1
|
Croy I, Ritschel G, Kreßner-Kiel D, Schäfer L, Hummel T, Havlíček J, Sauter J, Ehninger G, Schmidt AH. Marriage does not relate to major histocompatibility complex: a genetic analysis based on 3691 couples. Proc Biol Sci 2020; 287:20201800. [PMID: 33023409 PMCID: PMC7657850 DOI: 10.1098/rspb.2020.1800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Optimization of chances for healthy offspring is thought to be one of the factors driving mate choice and compatibility of the major histocompatibility complex (MHC) is assumed to determine the offspring's fitness. While humans have been claimed to be able to perceive information of MHC compatibility via the olfactory channel, it remains unknown whether humans use such information for mate choice. By investigation of 3691 married couples, we observed that the high polymorphism of MHC leads to a low chance for homozygous offspring. MHC similarity between couples did not differ from chance, we hence observed no MHC effect in married couples. Hormonal contraception at the time of relationship initiation had no significant effect towards enhanced similarity. A low variety of alleles within a postcode area led to a higher likelihood of homozygous offspring. Based on this data, we conclude that there is no pattern of MHC dis-assortative mating in a genetically diverse Western society. We discuss the question of olfactory mate preference, in-group mating bias and the high polymorphism as potential explanations.
Collapse
Affiliation(s)
- Ilona Croy
- Department of Psychotherapy and Psychosomatic Medicine, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Gerhard Ritschel
- Department of Psychotherapy and Psychosomatic Medicine, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Denise Kreßner-Kiel
- Department of Psychotherapy and Psychosomatic Medicine, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Laura Schäfer
- Department of Psychotherapy and Psychosomatic Medicine, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Thomas Hummel
- Interdisciplinary Center ‘Smell & Taste’, Department of Otorhinolaryngology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Jan Havlíček
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | | | - Alexander H. Schmidt
- DKMS gemeinnützige GmbH, Tübingen, Germany
- DKMS Life Science Laboratory GmbH, Dresden, Germany
| |
Collapse
|
2
|
Murray DR, Moran JB, Prokosch ML, Kerry N. No evidence for a relationship between MHC heterozygosity and life history strategy in a sample of North American undergraduates. Sci Rep 2020; 10:10140. [PMID: 32576939 PMCID: PMC7311407 DOI: 10.1038/s41598-020-67406-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 06/08/2020] [Indexed: 12/05/2022] Open
Abstract
Although allelic diversity at the major histocompatibility complex (MHC) has implications for adaptive immunity, mate choice, and social signalling, how diversity at the MHC influences the calibration of life history strategies remains largely uninvestigated. The current study investigated whether greater MHC heterozygosity was associated with markers of slower life history strategies in a sample of 789 North American undergraduates. Contrary to preregistered predictions and to previously published findings, MHC heterozygosity was not related to any of the psychological life history-relevant variables measured (including short- vs. long-term sexual strategy, temporal discounting, the Arizona life history battery, past and current health, disgust sensitivity, and Big Five personality traits). Further, no meaningful effects emerged when analysing women and men separately. Possible reasons for why the current results are inconsistent with previous work are discussed.
Collapse
Affiliation(s)
- Damian R Murray
- Department of Psychology, Tulane University, 2007 Percival Stern Hall, New Orleans, LA, 70118, USA.
| | - James B Moran
- Department of Psychology, Tulane University, 2007 Percival Stern Hall, New Orleans, LA, 70118, USA
| | - Marjorie L Prokosch
- Department of Psychology, Tulane University, 2007 Percival Stern Hall, New Orleans, LA, 70118, USA
| | - Nicholas Kerry
- Department of Psychology, Tulane University, 2007 Percival Stern Hall, New Orleans, LA, 70118, USA
| |
Collapse
|
3
|
Fitzpatrick JL, Willis C, Devigili A, Young A, Carroll M, Hunter HR, Brison DR. Chemical signals from eggs facilitate cryptic female choice in humans. Proc Biol Sci 2020; 287:20200805. [PMID: 32517615 PMCID: PMC7341926 DOI: 10.1098/rspb.2020.0805] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mate choice can continue after mating via chemical communication between the female reproductive system and sperm. While there is a growing appreciation that females can bias sperm use and paternity by exerting cryptic female choice for preferred males, we know surprisingly little about the mechanisms underlying these post-mating choices. In particular, whether chemical signals released from eggs (chemoattractants) allow females to exert cryptic female choice to favour sperm from specific males remains an open question, particularly in species (including humans) where adults exercise pre-mating mate choice. Here, we adapt a classic dichotomous mate choice assay to the microscopic scale to assess gamete-mediated mate choice in humans. We examined how sperm respond to follicular fluid, a source of human sperm chemoattractants, from either their partner or a non-partner female when experiencing a simultaneous or non-simultaneous choice between follicular fluids. We report robust evidence under these two distinct experimental conditions that follicular fluid from different females consistently and differentially attracts sperm from specific males. This chemoattractant-moderated choice of sperm offers eggs an avenue to exercise independent mate preference. Indeed, gamete-mediated mate choice did not reinforce pre-mating human mate choice decisions. Our results demonstrate that chemoattractants facilitate gamete-mediated mate choice in humans, which offers females the opportunity to exert cryptic female choice for sperm from specific males.
Collapse
Affiliation(s)
- John L Fitzpatrick
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden.,Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Charlotte Willis
- Maternal and Fetal Health Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Alessandro Devigili
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden
| | - Amy Young
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Michael Carroll
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Helen R Hunter
- Department of Reproductive Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9WL, UK
| | - Daniel R Brison
- Maternal and Fetal Health Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK.,Department of Reproductive Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9WL, UK
| |
Collapse
|
4
|
Havlíček J, Winternitz J, Roberts SC. Major histocompatibility complex-associated odour preferences and human mate choice: near and far horizons. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190260. [PMID: 32306884 PMCID: PMC7209936 DOI: 10.1098/rstb.2019.0260] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
The major histocompatibility complex (MHC) is a core part of the adaptive immune system. As in other vertebrate taxa, it may also affect human chemical communication via odour-based mate preferences, with greater attraction towards MHC-dissimilar partners. However, despite some well-known findings, the available evidence is equivocal and made complicated by varied approaches to quantifying human mate choice. To address this, we here conduct comprehensive meta-analyses focusing on studies assessing: (i) genomic mate selection, (ii) relationship satisfaction, (iii) odour preference, and (iv) all studies combined. Analysis of genomic studies reveals no association between MHC-dissimilarity and mate choice in actual couples; however, MHC effects appear to be independent of the genomic background. The effect of MHC-dissimilarity on relationship satisfaction was not significant, and we found evidence for publication bias in studies on this area. There was also no significant association between MHC-dissimilarity and odour preferences. Finally, combining effect sizes from all genomic, relationship satisfaction, odour preference and previous mate choice studies into an overall estimate showed no overall significant effect of MHC-similarity on human mate selection. Based on these findings, we make a set of recommendations for future studies, focusing both on aspects that should be implemented immediately and those that lurk on the far horizon. We need larger samples with greater geographical and cultural diversity that control for genome-wide similarity. We also need more focus on mechanisms of MHC-associated odour preferences and on MHC-associated pregnancy loss. This article is part of the Theo Murphy meeting issue 'Olfactory communication in humans'.
Collapse
Affiliation(s)
- Jan Havlíček
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 42 Prague 2, Czech Republic
| | - Jamie Winternitz
- Department of Animal Behaviour, Bielefeld University, Bielefeld 33615, Germany
| | - S. Craig Roberts
- Division of Psychology, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
5
|
Dandine-Roulland C, Laurent R, Dall'Ara I, Toupance B, Chaix R. Genomic evidence for MHC disassortative mating in humans. Proc Biol Sci 2020; 286:20182664. [PMID: 30890093 DOI: 10.1098/rspb.2018.2664] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although pervasive in many animal species, the evidence for major histocompatibility complex (MHC) disassortative mating in humans remains inconsistent across studies. Here, to revisit this issue, we analyse dense genotype data for 883 European and Middle Eastern couples. To distinguish MHC-specific effects from socio-cultural confounders, the pattern of relatedness between spouses in the MHC region is compared to the rest of the genome. Couples from Israel exhibit no significant pattern of relatedness across the MHC region, whereas across the genome, they are more similar than random pairs of individuals, which may reflect social homogamy and/or cousin marriages. On the other hand, couples from The Netherlands and more generally from Northern Europe are significantly more MHC-dissimilar than random pairs of individuals, and this pattern of dissimilarity is extreme when compared with the rest of the genome. Our findings support the hypothesis that the MHC influences mate choice in humans in a context-dependent way: MHC-driven preferences may exist in all populations but, in some populations, social constraints over mate choice may reduce the ability of individuals to rely on such biological cues when choosing their mates.
Collapse
Affiliation(s)
- Claire Dandine-Roulland
- Eco-Anthropologie, UMR 7206, CNRS, MNHN, Université Paris Diderot , Sorbonne Paris Cité, Paris , France
| | - Romain Laurent
- Eco-Anthropologie, UMR 7206, CNRS, MNHN, Université Paris Diderot , Sorbonne Paris Cité, Paris , France
| | - Irene Dall'Ara
- Eco-Anthropologie, UMR 7206, CNRS, MNHN, Université Paris Diderot , Sorbonne Paris Cité, Paris , France
| | - Bruno Toupance
- Eco-Anthropologie, UMR 7206, CNRS, MNHN, Université Paris Diderot , Sorbonne Paris Cité, Paris , France
| | - Raphaëlle Chaix
- Eco-Anthropologie, UMR 7206, CNRS, MNHN, Université Paris Diderot , Sorbonne Paris Cité, Paris , France
| |
Collapse
|
6
|
Nishi A, Alexander M, Fowler JH, Christakis NA. Assortative mating at loci under recent natural selection in humans. Biosystems 2020; 187:104040. [PMID: 31585150 PMCID: PMC7471337 DOI: 10.1016/j.biosystems.2019.104040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 11/25/2022]
Abstract
Genetic correlation between mates at specific loci can greatly alter the evolutionary trajectory of a species. Genetic assortative mating has been documented in humans, but its existence beyond population stratification (shared ancestry) has been a matter of controversy. Here, we develop a method to measure assortative mating across the genome at 1,044,854 single-nucleotide polymorphisms (SNPs), controlling for population stratification and cohort-specific cryptic relatedness. Using data on 1683 human couples from two data sources, we find evidence for both assortative and disassortative mating at specific, discernible loci throughout the entire genome. Then, using the composite of multiple signals (CMS) score, we also show that the group of SNPs exhibiting the most assortativity has been under stronger recent positive selection. Simulations using realistic inputs confirm that assortative mating might indeed affect changes in allele frequency over time. These results suggest that genetic assortative mating may be speeding up evolution in humans.
Collapse
Affiliation(s)
- Akihiro Nishi
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA 90095, USA.
| | - Marcus Alexander
- Yale Institute for Network Science, Yale University, CT 06520, USA.
| | - James H Fowler
- Division of Medical Genetics and Department of Political Science, University of California, San Diego, La Jolla, CA, 92103, USA.
| | - Nicholas A Christakis
- Yale Institute for Network Science, Yale University, CT 06520, USA; Department of Sociology, Ecology and Evolutionary Biology, Medicine, Biomedical Engineering, and Statistics & Data Science, Yale University, New Haven, CT, USA.
| |
Collapse
|
7
|
Cherry JA, Baum MJ. Sex differences in main olfactory system pathways involved in psychosexual function. GENES BRAIN AND BEHAVIOR 2019; 19:e12618. [PMID: 31634411 DOI: 10.1111/gbb.12618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 01/21/2023]
Abstract
We summarize literature from animal and human studies assessing sex differences in the ability of the main olfactory system to detect and process sex-specific olfactory signals ("pheromones") that control the expression of psychosexual functions in males and females. A case is made in non primate mammals for an obligatory role of pheromonal signaling via the main olfactory system (in addition to the vomeronasal-accessory olfactory system) in mate recognition and sexual arousal, with male-specific as well as female-specific pheromones subserving these functions in the opposite sex. Although the case for an obligatory role of pheromones in mate recognition and mating among old world primates, including humans, is weaker, we review the current literature assessing the role of putative human pheromones (eg, AND, EST, "copulin"), detected by the main olfactory system, in promoting mate choice and mating in men and women. Based on animal studies, we hypothesize that sexually dimorphic effects of putative human pheromones are mediated via main olfactory inputs to the medial amygdala which, in turn, transmits olfactory information to sites in the hypothalamus that regulate reproduction.
Collapse
Affiliation(s)
- James A Cherry
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
| | - Michael J Baum
- Department of Biology, Boston University, Boston, Massachusetts
| |
Collapse
|
8
|
Le Moëne O, Ågmo A. The neuroendocrinology of sexual attraction. Front Neuroendocrinol 2018; 51:46-67. [PMID: 29288076 DOI: 10.1016/j.yfrne.2017.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/21/2017] [Accepted: 12/24/2017] [Indexed: 01/23/2023]
Abstract
Sexual attraction has two components: Emission of sexually attractive stimuli and responsiveness to these stimuli. In rodents, olfactory stimuli are necessary but not sufficient for attraction. We argue that body odors are far superior to odors from excreta (urine, feces) as sexual attractants. Body odors are produced by sebaceous glands all over the body surface and in specialized glands. In primates, visual stimuli, for example the sexual skin, are more important than olfactory. The role of gonadal hormones for the production of and responsiveness to odorants is well established. Both the androgen and the estrogen receptor α are important in male as well as in female rodents. Also in primates, gonadal hormones are necessary for the responsiveness to sexual attractants. In males, the androgen receptor is sufficient for sustaining responsiveness. In female non-human primates, estrogens are needed, whereas androgens seem to contribute to responsiveness in women.
Collapse
Affiliation(s)
| | - Anders Ågmo
- Department of Psychology, University of Tromsø, Norway.
| |
Collapse
|
9
|
Meléndez-Rosa J, Bi K, Lacey EA. Genomic analysis of MHC-based mate choice in the monogamous California mouse. Behav Ecol 2018; 29:1167-1180. [PMID: 30214134 PMCID: PMC6129947 DOI: 10.1093/beheco/ary096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 06/13/2018] [Accepted: 06/22/2018] [Indexed: 01/06/2023] Open
Abstract
Variation at Major Histocompatibility Complex (MHC) genes is thought to be an important mechanism underlying mate choice in vertebrates, with individuals typically predicted to prefer MHC-dissimilar reproductive partners. However, analyses based on individual MHC loci have generated contradictory results regarding the role of these genes in mate-choice decisions. To provide a more comprehensive assessment of relationships between MHC variation and mating behavior, we used an exome capture strategy to characterize variability at 13 MHC loci, 312 innate immune system genes, and 1044 nonimmune genes in 25 obligate monogamous pairs of California mice (Peromyscus californicus) from 2 free-living populations of this species in Monterey County, California. Pairwise genotypic comparisons and analyses of SNP-based allelic differences failed to detect disassortative mating based on MHC variability; reproductive partners were not more dissimilar than randomly generated male-female pairs at MHC, innate or nonimmune loci. Within populations, individuals tended to be more closely related at MHC genes than at innate or nonimmune genes. Consistent with the functional role of immunogenes, the 2 study populations were highly differentiated at MHC and innate genes but not at nonimmune loci. Collectively, our results suggest that MHC genetic variation in California mice reflects local differences in pathogen exposure rather than disassortative mating based on variability at MHC Class I and II genes.
Collapse
Affiliation(s)
- Jesyka Meléndez-Rosa
- Department of Integrative Biology, University of California, Berkeley, CA
- Museum of Vertebrate Zoology, University of California, Berkeley Valley Life Sciences Bldg., Berkeley, CA
| | - Ke Bi
- Museum of Vertebrate Zoology, University of California, Berkeley Valley Life Sciences Bldg., Berkeley, CA
- Computational Genomics Resource, MC University of California, Berkeley, CA
| | - Eileen A Lacey
- Department of Integrative Biology, University of California, Berkeley, CA
- Museum of Vertebrate Zoology, University of California, Berkeley Valley Life Sciences Bldg., Berkeley, CA
| |
Collapse
|
10
|
Wu K, Chen C, Moyzis RK, Nuno M, Yu Z, Greenberger E. More than skin deep: Major histocompatibility complex (MHC)-based attraction among Asian American speed-daters. EVOL HUM BEHAV 2018. [DOI: 10.1016/j.evolhumbehav.2018.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Hedrick PW, Tuttle EM, Gonser RA. Negative-Assortative Mating in the White-Throated Sparrow. J Hered 2018; 109:223-231. [PMID: 29040605 PMCID: PMC6307691 DOI: 10.1093/jhered/esx086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/29/2017] [Indexed: 11/12/2022] Open
Abstract
Nonrandom mating based on phenotype has been observed in a number of organisms, but a very high proportion of these examples are of assortative mating. The strongest example of negative-assortative mating is for white-striped versus tan-striped crown in the white-throated sparrow, where about 98% of the observed pairings (mated pairs or social pairs) are between mates with different phenotypes and the correlation between mating types is -0.964. Although nonrandom mating has been explored theoretically for decades, these models have generally not focused on specific well-documented examples. Here we have developed a model to investigate the dynamics and equilibrium of this iconic example. The observed pattern of mating appears to be the result of 96% negative-assortative mating and a 17% advantage of W (white) male × T (tan) female matings compared to the reciprocal T male × W female matings. The equilibrium heterozygosity given these values is 0.500, very close to the 0.501 observed in our large sample of pairings, and this heterozygosity has been maintained for the 29 years from 1988 to 2016. In addition, the equilibrium frequency of 2m inversion determining the white-striped phenotype has been maintained at a frequency very close to its equilibrium frequency of 0.25. Overall, this model demonstrates how evolutionary genetic models can be used to understand negative-assortative mating.
Collapse
Affiliation(s)
| | - Elaina M Tuttle
- The Department of Biology and Center for Genomic Advocacy, Indiana State University, Terre Haute, IN
| | - Rusty A Gonser
- The Department of Biology and Center for Genomic Advocacy, Indiana State University, Terre Haute, IN
| |
Collapse
|
12
|
Qiao Z, Powell JE, Evans DM. MHC-Dependent Mate Selection within 872 Spousal Pairs of European Ancestry from the Health and Retirement Study. Genes (Basel) 2018; 9:E53. [PMID: 29361785 PMCID: PMC5793204 DOI: 10.3390/genes9010053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/09/2018] [Accepted: 01/15/2018] [Indexed: 01/29/2023] Open
Abstract
Disassortative mating refers to the phenomenon in which individuals with dissimilar genotypes and/or phenotypes mate with one another more frequently than would be expected by chance. Although the existence of disassortative mating is well established in plant and animal species, the only documented example of negative assortment in humans involves dissimilarity at the major histocompatibility complex (MHC) locus. Previous studies investigating mating patterns at the MHC have been hampered by limited sample size and contradictory findings. Inspired by the sparse and conflicting evidence, we investigated the role that the MHC region played in human mate selection using genome-wide association data from 872 European American spouses from the Health and Retirement Study (HRS). First, we treated the MHC region as a whole, and investigated genomic similarity between spouses using three levels of genomic variation: single-nucleotide polymorphisms (SNPs), classical human leukocyte antigen (HLA) alleles (both four-digit and two-digit classifications), and amino acid polymorphisms. The extent of MHC dissimilarity between spouses was assessed using a permutation approach. Second, we investigated fine scale mating patterns by testing for deviations from random mating at individual SNPs, HLA genes, and amino acids in HLA molecules. Third, we assessed how extreme the spousal relatedness at the MHC region was compared to the rest of the genome, to distinguish the MHC-specific effects from genome-wide effects. We show that neither the MHC region, nor any single SNPs, classic HLA alleles, or amino acid polymorphisms within the MHC region, were significantly dissimilar between spouses relative to non-spouse pairs. However, dissimilarity in the MHC region was extreme relative to the rest of genome for both spousal and non-spouse pairs. Despite the long-standing controversy, our analyses did not support a significant role of MHC dissimilarity in human mate choice.
Collapse
Affiliation(s)
- Zhen Qiao
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4102, Australia.
| | - Joseph E Powell
- Institute for Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia.
| | - David M Evans
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4102, Australia.
- Medical Research Council (MRC) Integrative Epidemiology Unit, School of Social & Community Medicine, University of Bristol, Bristol BS8 1TH, UK.
| |
Collapse
|
13
|
de Groot JHB, Semin GR, Smeets MAM. On the Communicative Function of Body Odors. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2017; 12:306-324. [PMID: 28346117 DOI: 10.1177/1745691616676599] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Humans use multiple senses to navigate the social world, and the sense of smell is arguably the most underestimated one. An intriguing aspect of the sense of smell is its social communicative function. Research has shown that human odors convey information about a range of states (e.g., emotions, sickness) and traits (e.g., individuality, gender). Yet, what underlies the communicability of these states and traits via smell? We fill this explanatory gap with a framework that highlights the dynamic and flexible aspects of human olfactory communication. In particular, we explain how chemical profiles, associative learning (i.e., the systematic co-occurrence of chemical profiles with state- or trait-related information), and top-down contextual influences could interact to shape human odor perception. Our model not only helps to integrate past research on human olfactory communication but it also opens new avenues for future research on this fascinating, yet to date poorly understood, field.
Collapse
Affiliation(s)
- Jasper H B de Groot
- 1 Faculty of Social and Behavioral Sciences, Utrecht University, The Netherlands
| | - Gün R Semin
- 1 Faculty of Social and Behavioral Sciences, Utrecht University, The Netherlands.,2 William James Center for Research, Instituto Universitário de Ciências Psicológicas, Sociais e da Vida, Portugal
| | - Monique A M Smeets
- 1 Faculty of Social and Behavioral Sciences, Utrecht University, The Netherlands
| |
Collapse
|
14
|
Winternitz J, Abbate JL, Huchard E, Havlíček J, Garamszegi LZ. Patterns of MHC-dependent mate selection in humans and nonhuman primates: a meta-analysis. Mol Ecol 2016; 26:668-688. [DOI: 10.1111/mec.13920] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 12/27/2022]
Affiliation(s)
- J. Winternitz
- Department of Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; August-Thienemann-Strasse 2 24306 Ploen Germany
- Institute of Vertebrate Biology; Czech Academy of Sciences; v.v.i. Květná 8 603 65 Brno Czech Republic
- Institute of Botany; Czech Academy of Sciences; v.v.i. Lidická 25/27 657 20 Brno Czech Republic
| | - J. L. Abbate
- Institute of Ecology and Evolution; University of Bern; Balterstrasse 6 3006 Bern Switzerland
- INRA - UMR 1062 CBGP (INRA; IRD; CIRAD; Montpellier SupAgro); 755 Avenue du campus Agropolis 34988 Montferrier-sur-Lez France
| | - E. Huchard
- CEFE UMR5175; CNRS - Université de Montpellier - EPHE; 1919 Route de Mende 34295 Montpellier Cedex 5 France
| | - J. Havlíček
- Department of Zoology; Faculty of Science; Charles University; Viničná 7 128 44 Prague 2 Czech Republic
| | - L. Z. Garamszegi
- Department of Evolutionary Ecology; Estación Biológica de Doñana-CSIC; c/Americo Vespucio s/n 41092 Seville Spain
| |
Collapse
|
15
|
Hedrick PW, Smith DW, Stahler DR. Negative-assortative mating for color in wolves. Evolution 2016; 70:757-66. [PMID: 26988852 DOI: 10.1111/evo.12906] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/13/2016] [Accepted: 03/01/2016] [Indexed: 12/01/2022]
Abstract
There is strong negative-assortative mating for gray and black pelage color in the iconic wolves in Yellowstone National Park. This is the first documented case of significant negative-assortative mating in mammals and one of only a very few cases in vertebrates. Of 261 matings documented from 1995 to 2015, 63.6% were between gray and black wolves and the correlation between mates for color was -0.266. There was a similar excess of matings of both gray males × black females and black males × gray females. Using the observed frequency of negative-assortative mating in a model with both random and negative-assortative mating, the estimated proportion of negative-assortative mating was 0.430. The estimated frequency of black wolves in the population from 1996 to 2014 was 0.452 and these frequencies appear stable over this 19-year period. Using the estimated level of negative-assortative mating, the predicted equilibrium frequency of the dominant allele was 0.278, very close to the mean value of 0.253 observed. In addition, the patterns of genotype frequencies, that is, the observed proportion of black homozygotes and the observed excess of black heterozygotes, are consistent with negative-assortative mating. Importantly these results demonstrate that negative-assortative mating could be entirely responsible for the maintenance of this well-known color polymorphism.
Collapse
Affiliation(s)
- Philip W Hedrick
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85287.
| | - Douglas W Smith
- Yellowstone Wolf Project, Yellowstone Center for Resources, Yellowstone National Park, Wyoming, 82190
| | - Daniel R Stahler
- Yellowstone Wolf Project, Yellowstone Center for Resources, Yellowstone National Park, Wyoming, 82190
| |
Collapse
|
16
|
Abstract
Qualitative-consciousness arises at the sensory level of olfactory processing and pervades our experience of smells to the extent that qualitative character is maintained whenever we are aware of undergoing an olfactory experience. Building upon the distinction between Access and Phenomenal Consciousness the paper offers a nuanced distinction between Awareness and Qualitative-consciousness that is applicable to olfaction in a manner that is conceptual precise and empirically viable. Mounting empirical research is offered substantiating the applicability of the distinction to olfaction and showing that olfactory qualitative-consciousness can occur without awareness, but any olfactory state that we are aware of being in is always qualitative. Evidence that olfactory sensory states have a qualitatively character in the absence of awareness derives from research on mate selection, the selection of social preference for social interaction and acquaintances, as well as the role of olfactory deficits in causing affective disorders. Furthermore, the conservation of secondary processing measures of olfactory valence during olfactory imagery experiments provides verification that olfactory awareness is always qualitatively conscious-all olfactory consciousness smells phenomenal.
Collapse
Affiliation(s)
- Benjamin D Young
- Department of Cognitive and Brain Science, Ben-Gurion University of the Negev Beer-Sheva, Israel
| |
Collapse
|
17
|
Overath P, Sturm T, Rammensee HG. Of volatiles and peptides: in search for MHC-dependent olfactory signals in social communication. Cell Mol Life Sci 2014; 71:2429-42. [PMID: 24496643 PMCID: PMC4055862 DOI: 10.1007/s00018-014-1559-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/06/2014] [Indexed: 01/11/2023]
Abstract
Genes of the major histocompatibility complex (MHC), which play a critical role in immune recognition, are considered to influence social behaviors in mice, fish, humans, and other vertebrates via olfactory cues. As studied most extensively in mice, the polymorphism of MHC class I genes is considered to bring about a specific scent signature, which is decoded by the olfactory system resulting in an individual-specific reaction such as mating. On the assumption that this signature resides in volatiles, extensive attempts to identify these MHC-specific components in urine failed. Alternatively, it has been suggested that peptide ligands of MHC class I molecules are released into urine and can elicit an MHC-haplotype-specific behavioral response after uptake into the nose by sniffing. Analysis of the urinary peptide composition of mice shows that MHC-derived peptides are present, albeit in extremely low concentrations. In contrast, urine contains abundant peptides which differ between mouse strains due to genomic variations such as single-nucleotide variations or complex polymorphisms in multigene families as well as in their concentration. Thus, urinary peptides represent a real-time sampling of the expressed genome available for sensory evaluation. It is suggested that peptide variation caused by genomic differences contains sufficient information for individual recognition beyond or instead of an influence of the MHC in mice and other vertebrates.
Collapse
Affiliation(s)
- Peter Overath
- Interfakultäres Institut für Zellbiologie, Abteilung Immunologie, Universität Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany,
| | | | | |
Collapse
|
18
|
Huchard E, Baniel A, Schliehe-Diecks S, Kappeler PM. MHC-disassortative mate choice and inbreeding avoidance in a solitary primate. Mol Ecol 2013; 22:4071-86. [DOI: 10.1111/mec.12349] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 04/03/2013] [Accepted: 04/09/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Elise Huchard
- Behavioral Ecology and Sociobiology Unit; German Primate Center; Kellnerweg 4 Göttingen Germany
- Courant Research Centre Evolution of Social Behaviour; University of Göttingen; Kellnerweg 6 Göttingen Germany
| | - Alice Baniel
- Behavioral Ecology and Sociobiology Unit; German Primate Center; Kellnerweg 4 Göttingen Germany
| | - Susanne Schliehe-Diecks
- Behavioral Ecology and Sociobiology Unit; German Primate Center; Kellnerweg 4 Göttingen Germany
- Courant Research Centre Evolution of Social Behaviour; University of Göttingen; Kellnerweg 6 Göttingen Germany
| | - Peter M. Kappeler
- Behavioral Ecology and Sociobiology Unit; German Primate Center; Kellnerweg 4 Göttingen Germany
- Courant Research Centre Evolution of Social Behaviour; University of Göttingen; Kellnerweg 6 Göttingen Germany
| |
Collapse
|
19
|
Pathogen-driven selection in the human genome. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2013; 2013:204240. [PMID: 23533945 PMCID: PMC3603197 DOI: 10.1155/2013/204240] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/31/2013] [Indexed: 01/19/2023]
Abstract
Infectious diseases and epidemics have always accompanied and characterized human history, representing one of the main causes of death. Even today, despite progress in sanitation and medical research, infections are estimated to account for about 15% of deaths. The hypothesis whereby infectious diseases have been acting as a powerful selective pressure was formulated long ago, but it was not until the availability of large-scale genetic data and the development of novel methods to study molecular evolution that we could assess how pervasively infectious agents have shaped human genetic diversity. Indeed, recent evidences indicated that among the diverse environmental factors that acted as selective pressures during the evolution of our species, pathogen load had the strongest influence. Beside the textbook example of the major histocompatibility complex, selection signatures left by pathogen-exerted pressure can be identified at several human loci, including genes not directly involved in immune response. In the future, high-throughput technologies and the availability of genetic data from different populations are likely to provide novel insights into the evolutionary relationships between the human host and its pathogens. Hopefully, this will help identify the genetic determinants modulating the susceptibility to infectious diseases and will translate into new treatment strategies.
Collapse
|
20
|
Milinski M, Croy I, Hummel T, Boehm T. Major histocompatibility complex peptide ligands as olfactory cues in human body odour assessment. Proc Biol Sci 2013; 280:20122889. [PMID: 23345577 PMCID: PMC3574394 DOI: 10.1098/rspb.2012.2889] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In many animal species, social communication and mate choice are influenced by cues encoded by the major histocompatibility complex (MHC). The mechanism by which the MHC influences sexual selection is a matter of intense debate. In mice, peptide ligands of MHC molecules activate subsets of vomeronasal and olfactory sensory neurons and influence social memory formation; in sticklebacks, such peptides predictably modify the outcome of mate choice. Here, we examine whether this evolutionarily conserved mechanism of interindividual communication extends to humans. In psychometric tests, volunteers recognized the supplementation of their body odour by MHC peptides and preferred ‘self’ to ‘non-self’ ligands when asked to decide whether the modified odour smelled ‘like themselves’ or ‘like their favourite perfume’. Functional magnetic resonance imaging indicated that ‘self’-peptides specifically activated a region in the right middle frontal cortex. Our results suggest that despite the absence of a vomeronasal organ, humans have the ability to detect and evaluate MHC peptides in body odour. This may provide a basis for the sensory evaluation of potential partners during human mate choice.
Collapse
Affiliation(s)
- Manfred Milinski
- Department of Evolutionary Ecology, Max Planck Institute of Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Ploen, Germany
| | | | | | | |
Collapse
|
21
|
Kim Y, Ripke S, Kirov G, Sklar P, Purcell SM, Owen MJ, O'Donovan MC, Sullivan PF. Non-random mating, parent-of-origin, and maternal-fetal incompatibility effects in schizophrenia. Schizophr Res 2013; 143:11-7. [PMID: 23177929 PMCID: PMC4197457 DOI: 10.1016/j.schres.2012.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/30/2012] [Accepted: 11/01/2012] [Indexed: 01/10/2023]
Abstract
Although the association of common genetic variation in the extended MHC region with schizophrenia is the most significant yet discovered, the MHC region is one of the more complex regions of the human genome, with unusually high gene density and long-range linkage disequilibrium. The statistical test on which the MHC association is based is a relatively simple, additive model which uses logistic regression of SNP genotypes to predict case-control status. However, it is plausible that more complex models underlie this association. Using a well-characterized sample of trios, we evaluated more complex models by looking for evidence for: (a) non-random mating for HLA alleles, schizophrenia risk profiles, and ancestry; (b) parent-of-origin effects for HLA alleles; and (c) maternal-fetal genotype incompatibility in the HLA. We found no evidence for non-random mating in the parents of individuals with schizophrenia in terms of MHC genotypes or schizophrenia risk profile scores. However, there was evidence of non-random mating that appeared mostly to be driven by ancestry. We did not detect over-transmission of HLA alleles to affected offspring via the general TDT test (without regard to parent of origin) or preferential transmission via paternal or maternal inheritance. We evaluated the hypothesis that maternal-fetal HLA incompatibility may increase risk for schizophrenia using eight classical HLA loci. The most significant alleles were in HLA-B, HLA-C, HLA-DQB1, and HLA-DRB1 but none was significant after accounting for multiple comparisons. We did not find evidence to support more complex models of gene action, but statistical power may have been limiting.
Collapse
Affiliation(s)
- Yunjung Kim
- Department of Genetics, University of North Carolina at Chapel Hill, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Male transmission ratio distortion supports MHC-linked cryptic female choice in the lesser kestrel (Aves: Falconidae). Behav Ecol Sociobiol 2012. [DOI: 10.1007/s00265-012-1401-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Laurent R, Chaix R. HapMap European American genotypes are compatible with the hypothesis of MHC-dependent mate choice (response to DOI 10.1002/bies.201200023, Derti and Roth). Bioessays 2012; 34:871-2. [PMID: 22777848 DOI: 10.1002/bies.201200075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Romain Laurent
- Eco-Anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | |
Collapse
|
24
|
Derti A, Roth FP. Response to "MHC-dependent mate choice in humans: Why genomic patterns from the HapMap European American data set support the hypothesis". HapMap genotypes do not confidently support a role for the MHC locus in human mate selection. Bioessays 2012; 34:576-7. [PMID: 22467222 DOI: 10.1002/bies.201200023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Adnan Derti
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | |
Collapse
|
25
|
Laurent R, Chaix R. MHC-dependent mate choice in humans: why genomic patterns from the HapMap European American dataset support the hypothesis. Bioessays 2012; 34:267-71. [PMID: 22344965 DOI: 10.1002/bies.201100150] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The role of the major histocompatibility complex (MHC) in mate choice in humans is controversial. Nowadays, the availability of genetic variation data at genomic scales allows for a careful assessment of this question. In 2008, Chaix et al. reported evidence for MHC-dependent mate choice among European American spouses from the HapMap 2 dataset. Recently, Derti et al. suggested that this observation was not robust. Furthermore, when Derti et al. applied similar analyses to the HapMap 3 European American samples, they did not see a significant effect. Although some of the points raised by Derti et al. are relevant, we disagree with the reported absence of evidence for MHC-dependent mate choice within the HapMap samples. More precisely, we show here that the MHC dissimilarity among HapMap 3 European American spouses is still extreme in comparison to the rest of the genome, even after multiple testing correction. This finding supports the hypothesis of MHC-dependent mate choice in some human populations.
Collapse
Affiliation(s)
- Romain Laurent
- Eco-Anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | |
Collapse
|
26
|
Abstract
Little is known about the genetic factors influencing mate choice in humans. Still, there is evidence for non-random mate choice with respect to physical traits. In addition, some studies suggest that the Major Histocompatibility Complex may affect pair formation. Nowadays, the availability of high density genomic data sets gives the opportunity to scan the genome for signatures of non-random mate choice without prior assumptions on which genes may be involved, while taking into account socio-demographic factors. Here, we performed a genome scan to detect extreme patterns of similarity or dissimilarity among spouses throughout the genome in three populations of African, European American, and Mexican origins from the HapMap 3 database. Our analyses identified genes and biological functions that may affect pair formation in humans, including genes involved in skin appearance, morphogenesis, immunity and behaviour. We found little overlap between the three populations, suggesting that the biological functions potentially influencing mate choice are population specific, in other words are culturally driven. Moreover, whenever the same functional category of genes showed a significant signal in two populations, different genes were actually involved, which suggests the possibility of evolutionary convergences.
Collapse
Affiliation(s)
- R Laurent
- Eco-Anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | | |
Collapse
|
27
|
Childs EJ, Sobel EM, Palmer CGS, Sinsheimer JS. Detection of intergenerational genetic effects with application to HLA-B matching as a risk factor for schizophrenia. Hum Hered 2011; 72:161-72. [PMID: 22004985 DOI: 10.1159/000332051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 08/23/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND METHODS Association studies using unrelated individuals cannot detect intergenerational genetic effects contributing to disease. To detect these effects, we improve the extended maternal-fetal genotype (EMFG) incompatibility test to estimate any combination of maternal effects, offspring effects, and their interactions at polymorphic loci or multiple SNPs, using any size pedigrees. We explore the advantages of using extended pedigrees rather than nuclear families. We apply our methods to schizophrenia pedigrees to investigate whether the previously associated mother-daughter HLA-B matching is a genuine risk or the result of bias. RESULTS Simulations demonstrate that using the EMFG test with extended pedigrees increases power and precision, while partitioning extended pedigrees into nuclear families can underestimate intergenerational effects. Application to actual data demonstrates that mother-daughter HLA-B matching remains a schizophrenia risk factor. Furthermore, ascertainment and mate selection biases cannot by themselves explain the observed HLA-B matching and schizophrenia association. CONCLUSIONS Our results demonstrate the power of the EMFG test to examine intergenerational genetic effects, highlight the importance of pedigree rather than case/control or case-mother/control-mother designs, illustrate that pedigrees provide a means to examine alternative, non-causal mechanisms, and they strongly support the hypothesis that HLA-B matching is causally involved in the etiology of schizophrenia in females.
Collapse
Affiliation(s)
- Erica J Childs
- Department of Biostatistics, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
28
|
Khankhanian P, Gourraud PA, Caillier SJ, Santaniello A, Hauser SL, Baranzini SE, Oksenberg JR. Genetic variation in the odorant receptors family 13 and the mhc loci influence mate selection in a multiple sclerosis dataset. BMC Genomics 2010; 11:626. [PMID: 21067613 PMCID: PMC3091764 DOI: 10.1186/1471-2164-11-626] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 11/10/2010] [Indexed: 12/17/2022] Open
Abstract
Background When selecting mates, many vertebrate species seek partners with major histocompatibility complex (MHC) genes different from their own, presumably in response to selective pressure against inbreeding and towards MHC diversity. Attempts at replication of these genetic results in human studies, however, have reached conflicting conclusions. Results Using a multi-analytical strategy, we report validated genome-wide relationships between genetic identity and human mate choice in 930 couples of European ancestry. We found significant similarity between spouses in the MHC at class I region in chromosome 6p21, and at the odorant receptor family 13 locus in chromosome 9. Conversely, there was significant dissimilarity in the MHC class II region, near the HLA-DQA1 and -DQB1 genes. We also found that genomic regions with significant similarity between spouses show excessive homozygosity in the general population (assessed in the HapMap CEU dataset). Conversely, loci that were significantly dissimilar among spouses were more likely to show excessive heterozygosity in the general population. Conclusions This study highlights complex patterns of genomic identity among partners in unrelated couples, consistent with a multi-faceted role for genetic factors in mate choice behavior in human populations.
Collapse
Affiliation(s)
- Pouya Khankhanian
- Department of Neurology, University of California, San Francisco, CA 94143-0435, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Santos PSC, Seki Uehara CJ, Ziegler A, Uchanska-Ziegler B, Bicalho MDG. Variation and linkage disequilibrium within odorant receptor gene clusters linked to the human major histocompatibility complex. Hum Immunol 2010; 71:843-50. [PMID: 20547194 DOI: 10.1016/j.humimm.2010.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 06/01/2010] [Accepted: 06/07/2010] [Indexed: 01/31/2023]
Abstract
Odorant receptors (OR) are G-protein-coupled receptors that are predominantly expressed in the membrane of olfactory neurons. Members of the two OR gene clusters on the short arm of human chromosome 6 could be involved in major histocompatibility complex (MHC)-associated behavioral traits, such as olfaction-influenced mate selection and cryptic female choice. In this context, OR gene polymorphisms and haplotypes are likely to play an important role. Here we report an investigation of polymorphisms within 12 MHC-linked OR genes in 10 human cell lines. Eight of these OR loci belong to the telomeric, smaller OR gene cluster, whereas four are located centromeric, between the first cluster and the MHC. We also assessed part of this genomic region using sequence data from eight additional cell lines that had previously been sequenced. Thirteen novel OR variants were found through direct DNA sequencing and cloning, in addition to the detection of OR polymorphisms already known, and the number of OR cluster haplotypes could be increased to 21. Two loci belonging to the telomeric cluster (OR2B8P and OR1F12) were found to exhibit nonfunctional and potentially functional alleles and should therefore be considered as segregating pseudogenes. The results provide a detailed picture regarding polymorphisms and phenotypic variation in an ethnically diverse sample of major histocompatibility complex-linked OR clusters and identify a subregion of unusually pronounced genetic variability. We expand these data by analyzing linkage disequilibrium both within these OR clusters as well as between them and the HLA complex in 11 unrelated HapMap populations. The sequence data described in this paper have been submitted to the GenBank database under the accession numbers GU251059, GU251060, GU251061, GU251062, GU251063, GU251064, GU251065, GU251066, GU251067, GU251068, GU251069, GU251070, GU251071, and GU251072.
Collapse
|