in heritability. The roundworm, Caenorhabditis elegans, has emerged as one of the leading model organisms in which to study the mechanisms of transgenerational epigenetic inheritance (TEI). Collaborative efforts over the past few years have revealed that RNA molecules play a critical role in transmitting transgenerational responses, but precisely how they do so is as yet uncertain. In addition, the role of histone modifications in epigenetic inheritance is increasingly apparent, and RNA and histones interact in a way that we do not yet fully understand. Furthermore, both exogenous and endogenous RNA molecules, as well as other environmental triggers, are able to induce heritable epigenetic changes that affect transcription across the genome. In most cases, these epigenetic changes last only for a handful of generations, but occasionally can be maintained much longer: perhaps indefinitely. In this review, we discuss the current understanding of the role of RNA and histones in TEI, as well as making clear the gaps in our knowledge. We also speculate on the evolutionary implications of epigenetic inheritance, particularly in the context of a short-lived, clonally propagating species. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Natalya Frolows
- School of Life and Environmental Sciences, University of Sydney, New South Wales, 2006, Australia.,CSIRO Health and Biosecurity, Sydney, New South Wales, 2113, Australia
| | - Alyson Ashe
- School of Life and Environmental Sciences, University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
23
|
Lee JY, Song J, LeBlanc L, Davis I, Kim J, Beck S. Conserved dual-mode gene regulation programs in higher eukaryotes. Nucleic Acids Res 2021; 49:2583-2597. [PMID: 33621342 PMCID: PMC7969006 DOI: 10.1093/nar/gkab108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/21/2020] [Accepted: 02/08/2021] [Indexed: 12/27/2022] Open
Abstract
Recent genomic data analyses have revealed important underlying logics in eukaryotic gene regulation, such as CpG islands (CGIs)-dependent dual-mode gene regulation. In mammals, genes lacking CGIs at their promoters are generally regulated by interconversion between euchromatin and heterochromatin, while genes associated with CGIs constitutively remain as euchromatin. Whether a similar mode of gene regulation exists in non-mammalian species has been unknown. Here, through comparative epigenomic analyses, we demonstrate that the dual-mode gene regulation program is common in various eukaryotes, even in the species lacking CGIs. In cases of vertebrates or plants, we find that genes associated with high methylation level promoters are inactivated by forming heterochromatin and expressed in a context-dependent manner. In contrast, the genes with low methylation level promoters are broadly expressed and remain as euchromatin even when repressed by Polycomb proteins. Furthermore, we show that invertebrate animals lacking DNA methylation, such as fruit flies and nematodes, also have divergence in gene types: some genes are regulated by Polycomb proteins, while others are regulated by heterochromatin formation. Altogether, our study establishes gene type divergence and the resulting dual-mode gene regulation as fundamental features shared in a broad range of higher eukaryotic species.
Collapse
Affiliation(s)
- Jun-Yeong Lee
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Jawon Song
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX 78758, USA
| | - Lucy LeBlanc
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ian Davis
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Samuel Beck
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME 04609, USA
| |
Collapse
|
24
|
How do histone modifications contribute to transgenerational epigenetic inheritance in C. elegans? Biochem Soc Trans 2021; 48:1019-1034. [PMID: 32539084 DOI: 10.1042/bst20190944] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/20/2022]
Abstract
Gene regulatory information can be inherited between generations in a phenomenon termed transgenerational epigenetic inheritance (TEI). While examples of TEI in many animals accumulate, the nematode Caenorhabditis elegans has proven particularly useful in investigating the underlying molecular mechanisms of this phenomenon. In C. elegans and other animals, the modification of histone proteins has emerged as a potential carrier and effector of transgenerational epigenetic information. In this review, we explore the contribution of histone modifications to TEI in C. elegans. We describe the role of repressive histone marks, histone methyltransferases, and associated chromatin factors in heritable gene silencing, and discuss recent developments and unanswered questions in how these factors integrate with other known TEI mechanisms. We also review the transgenerational effects of the manipulation of histone modifications on germline health and longevity.
Collapse
|
25
|
Gartner A, Engebrecht J. DNA repair, recombination, and damage signaling. Genetics 2021; 220:6522877. [PMID: 35137093 PMCID: PMC9097270 DOI: 10.1093/genetics/iyab178] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/10/2021] [Indexed: 01/09/2023] Open
Abstract
DNA must be accurately copied and propagated from one cell division to the next, and from one generation to the next. To ensure the faithful transmission of the genome, a plethora of distinct as well as overlapping DNA repair and recombination pathways have evolved. These pathways repair a large variety of lesions, including alterations to single nucleotides and DNA single and double-strand breaks, that are generated as a consequence of normal cellular function or by external DNA damaging agents. In addition to the proteins that mediate DNA repair, checkpoint pathways have also evolved to monitor the genome and coordinate the action of various repair pathways. Checkpoints facilitate repair by mediating a transient cell cycle arrest, or through initiation of cell suicide if DNA damage has overwhelmed repair capacity. In this chapter, we describe the attributes of Caenorhabditis elegans that facilitate analyses of DNA repair, recombination, and checkpoint signaling in the context of a whole animal. We review the current knowledge of C. elegans DNA repair, recombination, and DNA damage response pathways, and their role during development, growth, and in the germ line. We also discuss how the analysis of mutational signatures in C. elegans is helping to inform cancer mutational signatures in humans.
Collapse
Affiliation(s)
- Anton Gartner
- Department for Biological Sciences, IBS Center for Genomic Integrity, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea,Corresponding author: (A.G.); (J.E.)
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA,Corresponding author: (A.G.); (J.E.)
| |
Collapse
|
26
|
Lister-Shimauchi EH, Dinh M, Maddox P, Ahmed S. Gametes deficient for Pot1 telomere binding proteins alter levels of telomeric foci for multiple generations. Commun Biol 2021; 4:158. [PMID: 33542458 PMCID: PMC7862594 DOI: 10.1038/s42003-020-01624-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 12/15/2020] [Indexed: 11/20/2022] Open
Abstract
Deficiency for telomerase results in transgenerational shortening of telomeres. However, telomeres have no known role in transgenerational epigenetic inheritance. C. elegans Protection Of Telomeres 1 (Pot1) proteins form foci at the telomeres of germ cells that disappear at fertilization and gradually accumulate during development. We find that gametes from mutants deficient for Pot1 proteins alter levels of telomeric foci for multiple generations. Gametes from pot-2 mutants give rise to progeny with abundant POT-1::mCherry and mNeonGreen::POT-2 foci throughout development, which persists for six generations. In contrast, gametes from pot-1 mutants or pot-1; pot-2 double mutants induce diminished Pot1 foci for several generations. Deficiency for MET-2, SET-25, or SET-32 methyltransferases, which promote heterochromatin formation, results in gametes that induce diminished Pot1 foci for several generations. We propose that C. elegans POT-1 may interact with H3K9 methyltransferases during pot-2 mutant gametogenesis to induce a persistent form of transgenerational epigenetic inheritance that causes constitutively high levels of heterochromatic Pot1 foci.
Collapse
Affiliation(s)
- Evan H Lister-Shimauchi
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Michael Dinh
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Paul Maddox
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Shawn Ahmed
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
27
|
H3K9me selectively blocks transcription factor activity and ensures differentiated tissue integrity. Nat Cell Biol 2021; 23:1163-1175. [PMID: 34737442 PMCID: PMC8572725 DOI: 10.1038/s41556-021-00776-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/17/2021] [Indexed: 01/05/2023]
Abstract
The developmental role of histone H3K9 methylation (H3K9me), which typifies heterochromatin, remains unclear. In Caenorhabditis elegans, loss of H3K9me leads to a highly divergent upregulation of genes with tissue and developmental-stage specificity. During development H3K9me is lost from differentiated cell type-specific genes and gained at genes expressed in earlier developmental stages or other tissues. The continuous deposition of H3K9me2 by the SETDB1 homolog MET-2 after terminal differentiation is necessary to maintain repression. In differentiated tissues, H3K9me ensures silencing by restricting the activity of a defined set of transcription factors at promoters and enhancers. Increased chromatin accessibility following the loss of H3K9me is neither sufficient nor necessary to drive transcription. Increased ATAC-seq signal and gene expression correlate at a subset of loci positioned away from the nuclear envelope, while derepressed genes at the nuclear periphery remain poorly accessible despite being transcribed. In conclusion, H3K9me deposition can confer tissue-specific gene expression and maintain the integrity of terminally differentiated muscle by restricting transcription factor activity.
Collapse
|
28
|
Wei CC, Yen PL, Chaikritsadakarn A, Huang CW, Chang CH, Liao VHC. Parental CuO nanoparticles exposure results in transgenerational toxicity in Caenorhabditis elegans associated with possible epigenetic regulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111001. [PMID: 32888585 DOI: 10.1016/j.ecoenv.2020.111001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/05/2020] [Accepted: 07/04/2020] [Indexed: 05/21/2023]
Abstract
Environmental nanomaterials contamination is a great concern for organisms including human. Copper oxide nanoparticles (CuO NPs) are widely used in a huge range of applications which might pose potential risk to organisms. This study investigated the in vivo transgenerational toxicity on development and reproduction with parental CuO NPs exposure in the nematode Caenorhabditis elegans. The results showed that CuO NPs (150 mg/L) significantly reduced the body length of parental C. elegans (P0). Only about 1 mg/L Cu2+ (~0.73%) were detected from 150 mg/L CuO NPs in 0.5X K-medium after 48 h. In transgenerational assays, CuO NPs (150 mg/L) parental exposure significantly induced developmental and reproductive toxicity in non-exposed C. elegans progeny (CuO NPs free) on body length (F1) and brood size (F1 and F2), respectively. In contrast, parental exposure to Cu2+ (1 mg/L) did not cause transgenerational toxicity on growth and reproduction. This suggests that the transgenerational toxicity was mostly attributed to the particulate form of CuO NPs. Moreover, qRT-PCR results showed that the mRNA levels of met-2 and spr-5 genes were significantly decreased at P0 and F1 upon only maternal exposure to CuO NPs (150 mg/L), suggesting the observed transgenerational toxicity was associated with possible epigenetic regulation in C. elegans.
Collapse
Affiliation(s)
- Chia-Cheng Wei
- Institute of Food Safety and Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan; Department of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
| | - Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Amornrat Chaikritsadakarn
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Chi-Wei Huang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Chun-Han Chang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan.
| |
Collapse
|
29
|
Rodríguez Lorenzo JL, Hubinský M, Vyskot B, Hobza R. Histone post-translational modifications in Silene latifolia X and Y chromosomes suggest a mammal-like dosage compensation system. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110528. [PMID: 32900432 DOI: 10.1016/j.plantsci.2020.110528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Silene latifolia is a model organism to study evolutionary young heteromorphic sex chromosome evolution in plants. Previous research indicates a Y-allele gene degeneration and a dosage compensation system already operating. Here, we propose an epigenetic approach based on analysis of several histone post-translational modifications (PTMs) to find the first epigenetic hints of the X:Y sex chromosome system regulation in S. latifolia. Through chromatin immunoprecipitation we interrogated six genes from X and Y alleles. Several histone PTMS linked to DNA methylation and transcriptional repression (H3K27me3, H3K23me, H3K9me2 and H3K9me3) and to transcriptional activation (H3K4me3 and H4K5, 8, 12, 16ac) were used. DNA enrichment (Immunoprecipitated DNA/input DNA) was analyzed and showed three main results: (i) promoters of the Y allele are associated with heterochromatin marks, (ii) promoters of the X allele in males are associated with activation of transcription marks and finally, (iii) promoters of X alleles in females are associated with active and repressive marks. Our finding indicates a transcription activation of X allele and transcription repression of Y allele in males. In females we found a possible differential regulation (up X1, down X2) of each female X allele. These results agree with the mammal-like epigenetic dosage compensation regulation.
Collapse
Affiliation(s)
- José Luis Rodríguez Lorenzo
- The Czech Academy of Sciences, Institute of Biophysics v.v.i., Department of Plant Developmental Genetics, Královopolská 135, 612 65, Brno, Czech Republic.
| | - Marcel Hubinský
- The Czech Academy of Sciences, Institute of Biophysics v.v.i., Department of Plant Developmental Genetics, Královopolská 135, 612 65, Brno, Czech Republic
| | - Boris Vyskot
- The Czech Academy of Sciences, Institute of Biophysics v.v.i., Department of Plant Developmental Genetics, Královopolská 135, 612 65, Brno, Czech Republic
| | - Roman Hobza
- The Czech Academy of Sciences, Institute of Biophysics v.v.i., Department of Plant Developmental Genetics, Královopolská 135, 612 65, Brno, Czech Republic
| |
Collapse
|
30
|
Li Q, Hariri S, Engebrecht J. Meiotic Double-Strand Break Processing and Crossover Patterning Are Regulated in a Sex-Specific Manner by BRCA1-BARD1 in Caenorhabditis elegans. Genetics 2020; 216:359-379. [PMID: 32796008 PMCID: PMC7536853 DOI: 10.1534/genetics.120.303292] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/08/2020] [Indexed: 12/29/2022] Open
Abstract
Meiosis is regulated in a sex-specific manner to produce two distinct gametes, sperm and oocytes, for sexual reproduction. To determine how meiotic recombination is regulated in spermatogenesis, we analyzed the meiotic phenotypes of mutants in the tumor suppressor E3 ubiquitin ligase BRC-1-BRD-1 complex in Caenorhabditis elegans male meiosis. Unlike in mammals, this complex is not required for meiotic sex chromosome inactivation, the process whereby hemizygous sex chromosomes are transcriptionally silenced. Interestingly, brc-1 and brd-1 mutants show meiotic recombination phenotypes that are largely opposing to those previously reported for female meiosis. Fewer meiotic recombination intermediates marked by the recombinase RAD-51 were observed in brc-1 and brd-1 mutants, and the reduction in RAD-51 foci could be suppressed by mutation of nonhomologous-end-joining proteins. Analysis of GFP::RPA-1 revealed fewer foci in the brc-1brd-1 mutant and concentration of BRC-1-BRD-1 to sites of meiotic recombination was dependent on DNA end resection, suggesting that the complex regulates the processing of meiotic double-strand breaks to promote repair by homologous recombination. Further, BRC-1-BRD-1 is important to promote progeny viability when male meiosis is perturbed by mutations that block the pairing and synapsis of different chromosome pairs, although the complex is not required to stabilize the RAD-51 filament as in female meiosis under the same conditions. Analyses of crossover designation and formation revealed that BRC-1-BRD-1 inhibits supernumerary COs when meiosis is perturbed. Together, our findings suggest that BRC-1-BRD-1 regulates different aspects of meiotic recombination in male and female meiosis.
Collapse
Affiliation(s)
- Qianyan Li
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, California 95616
| | - Sara Hariri
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, California 95616
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, California 95616
| |
Collapse
|
31
|
Construction and analysis of artificial chromosomes with de novo holocentromeres in Caenorhabditis elegans. Essays Biochem 2020; 64:233-249. [PMID: 32756873 DOI: 10.1042/ebc20190067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
Artificial chromosomes (ACs), generated in yeast (YACs) and human cells (HACs), have facilitated our understanding of the trans-acting proteins, cis-acting elements, such as the centromere, and epigenetic environments that are necessary to maintain chromosome stability. The centromere is the unique chromosomal region that assembles the kinetochore and connects to microtubules to orchestrate chromosome movement during cell division. While monocentromeres are the most commonly characterized centromere organization found in studied organisms, diffused holocentromeres along the chromosome length are observed in some plants, insects and nematodes. Based on the well-established DNA microinjection method in holocentric Caenorhabditis elegans, concatemerization of foreign DNA can efficiently generate megabase-sized extrachromosomal arrays (Exs), or worm ACs (WACs), for analyzing the mechanisms of WAC formation, de novo centromere formation, and segregation through mitosis and meiosis. This review summarizes the structural, size and stability characteristics of WACs. Incorporating LacO repeats in WACs and expressing LacI::GFP allows real-time tracking of newly formed WACs in vivo, whereas expressing LacI::GFP-chromatin modifier fusions can specifically adjust the chromatin environment of WACs. The WACs mature from passive transmission to autonomous segregation by establishing a holocentromere efficiently in a few cell cycles. Importantly, WAC formation does not require any C. elegans genomic DNA sequence. Thus, DNA substrates injected can be changed to evaluate the effects of DNA sequence and structure in WAC segregation. By injecting a complex mixture of DNA, a less repetitive WAC can be generated and propagated in successive generations for DNA sequencing and analysis of the established holocentromere on the WAC.
Collapse
|
32
|
Abo1 is required for the H3K9me2 to H3K9me3 transition in heterochromatin. Sci Rep 2020; 10:6055. [PMID: 32269268 PMCID: PMC7142091 DOI: 10.1038/s41598-020-63209-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 03/26/2020] [Indexed: 01/24/2023] Open
Abstract
Heterochromatin regulation is critical for genomic stability. Different H3K9 methylation states have been discovered, with distinct roles in heterochromatin formation and silencing. However, how the transition from H3K9me2 to H3K9me3 is controlled is still unclear. Here, we investigate the role of the conserved bromodomain AAA-ATPase, Abo1, involved in maintaining global nucleosome organisation in fission yeast. We identified several key factors involved in heterochromatin silencing that interact genetically with Abo1: histone deacetylase Clr3, H3K9 methyltransferase Clr4, and HP1 homolog Swi6. Cells lacking Abo1 cultivated at 30 °C exhibit an imbalance of H3K9me2 and H3K9me3 in heterochromatin. In abo1∆ cells, the centromeric constitutive heterochromatin has increased H3K9me2 but decreased H3K9me3 levels compared to wild-type. In contrast, facultative heterochromatin regions exhibit reduced H3K9me2 and H3K9me3 levels in abo1∆. Genome-wide analysis showed that abo1∆ cells have silencing defects in both the centromeres and subtelomeres, but not in a subset of heterochromatin islands in our condition. Thus, our work uncovers a role of Abo1 in stabilising directly or indirectly Clr4 recruitment to allow the H3K9me2 to H3K9me3 transition in heterochromatin.
Collapse
|
33
|
Lee TWS, David HS, Engstrom AK, Carpenter BS, Katz DJ. Repressive H3K9me2 protects lifespan against the transgenerational burden of COMPASS activity in C. elegans. eLife 2019; 8:e48498. [PMID: 31815663 PMCID: PMC7299346 DOI: 10.7554/elife.48498] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/06/2019] [Indexed: 12/17/2022] Open
Abstract
In Caenorhabditis elegans, mutations in WDR-5 and other components of the COMPASS H3K4 methyltransferase complex extend lifespan and enable its inheritance. Here, we show that wdr-5 mutant longevity is itself a transgenerational trait that corresponds with a global enrichment of the heterochromatin factor H3K9me2 over twenty generations. In addition, we find that the transgenerational aspects of wdr-5 mutant longevity require the H3K9me2 methyltransferase MET-2, and can be recapitulated by removal of the putative H3K9me2 demethylase JHDM-1. Finally, we show that the transgenerational acquisition of longevity in jhdm-1 mutants is associated with accumulating genomic H3K9me2 that is inherited by their long-lived wild-type descendants at a subset of loci. These results suggest that heterochromatin facilitates the transgenerational establishment and inheritance of a complex trait. Based on these results, we propose that transcription-coupled H3K4me via COMPASS limits lifespan by encroaching upon domains of heterochromatin in the genome.
Collapse
Affiliation(s)
- Teresa Wei-sy Lee
- Department of Cell BiologyEmory University School of MedicineAtlantaUnited States
| | - Heidi Shira David
- Department of Cell BiologyEmory University School of MedicineAtlantaUnited States
| | | | | | - David John Katz
- Department of Cell BiologyEmory University School of MedicineAtlantaUnited States
| |
Collapse
|
34
|
Camacho J, Truong L, Kurt Z, Chen YW, Morselli M, Gutierrez G, Pellegrini M, Yang X, Allard P. The Memory of Environmental Chemical Exposure in C. elegans Is Dependent on the Jumonji Demethylases jmjd-2 and jmjd-3/utx-1. Cell Rep 2019; 23:2392-2404. [PMID: 29791850 PMCID: PMC6003705 DOI: 10.1016/j.celrep.2018.04.078] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/15/2018] [Accepted: 04/17/2018] [Indexed: 01/05/2023] Open
Abstract
How artificial environmental cues are biologically integrated and transgenerationally inherited is still poorly understood. Here, we investigate the mechanisms of inheritance of reproductive outcomes elicited by the model environmental chemical Bisphenol A in C. elegans. We show that Bisphenol A (BPA) exposure causes the derepression of an epigenomically silenced transgene in the germline for 5 generations, regardless of ancestral response. Chromatin immunoprecipitation sequencing (ChIP-seq), histone modification quantitation, and immunofluorescence assays revealed that this effect is associated with a reduction of the repressive marks H3K9me3 and H3K27me3 in whole worms and in germline nuclei in the F3, as well as with reproductive dysfunctions, including germline apoptosis and embryonic lethality. Furthermore, targeting of the Jumonji demethylases JMJD-2 and JMJD-3/UTX-1 restores H3K9me3 and H3K27me3 levels, respectively, and it fully alleviates the BPA-induced transgenerational effects. Together, our results demonstrate the central role of repressive histone modifications in the inheritance of reproductive defects elicited by a common environmental chemical exposure.
Collapse
Affiliation(s)
- Jessica Camacho
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lisa Truong
- Human Genetics and Genomic Analysis Training Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zeyneb Kurt
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yen-Wei Chen
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marco Morselli
- Molecular, Cell and Developmental Biology Department, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gerardo Gutierrez
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Environmental and Occupational Health, California State University, Northridge, CA 91330, USA
| | - Matteo Pellegrini
- Molecular, Cell and Developmental Biology Department, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xia Yang
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Patrick Allard
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
35
|
Cutter AD, Morran LT, Phillips PC. Males, Outcrossing, and Sexual Selection in Caenorhabditis Nematodes. Genetics 2019; 213:27-57. [PMID: 31488593 PMCID: PMC6727802 DOI: 10.1534/genetics.119.300244] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Males of Caenorhabditis elegans provide a crucial practical tool in the laboratory, but, as the rarer and more finicky sex, have not enjoyed the same depth of research attention as hermaphrodites. Males, however, have attracted the attention of evolutionary biologists who are exploiting the C. elegans system to test longstanding hypotheses about sexual selection, sexual conflict, transitions in reproductive mode, and genome evolution, as well as to make new discoveries about Caenorhabditis organismal biology. Here, we review the evolutionary concepts and data informed by study of males of C. elegans and other Caenorhabditis We give special attention to the important role of sperm cells as a mediator of inter-male competition and male-female conflict that has led to drastic trait divergence across species, despite exceptional phenotypic conservation in many other morphological features. We discuss the evolutionary forces important in the origins of reproductive mode transitions from males being common (gonochorism: females and males) to rare (androdioecy: hermaphrodites and males) and the factors that modulate male frequency in extant androdioecious populations, including the potential influence of selective interference, host-pathogen coevolution, and mutation accumulation. Further, we summarize the consequences of males being common vs rare for adaptation and for trait divergence, trait degradation, and trait dimorphism between the sexes, as well as for molecular evolution of the genome, at both micro-evolutionary and macro-evolutionary timescales. We conclude that C. elegans male biology remains underexploited and that future studies leveraging its extensive experimental resources are poised to discover novel biology and to inform profound questions about animal function and evolution.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario M5S3B2, Canada
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, Georgia 30322, and
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
36
|
Sánchez OF, Mendonca A, Min A, Liu J, Yuan C. Monitoring Histone Methylation (H3K9me3) Changes in Live Cells. ACS OMEGA 2019; 4:13250-13259. [PMID: 31460452 PMCID: PMC6705211 DOI: 10.1021/acsomega.9b01413] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/19/2019] [Indexed: 05/16/2023]
Abstract
H3K9me3 (methylation of lysine 9 of histone H3) is an epigenetic modification that acts as a repressor mark. Several diseases, including cancers and neurological disorders, have been associated with aberrant changes in H3K9me3 levels. Different tools have been developed to enable detection and quantification of H3K9me3 levels in cells. Most techniques, however, lack live cell compatibility. To address this concern, we have engineered recombinant protein sensors for probing H3K9me3 in situ. A heterodimeric sensor containing a chromodomain and chromo shadow domain from HP1a was found to be optimal in recognizing H3K9me3 and exhibited similar spatial resolution to commercial antibodies. Our sensor offers similar quantitative accuracy in characterizing changes in H3K9me3 compared to antibodies but claims single cell resolution. The sensor was applied to evaluate changes in H3K9me3 responding to environmental chemical atrazine (ATZ). ATZ was found to result in significant reductions in H3K9me3 levels after 24 h of exposure. Its impact on the distribution of H3K9me3 among cell populations was also assessed and found to be distinctive. We foresee the application of our sensors in multiple toxicity and drug-screening applications.
Collapse
Affiliation(s)
- Oscar F Sánchez
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette 47907, Indiana, United States
| | - Agnes Mendonca
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette 47907, Indiana, United States
| | - Alan Min
- Department of Computer Science, Purdue University, West Lafayette 47907, Indiana, United States
| | - Jichang Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette 47907, Indiana, United States
- Purdue University Center for Cancer Research, West Lafayette 47907, Indiana, United States
| |
Collapse
|
37
|
Lev I, Gingold H, Rechavi O. H3K9me3 is required for inheritance of small RNAs that target a unique subset of newly evolved genes. eLife 2019; 8:e40448. [PMID: 30869075 PMCID: PMC6417860 DOI: 10.7554/elife.40448] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/26/2019] [Indexed: 12/17/2022] Open
Abstract
In Caenorhabditis elegans, RNA interference (RNAi) responses can transmit across generations via small RNAs. RNAi inheritance is associated with Histone-3-Lysine-9 tri-methylation (H3K9me3) of the targeted genes. In other organisms, maintenance of silencing requires a feed-forward loop between H3K9me3 and small RNAs. Here, we show that in C. elegans not only is H3K9me3 unnecessary for inheritance, the modification's function depends on the identity of the RNAi-targeted gene. We found an asymmetry in the requirement for H3K9me3 and the main worm H3K9me3 methyltransferases, SET-25 and SET-32. Both methyltransferases promote heritable silencing of the foreign gene gfp, but are dispensable for silencing of the endogenous gene oma-1. Genome-wide examination of heritable endogenous small interfering RNAs (endo-siRNAs) revealed that endo-siRNAs that depend on SET-25 and SET-32 target newly acquired and highly H3K9me3 marked genes. Thus, 'repressive' chromatin marks could be important specifically for heritable silencing of genes which are flagged as 'foreign', such as gfp. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Itamar Lev
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | - Hila Gingold
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
38
|
Cahoon CK, Libuda DE. Leagues of their own: sexually dimorphic features of meiotic prophase I. Chromosoma 2019; 128:199-214. [PMID: 30826870 PMCID: PMC6823309 DOI: 10.1007/s00412-019-00692-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/28/2019] [Accepted: 02/05/2019] [Indexed: 01/12/2023]
Abstract
Meiosis is a conserved cell division process that is used by sexually reproducing organisms to generate haploid gametes. Males and females produce different end products of meiosis: eggs (females) and sperm (males). In addition, these unique end products demonstrate sex-specific differences that occur throughout meiosis to produce the final genetic material that is packaged into distinct gametes with unique extracellular morphologies and nuclear sizes. These sexually dimorphic features of meiosis include the meiotic chromosome architecture, in which both the lengths of the chromosomes and the requirement for specific meiotic axis proteins being different between the sexes. Moreover, these changes likely cause sex-specific changes in the recombination landscape with the sex that has the longer chromosomes usually obtaining more crossovers. Additionally, epigenetic regulation of meiosis may contribute to sexually dimorphic recombination landscapes. Here we explore the sexually dimorphic features of both the chromosome axis and crossing over for each stage of meiotic prophase I in Mus musculus, Caenorhabditis elegans, and Arabidopsis thaliana. Furthermore, we consider how sex-specific changes in the meiotic chromosome axes and the epigenetic landscape may function together to regulate crossing over in each sex, indicating that the mechanisms controlling crossing over may be different in oogenesis and spermatogenesis.
Collapse
Affiliation(s)
- Cori K Cahoon
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1370 Franklin Boulevard, Eugene, OR, 97403-1229, USA
| | - Diana E Libuda
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1370 Franklin Boulevard, Eugene, OR, 97403-1229, USA.
| |
Collapse
|
39
|
Abstract
The evolution of heteromorphic sex chromosomes has occurred independently many times in different lineages. The differentiation of sex chromosomes leads to dramatic changes in sequence composition and function and guides the evolutionary trajectory and utilization of genes in pivotal sex determination and reproduction roles. In addition, meiotic recombination and pairing mechanisms are key in orchestrating the resultant impact, retention and maintenance of heteromorphic sex chromosomes, as the resulting exposure of unpaired DNA at meiosis triggers ancient repair and checkpoint pathways. In this review, we summarize the different ways in which sex chromosome systems are organized at meiosis, how pairing is affected, and differences in unpaired DNA responses. We hypothesize that lineage specific differences in meiotic organization is not only a consequence of sex chromosome evolution, but that the establishment of epigenetic changes on sex chromosomes contributes toward their evolutionary conservation.
Collapse
Affiliation(s)
- Tasman Daish
- Comparative Genome Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Frank Grützner
- Comparative Genome Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
40
|
Yang B, Xu X, Russell L, Sullenberger MT, Yanowitz JL, Maine EM. A DNA repair protein and histone methyltransferase interact to promote genome stability in the Caenorhabditis elegans germ line. PLoS Genet 2019; 15:e1007992. [PMID: 30794539 PMCID: PMC6402707 DOI: 10.1371/journal.pgen.1007992] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 03/06/2019] [Accepted: 01/28/2019] [Indexed: 12/29/2022] Open
Abstract
Histone modifications regulate gene expression and chromosomal events, yet how histone-modifying enzymes are targeted is poorly understood. Here we report that a conserved DNA repair protein, SMRC-1, associates with MET-2, the C. elegans histone methyltransferase responsible for H3K9me1 and me2 deposition. We used molecular, genetic, and biochemical methods to investigate the biological role of SMRC-1 and to explore its relationship with MET-2. SMRC-1, like its mammalian ortholog SMARCAL1, provides protection from DNA replication stress. SMRC-1 limits accumulation of DNA damage and promotes germline and embryonic viability. MET-2 and SMRC-1 localize to mitotic and meiotic germline nuclei, and SMRC-1 promotes an increase in MET-2 abundance in mitotic germline nuclei upon replication stress. In the absence of SMRC-1, germline H3K9me2 generally decreases after multiple generations at high culture temperature. Genetic data are consistent with MET-2 and SMRC-1 functioning together to limit replication stress in the germ line and in parallel to promote other germline processes. We hypothesize that loss of SMRC-1 activity causes chronic replication stress, in part because of insufficient recruitment of MET-2 to nuclei.
Collapse
Affiliation(s)
- Bing Yang
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Xia Xu
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Logan Russell
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | | | - Judith L. Yanowitz
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Eleanor M. Maine
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| |
Collapse
|
41
|
Mutlu B, Chen HM, Moresco JJ, Orelo BD, Yang B, Gaspar JM, Keppler-Ross S, Yates JR, Hall DH, Maine EM, Mango SE. Regulated nuclear accumulation of a histone methyltransferase times the onset of heterochromatin formation in C. elegans embryos. SCIENCE ADVANCES 2018; 4:eaat6224. [PMID: 30140741 PMCID: PMC6105299 DOI: 10.1126/sciadv.aat6224] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/18/2018] [Indexed: 05/19/2023]
Abstract
Heterochromatin formation during early embryogenesis is timed precisely, but how this process is regulated remains elusive. We report the discovery of a histone methyltransferase complex whose nuclear accumulation and activation establish the onset of heterochromatin formation in Caenorhabditis elegans embryos. We find that the inception of heterochromatin generation coincides with the accumulation of the histone H3 lysine 9 (H3K9) methyltransferase MET-2 (SETDB) into nuclear hubs. The absence of MET-2 results in delayed and disturbed heterochromatin formation, whereas accelerated nuclear localization of the methyltransferase leads to precocious H3K9 methylation. We identify two factors that bind to and function with MET-2: LIN-65, which resembles activating transcription factor 7-interacting protein (ATF7IP) and localizes MET-2 into nuclear hubs, and ARLE-14, which is orthologous to adenosine 5'-diphosphate-ribosylation factor-like 14 effector protein (ARL14EP) and promotes stable association of MET-2 with chromatin. These data reveal that nuclear accumulation of MET-2 in conjunction with LIN-65 and ARLE-14 regulates timing of heterochromatin domains during embryogenesis.
Collapse
Affiliation(s)
- Beste Mutlu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Huei-Mei Chen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - James J. Moresco
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Barbara D. Orelo
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Bing Yang
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - John M. Gaspar
- Informatics Group, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Sabine Keppler-Ross
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - David H. Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Eleanor M. Maine
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Susan E. Mango
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Corresponding author.
| |
Collapse
|
42
|
Rechavi O, Lev I. Principles of Transgenerational Small RNA Inheritance in Caenorhabditis elegans. Curr Biol 2018; 27:R720-R730. [PMID: 28743023 DOI: 10.1016/j.cub.2017.05.043] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Examples of transgenerational inheritance of environmental responses are rapidly accumulating. In Caenorhabditis elegans nematodes, such heritable information transmits across generations in the form of RNA-dependent RNA polymerase-amplified small RNAs. Regulatory small RNAs enable sequence-specific gene regulation, and unlike chromatin modifications, can move between tissues, and escape from immediate germline reprogramming. In this review, we discuss the path that small RNAs take from the soma to the germline, and elaborate on the mechanisms that maintain or erase parental small RNA responses after a specific number of generations. We focus on the intricate interactions between heritable small RNAs and histone modifications, deposited on specific loci. A trace of heritable chromatin marks, in particular trimethylation of histone H3 lysine 9, is deposited on RNAi-targeted loci. However, how these modifications regulate RNAi or small RNA inheritance was until recently unclear. Integrating the very latest literature, we suggest that changes to histone marks may instigate transgenerational gene regulation indirectly, by affecting the biogenesis of heritable small RNAs. Inheritance of small RNAs could spread adaptive ancestral responses.
Collapse
Affiliation(s)
- Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel 69978.
| | - Itamar Lev
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel 69978.
| |
Collapse
|
43
|
Berenson AL, Baird SE. Regulation of the sperm-to-oocyte transition in Caenorhabditis briggsae
hermaphrodites by the Cbr-met-2
and Cbr-fem-3
genes. Mol Reprod Dev 2018; 85:532-542. [DOI: 10.1002/mrd.22991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/22/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Aaron L. Berenson
- Department of Biological Sciences; Wright State University; Dayton Ohio
| | - Scott E. Baird
- Department of Biological Sciences; Wright State University; Dayton Ohio
| |
Collapse
|
44
|
Myers TR, Amendola PG, Lussi YC, Salcini AE. JMJD-1.2 controls multiple histone post-translational modifications in germ cells and protects the genome from replication stress. Sci Rep 2018; 8:3765. [PMID: 29491442 PMCID: PMC5830613 DOI: 10.1038/s41598-018-21914-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/13/2018] [Indexed: 01/29/2023] Open
Abstract
Post-translational modifications of histones, constitutive components of chromatin, regulate chromatin compaction and control all DNA-based cellular processes. C. elegans JMJD-1.2, a member of the KDM7 family, is a demethylase active towards several lysine residues on Histone 3 (H3), but its contribution in regulating histone methylation in germ cells has not been fully investigated. Here, we show that jmjd-1.2 is expressed abundantly in the germline where it controls the level of histone 3 lysine 9, lysine 23 and lysine 27 di-methylation (H3K9/K23/K27me2) both in mitotic and meiotic cells. Loss of jmjd-1.2 is not associated with major defects in the germ cells in animals grown under normal conditions or after DNA damage induced by UV or ionizing irradiation. However, jmjd-1.2 mutants are more sensitive to replication stress and the progeny of mutant animals exposed to hydroxyurea show increased embryonic lethality and mutational rate, compared to wild-type. Thus, our results suggest a role for jmjd-1.2 in the maintenance of genome integrity after replication stress and emphasize the relevance of the regulation of histone methylation in genomic stability.
Collapse
Affiliation(s)
- Toshia R Myers
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
- Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Pier Giorgio Amendola
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
- Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Yvonne C Lussi
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
- Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Anna Elisabetta Salcini
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark.
- Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
45
|
Ahringer J, Gasser SM. Repressive Chromatin in Caenorhabditis elegans: Establishment, Composition, and Function. Genetics 2018; 208:491-511. [PMID: 29378810 PMCID: PMC5788517 DOI: 10.1534/genetics.117.300386] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/18/2017] [Indexed: 01/08/2023] Open
Abstract
Chromatin is organized and compacted in the nucleus through the association of histones and other proteins, which together control genomic activity. Two broad types of chromatin can be distinguished: euchromatin, which is generally transcriptionally active, and heterochromatin, which is repressed. Here we examine the current state of our understanding of repressed chromatin in Caenorhabditis elegans, focusing on roles of histone modifications associated with repression, such as methylation of histone H3 lysine 9 (H3K9me2/3) or the Polycomb Repressive Complex 2 (MES-2/3/6)-deposited modification H3K27me3, and on proteins that recognize these modifications. Proteins involved in chromatin repression are important for development, and have demonstrated roles in nuclear organization, repetitive element silencing, genome integrity, and the regulation of euchromatin. Additionally, chromatin factors participate in repression with small RNA pathways. Recent findings shed light on heterochromatin function and regulation in C. elegans, and should inform our understanding of repressed chromatin in other animals.
Collapse
Affiliation(s)
- Julie Ahringer
- The Gurdon Institute, University of Cambridge CB2 1QN, United Kingdom
- Department of Genetics, University of Cambridge CB2 1QN, United Kingdom
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland, and
- Faculty of Natural Sciences, University of Basel, 4056, Switzerland
| |
Collapse
|
46
|
Quantitative FLIM-FRET Microscopy to Monitor Nanoscale Chromatin Compaction In Vivo Reveals Structural Roles of Condensin Complexes. Cell Rep 2017; 18:1791-1803. [PMID: 28199849 DOI: 10.1016/j.celrep.2017.01.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/21/2016] [Accepted: 01/19/2017] [Indexed: 01/03/2023] Open
Abstract
How metazoan genomes are structured at the nanoscale in living cells and tissues remains unknown. Here, we adapted a quantitative FRET (Förster resonance energy transfer)-based fluorescence lifetime imaging microscopy (FLIM) approach to assay nanoscale chromatin compaction in living organisms. Caenorhabditis elegans was chosen as a model system. By measuring FRET between histone-tagged fluorescent proteins, we visualized distinct chromosomal regions and quantified the different levels of nanoscale compaction in meiotic cells. Using RNAi and repetitive extrachromosomal array approaches, we defined the heterochromatin state and showed that its architecture presents a nanoscale-compacted organization controlled by Heterochromatin Protein-1 (HP1) and SETDB1 H3-lysine-9 methyltransferase homologs in vivo. Next, we functionally explored condensin complexes. We found that condensin I and condensin II are essential for heterochromatin compaction and that condensin I additionally controls lowly compacted regions. Our data show that, in living animals, nanoscale chromatin compaction is controlled not only by histone modifiers and readers but also by condensin complexes.
Collapse
|
47
|
Lev I, Seroussi U, Gingold H, Bril R, Anava S, Rechavi O. MET-2-Dependent H3K9 Methylation Suppresses Transgenerational Small RNA Inheritance. Curr Biol 2017; 27:1138-1147. [DOI: 10.1016/j.cub.2017.03.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/13/2017] [Accepted: 03/06/2017] [Indexed: 10/19/2022]
|
48
|
Kalinava N, Ni JZ, Peterman K, Chen E, Gu SG. Decoupling the downstream effects of germline nuclear RNAi reveals that H3K9me3 is dispensable for heritable RNAi and the maintenance of endogenous siRNA-mediated transcriptional silencing in Caenorhabditis elegans. Epigenetics Chromatin 2017; 10:6. [PMID: 28228846 PMCID: PMC5311726 DOI: 10.1186/s13072-017-0114-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/08/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Germline nuclear RNAi in C. elegans is a transgenerational gene-silencing pathway that leads to H3K9 trimethylation (H3K9me3) and transcriptional silencing at the target genes. H3K9me3 induced by either exogenous double-stranded RNA (dsRNA) or endogenous siRNA (endo-siRNA) is highly specific to the target loci and transgenerationally heritable. Despite these features, the role of H3K9me3 in siRNA-mediated transcriptional silencing and inheritance of the silencing state at native target genes is unclear. In this study, we took combined genetic and whole-genome approaches to address this question. RESULTS Here we demonstrate that siRNA-mediated H3K9me3 requires combined activities of three H3K9 histone methyltransferases: MET-2, SET-25, and SET-32. set-32 single, met-2 set-25 double, and met-2 set-25;set-32 triple mutant adult animals all exhibit prominent reductions in H3K9me3 throughout the genome, with met-2 set-25;set-32 mutant worms losing all detectable H3K9me3 signals. Surprisingly, loss of high-magnitude H3K9me3 at the native nuclear RNAi targets has no effect on the transcriptional silencing state. In addition, the exogenous dsRNA-induced transcriptional silencing and heritable RNAi at oma-1, a well-established nuclear RNAi reporter gene, are completely resistant to the loss of H3K9me3. CONCLUSIONS Nuclear RNAi-mediated H3K9me3 in C. elegans requires multiple histone methyltransferases, including MET-2, SET-25, and SET-32. H3K9me3 is not essential for dsRNA-induced heritable RNAi or the maintenance of endo-siRNA-mediated transcriptional silencing in C. elegans. We propose that siRNA-mediated transcriptional silencing in C. elegans can be maintained by an H3K9me3-independent mechanism.
Collapse
Affiliation(s)
- Natallia Kalinava
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854 USA
| | - Julie Zhouli Ni
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854 USA
| | - Kimberly Peterman
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854 USA
| | - Esteban Chen
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854 USA
| | - Sam Guoping Gu
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854 USA.,Nelson Labs A125, 604 Allison Road, Piscataway, NJ 08854 USA
| |
Collapse
|
49
|
Snyder MJ, Lau AC, Brouhard EA, Davis MB, Jiang J, Sifuentes MH, Csankovszki G. Anchoring of Heterochromatin to the Nuclear Lamina Reinforces Dosage Compensation-Mediated Gene Repression. PLoS Genet 2016; 12:e1006341. [PMID: 27690361 PMCID: PMC5045178 DOI: 10.1371/journal.pgen.1006341] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022] Open
Abstract
Higher order chromosome structure and nuclear architecture can have profound effects on gene regulation. We analyzed how compartmentalizing the genome by tethering heterochromatic regions to the nuclear lamina affects dosage compensation in the nematode C. elegans. In this organism, the dosage compensation complex (DCC) binds both X chromosomes of hermaphrodites to repress transcription two-fold, thus balancing gene expression between XX hermaphrodites and XO males. X chromosome structure is disrupted by mutations in DCC subunits. Using X chromosome paint fluorescence microscopy, we found that X chromosome structure and subnuclear localization are also disrupted when the mechanisms that anchor heterochromatin to the nuclear lamina are defective. Strikingly, the heterochromatic left end of the X chromosome is less affected than the gene-rich middle region, which lacks heterochromatic anchors. These changes in X chromosome structure and subnuclear localization are accompanied by small, but significant levels of derepression of X-linked genes as measured by RNA-seq, without any observable defects in DCC localization and DCC-mediated changes in histone modifications. We propose a model in which heterochromatic tethers on the left arm of the X cooperate with the DCC to compact and peripherally relocate the X chromosomes, contributing to gene repression.
Collapse
Affiliation(s)
- Martha J. Snyder
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alyssa C. Lau
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Elizabeth A. Brouhard
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michael B. Davis
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jianhao Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Margarita H. Sifuentes
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Györgyi Csankovszki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
50
|
Plasticity in the Meiotic Epigenetic Landscape of Sex Chromosomes in Caenorhabditis Species. Genetics 2016; 203:1641-58. [PMID: 27280692 DOI: 10.1534/genetics.116.191130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/06/2016] [Indexed: 01/19/2023] Open
Abstract
During meiosis in the heterogametic sex in some species, sex chromosomes undergo meiotic sex chromosome inactivation (MSCI), which results in acquisition of repressive chromatin and transcriptional silencing. In Caenorhabditis elegans, MSCI is mediated by MET-2 methyltransferase deposition of histone H3 lysine 9 dimethylation. Here we examined the meiotic chromatin landscape in germ lines of four Caenorhabditis species; C. remanei and C. brenneri represent ancestral gonochorism, while C. briggsae and C. elegans are two lineages that independently evolved hermaphroditism. While MSCI is conserved across all four species, repressive chromatin modifications are distinct and do not correlate with reproductive mode. In contrast to C. elegans and C. remanei germ cells where X chromosomes are enriched for histone H3 lysine 9 dimethylation, X chromosomes in C. briggsae and C. brenneri germ cells are enriched for histone H3 lysine 9 trimethylation. Inactivation of C. briggsae MET-2 resulted in germ-line X chromosome transcription and checkpoint activation. Further, both histone H3 lysine 9 di- and trimethylation were reduced in Cbr-met-2 mutant germ lines, suggesting that in contrast to C. elegans, H3 lysine 9 di- and trimethylation are interdependent. C. briggsae H3 lysine 9 trimethylation was redistributed in the presence of asynapsed chromosomes in a sex-specific manner in the related process of meiotic silencing of unsynapsed chromatin. However, these repressive marks did not influence X chromosome replication timing. Examination of additional Caenorhabditis species revealed diverse H3 lysine 9 methylation patterns on the X, suggesting that the sex chromosome epigenome evolves rapidly.
Collapse
|