1
|
Ranjan R, Snedeker J, Wooten M, Chu C, Bracero S, Mouton T, Chen X. Differential condensation of sister chromatids acts with Cdc6 to ensure asynchronous S-phase entry in Drosophila male germline stem cell lineage. Dev Cell 2022; 57:1102-1118.e7. [PMID: 35483360 PMCID: PMC9134767 DOI: 10.1016/j.devcel.2022.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/16/2022] [Accepted: 04/05/2022] [Indexed: 01/06/2023]
Abstract
During Drosophila melanogaster male germline stem cell (GSC) asymmetric division, preexisting old versus newly synthesized histones H3 and H4 are asymmetrically inherited. However, the biological outcomes of this phenomenon have remained unclear. Here, we tracked old and new histones throughout the GSC cell cycle through the use of high spatial and temporal resolution microscopy. We found unique features that differ between old and new histone-enriched sister chromatids, including differences in nucleosome density, chromosomal condensation, and H3 Ser10 phosphorylation. These distinct chromosomal features lead to their differential association with Cdc6, a pre-replication complex component, and subsequent asynchronous DNA replication initiation in the resulting daughter cells. Disruption of asymmetric histone inheritance abolishes differential Cdc6 association and asynchronous S-phase entry, demonstrating that histone asymmetry acts upstream of these critical cell-cycle progression events. Furthermore, disruption of these GSC-specific chromatin features leads to GSC defects, indicating a connection between histone inheritance, cell-cycle progression, and cell fate determination.
Collapse
Affiliation(s)
- Rajesh Ranjan
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Jonathan Snedeker
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Matthew Wooten
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Carolina Chu
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sabrina Bracero
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Taylar Mouton
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xin Chen
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
2
|
Emerging role of G9a in cancer stemness and promises as a therapeutic target. Oncogenesis 2021; 10:76. [PMID: 34775469 PMCID: PMC8590690 DOI: 10.1038/s41389-021-00370-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
The histone methyltransferase G9a is well-documented for its implication in neoplastic growth. However, recent investigations have demonstrated a key involvement of this chromatin writer in maintaining the self-renewal and tumor-initiating capacities of cancer stem cells (CSCs). Direct inhibition of G9a’s catalytic activity was reported as a promising therapeutic target in multiple preclinical studies. Yet, none of the available pharmacological inhibitors of G9a activity have shown success at the early stages of clinical testing. Here, we discuss central findings of oncogenic expression and activation of G9a in CSCs from different origins, as well as the impact of the suppression of G9a histone methyltransferase activity in such contexts. We will explore the challenges posed by direct and systemic inhibition of G9a activity in the perspective of clinical translation of documented small molecules. Finally, we will discuss recent advances in drug discovery as viable strategies to develop context-specific drugs, selectively targeting G9a in CSC populations.
Collapse
|
3
|
Sankaran JS, Sen B, Dudakovic A, Paradise CR, Perdue T, Xie Z, McGrath C, Styner M, Newberg J, Uzer G, van Wijnen AJ, Rubin J. Knockdown of formin mDia2 alters lamin B1 levels and increases osteogenesis in stem cells. Stem Cells 2020; 38:102-117. [PMID: 31648392 PMCID: PMC6993926 DOI: 10.1002/stem.3098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Nuclear actin plays a critical role in mediating mesenchymal stem cell (MSC) fate commitment. In marrow-derived MSCs, the principal diaphanous-related formin Diaph3 (mDia2) is present in the nucleus and regulates intranuclear actin polymerization, whereas Diaph1 (mDia1) is localized to the cytoplasm and controls cytoplasmic actin polymerization. We here show that mDia2 can be used as a tool to query actin-lamin nucleoskeletal structure. Silencing mDia2 affected the nucleoskeletal lamin scaffold, altering nuclear morphology without affecting cytoplasmic actin cytoskeleton, and promoted MSC differentiation. Attempting to target intranuclear actin polymerization by silencing mDia2 led to a profound loss in lamin B1 nuclear envelope structure and integrity, increased nuclear height, and reduced nuclear stiffness without compensatory changes in other actin nucleation factors. Loss of mDia2 with the associated loss in lamin B1 promoted Runx2 transcription and robust osteogenic differentiation and suppressed adipogenic differentiation. Hence, mDia2 is a potent tool to query intranuclear actin-lamin nucleoskeletal structure, and its presence serves to retain multipotent stromal cells in an undifferentiated state.
Collapse
Affiliation(s)
- Jeyantt S. Sankaran
- Department of Medicine, University of North Carolina Chapel
Hill, Chapel Hill, North Carolina
| | - Buer Sen
- Department of Medicine, University of North Carolina Chapel
Hill, Chapel Hill, North Carolina
| | - Amel Dudakovic
- Department of Orthopedic Surgery and Biochemistry and
Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Christopher R. Paradise
- Graduate School of Biomedical Sciences and Center for
Regenerative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Tony Perdue
- Department of Biology, University of North Carolina Chapel
Hill, Chapel Hill, North Carolina
| | - Zhihui Xie
- Department of Medicine, University of North Carolina Chapel
Hill, Chapel Hill, North Carolina
| | - Cody McGrath
- Department of Medicine, University of North Carolina Chapel
Hill, Chapel Hill, North Carolina
| | - Maya Styner
- Department of Medicine, University of North Carolina Chapel
Hill, Chapel Hill, North Carolina
| | - Joshua Newberg
- Department of Mechanical and Biomedical Engineering, Boise
State University, Boise, Idaho
| | - Gunes Uzer
- Department of Mechanical and Biomedical Engineering, Boise
State University, Boise, Idaho
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery and Biochemistry and
Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Janet Rubin
- Department of Medicine, University of North Carolina Chapel
Hill, Chapel Hill, North Carolina
| |
Collapse
|
4
|
Jin W, Peng J, Jiang S. The epigenetic regulation of embryonic myogenesis and adult muscle regeneration by histone methylation modification. Biochem Biophys Rep 2016; 6:209-219. [PMID: 28955879 PMCID: PMC5600456 DOI: 10.1016/j.bbrep.2016.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle formation in vertebrates is derived from the paraxial mesoderm, which develops into myogenic precursor cells and finally differentiates into mature myofibers. This myogenic program involves temporal-spatial molecular events performed by transcription regulators (such as members of the Pax, MRFs and Six families) and signaling pathways (such as Wnts, BMP and Shh signaling). Epigenetic regulation, including histone post-translational modifications is crucial for controlling gene expression through recruitment of various chromatin-modifying enzymes that alter chromatin dynamics during myogenesis. The chromatin modifying enzymes are also recruited at regions of muscle gene regulation, coordinating transcription regulators to influence gene expression. In particular, the reversible methylation status of histone N-terminal tails provides the important regulatory mechanisms in either activation or repression of muscle genes. In this report, we review the recent literatures to deduce mechanisms underlying the epigenetic regulation of gene expression with a focus on histone methylation modification during embryo myogenesis and adult muscle regeneration. Recent results from different histone methylation/demethylation modifications have increased our understanding about the highly intricate layers of epigenetic regulations involved in myogenesis and cross-talk of histone enzymes with the muscle-specific transcriptional machinery. Myogenesis is influenced by regulation of transcription factors, signal pathways and post-transcriptional modifications. Histone methylation modifications as “on/off” switches regulated myogenic lineage commitment and differentiation. The myogenic regulatory factors and histone methylation modifications established dynamic regulatory mechanism.
Collapse
Key Words
- BMP4, bone morphogenic protein 4
- ChIP, chromatin immunoprecipitation
- Epigenetic
- H3K27, methylation of histone H3 lysine 27
- H3K4, methylation of histone H3 lysine 4
- H3K9, methylation of histone H3 lysine 9
- Histone methylation/demethylation modification
- KDMs, lysine demethyltransferases
- LSD1, lysine specific demethyltransferase 1
- MEF2, myocyte enhancer factor 2
- MRFs, myogenic regulatory factors
- Muscle differentiation
- Muscle progenitor cells
- Muscle regeneration
- Myogenesis
- PRC2, polycomb repressive complex 2
- SCs, satellite cells
- Shh, sonic hedgehog
- TSS, transcription start sites
- UTX, ubiquitously transcribed tetratricopeptide repeat, X chromosome
- bHLH, basic helix-loop-helix
- p38 MAPK, p38 mitogen-activated protein kinase
Collapse
Affiliation(s)
- Wei Jin
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Siwen Jiang
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Projects in the Cooperative Innovation Center for Sustainable Pig Production of Wuhan, PR China
| |
Collapse
|
5
|
Effect of Chromatin Structure on the Extent and Distribution of DNA Double Strand Breaks Produced by Ionizing Radiation; Comparative Study of hESC and Differentiated Cells Lines. Int J Mol Sci 2016; 17:ijms17010058. [PMID: 26729112 PMCID: PMC4730303 DOI: 10.3390/ijms17010058] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/27/2015] [Accepted: 12/24/2015] [Indexed: 12/01/2022] Open
Abstract
Chromatin structure affects the extent of DNA damage and repair. Thus, it has been shown that heterochromatin is more protective against DNA double strand breaks (DSB) formation by ionizing radiation (IR); and that DNA DSB repair may proceed differently in hetero- and euchromatin regions. Human embryonic stem cells (hESC) have a more open chromatin structure than differentiated cells. Here, we study the effect of chromatin structure in hESC on initial DSB formation and subsequent DSB repair. DSB were scored by comet assay; and DSB repair was assessed by repair foci formation via 53BP1 antibody staining. We found that in hESC, heterochromatin is confined to distinct regions, while in differentiated cells it is distributed more evenly within the nuclei. The same dose of ionizing radiation produced considerably more DSB in hESC than in differentiated derivatives, normal human fibroblasts; and one cancer cell line. At the same time, the number of DNA repair foci were not statistically different among these cells. We showed that in hESC, DNA repair foci localized almost exclusively outside the heterochromatin regions. We also noticed that exposure to ionizing radiation resulted in an increase in heterochromatin marker H3K9me3 in cancer HT1080 cells, and to a lesser extent in IMR90 normal fibroblasts, but not in hESCs. These results demonstrate the importance of chromatin conformation for DNA protection and DNA damage repair; and indicate the difference of these processes in hESC.
Collapse
|
6
|
Akiyama T, Xin L, Oda M, Sharov AA, Amano M, Piao Y, Cadet JS, Dudekula DB, Qian Y, Wang W, Ko SBH, Ko MSH. Transient bursts of Zscan4 expression are accompanied by the rapid derepression of heterochromatin in mouse embryonic stem cells. DNA Res 2015; 22:307-18. [PMID: 26324425 PMCID: PMC4596397 DOI: 10.1093/dnares/dsv013] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/24/2015] [Indexed: 01/06/2023] Open
Abstract
Mouse embryonic stem cells (mESCs) have a remarkable capacity to maintain normal genome stability and karyotype in culture. We previously showed that infrequent bursts of Zscan4 expression (Z4 events) are important for the maintenance of telomere length and genome stability in mESCs. However, the molecular details of Z4 events remain unclear. Here we show that Z4 events involve unexpected transcriptional derepression in heterochromatin regions that usually remain silent. During a Z4 event, we see rapid derepression and rerepression of heterochromatin leading to a burst of transcription that coincides with transient histone hyperacetylation and DNA demethylation, clustering of pericentromeric heterochromatin around the nucleolus, and accumulation of activating and repressive chromatin remodelling complexes. This heterochromatin-based transcriptional activity suggests that mESCs may maintain their extraordinary genome stability at least in part by transiently resetting their heterochromatin.
Collapse
Affiliation(s)
- Tomohiko Akiyama
- Department of Systems Medicine, Keio University School of Medicine, Tokyo 160, Japan Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Li Xin
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Mayumi Oda
- Department of Systems Medicine, Keio University School of Medicine, Tokyo 160, Japan
| | - Alexei A Sharov
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Misa Amano
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Yulan Piao
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - J Scotty Cadet
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Dawood B Dudekula
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Yong Qian
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Weidong Wang
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Shigeru B H Ko
- Department of Systems Medicine, Keio University School of Medicine, Tokyo 160, Japan
| | - Minoru S H Ko
- Department of Systems Medicine, Keio University School of Medicine, Tokyo 160, Japan Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
7
|
Choi J, Jang H, Kim H, Lee JH, Kim ST, Cho EJ, Youn HD. Modulation of lysine methylation in myocyte enhancer factor 2 during skeletal muscle cell differentiation. Nucleic Acids Res 2013; 42:224-34. [PMID: 24078251 PMCID: PMC3874188 DOI: 10.1093/nar/gkt873] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Myocyte enhancer factor 2 (MEF2) is a family of transcription factors that regulates many processes, including muscle differentiation. Due to its many target genes, MEF2D requires tight regulation of transcription activity over time and by location. Epigenetic modifiers have been suggested to regulate MEF2-dependent transcription via modifications to histones and MEF2. However, the modulation of MEF2 activity by lysine methylation, an important posttranslational modification that alters the activities of transcription factors, has not been studied. We report the reversible lysine methylation of MEF2D by G9a and LSD1 as a regulatory mechanism of MEF2D activity and skeletal muscle differentiation. G9a methylates lysine-267 of MEF2D and represses its transcriptional activity, but LSD1 counteracts it. This residue is highly conserved between MEF2 members in mammals. During myogenic differentiation of C2C12 mouse skeletal muscle cells, the methylation of MEF2D by G9a decreased, on which MEF2D-dependent myogenic genes were upregulated. We have also identified lysine-267 as a methylation/demethylation site and demonstrate that the lysine methylation state of MEF2D regulates its transcriptional activity and skeletal muscle cell differentiation.
Collapse
Affiliation(s)
- Jinmi Choi
- Department of Biomedical Sciences and Biochemistry and Molecular Biology, National Creative Research Center for Epigenome Reprogramming Network, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-799, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 410-769, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, National Research Laboratory for Chromatin Dynamics, College of Pharmacy, Sungkyunkwan University, Suwon 440-746 and WCU Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul 110-799, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|