1
|
Wu N, Zheng W, Zhou Y, Tian Y, Tang M, Feng X, Ashrafizadeh M, Wang Y, Niu X, Tambuwala M, Wang L, Tergaonkar V, Sethi G, Klionsky D, Huang L, Gu M. Autophagy in aging-related diseases and cancer: Principles, regulatory mechanisms and therapeutic potential. Ageing Res Rev 2024; 100:102428. [PMID: 39038742 DOI: 10.1016/j.arr.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Macroautophagy/autophagy is primarily accountable for the degradation of damaged organelles and toxic macromolecules in the cells. Regarding the essential function of autophagy for preserving cellular homeostasis, changes in, or dysfunction of, autophagy flux can lead to disease development. In the current paper, the complicated function of autophagy in aging-associated pathologies and cancer is evaluated, highlighting the underlying molecular mechanisms that can affect longevity and disease pathogenesis. As a natural biological process, a reduction in autophagy is observed with aging, resulting in an accumulation of cell damage and the development of different diseases, including neurological disorders, cardiovascular diseases, and cancer. The MTOR, AMPK, and ATG proteins demonstrate changes during aging, and they are promising therapeutic targets. Insulin/IGF1, TOR, PKA, AKT/PKB, caloric restriction and mitochondrial respiration are vital for lifespan regulation and can modulate or have an interaction with autophagy. The specific types of autophagy, such as mitophagy that degrades mitochondria, can regulate aging by affecting these organelles and eliminating those mitochondria with genomic mutations. Autophagy and its specific types contribute to the regulation of carcinogenesis and they are able to dually enhance or decrease cancer progression. Cancer hallmarks, including proliferation, metastasis, therapy resistance and immune reactions, are tightly regulated by autophagy, supporting the conclusion that autophagy is a promising target in cancer therapy.
Collapse
Affiliation(s)
- Na Wu
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yundong Zhou
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yu Tian
- School of Public Health, Benedictine University, No.5700 College Road, Lisle, IL 60532, USA; Research Center, the Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing 401120, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Daniel Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China.
| | - Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
2
|
Rahman SU, Qadeer A, Wu Z. Role and Potential Mechanisms of Nicotinamide Mononucleotide in Aging. Aging Dis 2024; 15:565-583. [PMID: 37548938 PMCID: PMC10917541 DOI: 10.14336/ad.2023.0519-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/19/2023] [Indexed: 08/08/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) has recently attracted much attention due to its role in aging and lifespan extension. NAD+ directly and indirectly affects many cellular processes, including metabolic pathways, DNA repair, and immune cell activities. These mechanisms are critical for maintaining cellular homeostasis. However, the decline in NAD+ levels with aging impairs tissue function, which has been associated with several age-related diseases. In fact, the aging population has been steadily increasing worldwide, and it is important to restore NAD+ levels and reverse or delay these age-related disorders. Therefore, there is an increasing demand for healthy products that can mitigate aging, extend lifespan, and halt age-related consequences. In this case, several studies in humans and animals have targeted NAD+ metabolism with NAD+ intermediates. Among them, nicotinamide mononucleotide (NMN), a precursor in the biosynthesis of NAD+, has recently received much attention from the scientific community for its anti-aging properties. In model organisms, ingestion of NMN has been shown to improve age-related diseases and probably delay death. Here, we review aspects of NMN biosynthesis and the mechanism of its absorption, as well as potential anti-aging mechanisms of NMN, including recent preclinical and clinical tests, adverse effects, limitations, and perceived challenges.
Collapse
Affiliation(s)
- Sajid Ur Rahman
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Abdul Qadeer
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Ziyun Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Gómez-Montalvo J, de Obeso Fernández del Valle A, De la Cruz Gutiérrez LF, Gonzalez-Meljem JM, Scheckhuber CQ. Replicative aging in yeast involves dynamic intron retention patterns associated with mRNA processing/export and protein ubiquitination. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:69-78. [PMID: 38414808 PMCID: PMC10897858 DOI: 10.15698/mic2024.02.816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
Saccharomyces cerevisiae (baker's yeast) has yielded relevant insights into some of the basic mechanisms of organismal aging. Among these are genomic instability, oxidative stress, caloric restriction and mitochondrial dysfunction. Several genes are known to have an impact on the aging process, with corresponding mutants exhibiting short- or long-lived phenotypes. Research dedicated to unraveling the underlying cellular mechanisms can support the identification of conserved mechanisms of aging in other species. One of the hitherto less studied fields in yeast aging is how the organism regulates its gene expression at the transcriptional level. To our knowledge, we present the first investigation into alternative splicing, particularly intron retention, during replicative aging of S. cerevisiae. This was achieved by utilizing the IRFinder algorithm on a previously published RNA-seq data set by Janssens et al. (2015). In the present work, 44 differentially retained introns in 43 genes were identified during replicative aging. We found that genes with altered intron retention do not display significant changes in overall transcript levels. It was possible to functionally assign distinct groups of these genes to the cellular processes of mRNA processing and export (e.g., YRA1) in early and middle-aged yeast, and protein ubiquitination (e.g., UBC5) in older cells. In summary, our work uncovers a previously unexplored layer of the transcriptional program of yeast aging and, more generally, expands the knowledge on the occurrence of alternative splicing in baker's yeast.
Collapse
Affiliation(s)
- Jesús Gómez-Montalvo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., México
| | | | | | - Jose Mario Gonzalez-Meljem
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., México
| | | |
Collapse
|
4
|
Tao H, Lv Q, Zhang J, Chen L, Yang Y, Sun W. Different Levels of Autophagy Activity in Mesenchymal Stem Cells Are Involved in the Progression of Idiopathic Pulmonary Fibrosis. Stem Cells Int 2024; 2024:3429565. [PMID: 38390035 PMCID: PMC10883747 DOI: 10.1155/2024/3429565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/17/2023] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an age-related lung interstitial disease that occurs predominantly in people over 65 years of age and for which there is a lack of effective therapeutic agents. It has demonstrated that mesenchymal stem cells (MSCs) including alveolar epithelial cells (AECs) can perform repair functions. However, MSCs lose their repair functions due to their distinctive aging characteristics, eventually leading to the progression of IPF. Recent breakthroughs have revealed that the degree of autophagic activity influences the renewal and aging of MSCs and determines the prognosis of IPF. Autophagy is a lysosome-dependent pathway that mediates the degradation and recycling of intracellular material and is an efficient way to renew the nonnuclear (cytoplasmic) part of eukaryotic cells, which is essential for maintaining cellular homeostasis and is a potential target for regulating MSCs function. Therefore, this review focuses on the changes in autophagic activity of MSCs, clarifies the relationship between autophagy and health status of MSCs and the effect of autophagic activity on MSCs senescence and IPF, providing a theoretical basis for promoting the clinical application of MSCs.
Collapse
Affiliation(s)
- Hongxia Tao
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qin Lv
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
- Medical College, University of Electronic Science and Technology, Chengdu, China
| | - Jing Zhang
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
- Medical College, University of Electronic Science and Technology, Chengdu, China
| | - Lijuan Chen
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
- Medical College, University of Electronic Science and Technology, Chengdu, China
| | - Yang Yang
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
- Medical College, University of Electronic Science and Technology, Chengdu, China
| | - Wei Sun
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
- Medical College, University of Electronic Science and Technology, Chengdu, China
| |
Collapse
|
5
|
Ananthamohan K, Stelzer JE, Sadayappan S. Hypertrophic cardiomyopathy in MYBPC3 carriers in aging. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:9. [PMID: 38406555 PMCID: PMC10883298 DOI: 10.20517/jca.2023.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by abnormal thickening of the myocardium, leading to arrhythmias, heart failure, and elevated risk of sudden cardiac death, particularly among the young. This inherited disease is predominantly caused by mutations in sarcomeric genes, among which those in the cardiac myosin binding protein-C3 (MYBPC3) gene are major contributors. HCM associated with MYBPC3 mutations usually presents in the elderly and ranges from asymptomatic to symptomatic forms, affecting numerous cardiac functions and presenting significant health risks with a spectrum of clinical manifestations. Regulation of MYBPC3 expression involves various transcriptional and translational mechanisms, yet the destiny of mutant MYBPC3 mRNA and protein in late-onset HCM remains unclear. Pathogenesis related to MYBPC3 mutations includes nonsense-mediated decay, alternative splicing, and ubiquitin-proteasome system events, leading to allelic imbalance and haploinsufficiency. Aging further exacerbates the severity of HCM in carriers of MYBPC3 mutations. Advancements in high-throughput omics techniques have identified crucial molecular events and regulatory disruptions in cardiomyocytes expressing MYBPC3 variants. This review assesses the pathogenic mechanisms that promote late-onset HCM through the lens of transcriptional, post-transcriptional, and post-translational modulation of MYBPC3, underscoring its significance in HCM across carriers. The review also evaluates the influence of aging on these processes and MYBPC3 levels during HCM pathogenesis in the elderly. While pinpointing targets for novel medical interventions to conserve cardiac function remains challenging, the emergence of personalized omics offers promising avenues for future HCM treatments, particularly for late-onset cases.
Collapse
Affiliation(s)
- Kalyani Ananthamohan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 45267, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
6
|
Dunn E, Zhang B, Sahota VK, Augustin H. Potential benefits of medium chain fatty acids in aging and neurodegenerative disease. Front Aging Neurosci 2023; 15:1230467. [PMID: 37680538 PMCID: PMC10481710 DOI: 10.3389/fnagi.2023.1230467] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Neurodegenerative diseases are a large class of neurological disorders characterized by progressive dysfunction and death of neurones. Examples include Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Aging is the primary risk factor for neurodegeneration; individuals over 65 are more likely to suffer from a neurodegenerative disease, with prevalence increasing with age. As the population ages, the social and economic burden caused by these diseases will increase. Therefore, new therapies that address both aging and neurodegeneration are imperative. Ketogenic diets (KDs) are low carbohydrate, high-fat diets developed initially as an alternative treatment for epilepsy. The classic ketogenic diet provides energy via long-chain fatty acids (LCFAs); naturally occurring medium chain fatty acids (MCFAs), on the other hand, are the main components of the medium-chain triglyceride (MCT) ketogenic diet. MCT-based diets are more efficient at generating the ketone bodies that are used as a secondary energy source for neurones and astrocytes. However, ketone levels alone do not closely correlate with improved clinical symptoms. Recent findings suggest an alternative mode of action for the MCFAs, e.g., via improving mitochondrial biogenesis and glutamate receptor inhibition. MCFAs have been linked to the treatment of both aging and neurodegenerative disease via their effects on metabolism. Through action on multiple disease-related pathways, MCFAs are emerging as compounds with notable potential to promote healthy aging and ameliorate neurodegeneration. MCFAs have been shown to stimulate autophagy and restore mitochondrial function, which are found to be disrupted in aging and neurodegeneration. This review aims to provide insight into the metabolic benefits of MCFAs in neurodegenerative disease and healthy aging. We will discuss the use of MCFAs to combat dysregulation of autophagy and mitochondrial function in the context of "normal" aging, Parkinson's disease, amyotrophic lateral sclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | - Hrvoje Augustin
- Department of Biological Sciences, Centre for Biomedical Sciences, Royal Holloway University of London, Egham, United Kingdom
| |
Collapse
|
7
|
Astre G, Atlan T, Goshtchevsky U, Oron-Gottesman A, Smirnov M, Shapira K, Velan A, Deelen J, Levy T, Levanon EY, Harel I. Genetic perturbation of AMP biosynthesis extends lifespan and restores metabolic health in a naturally short-lived vertebrate. Dev Cell 2023; 58:1350-1364.e10. [PMID: 37321215 DOI: 10.1016/j.devcel.2023.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/09/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
During aging, the loss of metabolic homeostasis drives a myriad of pathologies. A central regulator of cellular energy, the AMP-activated protein kinase (AMPK), orchestrates organismal metabolism. However, direct genetic manipulations of the AMPK complex in mice have, so far, produced detrimental phenotypes. Here, as an alternative approach, we alter energy homeostasis by manipulating the upstream nucleotide pool. Using the turquoise killifish, we mutate APRT, a key enzyme in AMP biosynthesis, and extend the lifespan of heterozygous males. Next, we apply an integrated omics approach to show that metabolic functions are rejuvenated in old mutants, which also display a fasting-like metabolic profile and resistance to high-fat diet. At the cellular level, heterozygous cells exhibit enhanced nutrient sensitivity, reduced ATP levels, and AMPK activation. Finally, lifelong intermittent fasting abolishes the longevity benefits. Our findings suggest that perturbing AMP biosynthesis may modulate vertebrate lifespan and propose APRT as a promising target for promoting metabolic health.
Collapse
Affiliation(s)
- Gwendoline Astre
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Tehila Atlan
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Uri Goshtchevsky
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Adi Oron-Gottesman
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Margarita Smirnov
- Central Fish Health Laboratory, Department of Fisheries and Aquaculture, Ministry of Agriculture and Rural Development, Nir David 10803, Israel
| | - Kobi Shapira
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ariel Velan
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Tomer Levy
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Itamar Harel
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel.
| |
Collapse
|
8
|
Phua CZJ, Zhao X, Turcios-Hernandez L, McKernan M, Abyadeh M, Ma S, Promislow D, Kaeberlein M, Kaya A. Genetic perturbation of mitochondrial function reveals functional role for specific mitonuclear genes, metabolites, and pathways that regulate lifespan. GeroScience 2023; 45:2161-2178. [PMID: 37086368 PMCID: PMC10651825 DOI: 10.1007/s11357-023-00796-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/08/2023] [Indexed: 04/23/2023] Open
Abstract
Altered mitochondrial function is tightly linked to lifespan regulation, but underlying mechanisms remain unclear. Here, we report the chronological and replicative lifespan variation across 167 yeast knock-out strains, each lacking a single nuclear-coded mitochondrial gene, including 144 genes with human homologs, many associated with diseases. We dissected the signatures of observed lifespan differences by analyzing profiles of each strain's proteome, lipidome, and metabolome under fermentative and respiratory culture conditions, which correspond to the metabolic states of replicative and chronologically aging cells, respectively. Examination of the relationships among extended longevity phenotypes, protein, and metabolite levels revealed that although many of these nuclear-encoded mitochondrial genes carry out different functions, their inhibition attenuates a common mechanism that controls cytosolic ribosomal protein abundance, actin dynamics, and proteasome function to regulate lifespan. The principles of lifespan control learned through this work may be applicable to the regulation of lifespan in more complex organisms, since many aspects of mitochondrial function are highly conserved among eukaryotes.
Collapse
Affiliation(s)
- Cheryl Zi Jin Phua
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A* STAR), Singapore, Singapore
| | - Xiaqing Zhao
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Lesly Turcios-Hernandez
- Department of Biology, Virginia Commonwealth University, Room 126, 1000 West Cary St. , Richmond, VA, 23284, USA
| | - Morrigan McKernan
- Department of Biology, Virginia Commonwealth University, Room 126, 1000 West Cary St. , Richmond, VA, 23284, USA
| | - Morteza Abyadeh
- Department of Biology, Virginia Commonwealth University, Room 126, 1000 West Cary St. , Richmond, VA, 23284, USA
| | - Siming Ma
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A* STAR), Singapore, Singapore
| | - Daniel Promislow
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Room 126, 1000 West Cary St. , Richmond, VA, 23284, USA.
| |
Collapse
|
9
|
Schulze A, Zimmermann A, Kainz K, Egger NB, Bauer MA, Madeo F, Carmona-Gutierrez D. Assessing chronological aging in Saccharomyces cerevisiae. Methods Cell Biol 2023; 181:87-108. [PMID: 38302246 DOI: 10.1016/bs.mcb.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Chronological age represents the time that passes between birth and a given date. To understand the complex network of factors contributing to chronological lifespan, a variety of model organisms have been implemented. One of the best studied organisms is the yeast Saccharomyces cerevisiae, which has greatly contributed toward identifying conserved biological mechanisms that act on longevity. Here, we discuss high- und low-throughput protocols to monitor and characterize chronological lifespan and chronological aging-associated cell death in S. cerevisiae. Included are propidium iodide staining with the possibility to quantitatively assess aging-associated cell death via flow cytometry or qualitative assessments via microscopy, cell viability assessment through plating and cell counting and cell death characterization via propidium iodide/AnnexinV staining and subsequent flow cytometric analysis or microscopy. Importantly, all of these methods combined give a clear picture of the chronological lifespan under different conditions or genetic backgrounds and represent a starting point for pharmacological or genetic interventions.
Collapse
Affiliation(s)
- Adina Schulze
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Nadine B Egger
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Maria A Bauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria.
| | | |
Collapse
|
10
|
Turco G, Chang C, Wang RY, Kim G, Stoops EH, Richardson B, Sochat V, Rust J, Oughtred R, Thayer N, Kang F, Livstone MS, Heinicke S, Schroeder M, Dolinski KJ, Botstein D, Baryshnikova A. Global analysis of the yeast knockout phenome. SCIENCE ADVANCES 2023; 9:eadg5702. [PMID: 37235661 PMCID: PMC11326039 DOI: 10.1126/sciadv.adg5702] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Genome-wide phenotypic screens in the budding yeast Saccharomyces cerevisiae, enabled by its knockout collection, have produced the largest, richest, and most systematic phenotypic description of any organism. However, integrative analyses of this rich data source have been virtually impossible because of the lack of a central data repository and consistent metadata annotations. Here, we describe the aggregation, harmonization, and analysis of ~14,500 yeast knockout screens, which we call Yeast Phenome. Using this unique dataset, we characterized two unknown genes (YHR045W and YGL117W) and showed that tryptophan starvation is a by-product of many chemical treatments. Furthermore, we uncovered an exponential relationship between phenotypic similarity and intergenic distance, which suggests that gene positions in both yeast and human genomes are optimized for function.
Collapse
Affiliation(s)
- Gina Turco
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Christie Chang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | - Griffin Kim
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | - Brianna Richardson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Vanessa Sochat
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jennifer Rust
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Rose Oughtred
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | - Fan Kang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Michael S Livstone
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Sven Heinicke
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Mark Schroeder
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Kara J Dolinski
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | | |
Collapse
|
11
|
AlOkda A, Van Raamsdonk JM. Evolutionarily Conserved Role of Thioredoxin Systems in Determining Longevity. Antioxidants (Basel) 2023; 12:antiox12040944. [PMID: 37107319 PMCID: PMC10135697 DOI: 10.3390/antiox12040944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Thioredoxin and thioredoxin reductase are evolutionarily conserved antioxidant enzymes that protect organisms from oxidative stress. These proteins also play roles in redox signaling and can act as a redox-independent cellular chaperone. In most organisms, there is a cytoplasmic and mitochondrial thioredoxin system. A number of studies have examined the role of thioredoxin and thioredoxin reductase in determining longevity. Disruption of either thioredoxin or thioredoxin reductase is sufficient to shorten lifespan in model organisms including yeast, worms, flies and mice, thereby indicating conservation across species. Similarly, increasing the expression of thioredoxin or thioredoxin reductase can extend longevity in multiple model organisms. In humans, there is an association between a specific genetic variant of thioredoxin reductase and lifespan. Overall, the cytoplasmic and mitochondrial thioredoxin systems are both important for longevity.
Collapse
Affiliation(s)
- Abdelrahman AlOkda
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
12
|
Alao JP, Legon L, Dabrowska A, Tricolici AM, Kumar J, Rallis C. Interplays of AMPK and TOR in Autophagy Regulation in Yeast. Cells 2023; 12:cells12040519. [PMID: 36831186 PMCID: PMC9953913 DOI: 10.3390/cells12040519] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Cells survey their environment and need to balance growth and anabolism with stress programmes and catabolism towards maximum cellular bioenergetics economy and survival. Nutrient-responsive pathways, such as the mechanistic target of rapamycin (mTOR) interact and cross-talk, continuously, with stress-responsive hubs such as the AMP-activated protein kinase (AMPK) to regulate fundamental cellular processes such as transcription, protein translation, lipid and carbohydrate homeostasis. Especially in nutrient stresses or deprivations, cells tune their metabolism accordingly and, crucially, recycle materials through autophagy mechanisms. It has now become apparent that autophagy is pivotal in lifespan, health and cell survival as it is a gatekeeper of clearing damaged macromolecules and organelles and serving as quality assurance mechanism within cells. Autophagy is hard-wired with energy and nutrient levels as well as with damage-response, and yeasts have been instrumental in elucidating such connectivities. In this review, we briefly outline cross-talks and feedback loops that link growth and stress, mainly, in the fission yeast Schizosaccharomyces pombe, a favourite model in cell and molecular biology.
Collapse
|
13
|
Tabibzadeh S. Role of autophagy in aging: The good, the bad, and the ugly. Aging Cell 2022; 22:e13753. [PMID: 36539927 PMCID: PMC9835585 DOI: 10.1111/acel.13753] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Autophagy (self-eating) is a conserved catabolic homeostatic process required for cellular metabolic demands by removal of the damaged molecules and organelles and for alleviation of stress initiated by pathology and infection. By such actions, autophagy is essential for the prevention of aging, disease, and cancer. Genetic defects of autophagy genes lead to a host of developmental, metabolic, and pathological aberrations. Similarly, the age-induced decline in autophagy leads to the loss of cellular homeostatic control. Paradoxically, such a valuable mechanism is hijacked by diseases, during tumor progression and by senescence, presumably due to high levels of metabolic demand. Here, we review both the role of autophagy in preventing cellular decline in aging by fulfillment of cellular bioenergetic demands and its contribution to the maintenance of the senescent state and SASP by acting on energy and nutritional sensors and diverse signaling pathways.
Collapse
Affiliation(s)
- Siamak Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and CancerIrvineCaliforniaUSA
| |
Collapse
|
14
|
Wagner A, Schosserer M. The epitranscriptome in ageing and stress resistance: A systematic review. Ageing Res Rev 2022; 81:101700. [PMID: 35908668 DOI: 10.1016/j.arr.2022.101700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 01/31/2023]
Abstract
Modifications of RNA, collectively called the "epitranscriptome", might provide novel biomarkers and innovative targets for interventions in geroscience but are just beginning to be studied in the context of ageing and stress resistance. RNA modifications modulate gene expression by affecting translation initiation and speed, miRNA binding, RNA stability, and RNA degradation. Nonetheless, the precise underlying molecular mechanisms and physiological consequences of most alterations of the epitranscriptome are still only poorly understood. We here systematically review different types of modifications of rRNA, tRNA and mRNA, the methodology to analyze them, current challenges in the field, and human disease associations. Furthermore, we compiled evidence for a connection between individual enzymes, which install RNA modifications, and lifespan in yeast, worm and fly. We also included resistance to different stressors and competitive fitness as search criteria for genes potentially relevant to ageing. Promising candidates identified by this approach include RCM1/NSUN5, RRP8, and F33A8.4/ZCCHC4 that introduce base methylations in rRNA, the methyltransferases DNMT2 and TRM9/ALKBH8, as well as factors involved in the thiolation or A to I editing in tRNA, and finally the m6A machinery for mRNA.
Collapse
Affiliation(s)
- Anja Wagner
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Markus Schosserer
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
15
|
Bari KA, Berg MD, Genereaux J, Brandl CJ, Lajoie P. Tra1 controls the transcriptional landscape of the aging cell. G3 (BETHESDA, MD.) 2022; 13:6782959. [PMID: 36315064 PMCID: PMC9836359 DOI: 10.1093/g3journal/jkac287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
Abstract
Gene expression undergoes considerable changes during the aging process. The mechanisms regulating the transcriptional response to cellular aging remain poorly understood. Here, we employ the budding yeast Saccharomyces cerevisiae to better understand how organisms adapt their transcriptome to promote longevity. Chronological lifespan assays in yeast measure the survival of nondividing cells at stationary phase over time, providing insights into the aging process of postmitotic cells. Tra1 is an essential component of both the yeast Spt-Ada-Gcn5 acetyltransferase/Spt-Ada-Gcn5 acetyltransferase-like and nucleosome acetyltransferase of H4 complexes, where it recruits these complexes to acetylate histones at targeted promoters. Importantly, Tra1 regulates the transcriptional response to multiple stresses. To evaluate the role of Tra1 in chronological aging, we took advantage of a previously characterized mutant allele that carries mutations in the TRA1 PI3K domain (tra1Q3). We found that loss of functions associated with tra1Q3 sensitizes cells to growth media acidification and shortens lifespan. Transcriptional profiling reveals that genes differentially regulated by Tra1 during the aging process are enriched for components of the response to stress. Notably, expression of catalases (CTA1, CTT1) involved in hydrogen peroxide detoxification decreases in chronologically aged tra1Q3 cells. Consequently, they display increased sensitivity to oxidative stress. tra1Q3 cells are unable to grow on glycerol indicating a defect in mitochondria function. Aged tra1Q3 cells also display reduced expression of peroxisomal genes, exhibit decreased numbers of peroxisomes, and cannot grow on media containing oleate. Thus, Tra1 emerges as an important regulator of longevity in yeast via multiple mechanisms.
Collapse
Affiliation(s)
- Khaleda Afrin Bari
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Matthew D Berg
- Present address for Matthew D Berg: Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Julie Genereaux
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada,Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Patrick Lajoie
- Corresponding author: Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
16
|
Taylor E, Kim Y, Zhang K, Chau L, Nguyen BC, Rayalam S, Wang X. Antiaging Mechanism of Natural Compounds: Effects on Autophagy and Oxidative Stress. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144396. [PMID: 35889266 PMCID: PMC9322024 DOI: 10.3390/molecules27144396] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 12/22/2022]
Abstract
Aging is a natural biological process that manifests as the progressive loss of function in cells, tissues, and organs. Because mechanisms that are meant to promote cellular longevity tend to decrease in effectiveness with age, it is no surprise that aging presents as a major risk factor for many diseases such as cardiovascular disease, neurodegenerative disorders, cancer, and diabetes. Oxidative stress, an imbalance between the intracellular antioxidant and overproduction of reactive oxygen species, is known to promote the aging process. Autophagy, a major pathway for protein turnover, is considered as one of the hallmarks of aging. Given the progressive physiologic degeneration and increased risk for disease that accompanies aging, many studies have attempted to discover new compounds that may aid in the reversal of the aging process. Here, we summarize the antiaging mechanism of natural or naturally derived synthetic compounds involving oxidative stress and autophagy. These compounds include: 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO) derivatives (synthetic triterpenoids derived from naturally occurring oleanolic acid), caffeic acid phenethyl ester (CAPE, the active ingredient in honey bee propolis), xanthohumol (a prenylated flavonoid identified in the hops plant), guggulsterone (a plant steroid found in the resin of the guggul plant), resveratrol (a natural phenol abundantly found in grape), and sulforaphane (a sulfur-containing compound found in cruciferous vegetables).
Collapse
Affiliation(s)
- Elizabeth Taylor
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA;
| | - Yujin Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Philadelphia College of Osteopathic Medicine-Georgia Campus, Suwanee, GA 30024, USA; (Y.K.); (K.Z.); (L.C.); (B.C.N.); (S.R.)
| | - Kaleb Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Philadelphia College of Osteopathic Medicine-Georgia Campus, Suwanee, GA 30024, USA; (Y.K.); (K.Z.); (L.C.); (B.C.N.); (S.R.)
| | - Lenne Chau
- Department of Pharmaceutical Sciences, College of Pharmacy, Philadelphia College of Osteopathic Medicine-Georgia Campus, Suwanee, GA 30024, USA; (Y.K.); (K.Z.); (L.C.); (B.C.N.); (S.R.)
| | - Bao Chieu Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Philadelphia College of Osteopathic Medicine-Georgia Campus, Suwanee, GA 30024, USA; (Y.K.); (K.Z.); (L.C.); (B.C.N.); (S.R.)
| | - Srujana Rayalam
- Department of Pharmaceutical Sciences, College of Pharmacy, Philadelphia College of Osteopathic Medicine-Georgia Campus, Suwanee, GA 30024, USA; (Y.K.); (K.Z.); (L.C.); (B.C.N.); (S.R.)
| | - Xinyu Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Philadelphia College of Osteopathic Medicine-Georgia Campus, Suwanee, GA 30024, USA; (Y.K.); (K.Z.); (L.C.); (B.C.N.); (S.R.)
- Correspondence:
| |
Collapse
|
17
|
De Chiara M, Barré BP, Persson K, Irizar A, Vischioni C, Khaiwal S, Stenberg S, Amadi OC, Žun G, Doberšek K, Taccioli C, Schacherer J, Petrovič U, Warringer J, Liti G. Domestication reprogrammed the budding yeast life cycle. Nat Ecol Evol 2022; 6:448-460. [PMID: 35210580 DOI: 10.1038/s41559-022-01671-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 12/14/2021] [Indexed: 11/09/2022]
Abstract
Domestication of plants and animals is the foundation for feeding the world human population but can profoundly alter the biology of the domesticated species. Here we investigated the effect of domestication on one of our prime model organisms, the yeast Saccharomyces cerevisiae, at a species-wide level. We tracked the capacity for sexual and asexual reproduction and the chronological life span across a global collection of 1,011 genome-sequenced yeast isolates and found a remarkable dichotomy between domesticated and wild strains. Domestication had systematically enhanced fermentative and reduced respiratory asexual growth, altered the tolerance to many stresses and abolished or impaired the sexual life cycle. The chronological life span remained largely unaffected by domestication and was instead dictated by clade-specific evolution. We traced the genetic origins of the yeast domestication syndrome using genome-wide association analysis and genetic engineering and disclosed causative effects of aneuploidy, gene presence/absence variations, copy number variations and single-nucleotide polymorphisms. Overall, we propose domestication to be the most dramatic event in budding yeast evolution, raising questions about how much domestication has distorted our understanding of the natural biology of this key model species.
Collapse
Affiliation(s)
| | - Benjamin P Barré
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Karl Persson
- Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Sweden
| | | | - Chiara Vischioni
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France.,Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| | - Sakshi Khaiwal
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Simon Stenberg
- Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Sweden
| | - Onyetugo Chioma Amadi
- Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Sweden.,Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Gašper Žun
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia.,Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Doberšek
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Cristian Taccioli
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| | | | - Uroš Petrovič
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia.,Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Sweden.
| | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France.
| |
Collapse
|
18
|
Yoon SY, Jang E, Ko N, Kim M, Kim SY, Moon Y, Nam JS, Lee S, Jun Y. A Genome-Wide Screen Reveals That Endocytic Genes Are Important for Pma1p Asymmetry during Cell Division in Saccharomyces cerevisiae. Int J Mol Sci 2022; 23:ijms23042364. [PMID: 35216480 PMCID: PMC8874555 DOI: 10.3390/ijms23042364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
An asymmetry in cytosolic pH between mother and daughter cells was reported to underlie cellular aging in the budding yeast Saccharomyces cerevisiae; however, the underlying mechanism remains unknown. Preferential accumulation of Pma1p, which pumps cytoplasmic protons out of cells, at the plasma membrane of mother cells, but not of their newly-formed daughter cells, is believed to be responsible for the pH increase in mother cells by reducing the level of cytoplasmic protons. This, in turn, decreases the acidity of vacuoles, which is well correlated with aging of yeast cells. In this study, to identify genes that regulate the preferential accumulation of Pma1p in mother cells, we performed a genome-wide screen using a collection of single gene deletion yeast strains. A subset of genes involved in the endocytic pathway, such as VPS8, VPS9, and VPS21, was important for Pma1p accumulation. Unexpectedly, however, there was little correlation between deletion of each of these genes and the replicative lifespan of yeast, suggesting that Pma1p accumulation in mother cells is not the key determinant that underlies aging of mother cells.
Collapse
Affiliation(s)
- So-Young Yoon
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (S.-Y.Y.); (E.J.); (N.K.); (M.K.); (S.Y.K.); (Y.M.); (J.-S.N.); (S.L.)
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Eunhong Jang
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (S.-Y.Y.); (E.J.); (N.K.); (M.K.); (S.Y.K.); (Y.M.); (J.-S.N.); (S.L.)
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Naho Ko
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (S.-Y.Y.); (E.J.); (N.K.); (M.K.); (S.Y.K.); (Y.M.); (J.-S.N.); (S.L.)
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Minseok Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (S.-Y.Y.); (E.J.); (N.K.); (M.K.); (S.Y.K.); (Y.M.); (J.-S.N.); (S.L.)
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Su Yoon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (S.-Y.Y.); (E.J.); (N.K.); (M.K.); (S.Y.K.); (Y.M.); (J.-S.N.); (S.L.)
| | - Yeojin Moon
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (S.-Y.Y.); (E.J.); (N.K.); (M.K.); (S.Y.K.); (Y.M.); (J.-S.N.); (S.L.)
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Jeong-Seok Nam
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (S.-Y.Y.); (E.J.); (N.K.); (M.K.); (S.Y.K.); (Y.M.); (J.-S.N.); (S.L.)
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (S.-Y.Y.); (E.J.); (N.K.); (M.K.); (S.Y.K.); (Y.M.); (J.-S.N.); (S.L.)
| | - Youngsoo Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (S.-Y.Y.); (E.J.); (N.K.); (M.K.); (S.Y.K.); (Y.M.); (J.-S.N.); (S.L.)
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
- Correspondence: ; Tel.: +82-62-715-2510
| |
Collapse
|
19
|
Kotlyar M, Wong SWH, Pastrello C, Jurisica I. Improving Analysis and Annotation of Microarray Data with Protein Interactions. Methods Mol Biol 2022; 2401:51-68. [PMID: 34902122 DOI: 10.1007/978-1-0716-1839-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gene expression microarrays are one of the most widely used high-throughput technologies in molecular biology, with applications such as identification of disease mechanisms and development of diagnostic and prognostic gene signatures. However, the success of these tasks is often limited because microarray analysis does not account for the complex relationships among genes, their products, and overall signaling and regulatory cascades. Incorporating protein-protein interaction data into microarray analysis can help address these challenges. This chapter reviews how protein-protein interactions can help with microarray analysis, leading to benefits such as better explanations of disease mechanisms, more complete gene annotations, improved prioritization of genes for future experiments, and gene signatures that generalize better to new data.
Collapse
Affiliation(s)
- Max Kotlyar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Serene W H Wong
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.
- Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON, Canada.
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
20
|
Lee JW, Ong TG, Samian MR, Teh AH, Watanabe N, Osada H, Ong EBB. Screening of selected ageing-related proteins that extend chronological life span in yeast Saccharomyces cerevisiae. Sci Rep 2021; 11:24148. [PMID: 34921163 PMCID: PMC8683414 DOI: 10.1038/s41598-021-03490-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 12/03/2021] [Indexed: 12/27/2022] Open
Abstract
Ageing-related proteins play various roles such as regulating cellular ageing, countering oxidative stress, and modulating signal transduction pathways amongst many others. Hundreds of ageing-related proteins have been identified, however the functions of most of these ageing-related proteins are not known. Here, we report the identification of proteins that extended yeast chronological life span (CLS) from a screen of ageing-related proteins. Three of the CLS-extending proteins, Ptc4, Zwf1, and Sme1, contributed to an overall higher survival percentage and shorter doubling time of yeast growth compared to the control. The CLS-extending proteins contributed to thermal and oxidative stress responses differently, suggesting different mechanisms of actions. The overexpression of Ptc4 or Zwf1 also promoted rapid cell proliferation during yeast growth, suggesting their involvement in cell division or growth pathways.
Collapse
Affiliation(s)
- Jee Whu Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 USM, Malaysia, Penang
| | - Tee Gee Ong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 USM, Malaysia, Penang
| | - Mohammed Razip Samian
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 USM, Malaysia, Penang
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Aik-Hong Teh
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 USM, Malaysia, Penang
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia
| | - Nobumoto Watanabe
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 USM, Malaysia, Penang
- Bioprobe Application Research Unit, RIKEN Centre for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hiroyuki Osada
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 USM, Malaysia, Penang
- Chemical Biology Research Group, RIKEN Centre for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 USM, Malaysia, Penang.
| |
Collapse
|
21
|
Johnson AA, Shokhirev MN, Lehallier B. The protein inputs of an ultra-predictive aging clock represent viable anti-aging drug targets. Ageing Res Rev 2021; 70:101404. [PMID: 34242807 DOI: 10.1016/j.arr.2021.101404] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 12/21/2022]
Abstract
Machine learning models capable of predicting age given a set of inputs are referred to as aging clocks. We recently developed an aging clock that utilizes 491 plasma protein inputs, has an exceptional accuracy, and is capable of measuring biological age. Here, we demonstrate that this clock is extremely predictive (r = 0.95) when used to measure age in a novel plasma proteomic dataset derived from 370 human subjects aged 18-69 years. Over-representation analyses of the proteins that make up this clock in the Gene Ontology and Reactome databases predominantly implicated innate and adaptive immune system processes. Immunological drugs and various age-related diseases were enriched in the DrugBank and GLAD4U databases. By performing an extensive literature review, we find that at least 269 (54.8 %) of these inputs regulate lifespan and/or induce changes relevant to age-related disease when manipulated in an animal model. We also show that, in a large plasma proteomic dataset, the majority (57.2 %) of measurable clock proteins significantly change their expression level with human age. Different subsets of proteins were overlapped with distinct epigenetic, transcriptomic, and proteomic aging clocks. These findings indicate that the inputs of this age predictor likely represent a rich source of anti-aging drug targets.
Collapse
Affiliation(s)
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, California, United States
| | | |
Collapse
|
22
|
Fernandes SA, Demetriades C. The Multifaceted Role of Nutrient Sensing and mTORC1 Signaling in Physiology and Aging. FRONTIERS IN AGING 2021; 2:707372. [PMID: 35822019 PMCID: PMC9261424 DOI: 10.3389/fragi.2021.707372] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/12/2021] [Indexed: 01/10/2023]
Abstract
The mechanistic Target of Rapamycin (mTOR) is a growth-related kinase that, in the context of the mTOR complex 1 (mTORC1), touches upon most fundamental cellular processes. Consequently, its activity is a critical determinant for cellular and organismal physiology, while its dysregulation is commonly linked to human aging and age-related disease. Presumably the most important stimulus that regulates mTORC1 activity is nutrient sufficiency, whereby amino acids play a predominant role. In fact, mTORC1 functions as a molecular sensor for amino acids, linking the cellular demand to the nutritional supply. Notably, dietary restriction (DR), a nutritional regimen that has been shown to extend lifespan and improve healthspan in a broad spectrum of organisms, works via limiting nutrient uptake and changes in mTORC1 activity. Furthermore, pharmacological inhibition of mTORC1, using rapamycin or its analogs (rapalogs), can mimic the pro-longevity effects of DR. Conversely, nutritional amino acid overload has been tightly linked to aging and diseases, such as cancer, type 2 diabetes and obesity. Similar effects can also be recapitulated by mutations in upstream mTORC1 regulators, thus establishing a tight connection between mTORC1 signaling and aging. Although the role of growth factor signaling upstream of mTORC1 in aging has been investigated extensively, the involvement of signaling components participating in the nutrient sensing branch is less well understood. In this review, we provide a comprehensive overview of the molecular and cellular mechanisms that signal nutrient availability to mTORC1, and summarize the role that nutrients, nutrient sensors, and other components of the nutrient sensing machinery play in cellular and organismal aging.
Collapse
Affiliation(s)
- Stephanie A. Fernandes
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
- Cologne Graduate School for Ageing Research (CGA), Cologne, Germany
| | - Constantinos Demetriades
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
- Cologne Graduate School for Ageing Research (CGA), Cologne, Germany
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| |
Collapse
|
23
|
Aman Y, Schmauck-Medina T, Hansen M, Morimoto RI, Simon AK, Bjedov I, Palikaras K, Simonsen A, Johansen T, Tavernarakis N, Rubinsztein DC, Partridge L, Kroemer G, Labbadia J, Fang EF. Autophagy in healthy aging and disease. NATURE AGING 2021; 1:634-650. [PMID: 34901876 PMCID: PMC8659158 DOI: 10.1038/s43587-021-00098-4] [Citation(s) in RCA: 721] [Impact Index Per Article: 180.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Autophagy is a fundamental cellular process that eliminates molecules and subcellular elements, including nucleic acids, proteins, lipids and organelles, via lysosome-mediated degradation to promote homeostasis, differentiation, development and survival. While autophagy is intimately linked to health, the intricate relationship among autophagy, aging and disease remains unclear. This Review examines several emerging features of autophagy and postulates how they may be linked to aging as well as to the development and progression of disease. In addition, we discuss current preclinical evidence arguing for the use of autophagy modulators as suppressors of age-related pathologies such as neurodegenerative diseases. Finally, we highlight key questions and propose novel research avenues that will likely reveal new links between autophagy and the hallmarks of aging. Understanding the precise interplay between autophagy and the risk of age-related pathologies across organisms will eventually facilitate the development of clinical applications that promote long-term health.
Collapse
Affiliation(s)
- Yahyah Aman
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
- These authors contributed equally: Yahyah Aman, Tomas Schmauck-Medina
| | - Tomas Schmauck-Medina
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
- These authors contributed equally: Yahyah Aman, Tomas Schmauck-Medina
| | - Malene Hansen
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Richard I. Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL, USA
| | | | - Ivana Bjedov
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
- UCL Cancer Institute, University College London, London, UK
| | - Konstantinos Palikaras
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, The University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Terje Johansen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, Heraklion, Greece
- Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece
| | - David C. Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Linda Partridge
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
- Department of Biological Mechanisms of Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - John Labbadia
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Evandro F. Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| |
Collapse
|
24
|
Romila CA, Townsend S, Malecki M, Kamrad S, Rodríguez-López M, Hillson O, Cotobal C, Ralser M, Bähler J. Barcode sequencing and a high-throughput assay for chronological lifespan uncover ageing-associated genes in fission yeast. MICROBIAL CELL (GRAZ, AUSTRIA) 2021; 8:146-160. [PMID: 34250083 PMCID: PMC8246024 DOI: 10.15698/mic2021.07.754] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022]
Abstract
Ageing-related processes are largely conserved, with simple organisms remaining the main platform to discover and dissect new ageing-associated genes. Yeasts provide potent model systems to study cellular ageing owing their amenability to systematic functional assays under controlled conditions. Even with yeast cells, however, ageing assays can be laborious and resource-intensive. Here we present improved experimental and computational methods to study chronological lifespan in Schizosaccharomyces pombe. We decoded the barcodes for 3206 mutants of the latest gene-deletion library, enabling the parallel profiling of ~700 additional mutants compared to previous screens. We then applied a refined method of barcode sequencing (Bar-seq), addressing technical and statistical issues raised by persisting DNA in dead cells and sampling bottlenecks in aged cultures, to screen for mutants showing altered lifespan during stationary phase. This screen identified 341 long-lived mutants and 1246 short-lived mutants which point to many previously unknown ageing-associated genes, including 46 conserved but entirely uncharacterized genes. The ageing-associated genes showed coherent enrichments in processes also associated with human ageing, particularly with respect to ageing in non-proliferative brain cells. We also developed an automated colony-forming unit assay to facilitate medium- to high-throughput chronological-lifespan studies by saving time and resources compared to the traditional assay. Results from the Bar-seq screen showed good agreement with this new assay. This study provides an effective methodological platform and identifies many new ageing-associated genes as a framework for analysing cellular ageing in yeast and beyond.
Collapse
Affiliation(s)
- Catalina A. Romila
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
- These authors contributed equally
| | - StJohn Townsend
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, NW1 1AT, UK
- These authors contributed equally
| | - Michal Malecki
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
- Current address: Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Poland
| | - Stephan Kamrad
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, NW1 1AT, UK
- Current address: Charité Universitätsmedizin Berlin, Department of Biochemistry, Germany
| | - María Rodríguez-López
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| | - Olivia Hillson
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| | - Cristina Cotobal
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| | - Markus Ralser
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, NW1 1AT, UK
- Charité Universitätsmedizin Berlin, Department of Biochemistry, Germany
| | - Jürg Bähler
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
25
|
Wauters R, Britton SJ, Verstrepen KJ. Old yeasts, young beer-The industrial relevance of yeast chronological life span. Yeast 2021; 38:339-351. [PMID: 33978982 PMCID: PMC8252602 DOI: 10.1002/yea.3650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/28/2021] [Accepted: 05/09/2021] [Indexed: 12/20/2022] Open
Abstract
Much like other living organisms, yeast cells have a limited life span, in terms of both the maximal length of time a cell can stay alive (chronological life span) and the maximal number of cell divisions it can undergo (replicative life span). Over the past years, intensive research revealed that the life span of yeast depends on both the genetic background of the cells and environmental factors. Specifically, the presence of stress factors, reactive oxygen species, and the availability of nutrients profoundly impact life span, and signaling cascades involved in the response to these factors, including the target of rapamycin (TOR) and cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathways, play a central role. Interestingly, yeast life span also has direct implications for its use in industrial processes. In beer brewing, for example, the inoculation of finished beer with live yeast cells, a process called "bottle conditioning" helps improve the product's shelf life by clearing undesirable carbonyl compounds such as furfural and 2-methylpropanal that cause staling. However, this effect depends on the reductive metabolism of living cells and is thus inherently limited by the cells' chronological life span. Here, we review the mechanisms underlying chronological life span in yeast. We also discuss how this insight connects to industrial observations and ultimately opens new routes towards superior industrial yeasts that can help improve a product's shelf life and thus contribute to a more sustainable industry.
Collapse
Affiliation(s)
- Ruben Wauters
- Laboratory for Systems BiologyVIB Center for MicrobiologyLeuvenBelgium
- CMPG Laboratory of Genetics and Genomics, Department M2SKU LeuvenLeuvenBelgium
| | - Scott J. Britton
- Research and DevelopmentDuvel MoortgatPuurs‐Sint‐AmandsBelgium
- International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghUK
| | - Kevin J. Verstrepen
- Laboratory for Systems BiologyVIB Center for MicrobiologyLeuvenBelgium
- CMPG Laboratory of Genetics and Genomics, Department M2SKU LeuvenLeuvenBelgium
| |
Collapse
|
26
|
Pogoda E, Tutaj H, Pirog A, Tomala K, Korona R. Overexpression of a single ORF can extend chronological lifespan in yeast if retrograde signaling and stress response are stimulated. Biogerontology 2021; 22:415-427. [PMID: 34052951 PMCID: PMC8266792 DOI: 10.1007/s10522-021-09924-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
Systematic collections of single-gene deletions have been invaluable in uncovering determinants of lifespan in yeast. Overexpression of a single gene does not have such a clear outcome as cancellation of its function but it can lead to a variety of imbalances, deregulations and compensations, and some of them could be important for longevity. We report an experiment in which a genome-wide collection of strains overexpressing a single gene was assayed for chronological lifespan (CLS). Only one group of proteins, those locating to the inner membrane and matrix of mitochondria, tended to extend CLS when abundantly overproduced. We selected two such strains—one overexpressing Qcr7 of the respiratory complex III, the other overexpressing Mrps28 of the small mitoribosomal subunit—and analyzed their transcriptomes. The uncovered shifts in RNA abundance in the two strains were nearly identical and highly suggestive. They implied a distortion in the co-translational assembly of respiratory complexes followed by retrograde signaling to the nucleus. The consequent reprogramming of the entire cellular metabolism towards the resistance to stress resulted in an enhanced ability to persist in a non-proliferating state. Our results show that surveillance of the inner mitochondrial membrane integrity is of outstanding importance for the cell. They also demonstrate that overexpression of single genes could be used effectively to elucidate the mitochondrion-nucleus crosstalk.
Collapse
Affiliation(s)
- Elzbieta Pogoda
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Hanna Tutaj
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Adrian Pirog
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Katarzyna Tomala
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Ryszard Korona
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland.
| |
Collapse
|
27
|
Abstract
The health of a cell requires proper functioning, regulation, and quality control of its organelles, the membrane-enclosed compartments inside the cell that carry out its essential biochemical tasks. Aging commonly perturbs organelle homeostasis, causing problems to cellular health that can spur the initiation and progression of degenerative diseases and related pathologies. Here, we discuss emerging evidence indicating that age-related defects in organelle homeostasis stem in part from dysfunction of the autophagy-lysosome system, a pivotal player in cellular quality control and damage clearance. We also highlight natural examples from biology where enhanced activity of the autophagy-lysosome system might be harnessed to erase age-related organelle damage, raising potential implications for cellular rejuvenation.
Collapse
|
28
|
Acetyl-CoA Metabolism and Histone Acetylation in the Regulation of Aging and Lifespan. Antioxidants (Basel) 2021; 10:antiox10040572. [PMID: 33917812 PMCID: PMC8068152 DOI: 10.3390/antiox10040572] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022] Open
Abstract
Acetyl-CoA is a metabolite at the crossroads of central metabolism and the substrate of histone acetyltransferases regulating gene expression. In many tissues fasting or lifespan extending calorie restriction (CR) decreases glucose-derived metabolic flux through ATP-citrate lyase (ACLY) to reduce cytoplasmic acetyl-CoA levels to decrease activity of the p300 histone acetyltransferase (HAT) stimulating pro-longevity autophagy. Because of this, compounds that decrease cytoplasmic acetyl-CoA have been described as CR mimetics. But few authors have highlighted the potential longevity promoting roles of nuclear acetyl-CoA. For example, increasing nuclear acetyl-CoA levels increases histone acetylation and administration of class I histone deacetylase (HDAC) inhibitors increases longevity through increased histone acetylation. Therefore, increased nuclear acetyl-CoA likely plays an important role in promoting longevity. Although cytoplasmic acetyl-CoA synthetase 2 (ACSS2) promotes aging by decreasing autophagy in some peripheral tissues, increased glial AMPK activity or neuronal differentiation can stimulate ACSS2 nuclear translocation and chromatin association. ACSS2 nuclear translocation can result in increased activity of CREB binding protein (CBP), p300/CBP-associated factor (PCAF), and other HATs to increase histone acetylation on the promoter of neuroprotective genes including transcription factor EB (TFEB) target genes resulting in increased lysosomal biogenesis and autophagy. Much of what is known regarding acetyl-CoA metabolism and aging has come from pioneering studies with yeast, fruit flies, and nematodes. These studies have identified evolutionary conserved roles for histone acetylation in promoting longevity. Future studies should focus on the role of nuclear acetyl-CoA and histone acetylation in the control of hypothalamic inflammation, an important driver of organismal aging.
Collapse
|
29
|
Lim S, Ahn H, Duan R, Liu Y, Ryu HY, Ahn SH. The Spt7 subunit of the SAGA complex is required for the regulation of lifespan in both dividing and nondividing yeast cells. Mech Ageing Dev 2021; 196:111480. [PMID: 33831401 DOI: 10.1016/j.mad.2021.111480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022]
Abstract
Spt7 belongs to the suppressor of Ty (SPT) module of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex and is known as the yeast ortholog of human STAF65γ. Spt7 lacks intrinsic enzymatic activity but is responsible for the integrity and proper assembly of the SAGA complex. Here, we determined the role of the SAGA Spt7 subunit in cellular aging. We found that Spt7 was indispensable for a normal lifespan in both dividing and nondividing yeast cells. In the quiescent state of cells, Spt7 was required for the control of overall mRNA levels. In mitotically active cells, deletion of the SPT module had little effect on the recombination rate within heterochromatic ribosomal DNA (rDNA) loci, but loss of Spt7 profoundly elevated the plasmid-based DNA recombination frequency. Consistently, loss of Spt7 increased spontaneous Rad52 foci by approximately two-fold upon entry into S phase. These results provide evidence that Spt7 contributes to the regulation of the normal replicative lifespan (RLS) and chronological lifespan (CLS), possibly by controlling the DNA recombination rate and overall mRNA expression. We propose that the regulation of SAGA complex integrity by Spt7 might be involved in the conserved regulatory pathway for lifespan regulation in eukaryotes.
Collapse
Affiliation(s)
- Suji Lim
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University ERICA Campus, Ansan 15588, Republic of Korea
| | - Hyojeong Ahn
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University ERICA Campus, Ansan 15588, Republic of Korea
| | - Ruxin Duan
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University ERICA Campus, Ansan 15588, Republic of Korea
| | - Yan Liu
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University ERICA Campus, Ansan 15588, Republic of Korea
| | - Hong-Yeoul Ryu
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Seong Hoon Ahn
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University ERICA Campus, Ansan 15588, Republic of Korea.
| |
Collapse
|
30
|
Yu R, Cao X, Sun L, Zhu JY, Wasko BM, Liu W, Crutcher E, Liu H, Jo MC, Qin L, Kaeberlein M, Han Z, Dang W. Inactivating histone deacetylase HDA promotes longevity by mobilizing trehalose metabolism. Nat Commun 2021; 12:1981. [PMID: 33790287 PMCID: PMC8012573 DOI: 10.1038/s41467-021-22257-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/02/2021] [Indexed: 02/01/2023] Open
Abstract
Histone acetylations are important epigenetic markers for transcriptional activation in response to metabolic changes and various stresses. Using the high-throughput SEquencing-Based Yeast replicative Lifespan screen method and the yeast knockout collection, we demonstrate that the HDA complex, a class-II histone deacetylase (HDAC), regulates aging through its target of acetylated H3K18 at storage carbohydrate genes. We find that, in addition to longer lifespan, disruption of HDA results in resistance to DNA damage and osmotic stresses. We show that these effects are due to increased promoter H3K18 acetylation and transcriptional activation in the trehalose metabolic pathway in the absence of HDA. Furthermore, we determine that the longevity effect of HDA is independent of the Cyc8-Tup1 repressor complex known to interact with HDA and coordinate transcriptional repression. Silencing the HDA homologs in C. elegans and Drosophila increases their lifespan and delays aging-associated physical declines in adult flies. Hence, we demonstrate that this HDAC controls an evolutionarily conserved longevity pathway.
Collapse
Affiliation(s)
- Ruofan Yu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Xiaohua Cao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Luyang Sun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Jun-Yi Zhu
- Center for Precision Disease Modeling, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brian M Wasko
- Department of Pathology, University of Washington, Seattle, WA, USA
- University of Houston, Clear Lake, TX, USA
| | - Wei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Emeline Crutcher
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Haiying Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | | | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Zhe Han
- Center for Precision Disease Modeling, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Weiwei Dang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
31
|
Legon L, Rallis C. Genome-wide screens in yeast models towards understanding chronological lifespan regulation. Brief Funct Genomics 2021; 21:4-12. [PMID: 33728458 PMCID: PMC8834652 DOI: 10.1093/bfgp/elab011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022] Open
Abstract
Cellular models such as yeasts are a driving force in biogerontology studies. Their simpler genome, short lifespans and vast genetic and genomics resources make them ideal to characterise pro-ageing and anti-ageing genes and signalling pathways. Over the last three decades, yeasts have contributed to the understanding of fundamental aspects of lifespan regulation including the roles of nutrient response, global protein translation rates and quality, DNA damage, oxidative stress, mitochondrial function and dysfunction as well as autophagy. In this short review, we focus on approaches used for competitive and non-competitive cell-based screens using the budding yeast Saccharomyces cerevisiae, and the fission yeast Schizosaccharomyces pombe, for deciphering the molecular mechanisms underlying chronological ageing. Automation accompanied with appropriate computational tools allowed manipulation of hundreds of thousands of colonies, generation, processing and analysis of genome-wide lifespan data. Together with barcoding and modern mutagenesis technologies, these approaches have allowed to take decisive steps towards a global, comprehensive view of cellular ageing.
Collapse
Affiliation(s)
- Luc Legon
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Charalampos Rallis
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
32
|
Sun S, Gresham D. Cellular quiescence in budding yeast. Yeast 2021; 38:12-29. [PMID: 33350503 DOI: 10.1002/yea.3545] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Cellular quiescence, the temporary and reversible exit from proliferative growth, is the predominant state of all cells. However, our understanding of the biological processes and molecular mechanisms that underlie cell quiescence remains incomplete. As with the mitotic cell cycle, budding and fission yeast are preeminent model systems for studying cellular quiescence owing to their rich experimental toolboxes and the evolutionary conservation across eukaryotes of pathways and processes that control quiescence. Here, we review current knowledge of cell quiescence in budding yeast and how it pertains to cellular quiescence in other organisms, including multicellular animals. Quiescence entails large-scale remodeling of virtually every cellular process, organelle, gene expression, and metabolic state that is executed dynamically as cells undergo the initiation, maintenance, and exit from quiescence. We review these major transitions, our current understanding of their molecular bases, and highlight unresolved questions. We summarize the primary methods employed for quiescence studies in yeast and discuss their relative merits. Understanding cell quiescence has important consequences for human disease as quiescent single-celled microbes are notoriously difficult to kill and quiescent human cells play important roles in diseases such as cancer. We argue that research on cellular quiescence will be accelerated through the adoption of common criteria, and methods, for defining cell quiescence. An integrated approach to studying cell quiescence, and a focus on the behavior of individual cells, will yield new insights into the pathways and processes that underlie cell quiescence leading to a more complete understanding of the life cycle of cells. TAKE AWAY: Quiescent cells are viable cells that have reversibly exited the cell cycle Quiescence is induced in response to a variety of nutrient starvation signals Quiescence is executed dynamically through three phases: initiation, maintenance, and exit Quiescence entails large-scale remodeling of gene expression, organelles, and metabolism Single-cell approaches are required to address heterogeneity among quiescent cells.
Collapse
Affiliation(s)
- Siyu Sun
- Center for Genomics and Systems Biology, New York University, New York, New York, 10003, USA.,Department of Biology, New York University, New York, New York, 10003, USA
| | - David Gresham
- Center for Genomics and Systems Biology, New York University, New York, New York, 10003, USA.,Department of Biology, New York University, New York, New York, 10003, USA
| |
Collapse
|
33
|
Enriquez-Hesles E, Smith DL, Maqani N, Wierman MB, Sutcliffe MD, Fine RD, Kalita A, Santos SM, Muehlbauer MJ, Bain JR, Janes KA, Hartman JL, Hirschey MD, Smith JS. A cell-nonautonomous mechanism of yeast chronological aging regulated by caloric restriction and one-carbon metabolism. J Biol Chem 2021; 296:100125. [PMID: 33243834 PMCID: PMC7949035 DOI: 10.1074/jbc.ra120.015402] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/26/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022] Open
Abstract
Caloric restriction (CR) improves health span and life span of organisms ranging from yeast to mammals. Understanding the mechanisms involved will uncover future interventions for aging-associated diseases. In budding yeast, Saccharomyces cerevisiae, CR is commonly defined by reduced glucose in the growth medium, which extends both replicative and chronological life span (CLS). We found that conditioned media collected from stationary-phase CR cultures extended CLS when supplemented into nonrestricted (NR) cultures, suggesting a potential cell-nonautonomous mechanism of CR-induced life span regulation. Chromatography and untargeted metabolomics of the conditioned media, as well as transcriptional responses associated with the longevity effect, pointed to specific amino acids enriched in the CR conditioned media (CRCM) as functional molecules, with L-serine being a particularly strong candidate. Indeed, supplementing L-serine into NR cultures extended CLS through a mechanism dependent on the one-carbon metabolism pathway, thus implicating this conserved and central metabolic hub in life span regulation.
Collapse
Affiliation(s)
- Elisa Enriquez-Hesles
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Daniel L Smith
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Nutrition Science, Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nazif Maqani
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Margaret B Wierman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Matthew D Sutcliffe
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Ryan D Fine
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Agata Kalita
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Sean M Santos
- Department of Genetics, Nutrition and Obesity Research Center, Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael J Muehlbauer
- Department of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - James R Bain
- Department of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Kevin A Janes
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - John L Hartman
- Department of Genetics, Nutrition and Obesity Research Center, Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Matthew D Hirschey
- Department of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Jeffrey S Smith
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
| |
Collapse
|
34
|
Suknovic N, Tomczyk S, Colevret D, Perruchoud C, Galliot B. The ULK1 kinase, a necessary component of the pro-regenerative and anti-aging machinery in Hydra. Mech Ageing Dev 2020; 194:111414. [PMID: 33338499 DOI: 10.1016/j.mad.2020.111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Hydra vulgaris (Hv) has a high regenerative potential and negligible senescence, as its stem cell populations divide continuously. In contrast, the cold-sensitive H. oligactis (Ho_CS) rapidly develop an aging phenotype under stress, with epithelial stem cells deficient for autophagy, unable to maintain their self-renewal. Here we tested in aging, non-aging and regenerating Hydra the activity and regulation of the ULK1 kinase involved in autophagosome formation. In vitro kinase assays show that human ULK1 activity is activated by Hv extracts but repressed by Ho_CS extracts, reflecting the ability or inability of their respective epithelial cells to initiate autophagosome formation. The factors that keep ULK1 inactive in Ho_CS remain uncharacterized. Hv_Basel1 animals exposed to the ULK1 inhibitor SBI-0206965 no longer regenerate their head, indicating that the sustained autophagy flux recorded in regenerating Hv_AEP2 transgenic animals expressing the DsRed-GFP-LC3A autophagy tandem sensor is necessary. The SBI-0206965 treatment also alters the contractility of intact Hv_Basel1 animals, and leads to a progressive reduction of animal size in Hv_AEP2, similarly to what is observed in ULK1(RNAi) animals. We conclude that the evolutionarily-conserved role of ULK1 in autophagy initiation is crucial to maintain a dynamic homeostasis in Hydra, which supports regeneration efficiency and prevents aging.
Collapse
Affiliation(s)
- Nenad Suknovic
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, CH-1211, Geneva 4, Switzerland
| | - Szymon Tomczyk
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, CH-1211, Geneva 4, Switzerland
| | - Delphine Colevret
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, CH-1211, Geneva 4, Switzerland
| | - Chrystelle Perruchoud
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, CH-1211, Geneva 4, Switzerland
| | - Brigitte Galliot
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, CH-1211, Geneva 4, Switzerland.
| |
Collapse
|
35
|
Lin PW, Chu ML, Liu HS. Autophagy and metabolism. Kaohsiung J Med Sci 2020; 37:12-19. [PMID: 33021078 DOI: 10.1002/kjm2.12299] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/03/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolism consists of diverse life-sustaining chemical reactions in living organisms. Autophagy is a highly conservative process that responds to various internal and external stresses. Both processes utilize surrounding resources to provide energy and nutrients for the cell. Autophagy progression may proceed to the degradative or secretory pathway determined by Rab family proteins. The former is a degradative and lysosome-dependent catabolic process that produces energy and provides nutrients for the synthesis of essential proteins. The degradative pathway also balances the energy source of the cell and regulates tissue homeostasis. The latter is a newly discovered pathway in which the autophagosome is fused with the plasma membrane. Secretory autophagy participates in diverse functions and diseases ranging from the spread of viral particles to cancer and neurodegenerative diseases. Aberrant metabolism in the body causes various metabolic syndromes. This review explores the relationships among autophagy, metabolism, and related diseases.
Collapse
Affiliation(s)
- Pei-Wen Lin
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Man-Ling Chu
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiao-Sheng Liu
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
36
|
Santos SM, Laflin S, Broadway A, Burnet C, Hartheimer J, Rodgers J, Smith DL, Hartman JL. High-resolution yeast quiescence profiling in human-like media reveals complex influences of auxotrophy and nutrient availability. GeroScience 2020; 43:941-964. [PMID: 33015753 PMCID: PMC8110628 DOI: 10.1007/s11357-020-00265-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
Yeast cells survive in stationary phase culture by entering quiescence, which is measured by colony-forming capacity upon nutrient re-exposure. Yeast chronological lifespan (CLS) studies, employing the comprehensive collection of gene knockout strains, have correlated weakly between independent laboratories, which is hypothesized to reflect differential interaction between the deleted genes, auxotrophy, media composition, and other assay conditions influencing quiescence. This hypothesis was investigated by high-throughput quiescence profiling of the parental prototrophic strain, from which the gene deletion strain libraries were constructed, and all possible auxotrophic allele combinations in that background. Defined media resembling human cell culture media promoted long-term quiescence and was used to assess effects of glucose, ammonium sulfate, auxotrophic nutrient availability, target of rapamycin signaling, and replication stress. Frequent, high-replicate measurements of colony-forming capacity from cultures aged past 60 days provided profiles of quiescence phenomena such as gasping and hormesis. Media acidification was assayed in parallel to assess correlation. Influences of leucine, methionine, glucose, and ammonium sulfate metabolism were clarified, and a role for lysine metabolism newly characterized, while histidine and uracil perturbations had less impact. Interactions occurred between glucose, ammonium sulfate, auxotrophy, auxotrophic nutrient limitation, aeration, TOR signaling, and/or replication stress. Weak correlation existed between media acidification and maintenance of quiescence. In summary, experimental factors, uncontrolled across previous genome-wide yeast CLS studies, influence quiescence and interact extensively, revealing quiescence as a complex metabolic and developmental process that should be studied in a prototrophic context, omitting ammonium sulfate from defined media, and employing highly replicable protocols.
Collapse
Affiliation(s)
- Sean M Santos
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Samantha Laflin
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Audrie Broadway
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cosby Burnet
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joline Hartheimer
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John Rodgers
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel L Smith
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John L Hartman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
37
|
Wang L, Li J. 'Artificial spermatid'-mediated genome editing†. Biol Reprod 2020; 101:538-548. [PMID: 31077288 DOI: 10.1093/biolre/ioz087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/27/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022] Open
Abstract
For years, extensive efforts have been made to use mammalian sperm as the mediator to generate genetically modified animals; however, the strategy of sperm-mediated gene transfer (SMGT) is unable to produce stable and diversified modifications in descendants. Recently, haploid embryonic stem cells (haESCs) have been successfully derived from haploid embryos carrying the genome of highly specialized gametes, and can stably maintain haploidy (through periodic cell sorting based on DNA quantity) and both self-renewal and pluripotency in long-term cell culture. In particular, haESCs derived from androgenetic haploid blastocysts (AG-haESCs), carrying only the sperm genome, can support the generation of live mice (semi-cloned, SC mice) through oocyte injection. Remarkably, after removal of the imprinted control regions H19-DMR (differentially methylated region of DNA) and IG-DMR in AG-haESCs, the double knockout (DKO)-AG-haESCs can stably produce SC animals with high efficiency, and so can serve as a sperm equivalent. Importantly, DKO-AG-haESCs can be used for multiple rounds of gene modifications in vitro, followed by efficient generation of live and fertile mice with the expected genetic traits. Thus, DKO-AG-haESCs (referred to as 'artificial spermatids') combed with CRISPR-Cas technology can be used as the genetically tractable fertilization agent, to efficiently create genetically modified offspring, and is a versatile genetic tool for in vivo analyses of gene function.
Collapse
Affiliation(s)
- Lingbo Wang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
38
|
Avelar-Rivas JA, Munguía-Figueroa M, Juárez-Reyes A, Garay E, Campos SE, Shoresh N, DeLuna A. An Optimized Competitive-Aging Method Reveals Gene-Drug Interactions Underlying the Chronological Lifespan of Saccharomyces cerevisiae. Front Genet 2020; 11:468. [PMID: 32477409 PMCID: PMC7240105 DOI: 10.3389/fgene.2020.00468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/16/2020] [Indexed: 12/23/2022] Open
Abstract
The chronological lifespan of budding yeast is a model of aging and age-related diseases. This paradigm has recently allowed genome-wide screening of genetic factors underlying post-mitotic viability in a simple unicellular system, which underscores its potential to provide a comprehensive view of the aging process. However, results from different large-scale studies show little overlap and typically lack quantitative resolution to derive interactions among different aging factors. We previously introduced a sensitive, parallelizable approach to measure the chronological-lifespan effects of gene deletions based on the competitive aging of fluorescence-labeled strains. Here, we present a thorough description of the method, including an improved multiple-regression model to estimate the association between death rates and fluorescent signals, which accounts for possible differences in growth rate and experimental batch effects. We illustrate the experimental procedure-from data acquisition to calculation of relative survivorship-for ten deletion strains with known lifespan phenotypes, which is achieved with high technical replicability. We apply our method to screen for gene-drug interactions in an array of yeast deletion strains, which reveals a functional link between protein glycosylation and lifespan extension by metformin. Competitive-aging screening coupled to multiple-regression modeling provides a powerful, straight-forward way to identify aging factors in yeast and their interactions with pharmacological interventions.
Collapse
Affiliation(s)
- J. Abraham Avelar-Rivas
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Michelle Munguía-Figueroa
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Alejandro Juárez-Reyes
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Erika Garay
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Sergio E. Campos
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Noam Shoresh
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Alexander DeLuna
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| |
Collapse
|
39
|
Barré BP, Hallin J, Yue JX, Persson K, Mikhalev E, Irizar A, Holt S, Thompson D, Molin M, Warringer J, Liti G. Intragenic repeat expansion in the cell wall protein gene HPF1 controls yeast chronological aging. Genome Res 2020; 30:697-710. [PMID: 32277013 PMCID: PMC7263189 DOI: 10.1101/gr.253351.119] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 04/09/2020] [Indexed: 01/02/2023]
Abstract
Aging varies among individuals due to both genetics and environment, but the underlying molecular mechanisms remain largely unknown. Using a highly recombined Saccharomyces cerevisiae population, we found 30 distinct quantitative trait loci (QTLs) that control chronological life span (CLS) in calorie-rich and calorie-restricted environments and under rapamycin exposure. Calorie restriction and rapamycin extended life span in virtually all genotypes but through different genetic variants. We tracked the two major QTLs to the cell wall glycoprotein genes FLO11 and HPF1 We found that massive expansion of intragenic tandem repeats within the N-terminal domain of HPF1 was sufficient to cause pronounced life span shortening. Life span impairment by HPF1 was buffered by rapamycin but not by calorie restriction. The HPF1 repeat expansion shifted yeast cells from a sedentary to a buoyant state, thereby increasing their exposure to surrounding oxygen. The higher oxygenation altered methionine, lipid, and purine metabolism, and inhibited quiescence, which explains the life span shortening. We conclude that fast-evolving intragenic repeat expansions can fundamentally change the relationship between cells and their environment with profound effects on cellular lifestyle and longevity.
Collapse
Affiliation(s)
| | - Johan Hallin
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| | - Jia-Xing Yue
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| | - Karl Persson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | | | | | - Sylvester Holt
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| | - Dawn Thompson
- Ginkgo Bioworks Incorporated, Boston, Massachusetts 02210, USA
| | - Mikael Molin
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| |
Collapse
|
40
|
Chung KW, Chung HY. The Effects of Calorie Restriction on Autophagy: Role on Aging Intervention. Nutrients 2019; 11:nu11122923. [PMID: 31810345 PMCID: PMC6950580 DOI: 10.3390/nu11122923] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/23/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an important housekeeping process that maintains a proper cellular homeostasis under normal physiologic and/or pathologic conditions. It is responsible for the disposal and recycling of metabolic macromolecules and damaged organelles through broad lysosomal degradation processes. Under stress conditions, including nutrient deficiency, autophagy is substantially activated to maintain proper cell function and promote cell survival. Altered autophagy processes have been reported in various aging studies, and a dysregulated autophagy is associated with various age-associated diseases. Calorie restriction (CR) is regarded as the gold standard for many aging intervention methods. Although it is clear that CR has diverse effects in counteracting aging process, the exact mechanisms by which it modulates those processes are still controversial. Recent advances in CR research have suggested that the activation of autophagy is linked to the observed beneficial anti-aging effects. Evidence showed that CR induced a robust autophagy response in various metabolic tissues, and that the inhibition of autophagy attenuated the anti-aging effects of CR. The mechanisms by which CR modulates the complex process of autophagy have been investigated in depth. In this review, several major advances related to CR’s anti-aging mechanisms and anti-aging mimetics will be discussed, focusing on the modification of the autophagy response.
Collapse
Affiliation(s)
- Ki Wung Chung
- College of Pharmacy, Kyungsung University, Busan 48434, Korea
- Correspondence: (K.W.C.); (H.Y.C.); Tel.: +82-51-663-4884 (K.W.C.); +82-51-510-2814 (H.Y.C.)
| | - Hae Young Chung
- College of Pharmacy, Pusan National University, Busan 462414, Korea
- Correspondence: (K.W.C.); (H.Y.C.); Tel.: +82-51-663-4884 (K.W.C.); +82-51-510-2814 (H.Y.C.)
| |
Collapse
|
41
|
Schmeisser K, Parker JA. Pleiotropic Effects of mTOR and Autophagy During Development and Aging. Front Cell Dev Biol 2019; 7:192. [PMID: 31572724 PMCID: PMC6749033 DOI: 10.3389/fcell.2019.00192] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/27/2019] [Indexed: 01/01/2023] Open
Abstract
Autophagy as a ubiquitous catabolic process causes degradation of cytoplasmic components and is generally considered to have beneficial effects on health and lifespan. In contrast, inefficient autophagy has been linked with detrimental effects on the organism and various diseases, such as Parkinson's disease. Previous research, however, showed that this paradigm is far from being black and white. For instance, it has been reported that increased levels of autophagy during development can be harmful, but become advantageous in the aging cell or organism, causing enhanced healthspan and even longevity. The antagonistic pleiotropy hypothesis postulates that genes, which control various traits in an organism, can be fitness-promoting in early life, but subsequently trigger aging processes later. Autophagy is controlled by the mechanistic target of rapamycin (mTOR), a key player of nutrient sensing and signaling and classic example of a pleiotropic gene. mTOR acts upstream of transcription factors such as FOXO, NRF, and TFEB, controlling protein synthesis, degradation, and cellular growth, thereby regulating fertility as well as aging. Here, we review recent findings about the pleiotropic role of autophagy during development and aging, examine the upstream factors, and contemplate specific mechanisms leading to disease, especially neurodegeneration.
Collapse
Affiliation(s)
- Kathrin Schmeisser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - J Alex Parker
- Département de Neurosciences, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
42
|
Chadwick SR, Fazio EN, Etedali-Zadeh P, Genereaux J, Duennwald ML, Lajoie P. A functional unfolded protein response is required for chronological aging in Saccharomyces cerevisiae. Curr Genet 2019; 66:263-277. [PMID: 31346745 DOI: 10.1007/s00294-019-01019-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 12/29/2022]
Abstract
Progressive impairment of proteostasis and accumulation of toxic misfolded proteins are associated with the cellular aging process. Here, we employed chronologically aged yeast cells to investigate how activation of the unfolded protein response (UPR) upon accumulation of misfolded proteins in the endoplasmic reticulum (ER) affects lifespan. We found that cells lacking a functional UPR display a significantly reduced chronological lifespan, which contrasts previous findings in models of replicative aging. We find exacerbated UPR activation in aged cells, indicating an increase in misfolded protein burden in the ER during the course of aging. We also observed that caloric restriction, which promotes longevity in various model organisms, extends lifespan of UPR-deficient strains. Similarly, aging in pH-buffered media extends lifespan, albeit independently of the UPR. Thus, our data support a role for caloric restriction and reduced acid stress in improving ER homeostasis during aging. Finally, we show that UPR-mediated upregulation of the ER chaperone Kar2 and functional ER-associated degradation (ERAD) are essential for proper aging. Our work documents the central role of secretory protein homeostasis in chronological aging in yeast and highlights that the requirement for a functional UPR can differ between post-mitotic and actively dividing eukaryotic cells.
Collapse
Affiliation(s)
- Sarah R Chadwick
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, N6A 5C1, Canada
| | - Elena N Fazio
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, N6A 5C1, Canada
| | - Parnian Etedali-Zadeh
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, N6A 5C1, Canada
| | - Julie Genereaux
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, N6A 5C1, Canada.,Department of Biochemistry, The University of Western Ontario, London, N6A 5C1, Canada
| | - Martin L Duennwald
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, N6A 5C1, Canada.,Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, N6A 5C1, Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, N6A 5C1, Canada.
| |
Collapse
|
43
|
Kokina A, Ozolina Z, Liepins J. Purine auxotrophy: Possible applications beyond genetic marker. Yeast 2019; 36:649-656. [PMID: 31334866 DOI: 10.1002/yea.3434] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 01/09/2023] Open
Abstract
Exploring new drug candidates or drug targets against many illnesses is necessary as "traditional" treatments lose their effectivity. Cancer and sicknesses caused by protozoan parasites are among these diseases. Cell purine metabolism is an important drug target. Theoretically, inhibiting purine metabolism could stop the proliferation of unwanted cells. Purine metabolism is similar across all eukaryotes. However, some medically important organisms or cell lines rely on their host purine metabolism. Protozoans causing malaria, leishmaniasis, or toxoplasmosis are purine auxotrophs. Some cancer forms have also lost the ability to synthesize purines de novo. Budding yeast can serve as an effective model for eukaryotic purine metabolism, and thus, purine auxotrophic strains could be an important tool. In this review, we present the common principles of purine metabolism in eukaryotes, effects of purine starvation in eukaryotic cells, and purine-starved Saccharomyces cerevisiae as a model for purine depletion-elicited metabolic states with applications in evolution studies and pharmacology. Purine auxotrophic yeast strains behave differently when growing in media with sufficient supplementation with adenine or in media depleted of adenine (starvation). In the latter, they undergo cell cycle arrest at G1/G0 and become stress resistant. Importantly, similar effects have also been observed among parasitic protozoans or cancer cells. We consider that studies on metabolic changes caused by purine auxotrophy could reveal new options for parasite or cancer therapy. Further, knowledge on phenotypic changes will improve the use of auxotrophic strains in high-throughput screening for primary drug candidates.
Collapse
Affiliation(s)
- Agnese Kokina
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Zane Ozolina
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Janis Liepins
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| |
Collapse
|
44
|
Sun M, Tan Y, Rexiati M, Dong M, Guo W. Obesity is a common soil for premature cardiac aging and heart diseases - Role of autophagy. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1898-1904. [DOI: 10.1016/j.bbadis.2018.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/22/2018] [Accepted: 09/04/2018] [Indexed: 12/31/2022]
|
45
|
Mai S, Brehm N, Auburger G, Bereiter-Hahn J, Jendrach M. Age-related dysfunction of the autophago-lysosomal pathway in human endothelial cells. Pflugers Arch 2019; 471:1065-1078. [PMID: 31222491 DOI: 10.1007/s00424-019-02288-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/06/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023]
Abstract
Senescent cells, which are cells in a post-proliferative state, show an increased number of dysfunctional mitochondria and oxidatively damaged and aggregated proteins. The mitochondrial-lysosomal axis theory of aging proposes that the autophago-lysosomal system is unable to cope with the rising amount of damaged organelles and proteins. We used human umbilical vein endothelial cells (HUVEC) as in vitro model system to determine which part/s of the autophago-lysosomal pathway become deficient by aging. Senescent HUVEC contained a much larger population of autophagosomes and lysosomes compared to young cells. Transcriptome analysis comparing young and old cells demonstrated several age-related changes of autophagy gene expression. One reason for the observed increase of autophagosomes was an impairment of the autophagic flux in senescent cells due to reduced V-ATPase activity required for acidification of the lysosomes and thus functionality of lysosomal hydrolases. The hypothesis that reduced mitochondrial ATP production underlies low V-ATPase activity was supported by addition of exogenous ATP. This procedure rescued the lysosomal acidification and restored the autophagic flux. Thus, we propose impaired lysosomal acidification due to ATP shortage which may result from mitochondrial dysfunction as a mechanism underlying the accumulation of dysfunctional cellular constituents during aging.
Collapse
Affiliation(s)
- Sören Mai
- Kinematic Cell Research Group, Institute for Cell Biology and Neuroscience, Center of Excellence Frankfurt: Macromolecular Complexes, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Nadine Brehm
- Department of Neurology, Experimental Neurology, Goethe University Medical School, Heinrich-Hoffmann-Str. 7, 60528, Frankfurt/Main, Germany
| | - Georg Auburger
- Department of Neurology, Experimental Neurology, Goethe University Medical School, Heinrich-Hoffmann-Str. 7, 60528, Frankfurt/Main, Germany
| | - Jürgen Bereiter-Hahn
- Kinematic Cell Research Group, Institute for Cell Biology and Neuroscience, Center of Excellence Frankfurt: Macromolecular Complexes, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Marina Jendrach
- Kinematic Cell Research Group, Institute for Cell Biology and Neuroscience, Center of Excellence Frankfurt: Macromolecular Complexes, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany. .,Department of Neurology, Experimental Neurology, Goethe University Medical School, Heinrich-Hoffmann-Str. 7, 60528, Frankfurt/Main, Germany. .,Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany.
| |
Collapse
|
46
|
Fine RD, Maqani N, Li M, Franck E, Smith JS. Depletion of Limiting rDNA Structural Complexes Triggers Chromosomal Instability and Replicative Aging of Saccharomyces cerevisiae. Genetics 2019; 212:75-91. [PMID: 30842210 PMCID: PMC6499517 DOI: 10.1534/genetics.119.302047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
Sir2 is a highly conserved NAD+-dependent histone deacetylase that functions in heterochromatin formation and promotes replicative life span (RLS) in the budding yeast, Saccharomyces cerevisiae Within the yeast rDNA locus, Sir2 is required for efficient cohesin recruitment and maintaining the stability of the tandem array. In addition to the previously reported depletion of Sir2 in replicatively aged cells, we discovered that subunits of the Sir2-containing complexes silent information regulator (SIR) and regulator of nucleolar silencing and telophase (RENT) were depleted. Several other rDNA structural protein complexes also exhibited age-related depletion, most notably the cohesin complex. We hypothesized that mitotic chromosome instability (CIN) due to cohesin depletion could be a driver of replicative aging. Chromatin immunoprecipitation assays of the residual cohesin (Mcd1-Myc) in moderately aged cells showed strong depletion from the rDNA and initial redistribution to the point centromeres, which was then lost in older cells. Despite the shift in cohesin distribution, sister chromatid cohesion was partially attenuated in aged cells and the frequency of chromosome loss was increased. This age-induced CIN was exacerbated in strains lacking Sir2 and its paralog, Hst1, but suppressed in strains that stabilize the rDNA array due to deletion of FOB1 or through caloric restriction. Furthermore, ectopic expression of MCD1 from a doxycycline-inducible promoter was sufficient to suppress rDNA instability in aged cells and to extend RLS. Taken together, we conclude that age-induced depletion of cohesin and multiple other nucleolar chromatin factors destabilize the rDNA locus, which then results in general CIN and aneuploidy that shortens RLS.
Collapse
Affiliation(s)
- Ryan D Fine
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Nazif Maqani
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Mingguang Li
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
- Department of Laboratory Medicine, Jilin Medical University, 132013, China
| | - Elizabeth Franck
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Jeffrey S Smith
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| |
Collapse
|
47
|
Sampaio-Marques B, Ludovico P. Linking cellular proteostasis to yeast longevity. FEMS Yeast Res 2019; 18:4970764. [PMID: 29800380 DOI: 10.1093/femsyr/foy043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022] Open
Abstract
Proteostasis is a cellular housekeeping process that refers to the healthy maintenance of the cellular proteome that governs the fate of proteins from synthesis to degradation. Perturbations of proteostasis might result in protein dysfunction with consequent deleterious effects that can culminate in cell death. To deal with the loss of proteostasis, cells are supplied with a highly sophisticated and interconnected network that integrates as major players the molecular chaperones and the protein degradation pathways. It is well recognized that the ability of cells to maintain proteostasis declines during ageing, although the precise mechanisms are still elusive. Indeed, genetic or pharmacological enhancement of the proteostasis network has been shown to extend lifespan in a variety of ageing models. Therefore, an improved understanding of the interventions/mechanisms that contribute to cellular protein quality control will have a huge impact on the ageing field. This mini-review centers on the current knowledge about the major pathways that contribute for the maintenance of Saccharomyces cerevisiae proteostasis, with particular emphasis on the developments that highlight the multidimensional nature of the proteostasis network in the maintenance of proteostasis, as well as the age-dependent changes on this network.
Collapse
Affiliation(s)
- Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
48
|
Marsac R, Pinson B, Saint-Marc C, Olmedo M, Artal-Sanz M, Daignan-Fornier B, Gomes JE. Purine Homeostasis Is Necessary for Developmental Timing, Germline Maintenance and Muscle Integrity in Caenorhabditis elegans. Genetics 2019; 211:1297-1313. [PMID: 30700528 PMCID: PMC6456310 DOI: 10.1534/genetics.118.301062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 01/24/2019] [Indexed: 12/12/2022] Open
Abstract
Purine homeostasis is ensured through a metabolic network widely conserved from prokaryotes to humans. Purines can either be synthesized de novo, reused, or produced by interconversion of extant metabolites using the so-called recycling pathway. Although thoroughly characterized in microorganisms, such as yeast or bacteria, little is known about regulation of the purine biosynthesis network in metazoans. In humans, several diseases are linked to purine metabolism through as yet poorly understood etiologies. Particularly, the deficiency in adenylosuccinate lyase (ADSL)-an enzyme involved both in the purine de novo and recycling pathways-causes severe muscular and neuronal symptoms. In order to address the mechanisms underlying this deficiency, we established Caenorhabditis elegans as a metazoan model organism to study purine metabolism, while focusing on ADSL. We show that the purine biosynthesis network is functionally conserved in C. elegans Moreover, adsl-1 (the gene encoding ADSL in C. elegans) is required for developmental timing, germline stem cell maintenance and muscle integrity. Importantly, these traits are not affected when solely the de novo pathway is abolished, and we present evidence that germline maintenance is linked specifically to ADSL activity in the recycling pathway. Hence, our results allow developmental and tissue specific phenotypes to be ascribed to separable steps of the purine metabolic network in an animal model.
Collapse
Affiliation(s)
- Roxane Marsac
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux and CNRS UMR5095, 33077 Bordeaux cedex, France
| | - Benoît Pinson
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux and CNRS UMR5095, 33077 Bordeaux cedex, France
| | - Christelle Saint-Marc
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux and CNRS UMR5095, 33077 Bordeaux cedex, France
| | - María Olmedo
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Department of Molecular Biology and Biochemical Engineering, 41013 Seville, Spain
| | - Marta Artal-Sanz
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Department of Molecular Biology and Biochemical Engineering, 41013 Seville, Spain
| | - Bertrand Daignan-Fornier
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux and CNRS UMR5095, 33077 Bordeaux cedex, France
| | - José-Eduardo Gomes
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux and CNRS UMR5095, 33077 Bordeaux cedex, France
| |
Collapse
|
49
|
Zhou B, Kreuzer J, Kumsta C, Wu L, Kamer KJ, Cedillo L, Zhang Y, Li S, Kacergis MC, Webster CM, Fejes-Toth G, Naray-Fejes-Toth A, Das S, Hansen M, Haas W, Soukas AA. Mitochondrial Permeability Uncouples Elevated Autophagy and Lifespan Extension. Cell 2019; 177:299-314.e16. [PMID: 30929899 DOI: 10.1016/j.cell.2019.02.013] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 11/21/2018] [Accepted: 02/11/2019] [Indexed: 12/16/2022]
Abstract
Autophagy is required in diverse paradigms of lifespan extension, leading to the prevailing notion that autophagy is beneficial for longevity. However, why autophagy is harmful in certain contexts remains unexplained. Here, we show that mitochondrial permeability defines the impact of autophagy on aging. Elevated autophagy unexpectedly shortens lifespan in C. elegans lacking serum/glucocorticoid regulated kinase-1 (sgk-1) because of increased mitochondrial permeability. In sgk-1 mutants, reducing levels of autophagy or mitochondrial permeability transition pore (mPTP) opening restores normal lifespan. Remarkably, low mitochondrial permeability is required across all paradigms examined of autophagy-dependent lifespan extension. Genetically induced mPTP opening blocks autophagy-dependent lifespan extension resulting from caloric restriction or loss of germline stem cells. Mitochondrial permeability similarly transforms autophagy into a destructive force in mammals, as liver-specific Sgk knockout mice demonstrate marked enhancement of hepatocyte autophagy, mPTP opening, and death with ischemia/reperfusion injury. Targeting mitochondrial permeability may maximize benefits of autophagy in aging.
Collapse
Affiliation(s)
- Ben Zhou
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Johannes Kreuzer
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Caroline Kumsta
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Lianfeng Wu
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Kimberli J Kamer
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lucydalila Cedillo
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Yuyao Zhang
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Sainan Li
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Michael C Kacergis
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Christopher M Webster
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Geza Fejes-Toth
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Aniko Naray-Fejes-Toth
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Sudeshna Das
- MGH Biomedical Informatics Core and Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Malene Hansen
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Wilhelm Haas
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alexander A Soukas
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
50
|
Cytoplasmic and Mitochondrial NADPH-Coupled Redox Systems in the Regulation of Aging. Nutrients 2019; 11:nu11030504. [PMID: 30818813 PMCID: PMC6471790 DOI: 10.3390/nu11030504] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
The reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) protects against redox stress by providing reducing equivalents to antioxidants such as glutathione and thioredoxin. NADPH levels decline with aging in several tissues, but whether this is a major driving force for the aging process has not been well established. Global or neural overexpression of several cytoplasmic enzymes that synthesize NADPH have been shown to extend lifespan in model organisms such as Drosophila suggesting a positive relationship between cytoplasmic NADPH levels and longevity. Mitochondrial NADPH plays an important role in the protection against redox stress and cell death and mitochondrial NADPH-utilizing thioredoxin reductase 2 levels correlate with species longevity in cells from rodents and primates. Mitochondrial NADPH shuttles allow for some NADPH flux between the cytoplasm and mitochondria. Since a decline of nicotinamide adenine dinucleotide (NAD+) is linked with aging and because NADP+ is exclusively synthesized from NAD+ by cytoplasmic and mitochondrial NAD+ kinases, a decline in the cytoplasmic or mitochondrial NADPH pool may also contribute to the aging process. Therefore pro-longevity therapies should aim to maintain the levels of both NAD+ and NADPH in aging tissues.
Collapse
|