1
|
Huang X, Du Q, Wang L, Chen B. Impacts of oxygen deficiency on embryo life-history traits of migratory locust Locusta migratoria from low and high altitudes. INSECT SCIENCE 2023; 30:867-879. [PMID: 36325760 DOI: 10.1111/1744-7917.13129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/08/2022] [Accepted: 10/13/2022] [Indexed: 06/15/2023]
Abstract
Hypoxia challenges aerobic organisms in numerous environments, and hypoxic conditions may become more severe under future climate-change scenarios. The impact of hypoxia on the development of terrestrial insect embryos is not well understood. Here, to address this gap, embryonic life-history traits of migratory locust Locusta migratoria from low-altitude and high-altitude regions were compared under 2 oxygen levels: normoxia (i.e., 21 kPa oxygen partial pressure and mild hypoxia (i.e., 10 kPa oxygen partial pressure). Our results demonstrated that, whether reared under normoxia or mild hypoxia, L. migratoria from high-altitude populations had longer developmental times, reduced weight, and lower mean relative growth rate as compared with those from low-altitude populations. When transferred from normoxia to mild hypoxia, nearly all the tested life-history traits presented significant negative changes in the low-altitude populations, but not in the high-altitude populations. The factor 'strain' alone explained 18.26%-54.59% of the total variation for traits, suggesting that the phenotypic differences between L. migratoria populations from the 2 altitudes could be driven by genetic variation. Significant genetic correlations were found between life-history traits, and most of these showed differentiation between the 2 altitudinal gradients. G-matrix comparisons showed significant structural differences between L. migratoria from the 2 regions, as well as several negative covariances (i.e., trade-offs) between traits in the low-altitude populations. Overall, our study provides clear evidence that evolutionary divergence of embryonic traits between L. migratoria populations from different altitudes has occurred.
Collapse
Affiliation(s)
- Xianliang Huang
- School of Life Science, Institutes of Life Science and Green Development, Hebei University, Baoding, Hebei Province, China
| | - Qianli Du
- School of Life Science, Institutes of Life Science and Green Development, Hebei University, Baoding, Hebei Province, China
| | - Lijing Wang
- Kenli Municipal Bureau of Agriculture and Rural Affairs, Dongying, Shandong Province, China
| | - Bing Chen
- School of Life Science, Institutes of Life Science and Green Development, Hebei University, Baoding, Hebei Province, China
| |
Collapse
|
2
|
Xue Y, Krishnan A, Chahda JS, Schweickart RA, Sousa-Neves R, Mizutani CM. The epithelial polarity genes frazzled and GUK-holder adjust morphogen gradients to coordinate changes in cell position with cell fate specification. PLoS Biol 2023; 21:e3002021. [PMID: 36913435 PMCID: PMC10035841 DOI: 10.1371/journal.pbio.3002021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 03/23/2023] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
Morphogenetic gradients specify distinct cell populations within tissues. Originally, morphogens were conceived as substances that act on a static field of cells, yet cells usually move during development. Thus, the way cell fates are defined in moving cells remains a significant and largely unsolved problem. Here, we investigated this issue using spatial referencing of cells and 3D spatial statistics in the Drosophila blastoderm to reveal how cell density responds to morphogenetic activity. We show that the morphogen decapentaplegic (DPP) attracts cells towards its peak levels in the dorsal midline, whereas dorsal (DL) stalls them ventrally. We identified frazzled and GUK-holder as the downstream effectors regulated by these morphogens that constrict cells and provide the mechanical force necessary to draw cells dorsally. Surprisingly, GUKH and FRA modulate the DL and DPP gradient levels and this regulation creates a very precise mechanism of coordinating cell movement and fate specification.
Collapse
Affiliation(s)
- Yongqiang Xue
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Aravindan Krishnan
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Juan Sebastian Chahda
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Robert Allen Schweickart
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Rui Sousa-Neves
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Claudia Mieko Mizutani
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
3
|
Xu R, Dai F, Wu H, Jiao R, He F, Ma J. Shaping the scaling characteristics of gap gene expression patterns in Drosophila. Heliyon 2023; 9:e13623. [PMID: 36879745 PMCID: PMC9984453 DOI: 10.1016/j.heliyon.2023.e13623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
How patterns are formed to scale with tissue size remains an unresolved problem. Here we investigate embryonic patterns of gap gene expression along the anterior-posterior (AP) axis in Drosophila. We use embryos that greatly differ in length and, importantly, possess distinct length-scaling characteristics of the Bicoid (Bcd) gradient. We systematically analyze the dynamic movements of gap gene expression boundaries in relation to both embryo length and Bcd input as a function of time. We document the process through which such dynamic movements drive both an emergence of a global scaling landscape and evolution of boundary-specific scaling characteristics. We show that, despite initial differences in pattern scaling characteristics that mimic those of Bcd in the anterior, such characteristics of final patterns converge. Our study thus partitions the contributions of Bcd input and regulatory dynamics inherent to the AP patterning network in shaping embryonic pattern's scaling characteristics.
Collapse
Affiliation(s)
- Ruoqing Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Fei Dai
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Honggang Wu
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510182, China
- Key Laboratory of Interdisciplinary Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Renjie Jiao
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510182, China
- Key Laboratory of Interdisciplinary Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng He
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Corresponding author. Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| | - Jun Ma
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang, China
- Corresponding author. Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
4
|
Gandhi P. Digest: Evolution of a robust phenotype in
Drosophila
*. Evolution 2020; 74:1573-1574. [DOI: 10.1111/evo.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/01/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Pranjan Gandhi
- Schulich School of Medicine and Dentistry University of Western Ontario London Canada
| |
Collapse
|
5
|
Kalay G, Atallah J, Sierra NC, Tang AM, Crofton AE, Murugesan MK, Wykoff-Clary S, Lott SE. Evolution of larval segment position across 12 Drosophila species. Evolution 2019; 74:1409-1422. [PMID: 31886902 PMCID: PMC7496318 DOI: 10.1111/evo.13911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/12/2019] [Indexed: 12/25/2022]
Abstract
Many developmental traits that are critical to the survival of the organism are also robust. These robust traits are resistant to phenotypic change in the face of variation. This presents a challenge to evolution. In this article, we asked whether and how a well‐established robust trait, Drosophila segment patterning, changed over the evolutionary history of the genus. We compared segment position scaled to body length at the first‐instar larval stage among 12 Drosophila species. We found that relative segment position has changed many times across the phylogeny. Changes were frequent, but primarily small in magnitude. Phylogenetic analysis demonstrated that rates of change in segment position are variable along the Drosophila phylogenetic tree, and that these changes can occur in short evolutionary timescales. Correlation between position shifts of segments decreased as the distance between two segments increased, suggesting local control of segment position. The posterior‐most abdominal segment showed the highest magnitude of change on average, had the highest rate of evolution between species, and appeared to be evolving more independently as compared to the rest of the segments. This segment was exceptionally elongated in the cactophilic species in our dataset, raising questions as to whether this change may be adaptive.
Collapse
Affiliation(s)
- Gizem Kalay
- Department of Evolution and Ecology, University of California, Davis, One Shields Avenue, Davis, California, 95616
| | - Joel Atallah
- Department of Evolution and Ecology, University of California, Davis, One Shields Avenue, Davis, California, 95616.,current address: Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA, 70148
| | - Noemie C Sierra
- Earth and Planetary Sciences Department, University of California, Davis, One Shields Avenue, Davis, California, 95616
| | - Austin M Tang
- Department of Evolution and Ecology, University of California, Davis, One Shields Avenue, Davis, California, 95616
| | - Amanda E Crofton
- Department of Evolution and Ecology, University of California, Davis, One Shields Avenue, Davis, California, 95616
| | - Mohan K Murugesan
- Department of Evolution and Ecology, University of California, Davis, One Shields Avenue, Davis, California, 95616
| | - Sherri Wykoff-Clary
- Department of Evolution and Ecology, University of California, Davis, One Shields Avenue, Davis, California, 95616
| | - Susan E Lott
- Department of Evolution and Ecology, University of California, Davis, One Shields Avenue, Davis, California, 95616
| |
Collapse
|
6
|
An Atlas of Transcription Factors Expressed in Male Pupal Terminalia of Drosophila melanogaster. G3-GENES GENOMES GENETICS 2019; 9:3961-3972. [PMID: 31619460 PMCID: PMC6893207 DOI: 10.1534/g3.119.400788] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During development, transcription factors and signaling molecules govern gene regulatory networks to direct the formation of unique morphologies. As changes in gene regulatory networks are often implicated in morphological evolution, mapping transcription factor landscapes is important, especially in tissues that undergo rapid evolutionary change. The terminalia (genital and anal structures) of Drosophila melanogaster and its close relatives exhibit dramatic changes in morphology between species. While previous studies have identified network components important for patterning the larval genital disc, the networks governing adult structures during pupal development have remained uncharted. Here, we performed RNA-seq in whole Drosophila melanogaster male terminalia followed by in situ hybridization for 100 highly expressed transcription factors during pupal development. We find that the male terminalia are highly patterned during pupal stages and that specific transcription factors mark separate structures and substructures. Our results are housed online in a searchable database (https://flyterminalia.pitt.edu/) as a resource for the community. This work lays a foundation for future investigations into the gene regulatory networks governing the development and evolution of Drosophila terminalia.
Collapse
|
7
|
Reply to Jiang and Zhang: Parallel transcriptomic signature of monogamy: What is the null hypothesis anyway? Proc Natl Acad Sci U S A 2019; 116:17629-17630. [PMID: 31431540 DOI: 10.1073/pnas.1911022116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Wunderlich Z, Fowlkes CC, Eckenrode KB, Bragdon MDJ, Abiri A, DePace AH. Quantitative Comparison of the Anterior-Posterior Patterning System in the Embryos of Five Drosophila Species. G3 (BETHESDA, MD.) 2019; 9:2171-2182. [PMID: 31048401 PMCID: PMC6643877 DOI: 10.1534/g3.118.200953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/01/2019] [Indexed: 11/18/2022]
Abstract
Complex spatiotemporal gene expression patterns direct the development of the fertilized egg into an adult animal. Comparisons across species show that, in spite of changes in the underlying regulatory DNA sequence, developmental programs can be maintained across millions of years of evolution. Reciprocally, changes in gene expression can be used to generate morphological novelty. Distinguishing between changes in regulatory DNA that lead to changes in gene expression and those that do not is therefore a central goal of evolutionary developmental biology. Quantitative, spatially-resolved measurements of developmental gene expression patterns play a crucial role in this goal, enabling the detection of subtle phenotypic differences between species and the development of computations models that link the sequence of regulatory DNA to expression patterns. Here we report the generation of two atlases of cellular resolution gene expression measurements for the primary anterior-posterior patterning genes in Drosophila simulans and Drosophila virilis By combining these data sets with existing atlases for three other Drosophila species, we detect subtle differences in the gene expression patterns and dynamics driving the highly conserved axis patterning system and delineate inter-species differences in the embryonic morphology. These data sets will be a resource for future modeling studies of the evolution of developmental gene regulatory networks.
Collapse
Affiliation(s)
- Zeba Wunderlich
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697
| | - Charless C Fowlkes
- Department of Computer Science, University of California, Irvine, CA, 92697
| | - Kelly B Eckenrode
- Department of Systems Biology, Harvard Medical School, Boston, MA, 20115
| | - Meghan D J Bragdon
- Department of Systems Biology, Harvard Medical School, Boston, MA, 20115
| | - Arash Abiri
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697
| | - Angela H DePace
- Department of Systems Biology, Harvard Medical School, Boston, MA, 20115
| |
Collapse
|
9
|
Park J, Estrada J, Johnson G, Vincent BJ, Ricci-Tam C, Bragdon MDJ, Shulgina Y, Cha A, Wunderlich Z, Gunawardena J, DePace AH. Dissecting the sharp response of a canonical developmental enhancer reveals multiple sources of cooperativity. eLife 2019; 8:e41266. [PMID: 31223115 PMCID: PMC6588347 DOI: 10.7554/elife.41266] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 03/04/2019] [Indexed: 12/19/2022] Open
Abstract
Developmental enhancers integrate graded concentrations of transcription factors (TFs) to create sharp gene expression boundaries. Here we examine the hunchback P2 (HbP2) enhancer which drives a sharp expression pattern in the Drosophila blastoderm embryo in response to the transcriptional activator Bicoid (Bcd). We systematically interrogate cis and trans factors that influence the shape and position of expression driven by HbP2, and find that the prevailing model, based on pairwise cooperative binding of Bcd to HbP2 is not adequate. We demonstrate that other proteins, such as pioneer factors, Mediator and histone modifiers influence the shape and position of the HbP2 expression pattern. Comparing our results to theory reveals how higher-order cooperativity and energy expenditure impact boundary location and sharpness. Our results emphasize that the bacterial view of transcription regulation, where pairwise interactions between regulatory proteins dominate, must be reexamined in animals, where multiple molecular mechanisms collaborate to shape the gene regulatory function.
Collapse
Affiliation(s)
- Jeehae Park
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Javier Estrada
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Gemma Johnson
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Ben J Vincent
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Chiara Ricci-Tam
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Meghan DJ Bragdon
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | | | - Anna Cha
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Zeba Wunderlich
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | | | - Angela H DePace
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| |
Collapse
|
10
|
Ali S, Signor SA, Kozlov K, Nuzhdin SV. Novel approach to quantitative spatial gene expression uncovers genetic stochasticity in the developing Drosophila eye. Evol Dev 2019; 21:157-171. [PMID: 30756455 DOI: 10.1111/ede.12283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Robustness in development allows for the accumulation of genetically based variation in expression. However, this variation is usually examined in response to large perturbations, and examination of this variation has been limited to being spatial, or quantitative, but because of technical restrictions not both. Here we bridge these gaps by investigating replicated quantitative spatial gene expression using rigorous statistical models, in different genotypes, sexes, and species (Drosophila melanogaster and D. simulans). Using this type of quantitative approach with molecular developmental data allows for comparison among conditions, such as different genetic backgrounds. We apply this approach to the morphogenetic furrow, a wave of differentiation that patterns the developing eye disc. Within the morphogenetic furrow, we focus on four genes, hairy, atonal, hedgehog, and Delta. Hybridization chain reaction quantitatively measures spatial gene expression, co-staining for all four genes simultaneously. We find considerable variation in the spatial expression pattern of these genes in the eye between species, genotypes, and sexes. We also find that there has been evolution of the regulatory relationship between these genes, and that their spatial interrelationships have evolved between species. This variation has no phenotypic effect, and could be buffered by network thresholds or compensation from other genes. Both of these mechanisms could potentially be contributing to long term developmental systems drift.
Collapse
Affiliation(s)
- Sammi Ali
- Molecular and Computational Biology, University of Southern California, Los Angeles, California
| | - Sarah A Signor
- Molecular and Computational Biology, University of Southern California, Los Angeles, California
| | - Konstantin Kozlov
- Department of Applied Mathematics, St. Petersburg State Polytechnic University, St. Petersburg, Russia
| | - Sergey V Nuzhdin
- Molecular and Computational Biology, University of Southern California, Los Angeles, California.,Department of Applied Mathematics, St. Petersburg State Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
11
|
Surkova S, Sokolkova A, Kozlov K, Nuzhdin SV, Samsonova M. Quantitative analysis reveals genotype- and domain- specific differences between mRNA and protein expression of segmentation genes in Drosophila. Dev Biol 2019; 448:48-58. [PMID: 30629954 DOI: 10.1016/j.ydbio.2019.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 12/12/2018] [Accepted: 01/04/2019] [Indexed: 10/27/2022]
Abstract
In many biological systems gene expression at mRNA and protein levels is not identical. Rigorous comparison of such differences on a spatio-temporal scale is still not feasible by high-throughput transcriptomic and proteomic analyses of early embryo development. Here, we characterize differences between mRNA and protein expression of Drosophila segmentation genes at the level of individual gene expression domains. We obtained quantitative imaging data on expression of gap genes gt and hb and pair-rule gene eve for Drosophila wild type embryos, Kr null mutants and Kr+/Kr- heterozygotes. To compare mRNA and protein expression we use several criteria including difference in amplitude and positions of expression domains, pattern shape and positional variability. For a number of gene expression domains we show examples where protein expression does not repeat mRNA expression even after a temporal delay. We calculated time delays between eve pattern formation at the level of mRNA and protein for wild type embryos, Kr mutants and Kr+/Kr- heterozygotes. We detect that in wild type embryos, the amplitudes of eve stripes 3 and 7 do not differ significantly at the level of mRNA, however, stripe 3 is higher than stripe 7 at the protein level. We further show that hb mRNA and protein expression in both anterior and posterior domains significantly differs at specific time points. The formation of hb PS4 stripe at the mRNA level proceeds five times faster than at the level of protein. With regard to spatial expression, we show that the offset between posterior gt mRNA and protein domains is much larger in Kr mutants than in wild type embryos and heterozygotes. Finally, we analyze differences in positional variability of eve stripe 7 expression in Kr mutants and Kr+/Kr- heterozygotes at the level of mRNA and protein. These results enable further perspectives to uncover mechanisms underlying discrepancies between mRNA and protein expression in early embryo.
Collapse
Affiliation(s)
- Svetlana Surkova
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, St. Petersburg 195251, Russia.
| | - Alena Sokolkova
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, St. Petersburg 195251, Russia
| | - Konstantin Kozlov
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, St. Petersburg 195251, Russia
| | - Sergey V Nuzhdin
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, St. Petersburg 195251, Russia; Section of Molecular and Computational Biology, University of Southern California, Los Angeles 90089, CA, USA
| | - Maria Samsonova
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, St. Petersburg 195251, Russia.
| |
Collapse
|
12
|
Combs PA, Fraser HB. Spatially varying cis-regulatory divergence in Drosophila embryos elucidates cis-regulatory logic. PLoS Genet 2018; 14:e1007631. [PMID: 30383747 PMCID: PMC6211617 DOI: 10.1371/journal.pgen.1007631] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/14/2018] [Indexed: 12/30/2022] Open
Abstract
Spatial patterning of gene expression is a key process in development, yet how it evolves is still poorly understood. Both cis- and trans-acting changes could participate in complex interactions, so to isolate the cis-regulatory component of patterning evolution, we measured allele-specific spatial gene expression patterns in D. melanogaster × simulans hybrid embryos. RNA-seq of cryo-sectioned slices revealed 66 genes with strong spatially varying allele-specific expression. We found that hunchback, a major regulator of developmental patterning, had reduced expression of the D. simulans allele specifically in the anterior tip of hybrid embryos. Mathematical modeling of hunchback cis-regulation suggested a candidate transcription factor binding site variant, which we verified as causal using CRISPR-Cas9 genome editing. In sum, even comparing morphologically near-identical species we identified surprisingly extensive spatial variation in gene expression, suggesting not only that development is robust to many such changes, but also that natural selection may have ample raw material for evolving new body plans via changes in spatial patterning.
Collapse
Affiliation(s)
- Peter A. Combs
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Hunter B. Fraser
- Department of Biology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
13
|
Crocker J, Stern DL. Functional regulatory evolution outside of the minimal even-skipped stripe 2 enhancer. Development 2017; 144:3095-3101. [PMID: 28760812 DOI: 10.1242/dev.149427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/19/2017] [Indexed: 12/27/2022]
Abstract
Transcriptional enhancers are regions of DNA that drive precise patterns of gene expression. Although many studies have elucidated how individual enhancers can evolve, most of this work has focused on what are called 'minimal' enhancers, the smallest DNA regions that drive expression that approximates an aspect of native gene expression. Here, we explore how the Drosophila erecta even-skipped (eve) locus has evolved by testing its activity in the divergent D. melanogaster genome. We found, as has been reported previously, that the D. erecta eve stripe 2 enhancer (eveS2) fails to drive appreciable expression in D. melanogaster However, we found that a large transgene carrying the entire D. erecta eve locus drives normal eve expression, including in stripe 2. We performed a functional dissection of the region upstream of the D. erecta eveS2 region and found multiple Zelda motifs that are required for normal expression. Our results illustrate how sequences outside of minimal enhancer regions can evolve functionally through mechanisms other than changes in transcription factor-binding sites that drive patterning.
Collapse
Affiliation(s)
- Justin Crocker
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|
14
|
Laarits T, Bordalo P, Lemos B. Genes under weaker stabilizing selection increase network evolvability and rapid regulatory adaptation to an environmental shift. J Evol Biol 2016; 29:1602-16. [DOI: 10.1111/jeb.12897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/03/2016] [Accepted: 05/13/2016] [Indexed: 11/28/2022]
Affiliation(s)
| | - P. Bordalo
- Department of Systems Biology; Harvard Medical School; Boston MA USA
| | - B. Lemos
- Program in Molecular and Integrative Physiological Sciences; Department of Environmental Health; Harvard T. H. Chan School of Public Health; Boston MA USA
| |
Collapse
|
15
|
Ma J, He F, Xie G, Deng WM. Maternal AP determinants in the Drosophila oocyte and embryo. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:562-81. [PMID: 27253156 DOI: 10.1002/wdev.235] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/24/2016] [Accepted: 03/13/2016] [Indexed: 12/12/2022]
Abstract
An animal embryo cannot initiate its journey of forming a new life on its own. It must rely on maternally provided resources and inputs to kick-start its developmental process. In Drosophila, the initial polarities of the embryo along both the anterior-posterior (AP) and dorsal-ventral (DV) axes are also specified by maternal determinants. Over the past several decades, genetic and molecular studies have identified and characterized such determinants, as well as the zygotic genetic regulatory networks that control patterning in the early embryo. Extensive studies of oogenesis have also led to a detailed knowledge of the cellular and molecular interactions that control the formation of a mature egg. Despite these efforts, oogenesis and embryogenesis have been studied largely as separate problems, except for qualitative aspects with regard to maternal regulation of the asymmetric localization of maternal determinants. Can oogenesis and embryogenesis be viewed from a unified perspective at a quantitative level, and can that improve our understanding of how robust embryonic patterning is achieved? Here, we discuss the basic knowledge of the regulatory mechanisms controlling oogenesis and embryonic patterning along the AP axis. We explore properties of the maternal Bicoid gradient in relation to embryo size in search for a unified framework for robust AP patterning. WIREs Dev Biol 2016, 5:562-581. doi: 10.1002/wdev.235 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jun Ma
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.,Division of Developmental Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Feng He
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Gengqiang Xie
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
16
|
Levario TJ, Lim B, Shvartsman SY, Lu H. Microfluidics for High-Throughput Quantitative Studies of Early Development. Annu Rev Biomed Eng 2016; 18:285-309. [PMID: 26928208 DOI: 10.1146/annurev-bioeng-100515-013926] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Developmental biology has traditionally relied on qualitative analyses; recently, however, as in other fields of biology, researchers have become increasingly interested in acquiring quantitative knowledge about embryogenesis. Advances in fluorescence microscopy are enabling high-content imaging in live specimens. At the same time, microfluidics and automation technologies are increasing experimental throughput for studies of multicellular models of development. Furthermore, computer vision methods for processing and analyzing bioimage data are now leading the way toward quantitative biology. Here, we review advances in the areas of fluorescence microscopy, microfluidics, and data analysis that are instrumental to performing high-content, high-throughput studies in biology and specifically in development. We discuss a case study of how these techniques have allowed quantitative analysis and modeling of pattern formation in the Drosophila embryo.
Collapse
Affiliation(s)
- Thomas J Levario
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332;
| | - Bomyi Lim
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544;
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544;
| | - Hang Lu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332;
| |
Collapse
|
17
|
Temporal and spatial dynamics of scaling-specific features of a gene regulatory network in Drosophila. Nat Commun 2015; 6:10031. [PMID: 26644070 PMCID: PMC4686680 DOI: 10.1038/ncomms10031] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/28/2015] [Indexed: 01/19/2023] Open
Abstract
A widely appreciated aspect of developmental robustness is pattern formation in proportion to size. But how such scaling features emerge dynamically remains poorly understood. Here we generate a data set of the expression profiles of six gap genes in Drosophila melanogaster embryos that differ significantly in size. Expression patterns exhibit size-dependent dynamics both spatially and temporally. We uncover a dynamic emergence of under-scaling in the posterior, accompanied by reduced expression levels of gap genes near the middle of large embryos. Simulation results show that a size-dependent Bicoid gradient input can lead to reduced Krüppel expression that can have long-range and dynamic effects on gap gene expression in the posterior. Thus, for emergence of scaled patterns, the entire embryo may be viewed as a single unified dynamic system where maternally derived size-dependent information interpreted locally can be propagated in space and time as governed by the dynamics of a gene regulatory network. How pattern formation is regulated relative to the size of an organism is unclear. Here, Wu et al. take data from gap gene expression in flies of different sizes together with simulations, identifying how scaling emerges dynamically and that local patterning influences global gene regulatory networks.
Collapse
|
18
|
Wunderlich Z, Bragdon MDJ, Vincent BJ, White JA, Estrada J, DePace AH. Krüppel Expression Levels Are Maintained through Compensatory Evolution of Shadow Enhancers. Cell Rep 2015; 12:1740-7. [PMID: 26344774 PMCID: PMC4581983 DOI: 10.1016/j.celrep.2015.08.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 06/24/2015] [Accepted: 08/05/2015] [Indexed: 01/08/2023] Open
Abstract
Many developmental genes are controlled by shadow enhancers—pairs of enhancers that drive overlapping expression patterns. We hypothesized that compensatory evolution can maintain the total expression of a gene, while individual shadow enhancers diverge between species. To test this hypothesis, we analyzed expression driven by orthologous pairs of shadow enhancers from Drosophila melanogaster, Drosophila yakuba, and Drosophila pseudoobscura that control expression of Krüppel, a transcription factor that patterns the anterior-posterior axis of blastoderm embryos. We found that the expression driven by the pair of enhancers is conserved between these three species, but expression levels driven by the individual enhancers are not. Using sequence analysis and experimental perturbation, we show that each shadow enhancer is regulated by different transcription factors. These results support the hypothesis that compensatory evolution can occur between shadow enhancers, which has implications for mechanistic and evolutionary studies of gene regulation.
Collapse
Affiliation(s)
- Zeba Wunderlich
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Meghan D J Bragdon
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ben J Vincent
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Javier Estrada
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Angela H DePace
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Jiang P, Ludwig MZ, Kreitman M, Reinitz J. Natural variation of the expression pattern of the segmentation gene even-skipped in melanogaster. Dev Biol 2015; 405:173-81. [PMID: 26129990 PMCID: PMC4529771 DOI: 10.1016/j.ydbio.2015.06.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 11/28/2022]
Abstract
The evolution of canalized traits is a central question in evolutionary biology. Natural variation in highly conserved traits can provide clues about their evolutionary potential. Here we investigate natural variation in a conserved trait-even-skipped (eve) expression at the cellular blastoderm stage of embryonic development in Drosophila melanogaster. Expression of the pair-rule gene eve was quantitatively measured in three inbred lines derived from a natural population of D. melanogaster. One line showed marked differences in the spacing, amplitude and timing of formation of the characteristic seven-striped pattern over a 50-min period prior to the onset of gastrulation. Stripe 5 amplitude and the width of the interstripe between stripes 4 and 5 were both reduced in this line, while the interstripe distance between stripes 3 and 4 was increased. Engrailed expression in stage 10 embryos revealed a statistically significant increase in the length of parasegment 6 and a decrease in the length of parasegments 8 and 9. These changes are larger than those previously reported between D. melanogaster and D. pseudoobscura, two species that are thought to have diverged from a common ancestor over 25 million years ago. This line harbors a rare 448 bp deletion in the first intron of knirps (kni). This finding suggested that reduced Kni levels caused the deviant eve expression, and indeed we observed lower levels of Kni protein at early cycle 14A in L2 compared to the other two lines. A second of the three lines displayed an approximately 20% greater level of expression for all seven eve stripes. The three lines are each viable and fertile, and none display a segmentation defect as adults, suggesting that early-acting variation in eve expression is ameliorated by developmental buffering mechanisms acting later in development. Canalization of the segmentation pathway may reduce the fitness consequences of genetic variation, thus allowing the persistence of mutations with unexpectedly strong gene expression phenotypes.
Collapse
Affiliation(s)
- Pengyao Jiang
- Department of Ecology & Evolution, University of Chicago, IL 60637, USA.
| | - Michael Z Ludwig
- Department of Ecology & Evolution, University of Chicago, IL 60637, USA; Institute for Genomics & Systems Biology, Chicago, IL 60637, USA
| | - Martin Kreitman
- Department of Ecology & Evolution, University of Chicago, IL 60637, USA; Institute for Genomics & Systems Biology, Chicago, IL 60637, USA
| | - John Reinitz
- Department of Ecology & Evolution, University of Chicago, IL 60637, USA; Institute for Genomics & Systems Biology, Chicago, IL 60637, USA; Department of Statistics, University of Chicago, IL 60637, USA; Department of Molecular Genetics and Cell Biology, University of Chicago, IL 60637, USA
| |
Collapse
|
20
|
Shaped singular spectrum analysis for quantifying gene expression, with application to the early Drosophila embryo. BIOMED RESEARCH INTERNATIONAL 2015; 2015:689745. [PMID: 25945341 PMCID: PMC4402483 DOI: 10.1155/2015/689745] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/10/2014] [Accepted: 09/10/2014] [Indexed: 11/17/2022]
Abstract
In recent years, with the development of automated microscopy technologies, the volume and complexity of image data on gene expression have increased tremendously. The only way to analyze quantitatively and comprehensively such biological data is by developing and applying new sophisticated mathematical approaches. Here, we present extensions of 2D singular spectrum analysis (2D-SSA) for application to 2D and 3D datasets of embryo images. These extensions, circular and shaped 2D-SSA, are applied to gene expression in the nuclear layer just under the surface of the Drosophila (fruit fly) embryo. We consider the commonly used cylindrical projection of the ellipsoidal Drosophila embryo. We demonstrate how circular and shaped versions of 2D-SSA help to decompose expression data into identifiable components (such as trend and noise), as well as separating signals from different genes. Detection and improvement of under- and overcorrection in multichannel imaging is addressed, as well as the extraction and analysis of 3D features in 3D gene expression patterns.
Collapse
|
21
|
Wotton KR, Jiménez-Guri E, Crombach A, Cicin-Sain D, Jaeger J. High-resolution gene expression data from blastoderm embryos of the scuttle fly Megaselia abdita. Sci Data 2015; 2:150005. [PMID: 25977812 PMCID: PMC4423355 DOI: 10.1038/sdata.2015.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/03/2015] [Indexed: 12/21/2022] Open
Abstract
Gap genes are involved in segment determination during early development in dipteran insects (flies, midges, and mosquitoes). We carried out a systematic quantitative comparative analysis of the gap gene network across different dipteran species. Our work provides mechanistic insights into the evolution of this pattern-forming network. As a central component of our project, we created a high-resolution quantitative spatio-temporal data set of gap and maternal co-ordinate gene expression in the blastoderm embryo of the non-drosophilid scuttle fly, Megaselia abdita. Our data include expression patterns in both wild-type and RNAi-treated embryos. The data-covering 10 genes, 10 time points, and over 1,000 individual embryos-consist of original embryo images, quantified expression profiles, extracted positions of expression boundaries, and integrated expression patterns, plus metadata and intermediate processing steps. These data provide a valuable resource for researchers interested in the comparative study of gene regulatory networks and pattern formation, an essential step towards a more quantitative and mechanistic understanding of developmental evolution.
Collapse
Affiliation(s)
- Karl R Wotton
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Eva Jiménez-Guri
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Anton Crombach
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Damjan Cicin-Sain
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Johannes Jaeger
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| |
Collapse
|
22
|
Staller MV, Fowlkes CC, Bragdon MDJ, Wunderlich Z, Estrada J, DePace AH. A gene expression atlas of a bicoid-depleted Drosophila embryo reveals early canalization of cell fate. Development 2015; 142:587-96. [PMID: 25605785 PMCID: PMC4302997 DOI: 10.1242/dev.117796] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/01/2014] [Indexed: 01/31/2023]
Abstract
In developing embryos, gene regulatory networks drive cells towards discrete terminal fates, a process called canalization. We studied the behavior of the anterior-posterior segmentation network in Drosophila melanogaster embryos by depleting a key maternal input, bicoid (bcd), and measuring gene expression patterns of the network at cellular resolution. This method results in a gene expression atlas containing the levels of mRNA or protein expression of 13 core patterning genes over six time points for every cell of the blastoderm embryo. This is the first cellular resolution dataset of a genetically perturbed Drosophila embryo that captures all cells in 3D. We describe the technical developments required to build this atlas and how the method can be employed and extended by others. We also analyze this novel dataset to characterize the degree and timing of cell fate canalization in the segmentation network. We find that in two layers of this gene regulatory network, following depletion of bcd, individual cells rapidly canalize towards normal cell fates. This result supports the hypothesis that the segmentation network directly canalizes cell fate, rather than an alternative hypothesis whereby cells are initially mis-specified and later eliminated by apoptosis. Our gene expression atlas provides a high resolution picture of a classic perturbation and will enable further computational modeling of canalization and gene regulation in this transcriptional network.
Collapse
Affiliation(s)
- Max V Staller
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Charless C Fowlkes
- Department of Computer Science, University of California Irvine, Irvine, CA 92697, USA
| | - Meghan D J Bragdon
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Zeba Wunderlich
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Javier Estrada
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Angela H DePace
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
23
|
Shadow enhancers enable Hunchback bifunctionality in the Drosophila embryo. Proc Natl Acad Sci U S A 2015; 112:785-90. [PMID: 25564665 DOI: 10.1073/pnas.1413877112] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hunchback (Hb) is a bifunctional transcription factor that activates and represses distinct enhancers. Here, we investigate the hypothesis that Hb can activate and repress the same enhancer. Computational models predicted that Hb bifunctionally regulates the even-skipped (eve) stripe 3+7 enhancer (eve3+7) in Drosophila blastoderm embryos. We measured and modeled eve expression at cellular resolution under multiple genetic perturbations and found that the eve3+7 enhancer could not explain endogenous eve stripe 7 behavior. Instead, we found that eve stripe 7 is controlled by two enhancers: the canonical eve3+7 and a sequence encompassing the minimal eve stripe 2 enhancer (eve2+7). Hb bifunctionally regulates eve stripe 7, but it executes these two activities on different pieces of regulatory DNA--it activates the eve2+7 enhancer and represses the eve3+7 enhancer. These two "shadow enhancers" use different regulatory logic to create the same pattern.
Collapse
|
24
|
Ambrosi P, Chahda JS, Koslen HR, Chiel HJ, Mizutani CM. Modeling of the dorsal gradient across species reveals interaction between embryo morphology and Toll signaling pathway during evolution. PLoS Comput Biol 2014; 10:e1003807. [PMID: 25165818 PMCID: PMC4148200 DOI: 10.1371/journal.pcbi.1003807] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/14/2014] [Indexed: 12/16/2022] Open
Abstract
Morphogenetic gradients are essential to allocate cell fates in embryos of varying sizes within and across closely related species. We previously showed that the maternal NF-κB/Dorsal (Dl) gradient has acquired different shapes in Drosophila species, which result in unequally scaled germ layers along the dorso-ventral axis and the repositioning of the neuroectodermal borders. Here we combined experimentation and mathematical modeling to investigate which factors might have contributed to the fast evolutionary changes of this gradient. To this end, we modified a previously developed model that employs differential equations of the main biochemical interactions of the Toll (Tl) signaling pathway, which regulates Dl nuclear transport. The original model simulations fit well the D. melanogaster wild type, but not mutant conditions. To broaden the applicability of this model and probe evolutionary changes in gradient distributions, we adjusted a set of 19 independent parameters to reproduce three quantified experimental conditions (i.e. Dl levels lowered, nuclear size and density increased or decreased). We next searched for the most relevant parameters that reproduce the species-specific Dl gradients. We show that adjusting parameters relative to morphological traits (i.e. embryo diameter, nuclear size and density) alone is not sufficient to reproduce the species Dl gradients. Since components of the Tl pathway simulated by the model are fast-evolving, we next asked which parameters related to Tl would most effectively reproduce these gradients and identified a particular subset. A sensitivity analysis reveals the existence of nonlinear interactions between the two fast-evolving traits tested above, namely the embryonic morphological changes and Tl pathway components. Our modeling further suggests that distinct Dl gradient shapes observed in closely related melanogaster sub-group lineages may be caused by similar sequence modifications in Tl pathway components, which are in agreement with their phylogenetic relationships. Embryo size can vary greatly among closely related species. How tissue specification either scales or is modified in the developing embryo in different species is an ongoing investigation in developmental biology. Here we asked how embryo morphology and specific molecular pathways influence tissue specification by altering the distribution of morphogens. Morphogens are molecules that form gradients that regulate gene expression patterns in a dosage-dependent fashion that result in tissue specification, and therefore are a prime target for evolution in order to adjust or maintain tissue proportions in relation to overall embryo size. We used a mathematical model to identify factors that influence the distribution of the Dorsal morphogen gradient that is responsible for patterning the dorsal-ventral axis of the Drosophila fruit fly embryo. We obtained experimental data from mutant conditions and different species of Drosophila to calibrate our model and found an interaction between embryo morphology and regulation of the Toll pathway, which regulates the Dorsal gradient. Furthermore, the model predicts that closely related species share similar modifications in Toll pathway components resulting in their species-specific gradient shapes, which are supported by interspecies amino acid comparison of the components Dorsal and Cactus.
Collapse
Affiliation(s)
- Priscilla Ambrosi
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Juan Sebastian Chahda
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Hannah R. Koslen
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Hillel J. Chiel
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (HJC); (CMM)
| | - Claudia Mieko Mizutani
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (HJC); (CMM)
| |
Collapse
|
25
|
Barrière A, Ruvinsky I. Pervasive divergence of transcriptional gene regulation in Caenorhabditis nematodes. PLoS Genet 2014; 10:e1004435. [PMID: 24968346 PMCID: PMC4072541 DOI: 10.1371/journal.pgen.1004435] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/28/2014] [Indexed: 12/18/2022] Open
Abstract
Because there is considerable variation in gene expression even between closely related species, it is clear that gene regulatory mechanisms evolve relatively rapidly. Because primary sequence conservation is an unreliable proxy for functional conservation of cis-regulatory elements, their assessment must be carried out in vivo. We conducted a survey of cis-regulatory conservation between C. elegans and closely related species C. briggsae, C. remanei, C. brenneri, and C. japonica. We tested enhancers of eight genes from these species by introducing them into C. elegans and analyzing the expression patterns they drove. Our results support several notable conclusions. Most exogenous cis elements direct expression in the same cells as their C. elegans orthologs, confirming gross conservation of regulatory mechanisms. However, the majority of exogenous elements, when placed in C. elegans, also directed expression in cells outside endogenous patterns, suggesting functional divergence. Recurrent ectopic expression of different promoters in the same C. elegans cells may reflect biases in the directions in which expression patterns can evolve due to shared regulatory logic of coexpressed genes. The fact that, despite differences between individual genes, several patterns repeatedly emerged from our survey, encourages us to think that general rules governing regulatory evolution may exist and be discoverable.
Collapse
Affiliation(s)
- Antoine Barrière
- Department of Ecology and Evolution and Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (AB); (IR)
| | - Ilya Ruvinsky
- Department of Ecology and Evolution and Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (AB); (IR)
| |
Collapse
|
26
|
Castro-González C, Luengo-Oroz MA, Duloquin L, Savy T, Rizzi B, Desnoulez S, Doursat R, Kergosien YL, Ledesma-Carbayo MJ, Bourgine P, Peyriéras N, Santos A. A digital framework to build, visualize and analyze a gene expression atlas with cellular resolution in zebrafish early embryogenesis. PLoS Comput Biol 2014; 10:e1003670. [PMID: 24945246 PMCID: PMC4063669 DOI: 10.1371/journal.pcbi.1003670] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 04/28/2014] [Indexed: 01/30/2023] Open
Abstract
A gene expression atlas is an essential resource to quantify and understand the multiscale processes of embryogenesis in time and space. The automated reconstruction of a prototypic 4D atlas for vertebrate early embryos, using multicolor fluorescence in situ hybridization with nuclear counterstain, requires dedicated computational strategies. To this goal, we designed an original methodological framework implemented in a software tool called Match-IT. With only minimal human supervision, our system is able to gather gene expression patterns observed in different analyzed embryos with phenotypic variability and map them onto a series of common 3D templates over time, creating a 4D atlas. This framework was used to construct an atlas composed of 6 gene expression templates from a cohort of zebrafish early embryos spanning 6 developmental stages from 4 to 6.3 hpf (hours post fertilization). They included 53 specimens, 181,415 detected cell nuclei and the segmentation of 98 gene expression patterns observed in 3D for 9 different genes. In addition, an interactive visualization software, Atlas-IT, was developed to inspect, supervise and analyze the atlas. Match-IT and Atlas-IT, including user manuals, representative datasets and video tutorials, are publicly and freely available online. We also propose computational methods and tools for the quantitative assessment of the gene expression templates at the cellular scale, with the identification, visualization and analysis of coexpression patterns, synexpression groups and their dynamics through developmental stages. We propose a workflow to map the expression domains of multiple genes onto a series of 3D templates, or “atlas”, during early embryogenesis. It was applied to the zebrafish at different stages between 4 and 6.3 hpf, generating 6 templates. Our system overcomes the lack of significant morphological landmarks in early development by relying on the expression of a reference gene (goosecoid, gsc) and nuclear staining to guide the registration of the analyzed genes. The proposed method also successfully maps gene domains from partially imaged embryos, thus allowing greater microscope magnification and cellular resolution. By using the workflow to construct a spatiotemporal database of zebrafish, we opened the way to a systematic analysis of vertebrate embryogenesis. The atlas database, together with the mapping software (Match-IT), a custom-made visualization platform (Atlas-IT), and step-by-step user guides are available from the Supplementary Material. We expect that this will encourage other laboratories to generate, map, visualize and analyze new gene expression datasets.
Collapse
Affiliation(s)
- Carlos Castro-González
- Biomedical Image Technologies, ETSIT, Universidad Politécnica de Madrid, CEIMoncloa, Madrid, Spain
- Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Madrid-MIT M+Visión Consortium, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Miguel A. Luengo-Oroz
- Biomedical Image Technologies, ETSIT, Universidad Politécnica de Madrid, CEIMoncloa, Madrid, Spain
- Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Louise Duloquin
- MDAM UPR3294, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
- Institut des Systèmes Complexes, Paris, France
- BioEmergences-IBiSA, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
| | - Thierry Savy
- MDAM UPR3294, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
- Institut des Systèmes Complexes, Paris, France
- BioEmergences-IBiSA, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
| | - Barbara Rizzi
- MDAM UPR3294, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
- Institut des Systèmes Complexes, Paris, France
- BioEmergences-IBiSA, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
| | - Sophie Desnoulez
- MDAM UPR3294, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
- BioEmergences-IBiSA, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
| | - René Doursat
- Institut des Systèmes Complexes, Paris, France
- BioEmergences-IBiSA, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
- School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Yannick L. Kergosien
- MDAM UPR3294, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
- BioEmergences-IBiSA, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
- LIMICS-INSERM UMR 1142, UFR SMBH, Université Paris 13, Bobigny, France
| | - María J. Ledesma-Carbayo
- Biomedical Image Technologies, ETSIT, Universidad Politécnica de Madrid, CEIMoncloa, Madrid, Spain
- Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Paul Bourgine
- MDAM UPR3294, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
- Institut des Systèmes Complexes, Paris, France
- BioEmergences-IBiSA, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
| | - Nadine Peyriéras
- MDAM UPR3294, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
- Institut des Systèmes Complexes, Paris, France
- BioEmergences-IBiSA, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
- * E-mail: (NP); (AS)
| | - Andrés Santos
- Biomedical Image Technologies, ETSIT, Universidad Politécnica de Madrid, CEIMoncloa, Madrid, Spain
- Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- * E-mail: (NP); (AS)
| |
Collapse
|
27
|
Jug F, Pietzsch T, Preibisch S, Tomancak P. Bioimage Informatics in the context of Drosophila research. Methods 2014; 68:60-73. [PMID: 24732429 DOI: 10.1016/j.ymeth.2014.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/02/2014] [Accepted: 04/04/2014] [Indexed: 01/05/2023] Open
Abstract
Modern biological research relies heavily on microscopic imaging. The advanced genetic toolkit of Drosophila makes it possible to label molecular and cellular components with unprecedented level of specificity necessitating the application of the most sophisticated imaging technologies. Imaging in Drosophila spans all scales from single molecules to the entire populations of adult organisms, from electron microscopy to live imaging of developmental processes. As the imaging approaches become more complex and ambitious, there is an increasing need for quantitative, computer-mediated image processing and analysis to make sense of the imagery. Bioimage Informatics is an emerging research field that covers all aspects of biological image analysis from data handling, through processing, to quantitative measurements, analysis and data presentation. Some of the most advanced, large scale projects, combining cutting edge imaging with complex bioimage informatics pipelines, are realized in the Drosophila research community. In this review, we discuss the current research in biological image analysis specifically relevant to the type of systems level image datasets that are uniquely available for the Drosophila model system. We focus on how state-of-the-art computer vision algorithms are impacting the ability of Drosophila researchers to analyze biological systems in space and time. We pay particular attention to how these algorithmic advances from computer science are made usable to practicing biologists through open source platforms and how biologists can themselves participate in their further development.
Collapse
Affiliation(s)
- Florian Jug
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Tobias Pietzsch
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Stephan Preibisch
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Anatomy and Structural Biology, Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pavel Tomancak
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| |
Collapse
|
28
|
Wunderlich Z, Bragdon MD, DePace AH. Comparing mRNA levels using in situ hybridization of a target gene and co-stain. Methods 2014; 68:233-41. [PMID: 24434507 DOI: 10.1016/j.ymeth.2014.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/02/2014] [Indexed: 11/29/2022] Open
Abstract
In situ hybridization is an important technique for measuring the spatial expression patterns of mRNA in cells, tissues, and whole animals. However, mRNA levels cannot be compared across experiments using typical protocols. Here we present a semi-quantitative method to compare mRNA levels of a gene across multiple samples. This method yields an estimate of the error in the measurement to allow statistical comparison. Our method uses a typical in situ hybridization protocol to stain for a target gene and an internal standard, which we refer to as a co-stain. As a proof of concept, we apply this method to multiple lines of transgenic Drosophila embryos, harboring constructs that express reporter genes to different levels. We generated this test set by mutating enhancer sequences to contain different numbers of binding sites for Zelda, a transcriptional activator. We demonstrate that using a co-stain with in situ hybridization is an effective method to compare mRNA levels across samples. This method requires only minor modifications to existing in situ hybridization protocols and uses straightforward analysis techniques. This strategy can be broadly applied to detect quantitative, spatially resolved changes in mRNA levels.
Collapse
Affiliation(s)
- Zeba Wunderlich
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA.
| | - Meghan D Bragdon
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA.
| | - Angela H DePace
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA.
| |
Collapse
|
29
|
Trafford K, Haleux P, Henderson M, Parker M, Shirley NJ, Tucker MR, Fincher GB, Burton RA. Grain development in Brachypodium and other grasses: possible interactions between cell expansion, starch deposition, and cell-wall synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5033-5047. [PMID: 24052531 DOI: 10.1093/jxb/ert292] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
To explain the low levels of starch, high levels of (1,3;1,4)-β-glucan, and thick cell walls in grains of Brachypodium distachyon L. relative to those in other Pooideae, aspects of grain development were compared between B. distachyon and barley (Hordeum vulgare L.). Cell proliferation, cell expansion, and endoreduplication were reduced in B. distachyon relative to barley and, consistent with these changes, transcriptional downregulation of the cell-cycle genes CDKB1 and cyclin A3 was observed. Similarly, reduced transcription of starch synthase I and starch-branching enzyme I was observed as well as reduced activity of starch synthase and ADP-glucose pyrophosphorylase, which are consistent with the lowered starch content in B. distachyon grains. No change was detected in transcription of the major gene involved in (1,3;1,4)-β-glucan synthesis, cellulose synthase-like F6. These results suggest that, while low starch content results from a reduced capacity for starch synthesis, the unusually thick cell walls in B. distachyon endosperm probably result from continuing (1,3;1,4)-β-glucan deposition in endosperm cells that fail to expand. This raises the possibility that endosperm expansion is linked to starch deposition.
Collapse
Affiliation(s)
- Kay Trafford
- National Institute of Agricultural Botany, Huntingdon Road, Cambridge CB3 0LE, UK
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Knowles DW, Biggin MD. Building quantitative, three-dimensional atlases of gene expression and morphology at cellular resolution. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2013; 2:767-79. [PMID: 24123936 PMCID: PMC3819199 DOI: 10.1002/wdev.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Animals comprise dynamic three-dimensional arrays of cells that express gene products in intricate spatial and temporal patterns that determine cellular differentiation and morphogenesis. A rigorous understanding of these developmental processes requires automated methods that quantitatively record and analyze complex morphologies and their associated patterns of gene expression at cellular resolution. Here we summarize light microscopy-based approaches to establish permanent, quantitative datasets-atlases-that record this information. We focus on experiments that capture data for whole embryos or large areas of tissue in three dimensions, often at multiple time points. We compare and contrast the advantages and limitations of different methods and highlight some of the discoveries made. We emphasize the need for interdisciplinary collaborations and integrated experimental pipelines that link sample preparation, image acquisition, image analysis, database design, visualization, and quantitative analysis.
Collapse
Affiliation(s)
- David W. Knowles
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 84-171, Berkeley, CA 97720
| | - Mark D. Biggin
- Genomics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 84-171, Berkeley, CA 94720
| |
Collapse
|
31
|
Kirby RM, Meyer M. Visualization collaborations: what works and why. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2013; 33:82-88. [PMID: 24808133 DOI: 10.1109/mcg.2013.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
For over 25 years, the visualization community has grown and evolved as a function of collaboration with other areas. It's now commonplace for visualization scientists to engage with other researchers in scientific teams. Commonplace, however, doesn't mean easy. Two visualization researchers' years of experience have led to a set of observations and recommendations on what works (and what doesn't) and why in visualization collaborations. These insights can help guide the visualization community as it moves forward.
Collapse
|
32
|
Rizzi B, Peyrieras N. Towards 3D in silico modeling of the sea urchin embryonic development. J Chem Biol 2013; 7:17-28. [PMID: 24386014 PMCID: PMC3877407 DOI: 10.1007/s12154-013-0101-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/22/2013] [Indexed: 11/29/2022] Open
Abstract
Embryogenesis is a dynamic process with an intrinsic variability whose understanding requires the integration of molecular, genetic, and cellular dynamics. Biological circuits function over time at the level of single cells and require a precise analysis of the topology, temporality, and probability of events. Integrative developmental biology is currently looking for the appropriate strategies to capture the intrinsic properties of biological systems. The "-omic" approaches require disruption of the function of the biological circuit; they provide static information, with low temporal resolution and usually with population averaging that masks fast or variable features at the cellular scale and in a single individual. This data should be correlated with cell behavior as cells are the integrators of biological activity. Cellular dynamics are captured by the in vivo microscopy observation of live organisms. This can be used to reconstruct the 3D + time cell lineage tree to serve as the basis for modeling the organism's multiscale dynamics. We discuss here the progress that has been made in this direction, starting with the reconstruction over time of three-dimensional digital embryos from in toto time-lapse imaging. Digital specimens provide the means for a quantitative description of the development of model organisms that can be stored, shared, and compared. They open the way to in silico experimentation and to a more theoretical approach to biological processes. We show, with some unpublished results, how the proposed methodology can be applied to sea urchin species that have been model organisms in the field of classical embryology and modern developmental biology for over a century.
Collapse
Affiliation(s)
- Barbara Rizzi
- CNRS-MDAM, UPR 3294 and BioEmergences-IBiSA, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
- Institut des Systèmes Complexes, 57-59 rue Lhomond, Paris, France
| | - Nadine Peyrieras
- CNRS-MDAM, UPR 3294 and BioEmergences-IBiSA, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France
- Institut des Systèmes Complexes, 57-59 rue Lhomond, Paris, France
| |
Collapse
|
33
|
Paris M, Kaplan T, Li XY, Villalta JE, Lott SE, Eisen MB. Extensive divergence of transcription factor binding in Drosophila embryos with highly conserved gene expression. PLoS Genet 2013; 9:e1003748. [PMID: 24068946 PMCID: PMC3772039 DOI: 10.1371/journal.pgen.1003748] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022] Open
Abstract
To better characterize how variation in regulatory sequences drives divergence in gene expression, we undertook a systematic study of transcription factor binding and gene expression in blastoderm embryos of four species, which sample much of the diversity in the 40 million-year old genus Drosophila: D. melanogaster, D. yakuba, D. pseudoobscura and D. virilis. We compared gene expression, measured by mRNA-seq, to the genome-wide binding, measured by ChIP-seq, of four transcription factors involved in early anterior-posterior patterning. We found that mRNA levels are much better conserved than individual transcription factor binding events, and that changes in a gene's expression were poorly explained by changes in adjacent transcription factor binding. However, highly bound sites, sites in regions bound by multiple factors and sites near genes are conserved more frequently than other binding, suggesting that a considerable amount of transcription factor binding is weakly or non-functional and not subject to purifying selection.
Collapse
Affiliation(s)
- Mathilde Paris
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Tommy Kaplan
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
| | - Xiao Yong Li
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California, United States of America
| | | | - Susan E. Lott
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Michael B. Eisen
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California, United States of America
| |
Collapse
|
34
|
Lee R, Karr JR, Covert MW. WholeCellViz: data visualization for whole-cell models. BMC Bioinformatics 2013; 14:253. [PMID: 23964998 PMCID: PMC3765349 DOI: 10.1186/1471-2105-14-253] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 08/19/2013] [Indexed: 11/14/2022] Open
Abstract
Background Whole-cell models promise to accelerate biomedical science and engineering. However, discovering new biology from whole-cell models and other high-throughput technologies requires novel tools for exploring and analyzing complex, high-dimensional data. Results We developed WholeCellViz, a web-based software program for visually exploring and analyzing whole-cell simulations. WholeCellViz provides 14 animated visualizations, including metabolic and chromosome maps. These visualizations help researchers analyze model predictions by displaying predictions in their biological context. Furthermore, WholeCellViz enables researchers to compare predictions within and across simulations by allowing users to simultaneously display multiple visualizations. Conclusion WholeCellViz was designed to facilitate exploration, analysis, and communication of whole-cell model data. Taken together, WholeCellViz helps researchers use whole-cell model simulations to drive advances in biology and bioengineering.
Collapse
Affiliation(s)
- Ruby Lee
- Department of Bioengineering, Stanford University, Stanford, CA 94025, USA.
| | | | | |
Collapse
|
35
|
Roy S, Wapinski I, Pfiffner J, French C, Socha A, Konieczka J, Habib N, Kellis M, Thompson D, Regev A. Arboretum: reconstruction and analysis of the evolutionary history of condition-specific transcriptional modules. Genome Res 2013; 23:1039-50. [PMID: 23640720 PMCID: PMC3668358 DOI: 10.1101/gr.146233.112] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Comparative functional genomics studies the evolution of biological processes by analyzing functional data, such as gene expression profiles, across species. A major challenge is to compare profiles collected in a complex phylogeny. Here, we present Arboretum, a novel scalable computational algorithm that integrates expression data from multiple species with species and gene phylogenies to infer modules of coexpressed genes in extant species and their evolutionary histories. We also develop new, generally applicable measures of conservation and divergence in gene regulatory modules to assess the impact of changes in gene content and expression on module evolution. We used Arboretum to study the evolution of the transcriptional response to heat shock in eight species of Ascomycota fungi and to reconstruct modules of the ancestral environmental stress response (ESR). We found substantial conservation in the stress response across species and in the reconstructed components of the ancestral ESR modules. The greatest divergence was in the most induced stress, primarily through module expansion. The divergence of the heat stress response exceeds that observed in the response to glucose depletion in the same species. Arboretum and its associated analyses provide a comprehensive framework to systematically study regulatory evolution of condition-specific responses.
Collapse
Affiliation(s)
- Sushmita Roy
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chahda JS, Sousa-Neves R, Mizutani CM. Variation in the dorsal gradient distribution is a source for modified scaling of germ layers in Drosophila. Curr Biol 2013; 23:710-6. [PMID: 23583556 DOI: 10.1016/j.cub.2013.03.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 02/22/2013] [Accepted: 03/11/2013] [Indexed: 01/30/2023]
Abstract
Specification of germ layers along the dorsoventral axis by morphogenetic gradients is an ideal model to study scaling properties of gradients and cell fate changes during evolution. Classical anatomical studies in divergent insects (e.g., flies and grasshoppers) revealed that the neuroectodermal size is conserved and originates similar numbers of neuroblasts of homologous identity. In contrast, mesodermal domains vary significantly in closely related Drosophila species. To further investigate the underlying mechanisms of scaling of germ layers across Drosophila species, we quantified the Dorsal (Dl)/NF-κB gradient, the main morphogenetic gradient that initiates separation of the mesoderm, neuroectoderm, and ectoderm. We discovered a variable range of Toll activation across species and found that Dl activates mesodermal genes at the same threshold levels in melanogaster sibling species. We also show that the Dl gradient distribution can be modulated by nuclear size and packing densities. We propose that variation in mesodermal size occurs at a fast evolutionary rate and is an important mechanism to define the ventral boundary of the neuroectoderm.
Collapse
|
37
|
Abraham MC, Metheetrairut C, Irish VF. Natural variation identifies multiple loci controlling petal shape and size in Arabidopsis thaliana. PLoS One 2013; 8:e56743. [PMID: 23418598 PMCID: PMC3572026 DOI: 10.1371/journal.pone.0056743] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/14/2013] [Indexed: 12/14/2022] Open
Abstract
Natural variation in organ morphologies can have adaptive significance and contribute to speciation. However, the underlying allelic differences responsible for variation in organ size and shape remain poorly understood. We have utilized natural phenotypic variation in three Arabidopsis thaliana ecotypes to examine the genetic basis for quantitative variation in petal length, width, area, and shape. We identified 23 loci responsible for such variation, many of which appear to correspond to genes not previously implicated in controlling organ morphology. These analyses also demonstrated that allelic differences at distinct loci can independently affect petal length, width, area or shape, suggesting that these traits behave as independent modules. We also showed that ERECTA (ER), encoding a leucine-rich repeat (LRR) receptor-like serine-threonine kinase, is a major effect locus determining petal shape. Allelic variation at the ER locus was associated with differences in petal cell proliferation and concomitant effects on petal shape. ER has been previously shown to be required for regulating cell division and expansion in other contexts; the ER receptor-like kinase functioning to also control organ-specific proliferation patterns suggests that allelic variation in common signaling components may nonetheless have been a key factor in morphological diversification.
Collapse
Affiliation(s)
- Mary C. Abraham
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Chanatip Metheetrairut
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Vivian F. Irish
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
38
|
Wunderlich Z, Bragdon MD, Eckenrode KB, Lydiard-Martin T, Pearl-Waserman S, DePace AH. Dissecting sources of quantitative gene expression pattern divergence between Drosophila species. Mol Syst Biol 2013; 8:604. [PMID: 22893002 PMCID: PMC3435502 DOI: 10.1038/msb.2012.35] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 07/12/2012] [Indexed: 12/21/2022] Open
Abstract
Gene expression patterns can diverge between species due to changes in a gene's regulatory DNA or changes in the proteins, e.g., transcription factors (TFs), that regulate the gene. We developed a modeling framework to uncover the sources of expression differences in blastoderm embryos of three Drosophila species, focusing on the regulatory circuit controlling expression of the hunchback (hb) posterior stripe. Using this framework and cellular-resolution expression measurements of hb and its regulating TFs, we found that changes in the expression patterns of hb's TFs account for much of the expression divergence. We confirmed our predictions using transgenic D. melanogaster lines, which demonstrate that this set of orthologous cis-regulatory elements (CREs) direct similar, but not identical, expression patterns. We related expression pattern differences to sequence changes in the CRE using a calculation of the CRE's TF binding site content. By applying this calculation in both the transgenic and endogenous contexts, we found that changes in binding site content affect sensitivity to regulating TFs and that compensatory evolution may occur in circuit components other than the CRE.
Collapse
Affiliation(s)
- Zeba Wunderlich
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
39
|
Depleting gene activities in early Drosophila embryos with the "maternal-Gal4-shRNA" system. Genetics 2012; 193:51-61. [PMID: 23105012 DOI: 10.1534/genetics.112.144915] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a developing Drosophila melanogaster embryo, mRNAs have a maternal origin, a zygotic origin, or both. During the maternal-zygotic transition, maternal products are degraded and gene expression comes under the control of the zygotic genome. To interrogate the function of mRNAs that are both maternally and zygotically expressed, it is common to examine the embryonic phenotypes derived from female germline mosaics. Recently, the development of RNAi vectors based on short hairpin RNAs (shRNAs) effective during oogenesis has provided an alternative to producing germline clones. Here, we evaluate the efficacies of: (1) maternally loaded shRNAs to knockdown zygotic transcripts and (2) maternally loaded Gal4 protein to drive zygotic shRNA expression. We show that, while Gal4-driven shRNAs in the female germline very effectively generate phenotypes for genes expressed maternally, maternally loaded shRNAs are not very effective at generating phenotypes for early zygotic genes. However, maternally loaded Gal4 protein is very efficient at generating phenotypes for zygotic genes expressed during mid-embryogenesis. We apply this powerful and simple method to unravel the embryonic functions of a number of pleiotropic genes.
Collapse
|
40
|
Romero IG, Ruvinsky I, Gilad Y. Comparative studies of gene expression and the evolution of gene regulation. Nat Rev Genet 2012; 13:505-16. [PMID: 22705669 DOI: 10.1038/nrg3229] [Citation(s) in RCA: 331] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The hypothesis that differences in gene regulation have an important role in speciation and adaptation is more than 40 years old. With the advent of new sequencing technologies, we are able to characterize and study gene expression levels and associated regulatory mechanisms in a large number of individuals and species at an unprecedented resolution and scale. We have thus gained new insights into the evolutionary pressures that shape gene expression levels and have developed an appreciation for the relative importance of evolutionary changes in different regulatory genetic and epigenetic mechanisms. The current challenge is to link gene regulatory changes to adaptive evolution of complex phenotypes. Here we mainly focus on comparative studies in primates and how they are complemented by studies in model organisms.
Collapse
Affiliation(s)
- Irene Gallego Romero
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
41
|
Lu Y, Xie L, Chen J. A novel procedure for absolute real-time quantification of gene expression patterns. PLANT METHODS 2012; 8:9. [PMID: 22404915 PMCID: PMC3323441 DOI: 10.1186/1746-4811-8-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/09/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND Temporal and tissue-specific patterns of gene expression play important roles in functionality of a biological system. Real-time quantitative polymerase chain reaction (qPCR) technique has been widely applied to single gene expressions, but its potential has not been fully released as most results have been obtained as fold changes relative to control conditions. Absolute quantification of transcripts as an alternative method has yet to gain popularity because of unresolved issues. RESULTS We propose a solution here with a novel procedure, which may accurately quantify the total cDNA conventionally prepared from a biological sample at the resolution of ~70 pg/μl, and reliably estimate the absolute numbers of transcripts in a picogram of cDNA. In comparison to the relative quantification, cDNA-based absolute (CBA) qPCR method is found to be more sensitive to gene expression variations caused by factors such as developmental and environmental variations. If the number of target transcript copies is further normalized by reference transcripts, cell-level variation pattern of the target gene expression may also be detectable during a developmental process, as observed here in cases across species (Ipomoea purpurea, Nicotiana benthamiana) and tissues (petals and leaves). CONCLUSION By allowing direct comparisons of results across experiments, the new procedure opens a window to make inferences of gene expression patterns across a broad spectrum of living systems and tissues. Such comparisons are urgently needed for biological interpretations of gene expression variations in diverse cells.
Collapse
Affiliation(s)
- Yingqing Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China
| | - Lulu Xie
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiani Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|