1
|
Zhou C, Liu HB, Jahanbakhsh F, Deng L, Wu B, Ying M, Margolis RL, Li PP. Bidirectional Transcription at the PPP2R2B Gene Locus in Spinocerebellar Ataxia Type 12. Mov Disord 2023; 38:2230-2240. [PMID: 37735923 PMCID: PMC10840700 DOI: 10.1002/mds.29605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/12/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 12 (SCA12) is a neurodegenerative disease caused by expansion of a CAG repeat in the PPP2R2B gene. OBJECTIVE In this study, we tested the hypothesis that the PPP2R2B antisense (PPP2R2B-AS1) transcript containing a CUG repeat is expressed and contributes to SCA12 pathogenesis. METHODS Expression of PPP2R2B-AS1 transcript was detected in SCA12 human induced pluripotent stem cells (iPSCs), iPSC-derived NGN2 neurons, and SCA12 knock-in mouse brains using strand-specific reverse transcription polymerase chain reaction. The tendency of expanded PPP2R2B-AS1 (expPPP2R2B-AS1) RNA to form foci, a marker of toxic processes involving mutant RNAs, was examined in SCA12 cell models by fluorescence in situ hybridization. The apoptotic effect of expPPP2R2B-AS1 transcripts on SK-N-MC neuroblastoma cells was evaluated by caspase 3/7 activity. Western blot was used to examine the expression of repeat associated non-ATG-initiated translation of expPPP2R2B-AS1 transcript in SK-N-MC cells. RESULTS The repeat region in the PPP2R2B gene locus is bidirectionally transcribed in SCA12 iPSCs, iPSC-derived NGN2 neurons, and SCA12 mouse brains. Transfected expPPP2R2B-AS1 transcripts induce apoptosis in SK-N-MC cells, and the apoptotic effect may be mediated, at least in part, by the RNA secondary structure. The expPPP2R2B-AS1 transcripts form CUG RNA foci in SK-N-MC cells. expPPP2R2B-AS1 transcript is translated in the alanine open reading frame (ORF) via repeat-associated non-ATG translation, which is diminished by single-nucleotide interruptions within the CUG repeat and MBNL1 overexpression. CONCLUSIONS These findings suggest that PPP2R2B-AS1 contributes to SCA12 pathogenesis and may therefore provide a novel therapeutic target for the disease. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Chengqian Zhou
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hans B. Liu
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fatemeh Jahanbakhsh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Leon Deng
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bin Wu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mingyao Ying
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Russell L. Margolis
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pan P. Li
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Zhou C, Liu HB, Bakhsh FJ, Wu B, Ying M, Margolis RL, Li PP. Bidirectional transcription at the PPP2R2B gene locus in spinocerebellar ataxia type 12. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.02.535298. [PMID: 37066173 PMCID: PMC10103964 DOI: 10.1101/2023.04.02.535298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
OBJECTIVE Spinocerebellar ataxia type 12 (SCA12) is a neurodegenerative disease caused by expansion of a CAG repeat in the PPP2R2B gene . Here we tested the hypothesis that the PPP2R2B antisense ( PPP2R2B-AS1 ) transcript containing a CUG repeat is expressed and contributes to SCA12 pathogenesis. METHODS Expression of PPP2R2B-AS1 transcript was detected in SCA12 human induced pluripotent stem cells (iPSCs), iPSC-derived NGN2 neurons, and SCA12 knock-in mouse brains using strand-specific RT-PCR (SS-RT-PCR). The tendency of expanded PPP2R2B-AS1 ( expPPP2R2B-AS1 ) RNA to form foci, a marker of toxic processes involving mutant RNAs, was examined in SCA12 cell models by fluorescence in situ hybridization. The toxic effect of expPPP2R2B-AS1 transcripts on SK-N-MC neuroblastoma cells was evaluated by caspase 3/7 activity. Western blot was used to examine the expression of repeat associated non-ATG-initiated (RAN) translation of expPPP2R2B-AS1 transcript in SK-N-MC cells. RESULTS The repeat region in PPP2R2B gene locus is bidirectionally transcribed in SCA12 iPSCs, iPSC-derived NGN2 neurons, and SCA12 mouse brains. Transfected expPPP2R2B-AS1 transcripts are toxic to SK-N-MC cells, and the toxicity may be mediated, at least in part, by the RNA secondary structure. The expPPP2R2B-AS1 transcripts form CUG RNA foci in SK-N-MC cells. expPPP2R2B-AS1 transcript is translated in the Alanine ORF via repeat-associated non-ATG (RAN) translation, which is diminished by single nucleotide interruptions within the CUG repeat, and MBNL1 overexpression. INTERPRETATION These findings suggest that PPP2R2B-AS1 contributes to SCA12 pathogenesis, and may therefore provide a novel therapeutic target for the disease.
Collapse
|
3
|
Li PP, Moulick R, Feng H, Sun X, Arbez N, Jin J, Marque LO, Hedglen E, Chan HE, Ross CA, Pulst SM, Margolis RL, Woodson S, Rudnicki DD. RNA Toxicity and Perturbation of rRNA Processing in Spinocerebellar Ataxia Type 2. Mov Disord 2021; 36:2519-2529. [PMID: 34390268 PMCID: PMC8884117 DOI: 10.1002/mds.28729] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease caused by expansion of a CAG repeat in Ataxin-2 (ATXN2) gene. The mutant ATXN2 protein with a polyglutamine tract is known to be toxic and contributes to the SCA2 pathogenesis. OBJECTIVE Here, we tested the hypothesis that the mutant ATXN2 transcript with an expanded CAG repeat (expATXN2) is also toxic and contributes to SCA2 pathogenesis. METHODS The toxic effect of expATXN2 transcripts on SK-N-MC neuroblastoma cells and primary mouse cortical neurons was evaluated by caspase 3/7 activity and nuclear condensation assay, respectively. RNA immunoprecipitation assay was performed to identify RNA binding proteins (RBPs) that bind to expATXN2 RNA. Quantitative PCR was used to examine if ribosomal RNA (rRNA) processing is disrupted in SCA2 and Huntington's disease (HD) human brain tissue. RESULTS expATXN2 RNA induces neuronal cell death, and aberrantly interacts with RBPs involved in RNA metabolism. One of the RBPs, transducin β-like protein 3 (TBL3), involved in rRNA processing, binds to both expATXN2 and expanded huntingtin (expHTT) RNA in vitro. rRNA processing is disrupted in both SCA2 and HD human brain tissue. CONCLUSION These findings provide the first evidence of a contributory role of expATXN2 transcripts in SCA2 pathogenesis, and further support the role of expHTT transcripts in HD pathogenesis. The disruption of rRNA processing, mediated by aberrant interaction of RBPs with expATXN2 and expHTT transcripts, suggest a point of convergence in the pathogeneses of repeat expansion diseases with potential therapeutic implications. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Pan P. Li
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Roumita Moulick
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Hongxuan Feng
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Xin Sun
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Nicolas Arbez
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jing Jin
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Leonard O. Marque
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Erin Hedglen
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - H.Y. Edwin Chan
- Biochemistry Program, School of Life SciencesThe Chinese University of Hong KongHong KongChina
| | - Christopher A. Ross
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Stefan M. Pulst
- Department of NeurologyUniversity of UtahSalt Lake CityUtahUSA
| | - Russell L. Margolis
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Sarah Woodson
- T.C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Dobrila D. Rudnicki
- Department of Psychiatry and Behavioral Sciences, Division of NeurobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
4
|
Castro AF, Loureiro JR, Bessa J, Silveira I. Antisense Transcription across Nucleotide Repeat Expansions in Neurodegenerative and Neuromuscular Diseases: Progress and Mysteries. Genes (Basel) 2020; 11:E1418. [PMID: 33261024 PMCID: PMC7760973 DOI: 10.3390/genes11121418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Unstable repeat expansions and insertions cause more than 30 neurodegenerative and neuromuscular diseases. Remarkably, bidirectional transcription of repeat expansions has been identified in at least 14 of these diseases. More remarkably, a growing number of studies has been showing that both sense and antisense repeat RNAs are able to dysregulate important cellular pathways, contributing together to the observed clinical phenotype. Notably, antisense repeat RNAs from spinocerebellar ataxia type 7, myotonic dystrophy type 1, Huntington's disease and frontotemporal dementia/amyotrophic lateral sclerosis associated genes have been implicated in transcriptional regulation of sense gene expression, acting either at a transcriptional or posttranscriptional level. The recent evidence that antisense repeat RNAs could modulate gene expression broadens our understanding of the pathogenic pathways and adds more complexity to the development of therapeutic strategies for these disorders. In this review, we cover the amazing progress made in the understanding of the pathogenic mechanisms associated with repeat expansion neurodegenerative and neuromuscular diseases with a focus on the impact of antisense repeat transcription in the development of efficient therapies.
Collapse
Affiliation(s)
- Ana F. Castro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
- ICBAS, Universidade do Porto, 4050-313 Porto, Portugal
| | - Joana R. Loureiro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
| | - José Bessa
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
- Vertebrate Development and Regeneration Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Isabel Silveira
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
| |
Collapse
|
5
|
Pathogenic insights from Huntington's disease-like 2 and other Huntington's disease genocopies. Curr Opin Neurol 2018; 29:743-748. [PMID: 27749395 DOI: 10.1097/wco.0000000000000386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW Huntington's disease-like 2 (HDL2) is a rare, progressive, autosomal dominant neurodegenerative disorder that genetically, clinically, and pathologically closely resembles Huntington's disease. We review HDL2 pathogenic mechanisms and examine the implications of these mechanisms for Huntington's disease and related diseases. RECENT FINDINGS HDL2 is caused by a CTG/CAG repeat expansion in junctophilin-3. Available data from cell and animal models and human brain suggest that HDL2 is a complex disease in which transcripts and proteins expressed bidirectionally from the junctophilin-3 locus contribute to pathogenesis through both gain-and loss-of-function mechanisms. Recent advances indicate that the pathogenesis of Huntington's disease is equally complex, despite the emphasis on toxic gain-of-function properties of the mutant huntingtin protein. SUMMARY Studies examining in parallel the genetic, clinical, neuropathological, and mechanistic similarities between Huntington's disease and HDL2 have begun to identify points of convergence between the pathogenic pathways of the two diseases. Comparisons to other diseases that are phenotypically or genetically related to Huntington's disease and HDL2 will likely reveal additional common pathways. The ultimate goal is to identify shared therapeutic targets and eventually develop therapies that may, at least in part, be effective across multiple similar rare diseases, an essential approach given the scarcity of resources for basic and translational research.
Collapse
|
6
|
Ross CA, Kronenbuerger M, Duan W, Margolis RL. Mechanisms underlying neurodegeneration in Huntington disease: applications to novel disease-modifying therapies. HANDBOOK OF CLINICAL NEUROLOGY 2017; 144:15-28. [PMID: 28947113 DOI: 10.1016/b978-0-12-801893-4.00002-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The CAG repeat expansion mutation that causes Huntington Disease (HD) was discovered more than 20 years ago, yet no treatment has yet been developed to stop the relentless course of the disease. Nonetheless, substantial progress has been made in understanding HD pathogenesis. We review insights that have been gleaned from HD genetics, metabolism, and pathology; HD mouse and cell models; the structure, function and post-translational modification of normal and mutant huntingtin (htt) protein; gene expression profiles in HD cells and tissue; the neurotoxicy of mutant htt RNA; and the expression of an antisense transcript from the HD locus. We conclude that rationale therapeutics for HD is within sight, though many questions remain to be answered.
Collapse
Affiliation(s)
- Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Departments of Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Martin Kronenbuerger
- Division of Movement Disorders, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Translational Neurobiology Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Russell L Margolis
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Translational Neurobiology Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Laboratory of Genetic Neurobiology and Johns Hopkins Schizophrenia Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Bochicchio A, Rossetti G, Tabarrini O, Krauβ S, Carloni P. Molecular view of ligands specificity for CAG repeats in anti-Huntington therapy. J Chem Theory Comput 2015; 11:4911-22. [PMID: 26574279 DOI: 10.1021/acs.jctc.5b00208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Huntington's disease is a fatal and devastating neurodegenerative genetic disorder for which there is currently no cure. It is characterized by Huntingtin protein's mRNA transcripts with 36 or more CAG repeats. Inhibiting the formation of pathological complexes between these expanded transcripts and target proteins may be a valuable strategy against the disease. Yet, the rational design of molecules specifically targeting the expanded CAG repeats is limited by the lack of structural information. Here, we use well-tempered metadynamics-based free energy calculations to investigate pose and affinity of two ligands targeting CAG repeats for which affinities have been previously measured. The first consists of two 4-guanidinophenyl rings linked by an ester group. It is the most potent ligand identified so far, with Kd = 60(30) nM. The second consists of a 4-phenyl dihydroimidazole and 4-1H-indole dihydroimidazole connected by a C-C bond (Kd = 700(80) nM). Our calculations reproduce the experimental affinities and uncover the recognition pattern between ligands' and their RNA target. They also provide a molecular basis for the markedly different affinity of the two ligands for CAG repeats as observed experimentally. These findings may pave the way for a structure-based hit-to-lead optimization to further improve ligand selectivity toward CAG repeat-containing mRNAs.
Collapse
Affiliation(s)
| | - Giulia Rossetti
- Department of Oncology, Hematology and Stem Cell Transplantation, RWTH Aachen University , D-52074 Aachen, North Rhine-Westphalia, Germany
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, Università di Perugia , Via del Liceo 1, I-06123 Perugia, Perugia, Italy
| | - Sybille Krauβ
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 25, D-53127 Bonn, North Rhine-Westphalia, Germany
| | | |
Collapse
|
8
|
O'Hearn EE, Hwang HS, Holmes SE, Rudnicki DD, Chung DW, Seixas AI, Cohen RL, Ross CA, Trojanowski JQ, Pletnikova O, Troncoso JC, Margolis RL. Neuropathology and Cellular Pathogenesis of Spinocerebellar Ataxia Type 12. Mov Disord 2015; 30:1813-1824. [PMID: 26340331 DOI: 10.1002/mds.26348] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/16/2015] [Accepted: 06/24/2015] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE SCA12 is a progressive autosomal-dominant disorder, caused by a CAG/CTG repeat expansion in PPP2R2B on chromosome 5q32, and characterized by tremor, gait ataxia, hyperreflexia, dysmetria, abnormal eye movements, anxiety, depression, and sometimes cognitive impairment. Neuroimaging has demonstrated cerebellar and cortical atrophy. We now present the neuropathology of the first autopsied SCA12 brain and utilize cell models to characterize potential mechanisms of SCA12 neurodegeneration. METHODS A fixed SCA12 brain was examined using gross, microscopic, and immunohistochemical methods. The effect of the repeat expansion on PPP2R2B Bβ1 expression was examined in multiple cell types by transient transfection of constructs containing the PPP2R2B Bβ1 promoter region attached to a luciferase reporter. The neurotoxic effect of PPP2R2B overexpression was examined in transfected rat primary neurons. RESULTS Neuropathological investigation revealed enlarged ventricles, marked cerebral cortical atrophy and Purkinje cell loss, less-prominent cerebellar and pontine atrophy, and neuronal intranuclear ubiquitin-positive inclusions, consistent with Marinesco bodies, which did not stain for long polyglutamine tracts, alpha-synuclein, tau, or transactive response DNA-binding protein 43. Reporter assays demonstrated that the region of PPP2R2B containing the repeat functions as a promoter, and that promoter activity increases with longer repeat length and is dependent on cell type, repeat sequence, and sequence flanking the repeat. Overexpression of PPP2R2B in primary cortical neurons disrupted normal morphology. CONCLUSIONS SCA12 involves extensive, but selective, neurodegeneration distinct from Alzheimer's disease, synucleinopathies, tauopathies, and glutamine expansion diseases. SCA12 neuropathology may arise from the neurotoxic effect of repeat-expansion-induced overexpression of PPP2R2B.
Collapse
Affiliation(s)
- Elizabeth E O'Hearn
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Laboratory of Genetic Neurobiology, Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hyon S Hwang
- Laboratory of Genetic Neurobiology, Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susan E Holmes
- Laboratory of Genetic Neurobiology, Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dobrila D Rudnicki
- Laboratory of Genetic Neurobiology, Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel W Chung
- Laboratory of Genetic Neurobiology, Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ana I Seixas
- Laboratory of Genetic Neurobiology, Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Oporto, Portugal
| | - Rachael L Cohen
- Laboratory of Genetic Neurobiology, Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christopher A Ross
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Laboratory of Genetic Neurobiology, Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Departments of Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John Q Trojanowski
- Institute on Aging, Alzheimer's Disease Core Center, Udall Parkinson's Research Center, Center for Neurodegenerative Disease, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Juan C Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Russell L Margolis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Laboratory of Genetic Neurobiology, Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Sun X, Li PP, Zhu S, Cohen R, Marque LO, Ross CA, Pulst SM, Chan HYE, Margolis RL, Rudnicki DD. Nuclear retention of full-length HTT RNA is mediated by splicing factors MBNL1 and U2AF65. Sci Rep 2015. [PMID: 26218986 PMCID: PMC4517393 DOI: 10.1038/srep12521] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Huntington's disease (HD) is caused by a CAG repeat expansion in the huntingtin (HTT) gene. Recent evidence suggests that HD is a consequence of multimodal, non-mutually exclusive mechanisms of pathogenesis that involve both HTT protein- and HTT RNA-triggered mechanisms. Here we provide further evidence for the role of expanded HTT (expHTT) RNA in HD by demonstrating that a fragment of expHTT is cytotoxic in the absence of any translation and that the extent of cytotoxicity is similar to the cytotoxicity of an expHTT protein fragment encoded by a transcript of similar length and with a similar repeat size. In addition, full-length (FL) expHTT is retained in the nucleus. Overexpression of the splicing factor muscleblind-like 1 (MBNL1) increases nuclear retention of expHTT and decreases the expression of expHTT protein in the cytosol. The splicing and nuclear export factor U2AF65 has the opposite effect, decreasing expHTT nuclear retention and increasing expression of expHTT protein. This suggests that MBNL1 and U2AF65 play a role in nuclear export of expHTT RNA.
Collapse
Affiliation(s)
- Xin Sun
- 1] Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA [2] Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Pan P Li
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shanshan Zhu
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rachael Cohen
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Leonard O Marque
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christopher A Ross
- 1] Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA [3] Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA [4] Program of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila Research, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Russell L Margolis
- 1] Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA [3] Program of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dobrila D Rudnicki
- 1] Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA [2] Program of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Metsu S, Rooms L, Rainger J, Taylor MS, Bengani H, Wilson DI, Chilamakuri CSR, Morrison H, Vandeweyer G, Reyniers E, Douglas E, Thompson G, Haan E, Gecz J, FitzPatrick DR, Kooy RF. FRA2A is a CGG repeat expansion associated with silencing of AFF3. PLoS Genet 2014; 10:e1004242. [PMID: 24763282 PMCID: PMC3998887 DOI: 10.1371/journal.pgen.1004242] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 02/02/2014] [Indexed: 11/19/2022] Open
Abstract
Folate-sensitive fragile sites (FSFS) are a rare cytogenetically visible subset of dynamic mutations. Of the eight molecularly characterized FSFS, four are associated with intellectual disability (ID). Cytogenetic expression results from CGG tri-nucleotide-repeat expansion mutation associated with local CpG hypermethylation and transcriptional silencing. The best studied is the FRAXA site in the FMR1 gene, where large expansions cause fragile X syndrome, the most common inherited ID syndrome. Here we studied three families with FRA2A expression at 2q11 associated with a wide spectrum of neurodevelopmental phenotypes. We identified a polymorphic CGG repeat in a conserved, brain-active alternative promoter of the AFF3 gene, an autosomal homolog of the X-linked AFF2/FMR2 gene: Expansion of the AFF2 CGG repeat causes FRAXE ID. We found that FRA2A-expressing individuals have mosaic expansions of the AFF3 CGG repeat in the range of several hundred repeat units. Moreover, bisulfite sequencing and pyrosequencing both suggest AFF3 promoter hypermethylation. cSNP-analysis demonstrates monoallelic expression of the AFF3 gene in FRA2A carriers thus predicting that FRA2A expression results in functional haploinsufficiency for AFF3 at least in a subset of tissues. By whole-mount in situ hybridization the mouse AFF3 ortholog shows strong regional expression in the developing brain, somites and limb buds in 9.5–12.5dpc mouse embryos. Our data suggest that there may be an association between FRA2A and a delay in the acquisition of motor and language skills in the families studied here. However, additional cases are required to firmly establish a causal relationship. Some human genetic diseases are caused by dynamic mutations, or expansions of a short repeated sequence in the genome that can be unstably passed on from generation to generation. A subset of these dynamic mutations known as fragile sites can be seen as a break or gap on the chromosome when cells are cultured under specific conditions. To date eight folate-sensitive fragile sites (FSFS) have been characterized, and all are due to CGG-repeat expansions within the 5′ UTR or promoter region of the respective gene. When the repeat expands in size, it becomes hypermethylated and the adjacent gene or genes are transcriptionally silenced. For at least four of the eight known fragile sites this silencing of the associated gene(s) lead to intellectual disability syndromes such as fragile X. In this work we describe molecular characterization of an autosomal FSFS called FRA2A on chromosome 2. As the molecular cause of FRA2A, we identify an expansion of a CGG repeat which subsequently results in silencing of the neighbouring gene AFF3. This gene is one of the four autosomal paralogss of the AFF2/FMR2 gene which, when mutated, is the cause of the FRAXE syndrome. We find that FRA2A expression is associated with highly variable developmental anomalies in the three FRA2A families studied.
Collapse
Affiliation(s)
- Sofie Metsu
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Liesbeth Rooms
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Jacqueline Rainger
- Medical and Developmental Genetics Section, MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin S. Taylor
- Medical and Developmental Genetics Section, MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - Hemant Bengani
- Medical and Developmental Genetics Section, MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - David I. Wilson
- University of Southampton, Centre for Human Development, Stem Cells and Regeneration, Human Genetics, Southampton, United Kingdom
| | | | - Harris Morrison
- Medical and Developmental Genetics Section, MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - Geert Vandeweyer
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Edwin Reyniers
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Evelyn Douglas
- Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Geoffrey Thompson
- Department of Paediatrics, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Paediatrics and Child Health, Flinders University, Adelaide, South Australia, Australia
| | - Eric Haan
- Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
- South Australian Clinical Genetic Service, SA Pathology (at Women's and Children's Hospital), Adelaide, South Australia, Australia
| | - Jozef Gecz
- Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
- Department of Paediatrics, The University of Adelaide, Adelaide, South Australia, Australia
| | - David R. FitzPatrick
- Medical and Developmental Genetics Section, MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (DRF); (RFK)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
- * E-mail: (DRF); (RFK)
| |
Collapse
|
11
|
Comparative analyses of Purkinje cell gene expression profiles reveal shared molecular abnormalities in models of different polyglutamine diseases. Brain Res 2012; 1481:37-48. [PMID: 22917585 DOI: 10.1016/j.brainres.2012.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 08/01/2012] [Accepted: 08/01/2012] [Indexed: 01/24/2023]
Abstract
Polyglutamine (PolyQ) diseases have common features that include progressive selective neurodegeneration and the formation of protein aggregates. There is growing evidence to suggest that critical nuclear events lead to transcriptional alterations in PolyQ diseases such as spinocerebellar ataxia type 7 (SCA7) and Huntington's disease (HD), conditions which share a cerebellar degenerative phenotype. Taking advantage of laser capture microdissection technique, we compared the Purkinje cell (PC) gene expression profiles of two transgenic polyQ mouse models (HD: R6/2; SCA7: P7E) by microarray analysis that was validated by real time quantitative PCR. A large number of transcriptional alterations were detected in the R6/2 transgenic model of HD. Similar decreases in the same mRNAs, such as phospholipase C, β 3, purkinje cell protein 2 (Pcp2) and aldolase C, were found in both models. A decrease in aldolase C and phospholipase C, β 3, may lead to an increase in the vulnerability of PCs to excitotoxic events. Furthermore, downregulation of mRNAs mediated by the Pcp2-promoter is common in both models. Thus, our data reveal shared molecular abnormalities in different polyQ disorders.
Collapse
|