1
|
Yu H, Guo J, Wu X, Liang J, Fan S, Du H, Zhao S, Li Z, Liu G, Xiao Y, Luo J, Gao Y, Chen Q, Gao H, Peng F. Haplotype-resolved genome assembly provides insights into the genetic basis of green peach aphid resistance in peach. Curr Biol 2025:S0960-9822(25)00556-1. [PMID: 40381617 DOI: 10.1016/j.cub.2025.04.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/06/2025] [Accepted: 04/23/2025] [Indexed: 05/20/2025]
Abstract
Green peach aphid (GPA) is one of the most destructive pests of peach, threatening both growth and fruit quality. However, the mechanism underlying GPA resistance remains unclear. Here, we performed haplotype-resolved genome assembly of a GPA-resistant cultivar and identified an allele-specific expressed gene, PpNLR1, responsible for the GPA-resistant trait. A genome-wide association study (GWAS) revealed a functional 20-bp insertion or deletion (indel) in the PpNLR1 promoter, which co-segregated with the GPA-resistant trait and directly influenced promoter activity. Furthermore, jasmonate (JA) signaling, activated during GPA infestation, induced the transcription of PpERF109. This transcription factor specifically bound to the "CAAGT" motif within the GWAS-identified 20-bp insertion of the PpNLR1 promoter, resulting in allele-specific expression (ASE). Functional validation of the two alleles (PpNLR1-Hap1 and PpNLR1-Hap2) in both peach and Arabidopsis demonstrated their role in aphid resistance. Additionally, two GPA salivary proteins were identified as effectors, triggering reactive oxygen species (ROS) and activating the peach immune system in conjunction with the PpNLR1 protein. Comparative genomics and phylogenetic analysis indicated that an ∼53.6-kb genomic variation surrounding PpNLR1 underwent negative selection during peach evolution. In conclusion, the JA-mediated PpERF109-PpNLR1 module and GPA effector proteins significantly contribute to GPA resistance in peach. The novel haplotype-resolved genome assembly and identified key genes provide valuable resources for future genomic research and GPA resistance breeding in peach.
Collapse
Affiliation(s)
- Haixiang Yu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jian Guo
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| | - Xuelian Wu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jiahui Liang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Shihao Fan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Hao Du
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Shilong Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Zhaoyang Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Guangyuan Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yuansong Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jingjing Luo
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yangyang Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Qiuju Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Huaifeng Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Futian Peng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
2
|
Zhao C, Mueller N, Owens I, Bansal R, Jacobson AL. Identification of candidate host-manipulating effector genes in Aphis gossypii (Hemiptera: Aphididae) using a combination of transcriptome, genome, and differential gene expression data. JOURNAL OF INSECT SCIENCE (ONLINE) 2025; 25:11. [PMID: 40435060 PMCID: PMC12118542 DOI: 10.1093/jisesa/ieaf053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/17/2025] [Accepted: 04/16/2025] [Indexed: 06/01/2025]
Abstract
The cotton aphid, Aphis gossypii Glover, is an important plant disease vector and a highly polyphagous agricultural pest that feeds on a broad range of host plants. During feeding, its salivary glands serve as a route for the transmission of circulative plant viruses and produce a range of secretory proteins, called effectors, to modulate host cellular processes. To understand the molecular mechanisms underlying aphid-plant interactions, we developed a bioinformatics pipeline that incorporated the salivary gland transcriptome, genome, and head vs abdomen differential gene expression data to predict secretory protein-encoding genes enriched in the salivary glands of A. gossypii. Annotation of the 351 predicted genes showed that the most abundant functional categories were associated with cellular signaling and metabolism processes, and revealed that 98 genes were hemipteran-specific. Notably, 51 genes encode secretory proteins matching the putative saliva proteins identified in prior proteomics studies. Quantitative PCR analysis validated differential expression of 4 selected genes between heads and abdomens and indicated that alate adults exhibited the highest gene expression, suggesting these genes may play key roles in host colonization. Additionally, 25 genes showed sequence similarities to functionally characterized hemipteran effectors, with some appearing to form effector groups with distinct evolutionary patterns. Collectively, this study identified numerous putative plant-manipulating genes in A. gossypii and provided valuable insights into the mechanisms of aphid-plant interactions.
Collapse
Affiliation(s)
- Chaoyang Zhao
- National Soil Dynamics Laboratory, USDA-ARS, Auburn, AL, USA
| | - Nicholas Mueller
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Isabella Owens
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Raman Bansal
- San Joaquin Valley Agricultural Sciences Center, USDA-ARS, Parlier, CA, USA
| | - Alana L Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| |
Collapse
|
3
|
Yun M, Xiong Y, Wang Z, Xie L, Ye H, Yuan X, He W, Chen B, Lu Z, Chen W. Insect Oral Secretion Protein and Its Related Core Peptide Induce the Host Plant's Endogenous Abscisic Acid to Enhance Resistance against Insect. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11452-11465. [PMID: 40270364 DOI: 10.1021/acs.jafc.4c12912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Plants perceive proteins from insect-derived oral secretion (OS) and regulate the classical endogenous hormone jasmonic acid to resist insects, but the role of abscisic acid (ABA) in this process is poorly understood. In this study, we used the specialist herbivorous caterpillar Plutella xylostella and cruciferous plants as a model to investigate how the ABA hormone responds to the OS and its core peptide from the insect. Through proteomics and Western blotting analysis, glucosinolate sulfatase 1 (GSS1) was identified in OS. Yeast library screening revealed that GSS1 and its 28-amino-acid core peptide (GSS1-P1) interact with ABA biosynthetic enzyme ABA1. Arabidopsis overexpressing GSS1 and plants treated with synthetic GSS1-P1 showed elevated ABA levels. Transcriptome analysis and RT-qPCR confirmed that GSS1-P1 upregulates WRKY18 and ABA1 expression, modulating ABA production. Both GSS1-P1 application and optimal ABA concentrations enhanced plant resistance to herbivory. Our study shows that GSS1 and its peptide stimulate ABA production, boosting plant-insect resistance and highlighting ABA's potential role in pest-stress response.
Collapse
Affiliation(s)
- Mengjun Yun
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Yu Xiong
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Zhuobing Wang
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Lianjie Xie
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Hanwen Ye
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Xiaofang Yuan
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Weiyi He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Binqing Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, Shanxi, China
| | - Zhanjun Lu
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Wei Chen
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
4
|
Qiao Q, Zheng C, Feng H, Huang S, Wang B, Zaheer U, He W. HSC70-3 in the Gut Regurgitant of Diamondback Moth, Plutella xylostella: A Candidate Effector for Host Plant Adaptation. INSECTS 2025; 16:489. [PMID: 40429202 PMCID: PMC12112308 DOI: 10.3390/insects16050489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/23/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025]
Abstract
The co-evolution between plants and herbivorous insects has led to a continuous arms race on defense and anti-defense mechanisms. In this process, insect-derived effectors are crucial for suppressing plant defense. Despite considerable progress in plant-insect interaction studies, the functional role of heat shock cognate protein 70 (HSC70) as an effector in herbivorous insects remains poorly characterized. This study provides evidence that HSC70-3 functions as an effector in interactions between the cruciferous specialist diamondback moth (Plutella xylostella) and its host plant radish (Raphanus sativus 'Nanpan Prefecture'). Using immunofluorescence labeling and in situ Western blot (WB), we demonstrated that HSC70-3 is secreted into plant wound sites through larval gut regurgitant during feeding. Short-term host transfer experiments revealed tissue-specific hsc70-3 expression changes, indicating a dynamic response to plant-derived challenges. These findings suggest hsc70-3 is differentially regulated at transcriptional and translational levels to facilitate insect adaptation to host plant shifts. Knockout of hsc70-3 using CRISPR/Cas9 technology significantly impaired larval growth, prolonged development duration, and reduced pupal weight on host plants, indicating its involvement in host adaptation. However, knockout mutants exhibited no significant developmental defects when reared on an artificial diet, suggesting that hsc70-3 primarily functions in modulating plant-induced defense responses rather than directly affecting insect physiology. Collectively, these findings provide evidence for the functional roles of HSC70-3 in P. xylostella and plant interactions, laying a foundation for further investigations into insect effectors and their mechanisms in modulating plant defense responses.
Collapse
Affiliation(s)
- Qingxuan Qiao
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Q.); (C.Z.); (H.F.); (S.H.); (B.W.); (U.Z.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education and Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chanqin Zheng
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Q.); (C.Z.); (H.F.); (S.H.); (B.W.); (U.Z.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education and Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huiting Feng
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Q.); (C.Z.); (H.F.); (S.H.); (B.W.); (U.Z.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education and Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Huang
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Q.); (C.Z.); (H.F.); (S.H.); (B.W.); (U.Z.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education and Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bing Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Q.); (C.Z.); (H.F.); (S.H.); (B.W.); (U.Z.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education and Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Uroosa Zaheer
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Q.); (C.Z.); (H.F.); (S.H.); (B.W.); (U.Z.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education and Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weiyi He
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Q.); (C.Z.); (H.F.); (S.H.); (B.W.); (U.Z.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education and Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Shangguan C, Kuang Y, Zhong L, Gao L, Yu X. Screening and Functional Analysis of a Novel Salivary Effector DcE13 from the Asian Citrus Psyllid, Diaphorina citri. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8897-8906. [PMID: 40173339 DOI: 10.1021/acs.jafc.5c01603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
The lack of sequence similarity among insect effectors necessitates the independent identification of effectors in the Asian citrus psyllid Diaphorina citri, the primary vector of huanglongbing pathogens. In this study, nine candidate effectors were identified from the D. citri salivary gland transcriptome. Among them, DcE13 exhibited the highest FPKM value and was delivered into plants during feeding. Transient expression in tobacco leaves showed that DcE13 is localized in the plasma membrane and around the nuclear envelope of plant cells. It inhibits BAX- and INF1-induced hypersensitive responses, suppresses callose deposition, and downregulates jasmonic acid marker genes NtPDF1.2 and NtFAD7. Furthermore, DcE13 knockdown decreased survival rates and fecundity of D. citri, as well as interrupted their phloem feeding, indicating its role as an effector that facilitates psyllid feeding. These results enrich our current understanding of D. citri feeding behavior while simultaneously offering a potential target gene for controlling this pest.
Collapse
Affiliation(s)
- Chaozhi Shangguan
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Yinhui Kuang
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Liqun Zhong
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Liwei Gao
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Xiudao Yu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, P. R. China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants/National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, P. R. China
| |
Collapse
|
6
|
Goldstein Y, Han J, Kunk D, Batushansky A, Nalam V, Tzin V. Diurnal rhythms in durum wheat triggered by Rhopalosiphum padi (bird cherry-oat aphid). BMC PLANT BIOLOGY 2025; 25:459. [PMID: 40211135 PMCID: PMC11984048 DOI: 10.1186/s12870-025-06100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/13/2025] [Indexed: 04/12/2025]
Abstract
Wheat is a staple crop and one of the most widely consumed grains globally. Wheat yields can experience significant losses due to the damaging effects of herbivore infestation. However, little is known about the effect aphids have on the natural diurnal rhythms in plants. Our time-series transcriptomics and metabolomics study reveals intriguing molecular changes occurring in plant diurnal rhythmicity upon aphid infestation. Under control conditions, 15,366 out of the 66,559 genes in the tetraploid wheat cultivar Svevo, representing approximately 25% of the transcriptome, exhibited diurnal rhythmicity. Upon aphid infestation, 5,682 genes lost their rhythmicity, while 5,203 genes began to exhibit diurnal rhythmicity. The aphid-induced rhythmic genes were enriched in GO terms associated with plant defense, such as protein phosphorylation and cellular response to ABA and were enriched with motifs of the WRKY transcription factor families. In contrast, the genes that lost rhythmicity due to aphid infestation were enriched with motifs of the TCP and ERF transcription factor families. While the core circadian clock genes maintain their rhythmicity during infestation, we observed that approximately 60% of rhythmic genes experience disruptions in their rhythms during aphid infestation. These changes can influence both the plant's growth and development processes as well as defense responses. Furthermore, analysis of rhythmic metabolite composition revealed that several monoterpenoids gained rhythmic activity under infestation, while saccharides retained their rhythmic patterns. Our findings highlight the ability of insect infestation to disrupt the natural diurnal cycles in plants, expanding our knowledge of the complex interactions between plants and insects.
Collapse
Affiliation(s)
- Yoshiahu Goldstein
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 8499000, Israel.
| | - Jinlong Han
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Daniel Kunk
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
- Department of Cell and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Albert Batushansky
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Vamsi Nalam
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 8499000, Israel.
| |
Collapse
|
7
|
Kuang Y, Shangguan C, Wang C, Gao L, Yu X. Salivary effector DcE1 suppresses plant defense and facilitates the successful feeding of Asian citrus psyllid, Diaphorina citri. PEST MANAGEMENT SCIENCE 2025; 81:1717-1726. [PMID: 39543447 DOI: 10.1002/ps.8536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/18/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Piercing-sucking insects secrete diverse repertoires of effectors into their hosts to weaken host defenses and promote infestation. The Asian citrus psyllid, Diaphorina citri Kuwayama, is the most destructive insect pest in citrus orchards because of its role as a vector for the huanglongbing pathogen, Candidatus Liberibacter asiaticus (CLas). However, specific effector proteins and their functions in D. citri remain unclear. RESULTS We demonstrate that DcE1, a salivary protein gene from D. citri, is predominantly expressed in the salivary gland tissues and is delivered into host plants during feeding. Transient expression in tobacco leaves revealed that DcE1 was subcellularly localized in the cytoplasm and plasma membrane, where it inhibited BAX- and INF1-induced cell death, suppressed callose deposition, and activated the salicylic acid pathway by upregulating the expression of endo-β-1,3-glucanase NtBGL2 and regulatory protein NtNPR1. Further, DcE1 knockdown by double-stranded RNA (dsRNA) injection decreased the survival rates of D. citri and interrupted D. citri phloem-feeding on host plants. CONCLUSION These results indicate that DcE1 is a novel effector that promotes plant susceptibility and enables D. citri feeding. These findings enhance our understanding of D. citri-plant interactions and offer a potential new target gene for the development of citrus protection strategies. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yinhui Kuang
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Chaozhi Shangguan
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Chuyang Wang
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Liwei Gao
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Xiudao Yu
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants/National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| |
Collapse
|
8
|
Hu B, Feng X, Xu M, Huang Y, Guo C, Yuan R, Li Y, Wei Z, Chen J, Sun Z. A pentatomomorpha-specific salivary protein activates plant immunity and is critical for insect feeding. Proc Natl Acad Sci U S A 2025; 122:e2425190122. [PMID: 39888915 PMCID: PMC11804711 DOI: 10.1073/pnas.2425190122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/06/2025] [Indexed: 02/02/2025] Open
Abstract
The stinkbug Riptortus pedestris, notorious for inducing soybean staygreen-like syndrome, employs a range of salivary proteins to manipulate the host plant for its benefit. Here, we show that RpSP1, a salivary protein specific to Pentatomomorpha, triggers plant defense responses in multiple plant species. RpSP1 interacts with and stabilizes a HSP40 family protein GmSPIP1 and is dependent on GmSPIP1 to induce cell death. We show that a critical 22-amino acid peptide within RpSP1 acts as an intracellular insect-derived elicitor. Furthermore, RpSP1 enhances insect-feeding efficiency. The dual functionality of RpSP1 is highlighted by the significant reduction of soybean staygreen-like syndrome following its overexpression in soybean plants or knockdown in insects. Our findings elucidate the complex molecular interactions between plants and herbivores, positioning RpSP1 as a crucial target for developing advanced pest management strategies with broad implications for agricultural biology.
Collapse
Affiliation(s)
- Biao Hu
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Xiuli Feng
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Manru Xu
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Yue Huang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Chunyun Guo
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Ruikun Yuan
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Yiyuan Li
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Zhongyan Wei
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Zongtao Sun
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs (MARA), Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| |
Collapse
|
9
|
Vervaet L, Charamis J, Vandenhole M, Vontas J, Van Leeuwen T. Acaricide resistance mechanisms and host plant responses in the tomato specialist Aculops lycopersici. PEST MANAGEMENT SCIENCE 2025; 81:946-958. [PMID: 39473234 DOI: 10.1002/ps.8499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND The mite Aculops lycopersici is a major tomato pest with extremely reduced gene families involved in chemoreception and detoxification. How this limited detoxification toolbox affects the evolution of resistance to acaricides in tomato russet mite(s) (TRM) remains enigmatic. Moreover, although a tomato specialist, TRM has been observed on other Solanaceae and Convolvulaceae plant species, raising questions about transcriptional plasticity underlying host exchange. RESULTS We identified a field strain with strongly decreased susceptibility to both abamectin and spiromesifen. We detected target-site resistance caused by mutations at conserved positions in two glutamate-gated chloride channels (GluCl), as well as four overexpressed detoxification genes. We then examined transcriptional responses after host shift from tomato to two Solanaceae (potato and black nightshade) and two Convolvulaceae (sweet potato and hedge bindweed) species, as more challenging host plants. Transcriptional responses varied significantly between host plant families, with key differentially expressed genes (DEGs) related to proteolytic, metabolic and detoxification processes. Last, we also identified DEGs encoding for secreted proteins potentially involved in TRM-host plant interactions. CONCLUSIONS Despite a limited detoxification toolbox, A. lycopersici might quickly evolve target-site resistance, probably facilitated by strong selection pressure on the genetic variation associated with enormous population size in field settings. Responses to host plant changes include plasticity in genes related to digestion and detoxification, while most responsive genes are of unknown function and remain to be investigated. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lore Vervaet
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jason Charamis
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Marilou Vandenhole
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Hussain MD, Farooq T, Kamran A, Basit A, Wang Y, Smagghe G, Chen X. Endosymbionts as hidden players in tripartite pathosystem of interactions and potential candidates for sustainable viral disease management. Crit Rev Biotechnol 2025:1-23. [PMID: 39848650 DOI: 10.1080/07388551.2024.2449403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/25/2025]
Abstract
The convoluted relationships between plants, viruses, and arthropod vectors housing bacterial endosymbionts are pivotal in the spread of harmful plant viral diseases. Endosymbionts play key roles in: manipulating host responses, influencing insect resistance to pesticides, shaping insect evolution, and bolstering virus acquisition, retention, and transmission. This interplay presents an innovative approach for developing sustainable strategies to manage plant diseases. Recent progress in targeting specific endosymbionts through genetic modifications, biotechnological advancements, and RNA interference shows potential for curbing viral spread and disease progression. Additionally, employing synthetic biology techniques like CRISPR/Cas9 to engineer endosymbionts and disrupt crucial interactions necessary for viral transmission in arthropod vectors holds promise for effective control measures. In this review, these obligate and facultative bacterial cruxes have been discussed to elaborate on their mechanistic involvement in the regulation and/or inhibition of tripartite pathways of interactions. Furthermore, we provide an in-depth understanding of endosymbionts' synergistic and antagonistic effects on: insect biology, plant immunity, and virus acquisition and transmission. Finally, we point out open questions for future research and provide research directions concerning the deployment of genetically engineered symbionts to affect plant-virus-vector interactions for sustainable disease management. By addressing existing knowledge gaps and charting future research paths, a deeper comprehension of the role of endosymbionts in plant-virus-vector interactions can pave the way for innovative and successful disease management strategies. The exploration of antiviral therapies, paratransgenesis, and pathogen-blocking tactics using engineered endosymbionts introduces pioneering solutions for lessening the impact of plant viral diseases and green pest management.
Collapse
Affiliation(s)
- Muhammad Dilshad Hussain
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, P.R. China
| | - Tahir Farooq
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, P.R. China
| | - Ali Kamran
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, P.R. China
| | - Abdul Basit
- Institute of Entomology, Guizhou University, Guiyang, P.R. China
| | - Yong Wang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, P.R. China
- Institute of Plant Health and Medicine, College of Agriculture, Guizhou University, Guiyang, P.R. China
| | - Guy Smagghe
- Institute of Entomology, Guizhou University, Guiyang, P.R. China
- Cellular and Molecular Life Sciences, Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Xiangru Chen
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, P.R. China
| |
Collapse
|
11
|
Rao W, Ma T, Cao J, Zhang Y, Chen S, Lin S, Liu X, He G, Wan L. Recognition of a salivary effector by the TNL protein RCSP promotes effector-triggered immunity and systemic resistance in Nicotiana benthamiana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:150-168. [PMID: 39474762 DOI: 10.1111/jipb.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 01/16/2025]
Abstract
Insects secret chemosensory proteins (CSPs) into plant cells as potential effector proteins during feeding. The molecular mechanisms underlying how CSPs activate plant immunity remain largely unknown. We show that CSPs from six distinct insect orders induce dwarfism when overexpressed in Nicotiana benthamiana. Agrobacterium-mediated transient expression of Nilaparvata lugens CSP11 (NlCSP11) triggered cell death and plant dwarfism, both of which were dependent on ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), N requirement gene 1 (NRG1) and SENESCENCE-ASSOCIATED GENE 101 (SAG101), indicating the activation of effector-triggered immunity (ETI) in N. benthamiana. Overexpression of NlCSP11 led to stronger systemic resistance against Pseudomonas syringae DC3000 lacking effector HopQ1-1 and tobacco mosaic virus, and induced higher accumulation of salicylic acid (SA) in uninfiltrated leaves compared to another effector XopQ that is recognized by a Toll-interleukin-1 receptor (TIR) domain nucleotide-binding leucine-rich repeat receptor (TNL) called ROQ1 in N. benthamiana. Consistently, NlCSP11-induced dwarfism and systemic resistance, but not cell death, were abolished in N. benthamiana transgenic line expressing the SA-degrading enzyme NahG. Through large-scale virus-induced gene silencing screening, we identified a TNL protein that mediates the recognition of CSPs (RCSP), including aphid effector MP10 that triggers resistance against aphids in N. benthamiana. Co-immunoprecipitation, bimolecular fluorescence complementation and AlphaFold2 prediction unveiled an interaction between NlCSP11 and RCSP. Interestingly, RCSP does not contain the conserved catalytic glutamic acid in the TIR domain, which is required for TNL function. Our findings point to enhanced ETI and systemic resistance by a TNL protein via hyperactivation of the SA pathway. Moreover, RCSP is the first TNL identified to recognize an insect effector.
Collapse
Affiliation(s)
- Weiwei Rao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tingting Ma
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jiayuan Cao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yajun Zhang
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Sisi Chen
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shu Lin
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaoxiao Liu
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Guangcun He
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Li Wan
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Qiao Q, Feng H, Jiao L, Zaheer U, Zheng C, Zhou L, Lin G, Xiang X, Liao H, Li S, Lu H, Yin A, Salum YM, Wei H, Chen W, He W, Yang F. Bacteria Derived from Diamondback Moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), Gut Regurgitant Negatively Regulate Glucose Oxidase-Mediated Anti-Defense Against Host Plant. INSECTS 2024; 15:1001. [PMID: 39769603 PMCID: PMC11677076 DOI: 10.3390/insects15121001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025]
Abstract
The ongoing interplay among plants, insects, and bacteria underscores the intricate balance of defense mechanisms in ecosystems. Regurgitant bacteria directly/indirectly impact plant immune responses, but the underlying mechanism is unclear. Here, we focus on the interaction between regurgitant bacteria, diamondback moth (DBM), and plant. Six culturable bacteria were isolated from DBM gut regurgitant, including three Enterobacter strains (RB1-3), Micrococcus sp. (RB4), Staphylococcus haemolyticus (RB5), and Bacillus cereus (RB6). These RB strains suppressed genes related to jasmonic acid and glucosinolate signaling pathways but had little effect on salicylic acid signaling pathway genes in Arabidopsis thaliana wounds. RB1 and RB5 inhibited DBM development on A. thaliana but not on an artificial diet. RB1 and RB5 significantly suppressed GOX genes and proteins in DBMs. However, the Pxgox2 insect mutant strain inoculated with RB1 or RB5 did not significantly affect DBM feeding on A. thaliana compared to the wild type. Six RB have been functionally identified, with RB1 and RB5 negatively regulating GOX-mediated host adaptability. The deliberate addition of RB1 and RB5 can negatively affect DBM herbivory and fitness. Our study provides a molecular basis for the further application of RB for insect pest management by modulating insect-plant interactions.
Collapse
Affiliation(s)
- Qingxuan Qiao
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Q.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education and Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huiting Feng
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Q.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education and Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lu Jiao
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Q.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education and Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Uroosa Zaheer
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Q.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education and Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chanqin Zheng
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Q.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education and Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Zhou
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Q.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education and Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guifang Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Q.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education and Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiujuan Xiang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Q.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education and Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huang Liao
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Q.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education and Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shanyu Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Q.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education and Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haiyan Lu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Q.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education and Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Anyuan Yin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Q.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education and Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yussuf Mohamed Salum
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Q.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education and Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
| | - Wei Chen
- Ganzhou Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Weiyi He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Q.)
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education and Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
| | - Feiying Yang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330029, China
| |
Collapse
|
13
|
Sharma M, Oraon PK, Srivastava R, Chongtham R, Goel S, Agarwal M, Jagannath A. Comparative transcriptomics of a generalist aphid, Myzus persicae and a specialist aphid, Lipaphis erysimi reveals molecular signatures associated with diversity of their feeding behaviour and other attributes. FRONTIERS IN PLANT SCIENCE 2024; 15:1415628. [PMID: 39687318 PMCID: PMC11648428 DOI: 10.3389/fpls.2024.1415628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/21/2024] [Indexed: 12/18/2024]
Abstract
Introduction Aphids are phloem sap-sucking insects and are a serious destructive pest of several crop plants. Aphids are categorized as "generalists" or "specialists" depending on their host range. Myzus persicae (Sulz.) is a generalist aphid with a broad host range while Lipaphis erysimi (Kalt.), a specialist aphid, has a narrow host range. Aphid infestation involves several sequential stages including host recognition and selection, overcoming primary plant defence barriers, feeding on phloem sap and detoxification of host defence responses. Information on the molecular basis of variations between generalist and specialist aphids with reference to the above processes is limited. Methods In the current study, we generated transcriptome data of M. persicae and L. erysimi from adult and nymph stages and analysed the differential expression of genes between adults of the generalist and specialist aphid and similarly, between nymphs of the two aphid species. We categorized these differentially expressed genes into nine different categories namely, chemosensation-related, plant cell wall degrading enzymes, detoxification-related, digestive enzymes, peptidases, carbohydrate-, lipid-, amino acid-metabolism and reproduction. We also identified putative effector molecules in both M. persicae and L. erysimi from the transcriptome data. Results and discussion Gene expression analysis identified 7688 and 8194 differentially expressed unigenes at adult and nymph stages, respectively of M. persicae and L. erysimi. M. persicae showed significantly higher levels of expression in a greater number of unigenes (5112 in adults and 5880 in nymphs) in contrast to the specialist, L. erysimi (2576 in adults and 2314 in nymphs) in both developmental stages. In addition, M. persicae displayed a greater number (350 in adults and 331 in nymphs) of upregulated unigenes involved in important processes such as host recognition, plant cell wall degradation, detoxification, digestion and metabolism, which correlate with its dynamic and polyphagous nature in contrast to the specialist (337 in adults and 251 in nymphs). We also observed a greater number of putative effectors in M. persicae (948 in adults and 283 in nymphs) than L. erysimi (797 in adults and 245 in nymphs). Based on our analysis, we conclude that the generalist aphid, M. persicae has a more diversified and stronger arsenal of genes that influence its polyphagous feeding behaviour and effective response to plant defence mechanisms against insect-herbivory. Our study provides a compendium of such candidate genes that would be most useful in studies on aphid biology, evolution and control.
Collapse
|
14
|
Kumaraswamy S, Huang Y. Molecular Interactions Between Plants and Aphids: Recent Advances and Future Perspectives. INSECTS 2024; 15:935. [PMID: 39769537 PMCID: PMC11677212 DOI: 10.3390/insects15120935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
Aphids are small, notorious insect pests that negatively impact plant health and agricultural productivity through direct damage, such as sap-sucking, and indirectly as vectors of plant viruses. Plants respond to aphid feeding with a variety of molecular mechanisms to mitigate damage. These responses are diverse and highly dynamic, functioning either independently or in combination. Understanding plant-aphid interactions is crucial for revealing the full range of plant defenses against aphids. When aphids infest, plants detect the damage via specific receptor proteins, initiating a signaling cascade that activates defense mechanisms. These defenses include a complex interaction of phytohormones that trigger defense pathways, secondary metabolites that deter aphid feeding and reproduction, lectins and protease inhibitors that disrupt aphid physiology, and elicitors that activate further defense responses. Meanwhile, aphids counteract plant defenses with salivary effectors and proteins that suppress plant defenses, aiding in their successful colonization. This review offers a detailed overview of the molecular mechanisms involved in plant-aphid interactions, emphasizing both established and emerging plant defense strategies. Its uniqueness lies in synthesizing the recent progress made in plant defense responses to aphids, along with aphids' countermeasures to evade such defenses. By consolidating current knowledge, this review provides key insights for developing sustainable strategies to achieve crop protection and minimize dependence on chemical pesticides.
Collapse
Affiliation(s)
- Sunil Kumaraswamy
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Yinghua Huang
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK 74078, USA;
- Plant Science Research Laboratory, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 1301 N. Western Road, Stillwater, OK 74075, USA
| |
Collapse
|
15
|
Xue H, Yan M, Zhu X, Wang L, Chen L, Luo J, Cui J, Gao X. AgoArmet and AgoC002: key effector proteins in cotton aphids host adaptation. FRONTIERS IN PLANT SCIENCE 2024; 15:1500834. [PMID: 39670273 PMCID: PMC11634620 DOI: 10.3389/fpls.2024.1500834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/05/2024] [Indexed: 12/14/2024]
Abstract
Aphids are insects that feed on phloem and introduce effector proteins into plant cells through saliva. These effector proteins are key in regulating host plant defense and enhancing aphid host adaptation. We identified these salivary proteins in the cotton aphids genome and named them AgoArmet and AgoC002. Multiple sequence alignment, protein structure analysis, and phylogenetic analysis of these proteins with related proteins from other insects showed that AgoArmet and Armet of Aphis craccivora have high sequence identity (97%) and belong to the same evolutionary branch and that AgoC002 shares the highest sequence identity (80%) and closest evolutionary relationship with C002 of Aphis glyceins. Expression profiling of AgoArmet and AgoC002 showed that they were most highly expressed in cotton aphids during the adult-3d period. Cotton aphids transferred to zucchini leaves resulted in a significant increase in the expression of AgoArmet and AgoC002 within 48h. To investigate the functions of AgoArmet and AgoC002, we decreased the expression of these genes in cotton using virus-induced gene silencing (VIGS), which ultimately led to a 38% and 26% decrease in cotton aphids fecundity, respectively. Moreover, the reduction in AgoC002 expression resulted in a significant (24%) reduction in body weight. Taken together, our findings demonstrate that AgoArmet and AgoC002 are key effector proteins involved in cotton aphids feeding and host adaptation.
Collapse
Affiliation(s)
- Hui Xue
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mengjie Yan
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiangzhen Zhu
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Li Wang
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lizhen Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Junyu Luo
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinjie Cui
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xueke Gao
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Gebrekidan AG, Zhang Y, Chen J. A Comprehensive Transcriptomic and Proteomics Analysis of Candidate Secretory Proteins in Rose Grain Aphid, Metopolophium dirhodum (Walker). Curr Issues Mol Biol 2024; 46:13383-13404. [PMID: 39727926 PMCID: PMC11727172 DOI: 10.3390/cimb46120798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
The Rose grain aphid, a notable agricultural pest, releases saliva while feeding. Yet, there is a need for a comprehensive understanding of the specific identity and role of secretory proteins released during probing and feeding. Therefore, a combined transcriptomic and proteomic approach was employed in this study to identify putative secretory proteins. The transcriptomic sequencing result led to the assembly of 18,030 unigenes out of 31,344 transcripts. Among these, 705 potential secretory proteins were predicted and functionally annotated against publicly accessible protein databases. Notably, a substantial proportion of secretory genes (71.5%, 69.08%, and 60.85%) were predicted to encode known proteins in Nr, Pfam, and Swiss-Prot databases, respectively. Conversely, 27.37% and 0.99% of gene transcripts were predicted to encode known proteins with unspecified functions in the Nr and Swiss-Prot databases, respectively. Meanwhile, the proteomic analysis result identified, 15 salivary proteins. Interestingly, most salivary proteins (i.e., 60% of the proteins) showed close similarity to A. craccivora, while 46.67% showed close similarity to A. glycines, M. sacchari and S. flava. However, to verify the expression of these secretory genes and characterize the biological function of salivary proteins further investigation should be geared towards gene expression and functional analysis.
Collapse
Affiliation(s)
| | - Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100875, China;
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100875, China;
| |
Collapse
|
17
|
Thorpe P, Altmann S, Lopez-Cobollo R, Douglas N, Iqbal J, Kanvil S, Simon JC, Carolan JC, Bos J, Turnbull C. Multi-omics approaches define novel aphid effector candidates associated with virulence and avirulence phenotypes. BMC Genomics 2024; 25:1065. [PMID: 39528973 PMCID: PMC11552303 DOI: 10.1186/s12864-024-10984-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Compatibility between plant parasites and their hosts is genetically determined {Citation}both interacting organisms. For example, plants may carry resistance (R) genes or deploy chemical defences. Aphid saliva contains many proteins that are secreted into host tissues. Subsets of these proteins are predicted to act as effectors, either subverting or triggering host immunity. However, associating particular effectors with virulence or avirulence outcomes presents challenges due to the combinatorial complexity. Here we use defined aphid and host genetics to test for co-segregation of expressed aphid transcripts and proteins with virulent or avirulent phenotypes. RESULTS We compared virulent and avirulent pea aphid parental genotypes, and their bulk segregant F1 progeny on Medicago truncatula genotypes carrying or lacking the RAP1 (Resistance to Acyrthosiphon pisum 1) resistance quantitative trait locus. Differential gene expression analysis of whole body and head samples, in combination with proteomics of saliva and salivary glands, enabled us to pinpoint proteins associated with virulence or avirulence phenotypes. There was relatively little impact of host genotype, whereas large numbers of transcripts and proteins were differentially expressed between parental aphids, likely a reflection of their classification as divergent biotypes within the pea aphid species complex. Many fewer transcripts intersected with the equivalent differential expression patterns in the bulked F1 progeny, providing an effective filter for removing genomic background effects. Overall, there were more upregulated genes detected in the F1 avirulent dataset compared with the virulent one. Some genes were differentially expressed both in the transcriptome and in the proteome datasets, with aminopeptidase N proteins being the most frequent differentially expressed family. In addition, a substantial proportion (27%) of salivary proteins lack annotations, suggesting that many novel functions remain to be discovered. CONCLUSIONS Especially when combined with tightly controlled genetics of both insect and host plant, multi-omics approaches are powerful tools for revealing and filtering candidate lists down to plausible genes for further functional analysis as putative aphid effectors.
Collapse
Affiliation(s)
- Peter Thorpe
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD5 4EH, UK
| | - Simone Altmann
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD5 4EH, UK
| | - Rosa Lopez-Cobollo
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Nadine Douglas
- Sustainable Ecosystems Group, Department of Biology, Maynooth University, Co Kildare, Maynooth, Republic of Ireland
- School of Biology and Environmental Science, University College Dublin, Dublin 2, Republic of Ireland
| | - Javaid Iqbal
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Sadia Kanvil
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Jean-Christophe Simon
- Institut de Génétique Environnement et Protection des Plantes (IGEPP), INRAE, 35653, Le Rheu, France
| | - James C Carolan
- Sustainable Ecosystems Group, Department of Biology, Maynooth University, Co Kildare, Maynooth, Republic of Ireland
| | - Jorunn Bos
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD5 4EH, UK.
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| | - Colin Turnbull
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
18
|
Gouda MNR, Subramanian S. Decoding the genomic terrain: functional insights into 14 chemosensory proteins in whitefly Bemisia tabaci Asia II-1. Sci Rep 2024; 14:26252. [PMID: 39482332 PMCID: PMC11528076 DOI: 10.1038/s41598-024-77998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024] Open
Abstract
Genome-wide analysis of Bemisia tabaci Asia II-1 unravelled for the first-time full-length sequences of 14 chemosensory proteins (CSPs), their exon-intron boundaries, insertion sites of retrotransposons, and clustering patterns on chromosomes. All the CSPs sans CSP6 have an N-terminal signal peptide. The presence of OS-D superfamily and PhBP domains in different CSPs suggests their roles in chemosensory signal transduction and pheromone binding. Motif analysis reveals the conservation and cohesiveness of CSPs in hemiptera. The phylogenetic analysis uncovers the evolutionary lineages of Hemipteran CSPs. RT-qPCR analysis showed spatial expression of CSPs in different body tissues of B. tabaci adults. In-silico docking analysis showed high-affinity binding of CSP 1 and 5 with two insecticides, imidacloprid and fipronil, with energy values ranging from - 5.8 to -9.3 kcal/mol, along with the details of interacting aminoacidic residues in the hydrophobic binding pockets of these two CSPs. Further functional validation was done through insecticide bioassays and RNAi. This study provides novel insights into the genomic architecture of CSPs in B. tabaci Asia II-1, and functional characterisation suggests that CSP1 and 5 genes may have indirect roles in insecticide resistance. It lays the foundation for further research on developing new control strategies for B. tabaci.
Collapse
Affiliation(s)
- M N Rudra Gouda
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | | |
Collapse
|
19
|
Ge P, Guo H, Li D, Zhu-Salzman K, Sun Y. A color morph-specific salivary carotenoid desaturase enhances plant photosynthesis and facilitates phloem feeding of Myzus persicae (Sulzer). PEST MANAGEMENT SCIENCE 2024; 80:5014-5025. [PMID: 38847471 DOI: 10.1002/ps.8225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 04/15/2024] [Accepted: 05/20/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Body-color polymorphisms in insects are often explained by environmental selective advantages. Differential fitness related to body coloration has been demonstrated in Myzus persicae (Sulzer): performance of the red morph is in general better than that of the green morph on tobacco plants. However, the molecular mechanism involved is largely unclear. RESULTS Here we showed that the red morph of M. persicae had higher expression of a carotenoid desaturase CarD763 in the whole body, salivary gland and saliva relative to the green morph. Also, 18% individuals displayed faded red body color 5 days post dsCarD763 treatment. Furthermore, knockdown of CarD763 in the red morph significantly prolonged the time needed to locate phloem and shortened the duration of phloem feeding. Honeydew production and survival rate decreased as well. In contrast, overexpression of CarD763 in tobacco leaves facilitated aphid feeding, enhanced honeydew production and improved the survival rate of aphids. Compared with those fed by dsGFP aphids, plants infested by dsCarD763-treated aphids had higher ROS accumulation, lower lycopene content and photosynthetic rate, and maximum photon quantum yield. The reverse was true when plants overexpressed CarD763. CONCLUSION These findings demonstrated that CarD763, a red morph-specific salivary protein, could enhance aphid feeding and early colonization by promoting plant photosynthesis. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Panpan Ge
- State Key Laboratory of Integrated Pest Management and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Huijuan Guo
- State Key Laboratory of Integrated Pest Management and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Danyang Li
- State Key Laboratory of Integrated Pest Management and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Yucheng Sun
- State Key Laboratory of Integrated Pest Management and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Yao Y, Lin HT, Chen YH, Chen LL, Zhang HL, Fu HY, Gao SJ, Wang R, Feng HL, Wang JD. Salivary Protein Sfapyrase of Spodoptera frugiperda Stimulates Plant Defence Response. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39262278 DOI: 10.1111/pce.15121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
Plants have developed various resistance mechanisms against herbivorous insects through prolonged coevolution. Plant defence responses can be triggered by specific compounds present in insect saliva. Apyrase, a known enzyme that catalyzes the hydrolysis of adenosine triphosphate (ATP) and adenosine diphosphate (ADP) into adenosine monophosphate (AMP) and inorganic phosphorus, has recently been identified in some herbivorous insects. However, whether insect salivary apyrase induces or inhibits plant responses remains poorly understood. In this study, we identified an apyrase-like protein in the salivary proteome of the fall armyworm, Spodoptera frugiperda, named Sfapyrase. Sfapyrase was primarily expressed in the salivary gland and secreted into plants during insect feeding. Transient expression of Sfapyrase in tobacco and maize enhanced plant resistance and resulted in decreased insect feeding. Knockdown of Sfapyrase through RNA interference led to increased growth and feeding of S. frugiperda. Furthermore, we showed that Sfapyrase activates the jasmonic acid signalling pathway and promotes the synthesis of secondary metabolites, especially benzoxazinoids, thereby enhancing resistance to S. frugiperda. In summary, our findings demonstrated that Sfapyrase acts as a salivary elicitor, inducing maize jasmonic acid defence responses and the production of insect-resistant benzoxazinoids. This study provides valuable insights into plant-insect interactions and offers potential targets for developing innovative insect pest management strategies.
Collapse
Affiliation(s)
- Yang Yao
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huan-Tai Lin
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yao-Hui Chen
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li-Lan Chen
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui-Li Zhang
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hua-Ying Fu
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - San-Ji Gao
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ran Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hong-Lin Feng
- Department of Entomology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Jin-da Wang
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
21
|
Prajapati VK, Vijayan V, Vadassery J. Secret Weapon of Insects: The Oral Secretion Cocktail and Its Modulation of Host Immunity. PLANT & CELL PHYSIOLOGY 2024; 65:1213-1223. [PMID: 38877965 DOI: 10.1093/pcp/pcae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 09/04/2024]
Abstract
Plants and insects have co-existed for almost 400 million years and their interactions can be beneficial or harmful, thus reflecting their intricate co-evolutionary dynamics. Many herbivorous arthropods cause tremendous crop loss, impacting the agro-economy worldwide. Plants possess an arsenal of chemical defenses that comprise diverse secondary metabolites that help protect against harmful herbivorous arthropods. In response, the strategies that herbivores use to cope with plant defenses can be behavioral, or molecular and/or biochemical of which salivary secretions are a key determinant. Insect salivary secretions/oral secretions (OSs) play a crucial role in plant immunity as they contain several biologically active elicitors and effector proteins that modulate plants' defense responses. Using this oral secretion cocktail, insects overcome plant natural defenses to allow successful feeding. However, a lack of knowledge of the nature of the signals present in oral secretion cocktails has resulted in reduced mechanistic knowledge of their cellular perception. In this review, we discuss the latest knowledge on herbivore oral secretion derived elicitors and effectors and various mechanisms involved in plant defense modulation. Identification of novel herbivore-released molecules and their plant targets should pave the way for understanding the intricate strategies employed by both herbivorous arthropods and plants in their interactions.
Collapse
Affiliation(s)
| | - Vishakh Vijayan
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | |
Collapse
|
22
|
Wang X, Luo X, Guo J, Yang N, Wan F, Lü Z, Liu W. An effector of Phthorimaea absoluta oral secretions inhibits host plant defense. iScience 2024; 27:110154. [PMID: 39050704 PMCID: PMC11267060 DOI: 10.1016/j.isci.2024.110154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/20/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Insects have evolved effectors to regulate host defenses for efficient feeding, yet their impact on chewing insects, like the tomato leaf miner (Phthorimaea absoluta), a significant pest, is poorly understood. We used RNAi to target the REPAT38 gene in larvae, monitoring changes at 0.5, 1, 2, and 4 h in leaf stomata, plant hormone concentrations (jasmonic acid (JA), jasmonoyl-L-isoleucine (JA-Ile), salicylic acid (SA), ethylene (ET), and abscisic acid (ABA)), and 12 hormone-responsive genes to explore the molecular mechanism of REPAT38-mediated plant-insect interactions. The results showed that the effector induced stomatal closure at 0.5 h and inhibited the synthesis of JA, ET, and ABA at 1 h. Additionally, seven plant hormone-responsive genes-AOC, MYC2, ACS1A, PAL, PR1, EIL2, and SRK2E-were inhibited at various time points. Our data suggest that REPAT38, as an effector with conserved functions, can weaken tomato host defenses and conducive to insect adaptation to host plants.
Collapse
Affiliation(s)
- Xiaodi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuqing Luo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianyang Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nianwan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, P.R. China
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhichuang Lü
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
23
|
Gouda MNR, Subramanian S. Variations in the expression of odorant binding and chemosensory proteins in the developmental stages of whitefly Bemisia tabaci Asia II-1. Sci Rep 2024; 14:15046. [PMID: 38951601 PMCID: PMC11217293 DOI: 10.1038/s41598-024-65785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
The cotton whitefly, Bemisia tabaci, is considered as a species complex with 46 cryptic species, with Asia II-1 being predominant in Asia. This study addresses a significant knowledge gap in the characterization of odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) in Asia II-1. We explored the expression patterns of OBPs and CSPs throughout their developmental stages and compared the motif patterns of these proteins. Significant differences in expression patterns were observed for the 14 OBPs and 14 CSPs of B. tabaci Asia II-1, with OBP8 and CSP4 showing higher expression across the developmental stages. Phylogenetic analysis reveals that OBP8 and CSP4 form distinct clades, with OBP8 appearing to be an ancestral gene, giving rise to the evolution of other odorant-binding proteins in B. tabaci. The genomic distribution of OBPs and CSPs highlights gene clustering on the chromosomes, suggesting functional conservation and evolutionary events following the birth-and-death model. Molecular docking studies indicate strong binding affinities of OBP8 and CSP4 with various odour compounds like β-caryophyllene, α-pinene, β-pinene and limonene, reinforcing their roles in host recognition and reproductive functions. This study elaborates on our understanding of the putative roles of different OBPs and CSPs in B. tabaci Asia II-1, hitherto unexplored. The dynamics of the expression of OBPs and CSPs and their interactions with odour compounds offer scope for developing innovative methods for controlling this global invasive pest.
Collapse
Affiliation(s)
- M N Rudra Gouda
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - S Subramanian
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
24
|
Stojilković B, Xiang H, Chen Y, Maulana MI, Bauters L, Van de Put H, Steppe K, Liao J, de Almeida Engler J, Gheysen G. The nematode effector Mj-NEROSs interacts with Rieske's iron-sulfur protein influencing plastid ROS production to suppress plant immunity. THE NEW PHYTOLOGIST 2024; 242:2787-2802. [PMID: 38693568 DOI: 10.1111/nph.19781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/16/2024] [Indexed: 05/03/2024]
Abstract
Root-knot nematodes (RKN; Meloidogyne species) are plant pathogens that introduce several effectors in their hosts to facilitate infection. The actual targets and functioning mechanism of these effectors largely remain unexplored. This study illuminates the role and interplay of the Meloidogyne javanica nematode effector ROS suppressor (Mj-NEROSs) within the host plant environment. Mj-NEROSs suppresses INF1-induced cell death as well as flg22-induced callose deposition and reactive oxygen species (ROS) production. A transcriptome analysis highlighted the downregulation of ROS-related genes upon Mj-NEROSs expression. NEROSs interacts with the plant Rieske's iron-sulfur protein (ISP) as shown by yeast-two-hybrid and bimolecular fluorescence complementation. Secreted from the subventral pharyngeal glands into giant cells, Mj-NEROSs localizes in the plastids where it interacts with ISP, subsequently altering electron transport rates and ROS production. Moreover, our results demonstrate that isp Arabidopsis thaliana mutants exhibit increased susceptibility to M. javanica, indicating ISP importance for plant immunity. The interaction of a nematode effector with a plastid protein highlights the possible role of root plastids in plant defense, prompting many questions on the details of this process.
Collapse
Affiliation(s)
- Boris Stojilković
- Department of Biotechnology, Ghent University, Proeftuinstraat 86, Ghent, 9000, Belgium
- Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Hui Xiang
- Department of Biotechnology, Ghent University, Proeftuinstraat 86, Ghent, 9000, Belgium
| | - Yujin Chen
- Department of Biotechnology, Ghent University, Proeftuinstraat 86, Ghent, 9000, Belgium
| | - Muhammad Iqbal Maulana
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora, Bulaksumur, Yogyakarta, 55281, Indonesia
| | - Lander Bauters
- Department of Biotechnology, Ghent University, Proeftuinstraat 86, Ghent, 9000, Belgium
| | - Hans Van de Put
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Gent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Gent, Belgium
| | - Jinling Liao
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Vocational College of Ecological Engineering, Guangzhou, 510520, China
| | | | - Godelieve Gheysen
- Department of Biotechnology, Ghent University, Proeftuinstraat 86, Ghent, 9000, Belgium
| |
Collapse
|
25
|
Pavithran S, Murugan M, Mannu J, Sathyaseelan C, Balasubramani V, Harish S, Natesan S. Salivary gland transcriptomics of the cotton aphid Aphis gossypii and comparative analysis with other sap-sucking insects. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22123. [PMID: 38860775 DOI: 10.1002/arch.22123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024]
Abstract
Aphids are sap-sucking insects responsible for crop losses and a severe threat to crop production. Proteins in the aphid saliva are integral in establishing an interaction between aphids and plants and are responsible for host plant adaptation. The cotton aphid, Aphis gossypii (Hemiptera: Aphididae) is a major pest of Gossypium hirsutum. Despite extensive studies of the salivary proteins of various aphid species, the components of A. gossypii salivary glands are unknown. In this study, we identified 123,008 transcripts from the salivary gland of A. gossypii. Among those, 2933 proteins have signal peptides with no transmembrane domain known to be secreted from the cell upon feeding. The transcriptome includes proteins with more comprehensive functions such as digestion, detoxification, regulating host defenses, regulation of salivary glands, and a large set of uncharacterized proteins. Comparative analysis of salivary proteins of different aphids and other insects with A. gossypii revealed that 183 and 88 orthologous clusters were common in the Aphididae and non-Aphididae groups, respectively. The structure prediction for highly expressed salivary proteins indicated that most possess an intrinsically disordered region. These results provide valuable reference data for exploring novel functions of salivary proteins in A. gossypii with their host interactions. The identified proteins may help develop a sustainable way to manage aphid pests.
Collapse
Affiliation(s)
- Shanmugasundram Pavithran
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - Marimuthu Murugan
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - Jayakanthan Mannu
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Chakkarai Sathyaseelan
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Venkatasamy Balasubramani
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - Sankarasubramanian Harish
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - Senthil Natesan
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
26
|
Zhang Y, Liu X, Sun Y, Liu Y, Zhang Y, Ding T, Chen J. Salivary Protein Cyclin-Dependent Kinase-like from Grain Aphid Sitobion avenae Suppresses Wheat Defense Response and Enhances Aphid Adaptation. Int J Mol Sci 2024; 25:4579. [PMID: 38731798 PMCID: PMC11083452 DOI: 10.3390/ijms25094579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
Aphids are insect pests that suck phloem sap and introduce salivary proteins into plant tissues through saliva secretion. The effector of salivary proteins plays a key role in the modulation of host plant defense responses and enhancing aphid host adaptation. Based on previous transcriptome sequencing results, a candidate effector cyclin-dependent kinase-like (CDK) was identified from the grain aphid Sitobion avenae. In this study, the function of SaCDK in wheat defense response and the adaptation of S. avenae was investigated. Our results showed that the transient overexpression of SaCDK in tobacco Nicotiana benthamiana suppressed cell death triggered by mouse pro-apoptotic protein-BAX or Phytophthora infestans PAMP-INF1. SaCDK, delivered into wheat cells through a Pseudomonas fluorescens-mediated bacterial type III secretion system, suppressed callose deposition in wheat seedlings, and the overexpression of SaCDK in wheat significantly decreased the expression levels of salicylic acid and jasmonic acid signaling pathway-related genes phenylalanine ammonia lyase (PAL), pathogenesis-related 1 protein (PR1), lipoxygenase (LOX) and Ω-3 fatty acid desaturase (FAD). In addition, aphid bioassay results showed that the survival and fecundity of S. avenae were significantly increased while feeding on the wheat plants carrying SaCDK. Taken together, our findings demonstrate that the salivary protein SaCDK is involved in inhibiting host defense response and improving its host adaptation, which lays the foundation to uncover the mechanism of the interaction of cereal aphids and host plants.
Collapse
Affiliation(s)
- Yumeng Zhang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China;
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (Y.S.)
| | - Xiaobei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (Y.S.)
| | - Yu Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (Y.S.)
| | - Yong Liu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (Y.S.)
| | - Tianbo Ding
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China;
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.L.); (Y.S.)
| |
Collapse
|
27
|
Ma X, Yin Z, Li H, Guo J. Roles of herbivorous insects salivary proteins. Heliyon 2024; 10:e29201. [PMID: 38601688 PMCID: PMC11004886 DOI: 10.1016/j.heliyon.2024.e29201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
The intricate relationship between herbivorous insects and plants has evolved over millions of years, central to this dynamic interaction are salivary proteins (SPs), which mediate key processes ranging from nutrient acquisition to plant defense manipulation. SPs, sourced from salivary glands, intestinal regurgitation or acquired through horizontal gene transfer, exhibit remarkable functional versatility, influencing insect development, behavior, and adhesion mechanisms. Moreover, SPs play pivotal roles in modulating plant defenses, to induce or inhibit plant defenses as elicitors or effectors. In this review, we delve into the multifaceted roles of SPs in herbivorous insects, highlighting their diverse impacts on insect physiology and plant responses. Through a comprehensive exploration of SP functions, this review aims to deepen our understanding of plant-insect interactions and foster advancements in both fundamental research and practical applications in plant-insect interactions.
Collapse
Affiliation(s)
- Xinyi Ma
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| | - Zhiyong Yin
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| | - Haiyin Li
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| | - Jianjun Guo
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| |
Collapse
|
28
|
van Kleeff PJM, Mastop M, Sun P, Dangol S, van Doore E, Dekker HL, Kramer G, Lee S, Ryu CM, de Vos M, Schuurink RC. Discovery of Three Bemisia tabaci Effectors and Their Effect on Gene Expression in Planta. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:380-395. [PMID: 38114195 DOI: 10.1094/mpmi-04-23-0044-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Bemisia tabaci (whitefly) is a polyphagous agroeconomic pest species complex. Two members of this species complex, Mediterranean (MED) and Middle-East-Asia Minor 1 (MEAM1), have a worldwide distribution and have been shown to manipulate plant defenses through effectors. In this study, we used three different strategies to identify three MEAM1 proteins that can act as effectors. Effector B1 was identified using a bioinformatics-driven effector-mining strategy, whereas effectors S1 and P1 were identified in the saliva of whiteflies collected from artificial diet and in phloem exudate of tomato on which nymphs were feeding, respectively. These three effectors were B. tabaci specific and able to increase whitefly fecundity when transiently expressed in tobacco plants (Nicotiana tabacum). Moreover, they reduced growth of Pseudomonas syringae pv. tabaci in Nicotiana benthamiana. All three effectors changed gene expression in planta, and B1 and S1 also changed phytohormone levels. Gene ontology and KEGG pathway enrichment analysis pinpointed plant-pathogen interaction and photosynthesis as the main enriched pathways for all three effectors. Our data thus show the discovery and validation of three new B. tabaci MEAM1 effectors that increase whitefly fecundity and modulate plant immunity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Paula J M van Kleeff
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Marieke Mastop
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Pulu Sun
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Sarmina Dangol
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Eva van Doore
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Henk L Dekker
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Soohyun Lee
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea
| | | | - Robert C Schuurink
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
29
|
Bleau JR, Gaur N, Fu Y, Bos JIB. Unveiling the Slippery Secrets of Saliva: Effector Proteins of Phloem-Feeding Insects. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:211-219. [PMID: 38148271 DOI: 10.1094/mpmi-10-23-0167-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Phloem-feeding insects include many important agricultural pests that cause crop damage globally, either through feeding-related damage or upon transmission of viruses and microbes that cause plant diseases. With genetic crop resistances being limited to most of these pests, control relies on insecticides, which are costly and damaging to the environment and to which insects can develop resistance. Like other plant parasites, phloem-feeding insects deliver effectors inside their host plants to promote susceptibility, most likely by a combination of suppressing immunity and promoting nutrient availability. The recent emergence of the effector paradigm in plant-insect interactions is highlighted by increasing availability of effector repertoires for a range of species and a broadening of our knowledge concerning effector functions. Here, we focus on recent progress made toward identification of effector repertoires from phloem-feeding insects and developments in effector biology that will advance functional characterization studies. Importantly, identification of effector activities from herbivorous insects promises to provide new avenues toward development of crop protection strategies. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Jade R Bleau
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD2 5DA, U.K
| | - Namami Gaur
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD2 5DA, U.K
| | - Yao Fu
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD2 5DA, U.K
| | - Jorunn I B Bos
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD2 5DA, U.K
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, U.K
| |
Collapse
|
30
|
Waksman T, Astin E, Fisher SR, Hunter WN, Bos JIB. Computational Prediction of Structure, Function, and Interaction of Myzus persicae (Green Peach Aphid) Salivary Effector Proteins. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:338-346. [PMID: 38171380 DOI: 10.1094/mpmi-10-23-0154-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Similar to plant pathogens, phloem-feeding insects such as aphids deliver effector proteins inside their hosts that act to promote host susceptibility and enable feeding and infestation. Despite exciting progress toward identifying and characterizing effector proteins from these insects, their functions remain largely unknown. The recent groundbreaking development in protein structure prediction algorithms, combined with the availability of proteomics and transcriptomic datasets for agriculturally important pests, provides new opportunities to explore the structural and functional diversity of effector repertoires. In this study, we sought to gain insight into the infection strategy used by the Myzus persicae (green peach aphid) by predicting and analyzing the structures of a set of 71 effector candidate proteins. We used two protein structure prediction methods, AlphaFold and OmegaFold, that produced mutually consistent results. We observed a wide continuous spectrum of structures among the effector candidates, from disordered proteins to globular enzymes. We made use of the structural information and state-of-the-art computational methods to predict M. persicae effector protein properties, including function and interaction with host plant proteins. Overall, our investigation provides novel insights into prediction of structure, function, and interaction of M. persicae effector proteins and will guide the necessary experimental characterization to address new hypotheses. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Thomas Waksman
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, U.K
| | - Edmund Astin
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, U.K
| | - S Ronan Fisher
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, U.K
| | - William N Hunter
- Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, U.K
| | - Jorunn I B Bos
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, U.K
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, U.K
| |
Collapse
|
31
|
Cui JR, Zhou B, Tang YJ, Zhou JY, Ren L, Liu F, Hoffmann AA, Hong XY. A new spider mite elicitor triggers plant defence and promotes resistance to herbivores. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1493-1509. [PMID: 37952109 DOI: 10.1093/jxb/erad452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Herbivore-associated elicitors (HAEs) are active molecules produced by herbivorous insects. Recognition of HAEs by plants induces defence that resist herbivore attacks. We previously demonstrated that the tomato red spider mite Tetranychus evansi triggered defence in Nicotiana benthamiana. However, our knowledge of HAEs from T. evansi remains limited. Here, we characterize a novel HAE, Te16, from T. evansi and dissect its function in mite-plant interactions. We investigate the effects of Te16 on spider mites and plants by heterologous expression, virus-induced gene silencing assay, and RNA interference. Te16 induces cell death, reactive oxygen species (ROS) accumulation, callose deposition, and jasmonate (JA)-related responses in N. benthamiana leaves. Te16-mediated cell death requires a calcium signalling pathway, cytoplasmic localization, the plant co-receptor BAK1, and the signalling components SGT1 and HSP90. The active region of Te16-induced cell death is located at amino acids 114-293. Moreover, silencing Te16 gene in T. evansi reduces spider mite survival and hatchability, but expressing Te16 in N. benthamiana leaves enhances plant resistance to herbivores. Finally, Te16 gene is specific to Tetranychidae species and is highly conserved in activating plant immunity. Our findings reveal a novel salivary protein produced by spider mites that elicits plant defence and resistance to insects, providing valuable clues for pest management.
Collapse
Affiliation(s)
- Jia-Rong Cui
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Bin Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yi-Jing Tang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jia-Yi Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lu Ren
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Fan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Xiao-Yue Hong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
32
|
Pavithran S, Murugan M, Mannu J, Yogendra K, Balasubramani V, Sanivarapu H, Harish S, Natesan S. Identification of salivary proteins of the cowpea aphid Aphis craccivora by transcriptome and LC-MS/MS analyses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104060. [PMID: 38123026 DOI: 10.1016/j.ibmb.2023.104060] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Aphid salivary proteins mediate the interaction between aphids and their host plants. Moreover, these proteins facilitate digestion, detoxification of secondary metabolites, as well as activation and suppression of plant defenses. The cowpea aphid, Aphis craccivora, is an important sucking pest of leguminous crops worldwide. Although aphid saliva plays an important role in aphid plant interactions, knowledge of the cowpea aphid salivary proteins is limited. In this study, we performed transcriptomic and LC-MS/MS analyses to identify the proteins present in the salivary glands and saliva of A. craccivora. A total of 1,08,275 assembled transcripts were identified in the salivary glands of aphids. Of all these assembled transcripts, 53,714 (49.11%) and 53,577 (49.48%) transcripts showed high similarity to known proteins in the Nr and UniProt databases, respectively. A total of 2159 proteins were predicted as secretory proteins from the salivary gland transcriptome dataset, which contain digestive enzymes, detoxification enzymes, previously known effectors and elicitors, and potential proteins whose functions have yet to be determined. The proteomic analysis of aphid saliva resulted in the identification of 171 proteins. Tissue-specific expression of selected genes using RT-PCR showed that three genes were expressed only in the salivary glands. Overall, our results provide a comprehensive repertoire of cowpea aphid salivary proteins from the salivary gland and saliva, which will be a good resource for future effector functional studies and might also be useful for sustainable aphid management.
Collapse
Affiliation(s)
- Shanmugasundram Pavithran
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Marimuthu Murugan
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| | - Jayakanthan Mannu
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Kalenahalli Yogendra
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Venkatasamy Balasubramani
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Hemalatha Sanivarapu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Sankarasubramanian Harish
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Senthil Natesan
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| |
Collapse
|
33
|
Yang L, Qin CY, Chen Y, Wang ZG, Chen RY, Niu J, Wang JJ. Fusion dsRNA in targeting salivary protein genes enhance the RNAi-based aphid control. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105645. [PMID: 38072520 DOI: 10.1016/j.pestbp.2023.105645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/23/2023] [Accepted: 10/09/2023] [Indexed: 12/18/2023]
Abstract
RNA interference (RNAi) is a promising tool for pest control and relies on sequence-specific gene silencing. Salivary proteins are cooperatively secreted into plants to guarantee the feeding of aphids; thus they have potential to develop as selective targets for RNAi-based pest control strategy. For this purpose, we firstly analyzed 18 salivary proteomes of various aphid species, and these salivary proteins can be mainly categorized into seven functional groups. Secondly, we created a work-flow for fusion dsRNA design that can target multiple genes but were selectively safe to beneficial insects. Based on this approach, seven fusion dsRNAs were designed to feed the green peach aphid, which induced a significant reduction in aphid fitness. Among them, ingestion of dsperoxidase induced the highest mortality in aphids, which was also significantly higher than that of traditional dsRNAs in targeting three peroxidases separately. In addition, dsperoxidase-fed green peach aphids triggered the highest H2O2 content of host plants as well as the attraction to natural enemies (ladybeetle and parasitic wasp) but repellent to other control aphids. Our results indicate that the fusion dsRNA design approach can improve aphid control capacity, and the fusion dsRNA targeting salivary protein-encoding genes can enhance the direct and indirect defenses of host plants, thus providing a new strategy for RNAi-based aphid control.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Cong-Yan Qin
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yang Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zi-Guo Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Ruo-Yu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
34
|
Huang Y, Hu B, Wei Z, Shan S, Guo C, Zhang H, Li Y, Chen J, Kang X, Huang H, Sun Z. A secreted salivary effector from Riptortus pedestris impairs soybean defense through modulating phytohormone signaling pathways. INSECT SCIENCE 2023; 30:1637-1647. [PMID: 37144452 DOI: 10.1111/1744-7917.13207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 05/06/2023]
Abstract
Riptortus pedestris (Fabricius), one of the major piercing-sucking insects in soybeans, causes delayed plant senescence and abnormal pods, known as staygreen syndrome. Recent research has shown that direct feeding of this insect is the major cause of soybean staygreen syndrome. However, it remains unclear whether R. pedestris salivary proteins play vital roles in insect infestation. Here, we found that 4 secretory salivary proteins can induce cell death in Nicotiana benthamiana by transient heterologous expression. The cell death induced by Rp2155 relies on the nucleotide-binding leucine-rich repeat helper, HSP90. Tissue-specificity assays indicated that Rp2155 is specifically expressed in the salivary gland of R. pedestris and is significantly induced during insect feeding. The expression of salicylic acid (SA)-, jasmonic acid (JA)-related genes was increased in soybean when fed by Rp2155-silenced R. pedestris. More importantly, soybean staygreen symptoms caused by R. pedestris were significantly alleviated when Rp2155 was silenced. Together, these results suggest that the salivary effector Rp2155 is involved in promoting insect infestation by suppressing the JA and SA pathways, and it can be considered as a potential RNA interference target for insect control.
Collapse
Affiliation(s)
- Yue Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Biao Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Shiqi Shan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Chunyun Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Xue Kang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Haijian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| |
Collapse
|
35
|
Zhang Y, Fu Y, Liu X, Francis F, Fan J, Liu H, Wang Q, Sun Y, Zhang Y, Chen J. SmCSP4 from aphid saliva stimulates salicylic acid-mediated defence responses in wheat by interacting with transcription factor TaWKRY76. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2389-2407. [PMID: 37540474 PMCID: PMC10579719 DOI: 10.1111/pbi.14139] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Aphid salivary proteins are critical in modulating plant defence responses. Grain aphid Sitobion miscanthi is an important wheat pest worldwide. However, the molecular basis for the regulation of the plant resistance to cereal aphids remains largely unknown. Here, we show that SmCSP4, a chemosensory protein from S. miscanthi saliva, is secreted into wheat plants during aphid feeding. Delivery of SmCSP4 into wheat leaves activates salicylic acid (SA)-mediated plant defence responses and subsequently reduces aphid performance by deterring aphid feeding behaviour. In contrast, silencing SmCSP4 gene via nanocarrier-mediated RNAi significantly decreases the ability of aphids to activate SA defence pathway. Protein-protein interaction assays showed that SmCSP4 directly interacts with wheat transcriptional factor TaWRKY76 in plant nucleus. Furthermore, TaWRKY76 directly binds to the promoter of SA degradation gene Downy Mildew Resistant 6 (DMR6) and regulates its gene expression as transcriptional activator. SmCSP4 secreted by aphids reduces the transcriptional activation activity of TaWRKY76 on DMR6 gene expression, which is proposed to result in increases of SA accumulation and enhanced plant immunity. This study demonstrated that SmCSP4 acts as salivary elicitor that is involved in activating SA signalling defence pathway of wheat by interacting with TaWRKY76, which provide novel insights into aphid-cereal crops interactions and the molecular mechanism on induced plant immunity.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Yu Fu
- PHIM Plant Health InstituteUniv Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Xiaobei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | - Jia Fan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Huan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- Department of Entomology, College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Yu Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Yumeng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- College of Plant Health and MedicineQingdao Agricultural UniversityQingdaoChina
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
36
|
Yu H, Wu X, Liang J, Han Z, Xiao Y, Du H, Liu Y, Guo J, Peng F. Genome-wide identification of nucleotide-binding domain leucine-rich repeat (NLR) genes and their association with green peach aphid (Myzus persicae) resistance in peach. BMC PLANT BIOLOGY 2023; 23:513. [PMID: 37880593 PMCID: PMC10598982 DOI: 10.1186/s12870-023-04474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023]
Abstract
Resistance genes (R genes) are a class of genes that are immune to a wide range of diseases and pests. In planta, NLR genes are essential components of the innate immune system. Currently, genes belonging to NLR family have been found in a number of plant species, but little is known in peach. Here, 286 NLR genes were identified on peach genome by using their homologous genes in Arabidopsis thaliana as queries. These 286 NLR genes contained at least one NBS domain and LRR domain. Phylogenetic and N-terminal domain analysis showed that these NLRs could be separated into four subfamilies (I-IV) and their promoters contained many cis-elements in response to defense and phytohormones. In addition, transcriptome analysis showed that 22 NLR genes were up-regulated after infected by Green Peach Aphid (GPA), and showed different expression patterns. This study clarified the NLR gene family and their potential functions in aphid resistance process. The candidate NLR genes might be useful in illustrating the mechanism of aphid resistance in peach.
Collapse
Affiliation(s)
- Haixiang Yu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xuelian Wu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jiahui Liang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ziying Han
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yuansong Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hao Du
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yihua Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong, 276000, China
| | - Jian Guo
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Futian Peng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
37
|
Yan ZW, Chen FY, Zhang X, Cai WJ, Chen CY, Liu J, Wu MN, Liu NJ, Ma B, Wang MY, Chao DY, Gao CJ, Mao YB. Endocytosis-mediated entry of a caterpillar effector into plants is countered by Jasmonate. Nat Commun 2023; 14:6551. [PMID: 37848424 PMCID: PMC10582130 DOI: 10.1038/s41467-023-42226-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
Insects and pathogens release effectors into plant cells to weaken the host defense or immune response. While the imports of some bacterial and fungal effectors into plants have been previously characterized, the mechanisms of how caterpillar effectors enter plant cells remain a mystery. Using live cell imaging and real-time protein tracking, we show that HARP1, an effector from the oral secretions of cotton bollworm (Helicoverpa armigera), enters plant cells via protein-mediated endocytosis. The entry of HARP1 into a plant cell depends on its interaction with vesicle trafficking components including CTL1, PATL2, and TET8. The plant defense hormone jasmonate (JA) restricts HARP1 import by inhibiting endocytosis and HARP1 loading into endosomes. Combined with the previous report that HARP1 inhibits JA signaling output in host plants, it unveils that the effector and JA establish a defense and counter-defense loop reflecting the robust arms race between plants and insects.
Collapse
Affiliation(s)
- Zi-Wei Yan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
| | - Fang-Yan Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CEMPS/SIPPE, CAS, Shanghai, China
| | - Xian Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
| | - Wen-Juan Cai
- Core Facility Center of CEMPS/SIPPE, CAS, Shanghai, China
| | - Chun-Yu Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
| | - Jie Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Man-Ni Wu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
| | - Ning-Jing Liu
- National Key Laboratory of Plant Molecular Genetics, CEMPS/SIPPE, CAS, Shanghai, China
| | - Bin Ma
- National Key Laboratory of Plant Molecular Genetics, CEMPS/SIPPE, CAS, Shanghai, China
| | - Mu-Yang Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, CEMPS/SIPPE, CAS, Shanghai, China
| | - Cai-Ji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Ying-Bo Mao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.
| |
Collapse
|
38
|
Zhao J, Liu Y, Xu S, Wang J, Zhang Z, Wang MQ, Turlings TCJ, Zhang P, Zhou A. Mealybug salivary microbes inhibit induced plant defenses. PEST MANAGEMENT SCIENCE 2023; 79:4034-4047. [PMID: 37287215 DOI: 10.1002/ps.7600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Phenacoccus solenopsis is a polyphagous invasive mealybug that caused serious damage to crops worldwide. Phloem-sucking hemipterans are known to carry symbiotic microbes in their saliva. However, the role of salivary bacteria of P. solenopsis in modulating plant defenses remains limited. Exploring the impact of salivary bacteria on plant defense responses will contribute to the development of new targets for efficient control of invasive mealybugs. RESULTS Salivary bacteria of the invasive mealybug P. solenopsis can suppress herbivore-induced plant defenses and thus enhance mealybug fitness. Mealybugs treated with an antibiotic showed decreased weight gain, fecundity and survival. Untreated mealybugs suppressed jasmonic acid (JA)-regulated defenses but activated salicylic acid (SA)-regulated defenses in cotton plants. In contrast, antibiotic-treated mealybugs triggered JA-responsive gene expression and JA accumulation, and showed shortened phloem ingestion. Reinoculating antibiotic-treated mealybugs with Enterobacteriaceae or Stenotrophomonas cultivated from mealybug saliva promoted phloem ingestion and fecundity, and restored the ability of mealybugs to suppress plant defenses. Fluorescence in situ hybridization visualization revealed that Enterobacteriaceae and Stenotrophomonas colonize salivary glands and are secreted into the mesophyll cells and phloem vessels. Exogenous application of the bacterial isolates to plant leaves inhibited JA-responsive gene expression and activated SA-responsive gene expression. CONCLUSION Our findings imply that symbiotic bacteria in the saliva of the mealybug play an important role in manipulating herbivore-induced plant defenses, enabling this important pest to evade induced plant defenses and promoting its performance and destructive effects on crops. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongheng Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shouye Xu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jialu Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zan Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Man-Qun Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Pengjun Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Aiming Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
39
|
Xu Z, Wang G, Luo J, Zhu M, Hu L, Liang S, Li B, Huang X, Wang Y, Zhang G, Zhang C, Zhou Y, Yuan D, Chen T, Chen L, Ma W, Gao W, Lindsey K, Zhang X, Ding F, Jin S. The chromosome-scale reference genome of mirid bugs (Adelphocoris suturalis) genome provides insights into omnivory, insecticide resistance, and survival adaptation. BMC Biol 2023; 21:195. [PMID: 37726763 PMCID: PMC10510153 DOI: 10.1186/s12915-023-01666-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/22/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Adelphocoris suturalis (Hemiptera: Miridae) is a notorious agricultural pest, which causes serious economic losses to a diverse range of agricultural crops around the world. The poor understanding of its genomic characteristics has seriously hindered the establishment of sustainable and environment-friendly agricultural pest management through biotechnology and biological insecticides. RESULTS Here, we report a chromosome-level assembled genome of A. suturalis by integrating Illumina short reads, PacBio, 10x Chromium, and Hi-C mapping technologies. The resulting 1.29 Gb assembly contains twelve chromosomal pseudomolecules with an N50 of 1.4 and 120.6 Mb for the contigs and scaffolds, respectively, and carries 20,010 protein-coding genes. The considerable size of the A. suturalis genome is predominantly attributed to a high amount of retrotransposons, especially long interspersed nuclear elements (LINEs). Transcriptomic and phylogenetic analyses suggest that A. suturalis-specific candidate effectors, and expansion and expression of gene families associated with omnivory, insecticide resistance and reproductive characteristics, such as digestion, detoxification, chemosensory receptors and long-distance migration likely contribute to its strong environmental adaptability and ability to damage crops. Additionally, 19 highly credible effector candidates were identified and transiently overexpressed in Nicotiana benthamiana for functional assays and potential targeting for insect resistance genetic engineering. CONCLUSIONS The high-quality genome of A. suturalis provides an important genomic landscape for further investigations into the mechanisms of omnivory, insecticide resistance and survival adaptation, and for the development of integrated management strategies.
Collapse
Affiliation(s)
- Zhongping Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guanying Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Mingju Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lisong Hu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
| | - Sijia Liang
- Academy of Industry Innovation and Development, Huanghuai University, Zhumadian, Henan, China
| | - Bo Li
- Xinjiang Key Laboratory of Crop Biotechnology, Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Wulumuqi, Xinjiang, China
| | - Xingxing Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ying Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guangyu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Can Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yi Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Taiyu Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lizhen Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Gao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, Henan, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fang Ding
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
40
|
Wang D, Yang Q, Hu X, Liu B, Wang Y. A Method for Identification of Biotype-Specific Salivary Effector Candidates of Aphid. INSECTS 2023; 14:760. [PMID: 37754728 PMCID: PMC10532216 DOI: 10.3390/insects14090760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023]
Abstract
Polyphagous aphids often consist of host-specialized biotypes that perform poorly in non-native hosts. The underlying mechanisms remain unknown. Host-specialized biotypes may express biotype-specific salivary effectors or elicitors that determine aphid hosts. Here, we tried three strategies to identify possible effectors in Malvaceae- (MA) and Cucurbitaceae-specialized (CU) biotypes of the cotton-melon aphid Aphis gossypii Glover. The whole-aphid RNA-seq identified 765 differentially expressed genes (DEGs), and 139 of them were possible effectors; aphid-head RNA-seq identified 523 DEGs were identified, and 98 of them were possible effectors. The homologous genes of published aphid effectors were not differentially expressed between CU and MA. Next, quantitative proteomic analyses of saliva identified 177 possible proteins, and 44 of them were different proteins. However, none of the genes of the 44 proteins were differentially expressed, reflecting the discrepancy between transcriptome and proteome data. Finally, we searched for DEGs of the 177 salivary proteins in the aphid-head transcriptomes, and the salivary proteins with expression differences were regarded as effector candidates. Through this strategy, 11 effector candidates were identified, and their expression differences were all confirmed by RT-qPCR. The combinatorial analysis has great potential to identify biotype-specific effector candidates in aphids and other sap-sucking insects.
Collapse
Affiliation(s)
- Duoqi Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.W.); (Q.Y.); (X.H.)
| | - Qinglan Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.W.); (Q.Y.); (X.H.)
| | - Xiaoyue Hu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.W.); (Q.Y.); (X.H.)
| | - Biao Liu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China;
| | - Yongmo Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.W.); (Q.Y.); (X.H.)
| |
Collapse
|
41
|
Pascoal-Ferreira P, Chahed A, Costa R, Branco I, Choupina A. Use of iRNA in the post-transcriptional gene silencing of necrosis-inducing Phytophthora protein 1(NPP1) in Phytophthora cinnamomi. Mol Biol Rep 2023; 50:6493-6504. [PMID: 37326749 PMCID: PMC10374718 DOI: 10.1007/s11033-023-08562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Phytophthora cinnamomi is an Oomycetes associated with soil, this Oomycete is one of the most destructive species of Phytophthora, being responsible for the decline of more than 5000 ornamental, forest, or fruit plants. It can secrete a class of protein NPP1 (Phytophthora necrosis inducing protein 1), responsible for inducing necrosis in leaves and roots of plants, leading to their death. OBJECTIVE This work will report the characterization of the Phytophthora cinnamomi NPP1 gene responsible for the infection of Castanea sativa roots and will characterize the mechanisms of interaction between Phytophthora cinnamomi and Castanea sativa, by gene silencing NPP1 from Phytophthora cinnamomi mediated by RNAi. METHODS AND RESULTS For silencing a part of the coding region of the NPP1 gene, was placed in the sense and antisense directions between an intron and ligated to the integrative vector pTH210. Cassette integration was confirmed by PCR and sequencing on the hygromycin-resistant Phytophthora cinnamomi transformants. Transformants obtained with the silenced gene was used to infect Castanea sativa. CONCLUSIONS Plants infected with these transformants showed a great reduction in disease symptoms, confirming iRNA as a potential alternative biological tool in the study of molecular factors, and in the control and management of Phytophthora cinnamomi.
Collapse
Affiliation(s)
- Patrick Pascoal-Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Abdessalem Chahed
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratory for Research on Genetics Biodiversity and Bioresources Valuation of (LR11ES41), ISBM, University of Monastir, 5000, Monastir, Tunisia
| | - Rodrigo Costa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Iuliia Branco
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Altino Choupina
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.
| |
Collapse
|
42
|
He MJ, Zuo DP, Zhang ZY, Wang Y, Han CG. Transcriptomic and Proteomic Analyses of Myzus persicae Carrying Brassica Yellows Virus. BIOLOGY 2023; 12:908. [PMID: 37508340 PMCID: PMC10376434 DOI: 10.3390/biology12070908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023]
Abstract
Viruses in the genus Polerovirus infect a wide range of crop plants and cause severe economic crop losses. BrYV belongs to the genus Polerovirus and is transmitted by Myzus persicae. However, the changes in transcriptome and proteome profiles of M. persicae during viral infection are unclear. Here, RNA-Seq and TMT-based quantitative proteomic analysis were performed to compare the differences between viruliferous and nonviruliferous aphids. In total, 1266 DEGs were identified at the level of transcription with 980 DEGs being upregulated and 286 downregulated in viruliferous aphids. At the protein level, among the 18 DEPs identified, the number of upregulated proteins in viruliferous aphids was twice that of the downregulated DEPs. Enrichment analysis indicated that these DEGs and DEPs were mainly involved in epidermal protein synthesis, phosphorylation, and various metabolic processes. Interestingly, the expressions of a number of cuticle proteins and tubulins were upregulated in viruliferous aphids. Taken together, our study revealed the complex regulatory network between BrYV and its vector M. persicae from the perspective of omics. These findings should be of great benefit to screening key factors involved in the process of virus circulation in aphids and provide new insights for BrYV prevention via vector control in the field.
Collapse
Affiliation(s)
- Meng-Jun He
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Deng-Pan Zuo
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zong-Ying Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ying Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Cheng-Gui Han
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
43
|
Wang H, Shi S, Hua W. Advances of herbivore-secreted elicitors and effectors in plant-insect interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1176048. [PMID: 37404545 PMCID: PMC10317074 DOI: 10.3389/fpls.2023.1176048] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/31/2023] [Indexed: 07/06/2023]
Abstract
Diverse molecular processes regulate the interactions between insect herbivores and their host plants. When plants are exposed to insects, elicitors induce plant defenses, and complex physiological and biochemical processes are triggered, such as the activation of the jasmonic acid (JA) and salicylic acid (SA) pathways, Ca2+ flux, reactive oxygen species (ROS) burst, mitogen-activated protein kinase (MAPK) activation, and other responses. For better adaptation, insects secrete a large number of effectors to interfere with plant defenses on multiple levels. In plants, resistance (R) proteins have evolved to recognize effectors and trigger stronger defense responses. However, only a few effectors recognized by R proteins have been identified until now. Multi-omics approaches for high-throughput elicitor/effector identification and functional characterization have been developed. In this review, we mainly highlight the recent advances in the identification of the elicitors and effectors secreted by insects and their target proteins in plants and discuss their underlying molecular mechanisms, which will provide new inspiration for controlling these insect pests.
Collapse
Affiliation(s)
- Huiying Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shaojie Shi
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Hua
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
44
|
Teodoro-Paulo J, Alba JM, Charlesworth S, Kant MR, Magalhães S, Duncan AB. Intraspecific variation for host immune activation by the spider mite Tetranychus evansi. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230525. [PMID: 37325599 PMCID: PMC10265008 DOI: 10.1098/rsos.230525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
Many parasites can interfere with their host's defences to maximize their fitness. Here, we investigated if there is heritable variation in the spider mite Tetranychus evansi for traits associated with how they interact with their host plant. We also determined if this variation correlates with mite fecundity. Tetranychus evansi can interfere with jasmonate (JA) defences which are the main determinant of anti-herbivore immunity in plants. We investigated (i) variation in fecundity in the presence and absence of JA defences, making use of a wild-type tomato cultivar and a JA-deficient mutant (defenseless-1), and (ii) variation in the induction of JA defences, in four T. evansi field populations and 59 inbred lines created from an outbred population originating from controlled crosses of the four field populations. We observed a strong positive genetic correlation between fecundity in the presence (on wild-type) and the absence of JA defences (on defenseless-1). However, fecundity did not correlate with the magnitude of induced JA defences in wild-type plants. Our results suggest that the performance of the specialist T. evansi is not related to their ability to manipulate plant defences, either because all lines can adequately reduce levels of defences, or because they are resistant to them.
Collapse
Affiliation(s)
- Jéssica Teodoro-Paulo
- cE3c—Centre for Ecology, Evolution and Environmental Changes & CHANGE—Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Institut des Sciences de l’Évolution, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Juan M. Alba
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Steven Charlesworth
- cE3c—Centre for Ecology, Evolution and Environmental Changes & CHANGE—Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Merijn R. Kant
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Sara Magalhães
- cE3c—Centre for Ecology, Evolution and Environmental Changes & CHANGE—Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Alison B. Duncan
- Institut des Sciences de l’Évolution, University of Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
45
|
Paulmann MK, Wegner L, Gershenzon J, Furch ACU, Kunert G. Pea Aphid ( Acyrthosiphon pisum) Host Races Reduce Heat-Induced Forisome Dispersion in Vicia faba and Trifolium pratense. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091888. [PMID: 37176952 PMCID: PMC10181200 DOI: 10.3390/plants12091888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Although phloem-feeding insects such as aphids can cause significant damage to plants, relatively little is known about early plant defenses against these insects. As a first line of defense, legumes can stop the phloem mass flow through a conformational change in phloem proteins known as forisomes in response to Ca2+ influx. However, specialized phloem-feeding insects might be able to suppress the conformational change of forisomes and thereby prevent sieve element occlusion. To investigate this possibility, we triggered forisome dispersion through application of a local heat stimulus to the leaf tips of pea (Pisum sativum), clover (Trifolium pratense) and broad bean (Vicia faba) plants infested with different pea aphid (Acyrthosiphon pisum) host races and monitored forisome responses. Pea aphids were able to suppress forisome dispersion, but this depended on the infesting aphid host race, the plant species, and the age of the plant. Differences in the ability of aphids to suppress forisome dispersion may be explained by differences in the composition and quantity of the aphid saliva injected into the plant. Various mechanisms of how pea aphids might suppress forisome dispersion are discussed.
Collapse
Affiliation(s)
- Maria K Paulmann
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Str. 8, D-07745 Jena, Germany
- Plant Physiology, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich Schiller University Jena, Dornburger Straße 159, D-07743 Jena, Germany
| | - Linus Wegner
- Plant Physiology, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich Schiller University Jena, Dornburger Straße 159, D-07743 Jena, Germany
- Institute of Botany, Justus Liebig University, Heinrich-Buff-Ring 38, 35292 Giessen, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Alexandra C U Furch
- Plant Physiology, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich Schiller University Jena, Dornburger Straße 159, D-07743 Jena, Germany
| | - Grit Kunert
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| |
Collapse
|
46
|
Jin L, Zhang BW, Lu JW, Liao JA, Zhu QJ, Lin Y, Yu XQ. The mechanism of Cry41-related toxin against Myzus persicae based on its interaction with Buchnera-derived ATP-dependent 6-phosphofructokinase. PEST MANAGEMENT SCIENCE 2023; 79:1684-1691. [PMID: 36602054 DOI: 10.1002/ps.7340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/29/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Myzus persicae (Hemiptera: Aphididae) is one of the most notorious pests of many crops worldwide. Most Cry toxins produced by Bacillus thuringiensis show very low toxicity to M. persicae; however, a study showed that Cry41-related toxin had moderate toxic activity against M. persicae. In our previous work, potential Cry41-related toxin-binding proteins in M. persicae were identified, including cathepsin B, calcium-transporting ATPase, and Buchnera-derived ATP-dependent 6-phosphofructokinase (PFKA). Buchnera is an endosymbiont present in almost all aphids and it provides necessary nutrients for aphid growth. This study investigated the role of Buchnera-derived PFKA in Cry41-related toxicity against M. persicae. RESULTS In this study, recombinant PFKA was expressed and purified, and in vitro assays revealed that PFKA bound to Cry41-related toxin, and Cry41-related toxin at 25 μg ml-1 significantly inhibited the activity of PFKA. In addition, when M. persicae was treated with 30 μg ml-1 of Cry41-related toxin for 24 h, the expression of dnak, a single-copy gene in Buchnera, was significantly decreased, indicating a decrease in the number of Buchnera. CONCLUSION Our results suggest that Cry41-related toxin interacts with Buchnera-derived PFKA to inhibit its enzymatic activity and likely impair cell viability, resulting in a decrease in the number of Buchnera, and finally leading to M. persicae death. These findings open up new perspectives in our understanding of the mode of action of Cry toxins and are useful in helping improve Cry toxicity for aphid control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liang Jin
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Bin-Wu Zhang
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Jing-Wen Lu
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Jun-Ao Liao
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Qi-Jun Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yi Lin
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
47
|
Mou DF, Kundu P, Pingault L, Puri H, Shinde S, Louis J. Monocot crop-aphid interactions: plant resilience and aphid adaptation. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101038. [PMID: 37105496 DOI: 10.1016/j.cois.2023.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023]
Abstract
Globally, aphids cause immense economic damage to several crop plants. In addition, aphids vector several plant viral diseases that accelerate crop yield losses. While feeding, aphids release saliva that contains effectors, which modulate plant defense responses. Although there are many studies that describe the mechanisms that contribute to dicot plant-aphid interactions, our understanding of monocot crop defense mechanisms against aphids is limited. In this review, we focus on the interactions between monocot crops and aphids and report the recently characterized aphid effectors and their functions in aphid adaptation to plant immunity. Recent studies on plant defense against aphids in monocot-resistant and -tolerant crop lines have exploited various 'omic' approaches to understand the roles of early signaling molecules, phytohormones, and secondary metabolites in plant response to aphid herbivory. Unraveling key regulatory mechanisms underlying monocot crop resistance to aphids will lead to deeper understanding of sap-feeding insect management strategies for increased food security and sustainable agriculture.
Collapse
Affiliation(s)
- De-Fen Mou
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Pritha Kundu
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Lise Pingault
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Heena Puri
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Sanket Shinde
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
48
|
Gao H, Yuan X, Lin X, Zhang H, Zou J, Liu Z. Reducing Expression of Salivary Protein Genes by Flonicamid Partially Contributed to Its Feeding Inhibition of the Brown Planthopper on Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37027537 DOI: 10.1021/acs.jafc.3c00895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Flonicamid inhibits the feeding of piercing-sucking pests as a selective systemic insecticide. The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most serious pests on rice. During feeding, it uses its stylet to collect sap by penetrating the phloem, and at the same time, it delivers saliva into the rice plant. Insect salivary proteins play important roles in feeding and interacting with plants. Whether flonicamid affects the expression of salivary protein genes and then inhibits the feeding of BPH is not clear. Here, from 20 functionally characterized salivary proteins, we screened five salivary proteins (NlShp, NlAnnix5, Nl16, Nl32, and NlSP7) whose gene expressions were significantly inhibited by flonicamid. We performed experimental analysis on two of them (Nl16 and Nl32). RNA interference of Nl32 significantly reduced the survival rate of BPH. Electrical penetration graph (EPG) experiments showed that both flonicamid treatment and knockdown of Nl16 and Nl32 genes significantly reduced the feeding activity of N. lugens in the phloem and also reduced the honeydew excretion and fecundity. These results suggested that the inhibition of flonicamid on the feeding behavior in N. lugens might be partially attributed to its effect on the expression of salivary protein genes. This study provides a new insight into the mechanism of action of flonicamid on insect pests.
Collapse
Affiliation(s)
- Haoli Gao
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xiaowei Yuan
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xumin Lin
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Huihui Zhang
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Jianzheng Zou
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| |
Collapse
|
49
|
Fu Y, Liu X, Wang Q, Liu H, Cheng Y, Li H, Zhang Y, Chen J. Two salivary proteins Sm10 and SmC002 from grain aphid Sitobion miscanthi modulate wheat defense and enhance aphid performance. FRONTIERS IN PLANT SCIENCE 2023; 14:1104275. [PMID: 37056510 PMCID: PMC10086322 DOI: 10.3389/fpls.2023.1104275] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
The grain aphid Sitobion miscanthi is a serious pest of wheat that causes severe economic damage by sucking phloem sap and transmitting plant viruses. Here, two putative salivary effector homologs from S. miscanthi (Sm10 and SmC002) were selected based on sequence similarity to other characterized aphid candidate effectors. These effectors were then delivered into wheat cells separately via the type III secretion system of Pseudomonas fluorescens to elucidate their functions in the regulation of plant defenses and host fitness. The results showed that the delivery of either Sm10 or SmC002 into wheat plants significantly suppressed callose deposition and affected the transcript levels of callose synthase genes. The expression levels of salicylic acid (SA)-associated defense genes were upregulated significantly in wheat leaves carrying either Sm10 or SmC002. Moreover, LC-MS/MS analysis revealed that wheat SA levels significantly increased after the delivery of the two effectors. The results of aphid bioassays conducted on the wheat plants carrying Sm10 or SmC002 showed significant increases in the survival and fecundity of S. miscanthi. This study demonstrated that the Sm10 and SmC002 salivary effectors of S. miscanthi enhanced host plant susceptibility and benefited S. miscanthi performance by regulating wheat defense signaling pathways.
Collapse
Affiliation(s)
- Yu Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaobei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yumeng Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongmei Li
- Ministry of Agricultural and Rural Affairs-Centre for Agriculture and Bioscience International (MARA-CABI) Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
50
|
Wei Z, Guo W, Jiang S, Yan D, Shi Y, Wu B, Xin X, Chen L, Cai Y, Zhang H, Li Y, Huang H, Li J, Yan F, Zhang C, Hou W, Chen J, Sun Z. Transcriptional profiling reveals a critical role of GmFT2a in soybean staygreen syndrome caused by the pest Riptortus pedestris. THE NEW PHYTOLOGIST 2023; 237:1876-1890. [PMID: 36404128 DOI: 10.1111/nph.18628] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Soybean staygreen syndrome, characterized by delayed leaf and stem senescence, abnormal pods, and aborted seeds, has recently become a serious and prominent problem in soybean production. Although the pest Riptortus pedestris has received increasing attention as the possible cause of staygreen syndrome, the mechanism remains unknown. Here, we clarify that direct feeding by R. pedestris, not transmission of a pathogen by this pest, is the primary cause of typical soybean staygreen syndrome and that critical feeding damage occurs at the early pod stage. Transcriptome profiling of soybean indicated that many signal transduction pathways, including photoperiod, hormone, defense response, and photosynthesis, respond to R. pedestris infestation. Importantly, we discovered that members of the FLOWERING LOCUS T (FT) gene family were suppressed by R. pedestris infestation, and overexpression of floral inducer GmFT2a attenuates staygreen symptoms by mediating soybean defense response and photosynthesis. Together, our findings systematically illustrate the association between pest infestation and soybean staygreen syndrome and provide the basis for establishing a targeted soybean pest prevention and control system.
Collapse
Affiliation(s)
- Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Wenbin Guo
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Shanshan Jiang
- Shandong Provincial Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Dankan Yan
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Yan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Bin Wu
- Shandong Provincial Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiangqi Xin
- Shandong Provincial Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Li Chen
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yupeng Cai
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Haijian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Junmin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Chuanxi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Wensheng Hou
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| |
Collapse
|