1
|
Zhang J, Yang P, Zeng Q, Zhang Y, Zhao Y, Wang L, Li Y, Wang Z, Wang Q. Arginine kinase McsB and ClpC complex impairs the transition to biofilm formation in Bacillus subtilis. Microbiol Res 2025; 292:127979. [PMID: 39674004 DOI: 10.1016/j.micres.2024.127979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 12/16/2024]
Abstract
Robust biofilm formation on host niches facilitates beneficial Bacillus to promote plant growth and inhibit plant pathogens. Arginine kinase McsB is involved in bacterial development and stress reaction by phosphorylating proteins for degradation through a ClpC/ClpP protease. Conversely, cognate arginine phosphatase YwlE counteracts the process. Regulatory pathways of biofilm formation have been studied in Bacillus subtilis, of which Spo0A∼P is a master transcriptional regulator, which is transcriptionally activated by itself in biofilm formation. Previous studies have shown that Spo0A∼P transcript regulation controls biofilm formation, where MecA binds ClpC to inhibit Spo0A∼P-dependent transcription without triggering degradation. It remains unclear whether McsB and ClpC regulate biofilm formation together and share a similar non-proteolytic mechanism like MecA/ClpC complex. In this study, we characterized McsB and ClpC as negative regulators of biofilm formation and matrix gene eps expression. Our genetic and morphological evidence further indicates that McsB and ClpC inhibit eps expression by decreasing the spo0A and sinI expression, leading to the release of SinR, a known repressor of eps transcription. Given that the spo0A and sinI expression is transcriptionally activated by Spo0A∼P in biofilm formation, we next demonstrate that McsB interacts with Spo0A directly by bacterial two-hybrid system and Glutathione transferase pull-down experiments. Additionally, we present that McsB forms a complex with ClpC to dampen biofilm formation in vivo. Finally, we show that YwlE acts as a positive regulator of biofilm formation, counteracting the function of McsB. These findings suggest that McsB, ClpC, and YwlE play vital roles in the transition to biofilm formation in Bacillus subtilis, providing new insights into the regulatory mechanisms underlying biofilm development and sharing a similar non-proteolytic mechanism in biofilm formation as MecA/ClpC complex.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Panlei Yang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qingchao Zeng
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yiwei Zhang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yanan Zhao
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Liwei Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yan Li
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhenshuo Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qi Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Zhu M, Wang Y, Mu H, Han F, Wang Q, Pei Y, Wang X, Dai X. Plasmid-encoded phosphatase RapP enhances cell growth in non-domesticated Bacillus subtilis strains. Nat Commun 2024; 15:9567. [PMID: 39500898 PMCID: PMC11538241 DOI: 10.1038/s41467-024-53992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
The trade-off between rapid growth and other important physiological traits (e.g., survival and adaptability) poses a fundamental challenge for microbes to achieve fitness maximization. Studies on Bacillus subtilis biology often use strains derived after a process of lab 'domestication' from an ancestral strain known as Marburg strain. The domestication process led to loss of a large plasmid (pBS32) encoding a phosphatase (RapP) that dephosphorylates the Spo0F protein and thus regulates biofilm formation and sporulation. Here, we show that plasmid pBS32, and more specifically rapP, enhance growth rates by preventing premature expression of the Spo0F-Spo0A-mediated adaptive response during exponential phase. This results in reallocation of proteome resources towards biosynthetic, growth-promoting pathways without compromising long-term fitness during stationary phase. Thus, RapP helps B. subtilis to constrain physiological trade-offs and economize cellular resources for fitness improvement.
Collapse
Affiliation(s)
- Manlu Zhu
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Yiheng Wang
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Haoyan Mu
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Fei Han
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Qian Wang
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Yongfu Pei
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Xin Wang
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Xiongfeng Dai
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China.
| |
Collapse
|
3
|
Bidnenko V, Chastanet A, Péchoux C, Redko-Hamel Y, Pellegrini O, Durand S, Condon C, Boudvillain M, Jules M, Bidnenko E. Complex sporulation-specific expression of transcription termination factor Rho highlights its involvement in Bacillus subtilis cell differentiation. J Biol Chem 2024; 300:107905. [PMID: 39427753 PMCID: PMC11599450 DOI: 10.1016/j.jbc.2024.107905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
Termination factor Rho, responsible for the main factor-dependent pathway of transcription termination and the major inhibitor of antisense transcription, is an emerging regulator of various physiological processes in microorganisms. In Gram-positive bacterium Bacillus subtilis, Rho is involved in the control of cell adaptation to starvation and, in particular, in the control of sporulation, a complex differentiation program leading to the formation of a highly resistant dormant spore. While the initiation of sporulation requires a decrease in Rho protein levels during the transition to stationary phase, the mechanisms regulating the expression of rho gene throughout the cell cycle remain largely unknown. Here we show that a drop in the activity of the vegetative SigA-dependent rho promoter causes the inhibition of rho expression in stationary phase. However, after the initiation of sporulation, rho gene is specifically reactivated in two compartments of the sporulating cell using distinct mechanisms. In the mother cell, rho expression occurs by read-through transcription initiated at the SigH-dependent promoter of the distal spo0F gene. In the forespore, rho gene is transcribed from the intrinsic promoter recognized by the alternative sigma factor SigF. These regulatory elements ensure the activity of Rho during sporulation, which appears important for the proper formation of spores. We provide experimental evidence that disruption of the spatiotemporal expression of rho during sporulation affects the resistance properties of spores, their morphology, and the ability to return to vegetative growth under favorable growth conditions.
Collapse
Affiliation(s)
- Vladimir Bidnenko
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Arnaud Chastanet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Christine Péchoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France; MIMA2 Imaging Core Facility, Microscopie et Imagerie des Microorganismes, Animaux et Aliments, INRAE, Jouy-en-Josas, France
| | - Yulia Redko-Hamel
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Olivier Pellegrini
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Sylvain Durand
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Ciarán Condon
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Marc Boudvillain
- Centre de Biophysique moléculaire, CNRS UPR4301, Orléans, France; Affiliated with Université d'Orléans, Orléans, France
| | - Matthieu Jules
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elena Bidnenko
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
4
|
Termination factor Rho mediates transcriptional reprogramming of Bacillus subtilis stationary phase. PLoS Genet 2023; 19:e1010618. [PMID: 36735730 PMCID: PMC9931155 DOI: 10.1371/journal.pgen.1010618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/15/2023] [Accepted: 01/14/2023] [Indexed: 02/04/2023] Open
Abstract
Transcription termination factor Rho is known for its ubiquitous role in suppression of pervasive, mostly antisense, transcription. In the model Gram-positive bacterium Bacillus subtilis, de-repression of pervasive transcription by inactivation of rho revealed the role of Rho in the regulation of post-exponential differentiation programs. To identify other aspects of the regulatory role of Rho during adaptation to starvation, we have constructed a B. subtilis strain (Rho+) that expresses rho at a relatively stable high level in order to compensate for its decrease in the wild-type cells entering stationary phase. The RNAseq analysis of Rho+, WT and Δrho strains (expression profiles can be visualized at http://genoscapist.migale.inrae.fr/seb_rho/) shows that Rho over-production enhances the termination efficiency of Rho-sensitive terminators, thus reducing transcriptional read-through and antisense transcription genome-wide. Moreover, the Rho+ strain exhibits global alterations of sense transcription with the most significant changes observed for the AbrB, CodY, and stringent response regulons, forming the pathways governing the transition to stationary phase. Subsequent physiological analyses demonstrated that maintaining rho expression at a stable elevated level modifies stationary phase-specific physiology of B. subtilis cells, weakens stringent response, and thereby negatively affects the cellular adaptation to nutrient limitations and other stresses, and blocks the development of genetic competence and sporulation. These results highlight the Rho-specific termination of transcription as a novel element controlling stationary phase. The release of this control by decreasing Rho levels during the transition to stationary phase appears crucial for the functionality of complex gene networks ensuring B. subtilis survival in stationary phase.
Collapse
|
5
|
Shoemaker WR, Polezhaeva E, Givens KB, Lennon JT. Seed banks alter the molecular evolutionary dynamics of Bacillus subtilis. Genetics 2022; 221:iyac071. [PMID: 35511143 PMCID: PMC9157070 DOI: 10.1093/genetics/iyac071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/23/2022] [Indexed: 11/14/2022] Open
Abstract
Fluctuations in the availability of resources constrain the growth and reproduction of individuals, which subsequently affects the evolution of their respective populations. Many organisms contend with such fluctuations by entering a reversible state of reduced metabolic activity, a phenomenon known as dormancy. This pool of dormant individuals (i.e. a seed bank) does not reproduce and is expected to act as an evolutionary buffer, though it is difficult to observe this effect directly over an extended evolutionary timescale. Through genetic manipulation, we analyze the molecular evolutionary dynamics of Bacillus subtilis populations in the presence and absence of a seed bank over 700 days. The ability of these bacteria to enter a dormant state increased the accumulation of genetic diversity over time and altered the trajectory of mutations, findings that were recapitulated using simulations based on a mathematical model of evolutionary dynamics. While the ability to form a seed bank did not alter the degree of negative selection, we found that it consistently altered the direction of molecular evolution across genes. Together, these results show that the ability to form a seed bank can affect the direction and rate of molecular evolution over an extended evolutionary timescale.
Collapse
Affiliation(s)
- William R Shoemaker
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA 90095, USA
| | | | - Kenzie B Givens
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA 90095, USA
- Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN 47408, USA
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
6
|
Diez S, Hydorn M, Whalen A, Dworkin J. Crosstalk between guanosine nucleotides regulates cellular heterogeneity in protein synthesis during nutrient limitation. PLoS Genet 2022; 18:e1009957. [PMID: 35594298 PMCID: PMC9173625 DOI: 10.1371/journal.pgen.1009957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/07/2022] [Accepted: 04/24/2022] [Indexed: 11/26/2022] Open
Abstract
Phenotypic heterogeneity of microbial populations can facilitate survival in dynamic environments by generating sub-populations of cells that may have differential fitness in a future environment. Bacillus subtilis cultures experiencing nutrient limitation contain distinct sub-populations of cells exhibiting either comparatively high or low protein synthesis activity. This heterogeneity requires the production of phosphorylated guanosine nucleotides (pp)pGpp by three synthases: SasA, SasB, and RelA. Here we show that these enzymes differentially affect this bimodality: RelA and SasB are necessary to generate the sub-population of cells exhibiting low protein synthesis whereas SasA is necessary to generate cells exhibiting comparatively higher protein synthesis. Previously, it was reported that a RelA product allosterically activates SasB and we find that a SasA product competitively inhibits this activation. Finally, we provide in vivo evidence that this antagonistic interaction mediates the observed heterogeneity in protein synthesis. This work therefore identifies the mechanism underlying phenotypic heterogeneity in protein synthesis. Upon encountering conditions unfavorable to growth such as nutrient limitation, bacteria enter a quiescent phenotype that is mediated by group of guanosine nucleotides collectively known as (pp)pGpp. These nucleotides direct the down-regulation of energy intensive processes and are essential for a striking heterogeneity in protein synthesis observed during exit from rapid growth. Here, we show that a network of (pp)pGpp synthases is responsible for this heterogeneity and describe a mechanism that allows for the integration of multiple signals into the decision to down regulate the most energy intensive process in a cell.
Collapse
Affiliation(s)
- Simon Diez
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Molly Hydorn
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Abigail Whalen
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
7
|
DiCandia MA, Edwards AN, Jones JB, Swaim GL, Mills BD, McBride SM. Identification of functional Spo0A residues critical for sporulation in Clostridioides difficile. J Mol Biol 2022; 434:167641. [PMID: 35597553 DOI: 10.1016/j.jmb.2022.167641] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/26/2022] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
Abstract
Clostridioides difficile is an anaerobic, Gram-positive pathogen that is responsible for C. difficile infection (CDI). To survive in the environment and spread to new hosts, C. difficile must form metabolically dormant spores. The formation of spores requires activation of the transcription factor Spo0A, which is the master regulator of sporulation in all endospore-forming bacteria. Though the sporulation initiation pathway has been delineated in the Bacilli, including the model spore-former Bacillus subtilis, the direct regulators of Spo0A in C. difficile remain undefined. C. difficile Spo0A shares highly conserved protein interaction regions with the B. subtilis sporulation proteins Spo0F and Spo0A, although many of the interacting factors present in B. subtilis are not encoded in C. difficile. To determine if comparable Spo0A residues are important for C. difficile sporulation initiation, site-directed mutagenesis was performed at conserved receiver domain residues and the effects on sporulation were examined. Mutation of residues important for homodimerization and interaction with positive and negative regulators of B. subtilis Spo0A and Spo0F impacted C. difficile Spo0A function. The data also demonstrated that mutation of many additional conserved residues altered C. difficile Spo0A activity, even when the corresponding Bacillus interacting proteins are not apparent in the C. difficile genome. Finally, the conserved aspartate residue at position 56 of C. difficile Spo0A was determined to be the phosphorylation site that is necessary for Spo0A activation. The finding that Spo0A interacting motifs maintain functionality suggests that C. difficile Spo0A interacts with yet unidentified proteins that regulate its activity and control spore formation.
Collapse
Affiliation(s)
- Michael A DiCandia
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Adrianne N Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Joshua B Jones
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Grace L Swaim
- Department of Neuroscience and Cell Biology, Yale University Graduate School of Arts and Sciences, New Haven, CT, USA
| | - Brooke D Mills
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA.
| |
Collapse
|
8
|
O'Connell LM, Kelleher P, van Rijswijck IMH, de Waal P, van Peij NNME, Mahony J, van Sinderen D. Natural Transformation in Gram-Positive Bacteria and Its Biotechnological Relevance to Lactic Acid Bacteria. Annu Rev Food Sci Technol 2022; 13:409-431. [PMID: 35333592 DOI: 10.1146/annurev-food-052720-011445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Competence refers to the specialized physiological state in which bacteria undergo transformation through the internalization of exogenous DNA in a controlled and genetically encoded process that leads to genotypic and, in many cases, phenotypic changes. Natural transformation was first described in Streptococcus pneumoniae and has since been demonstrated in numerous species, including Bacillus subtilis and Neisseria gonorrhoeae. Homologs of the genes encoding the DNA uptake machinery for natural transformation have been reported to be present in several lactic acid bacteria, including Lactobacillus spp., Streptococcus thermophilus, and Lactococcus spp. In this review, we collate current knowledge of the phenomenon of natural transformation in Gram-positive bacteria. Furthermore, we describe the mechanism of competence development and its regulation in model bacterial species. We highlight the importance and opportunities for the application of these findings in the context of bacterial starter cultures associated with food fermentations as well as current limitations in this area of research.
Collapse
Affiliation(s)
- Laura M O'Connell
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland;
| | - Philip Kelleher
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland;
| | | | - Paul de Waal
- DSM Biotechnology Center, Delft, The Netherlands
| | | | - Jennifer Mahony
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland;
| | - Douwe van Sinderen
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland;
| |
Collapse
|
9
|
Single molecule dynamics of DNA receptor ComEA, membrane permease ComEC and taken up DNA in competent Bacillus subtilis cells. J Bacteriol 2021; 204:e0057221. [PMID: 34928178 DOI: 10.1128/jb.00572-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In competent Gram-negative and Gram-positive bacteria, double stranded DNA is taken up through the outer cell membrane and/or the cell wall, and is bound by ComEA, which in Bacillus subtilis is a membrane protein. DNA is converted to single stranded DNA, and transported through the cell membrane via ComEC. We show that in Bacillus subtilis, the C-terminus of ComEC, thought to act as a nuclease, is not only important for DNA uptake, as judged from a loss of transformability, but also for the localization of ComEC to the cell pole and its mobility within the cell membrane. Using single molecule tracking, we show that only 13% of ComEC molecules are statically localised at the pole, while 87% move throughout the cell membrane. These experiments suggest that recruitment of ComEC to the cell pole is mediated by a diffusion/capture mechanism. Mutation of a conserved aspartate residue in the C-terminus, likely affecting metal binding, strongly impairs transformation efficiency, suggesting that this periplasmic domain of ComEC could indeed serve a catalytic function as nuclease. By tracking fluorescently labeled DNA, we show that taken up DNA has a similar mobility as a protein, in spite of being a large polymer. DNA dynamics are similar within the periplasm as those of ComEA, suggesting that most taken up molecules are bound to ComEA. We show that DNA can be highly mobile within the periplasm, indicating that this subcellular space can act as reservoir for taken up DNA, before its entry into the cytosol. Importance Bacteria can take up DNA from the environment and incorporate it into their chromosome, termed "natural competence" that can result in the uptake of novel genetic information. We show that fluorescently labelled DNA moves within the periplasm of competent Bacillus subtilis cells, with similar dynamics as DNA receptor ComEA. This indicates that DNA can accumulate in the periplasm, likely bound by ComEA, and thus can be stored before uptake at the cell pole, via integral membrane DNA permease ComEC. Assembly of the latter assembles at the cell pole likely occurs by a diffusion-capture mechanism. DNA uptake into cells thus takes a detour through the entire periplasm, and involves a high degree of free diffusion along and within the cell membrane.
Collapse
|
10
|
Klausmann P, Lilge L, Aschern M, Hennemann K, Henkel M, Hausmann R, Morabbi Heravi K. Influence of B. subtilis 3NA mutations in spo0A and abrB on surfactin production in B. subtilis 168. Microb Cell Fact 2021; 20:188. [PMID: 34565366 PMCID: PMC8474915 DOI: 10.1186/s12934-021-01679-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background Bacillus subtilis is a well-established host for a variety of bioproduction processes, with much interest focused on the production of biosurfactants such as the cyclic lipopeptide surfactin. Surfactin production is tightly intertwined with quorum sensing and regulatory cell differentiation processes. As previous studies have shown, a non-sporulating B. subtilis strain 3NA encoding a functional sfp locus but mutations in the spo0A and abrB loci, called JABs32, exhibits noticeably increased surfactin production capabilities. In this work, the impacts of introducing JABs32 mutations in the genes spo0A, abrB and abh from 3NA into strain KM1016, a surfactin-forming derivative of B. subtilis 168, was investigated. This study aims to show these mutations are responsible for the surfactin producing performance of strain JABs32 in fed-batch bioreactor cultivations. Results Single and double mutant strains of B. subtilis KM1016 were constructed encoding gene deletions of spo0A, abrB and homologous abh. Furthermore, an elongated abrB version, called abrB*, as described for JABs32 was integrated. Single and combinatory mutant strains were analysed in respect of growth behaviour, native PsrfA promoter expression and surfactin production. Deletion of spo0A led to increased growth rates with lowered surfactin titers, while deletion or elongation of abrB resulted in lowered growth rates and high surfactin yields, compared to KM1016. The double mutant strains B. subtilis KM1036 and KM1020 encoding Δspo0A abrB* and Δspo0A ΔabrB were compared to reference strain JABs32, with KM1036 exhibiting similar production parameters and impeded cell growth and surfactin production for KM1020. Bioreactor fed-batch cultivations comparing a Δspo0A abrB* mutant of KM1016, KM681, with JABs32 showed a decrease of 32% in surfactin concentration. Conclusions The genetic differences of B. subtilis KM1016 and JABs32 give rise to new and improved fermentation methods through high cell density processes. Deletion of the spo0A locus was shown to be the reason for higher biomass concentrations. Only in combination with an elongation of abrB was this strain able to reach high surfactin titers of 18.27 g L−1 in fed-batch cultivations. This work shows, that a B. subtilis strain can be turned into a high cell density surfactin production strain by introduction of two mutations.
Collapse
Affiliation(s)
- Peter Klausmann
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| | - Lars Lilge
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany.
| | - Moritz Aschern
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| | - Katja Hennemann
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| | - Marius Henkel
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| | - Rudolf Hausmann
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| | - Kambiz Morabbi Heravi
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| |
Collapse
|
11
|
Benda M, Schulz LM, Stülke J, Rismondo J. Influence of the ABC Transporter YtrBCDEF of Bacillus subtilis on Competence, Biofilm Formation and Cell Wall Thickness. Front Microbiol 2021; 12:587035. [PMID: 33897624 PMCID: PMC8060467 DOI: 10.3389/fmicb.2021.587035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Bacillus subtilis develops genetic competence for the uptake of foreign DNA when cells enter stationary phase and a high cell density is reached. These signals are integrated by the competence transcription factor ComK, which is subject to transcriptional, post-transcriptional and post-translational regulation. Many proteins are involved in the development of competence, both to control ComK activity and to mediate DNA uptake. However, for many proteins, the precise function they play in competence development is unknown. In this study, we assessed whether proteins required for genetic transformation play a role in the activation of ComK or rather act downstream of competence gene expression. While these possibilities could be distinguished for most of the tested factors, we assume that two proteins, PNPase and the transcription factor YtrA, are required both for full ComK activity and for the downstream processes of DNA uptake and integration. Further analyses of the role of the transcription factor YtrA for the competence development revealed that the overexpression of the YtrBCDEF ABC transporter in the ytrA mutant causes the loss of genetic competence. Moreover, overexpression of this ABC transporter also affects biofilm formation. Since the ytrGABCDEF operon is naturally induced by cell wall-targeting antibiotics, we tested the cell wall properties upon overexpression of the ABC transporter and observed an increased thickness of the cell wall. The composition and properties of the cell wall are important for competence development and biofilm formation, suggesting that the observed phenotypes are the result of the increased cell wall thickness as an outcome of YtrBCDEF overexpression.
Collapse
Affiliation(s)
- Martin Benda
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| | - Lisa Maria Schulz
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| | - Jeanine Rismondo
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Aiba K, Kobayashi Y, Aoki S. Bioluminescence burst caused by a process in carbohydrate metabolism in a luciferase reporter strain of Escherichia coli. Biochem Biophys Res Commun 2020; 532:185-189. [PMID: 32859379 DOI: 10.1016/j.bbrc.2020.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 11/19/2022]
Abstract
We previously reported that Escherichia coli strains carrying a firefly luciferase reporter gene (luc+) showed a posttranslationally-generated bioluminescence burst upon entry into the stationary phase. In this paper, we studied the mechanism underpinning this burst by using a series of "Keio" gene deletion strains. When luc+ driven by the lac gene promoter (lacp::luc+) was introduced into a group of Keio strains, the resulting reporter strains showed significantly altered timing and/or sizes of the burst. Remarkably, a reporter strain that lacked phosphoglucose isomerase (PGI), which catalyzes the second step of glycolysis, showed no burst, while the onset of the stationary phase of this strain was the same as that of the wild-type (WT) reporter strain. Consistently, the WT reporter strain showed no burst, when grown on arabinose or xylose instead of glucose as the carbon source. These results suggest that a process in carbohydrate metabolism is involved in the mechanism of generation of the burst. We measured temporal changes in intracellular NADPH concentrations but could not detect a significant increase or decrease relative to the occurrence of the burst. Functional implications and possible applications of the burst are discussed.
Collapse
Affiliation(s)
- Kazuki Aiba
- Graduate School of Informatics, Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
| | - Yuto Kobayashi
- Graduate School of Information Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
| | - Setsuyuki Aoki
- Graduate School of Informatics, Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan; Graduate School of Information Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan.
| |
Collapse
|
13
|
Burghard-Schrod M, Altenburger S, Graumann PL. The Bacillus subtilis dCMP deaminase ComEB acts as a dynamic polar localization factor for ComGA within the competence machinery. Mol Microbiol 2020; 113:906-922. [PMID: 31954084 DOI: 10.1111/mmi.14457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 01/15/2023]
Abstract
Bacillus subtilis can import DNA from the environment by an uptake machinery that localizes to a single cell pole. We investigated the roles of ComEB and of the ATPase ComGA during the state of competence. We show that ComEB plays an important role during competence, possibly because it is necessary for the recruitment of GomGA to the cell pole. ComEB localizes to the cell poles even upon expression during exponential phase, indicating that it can serve as polar marker. ComEB is also a deoxycytidylate monophosphate (dCMP) deaminase, for the function of which a conserved cysteine residue is important. However, cysteine-mutant ComEB is still capable of natural transformation, while a comEB deletion strain is highly impaired in competence, indicating that ComEB confers two independent functions. Single-molecule tracking (SMT) reveals that both proteins exchange at the cell poles between bound and unbound in a time scale of a few milliseconds, but turnover of ComGA increases during DNA uptake, whereas the mobility of ComEB is not affected. Our data reveal a highly dynamic role of ComGA during DNA uptake and an unusual role for ComEB as a mediator of polar localization, localizing by diffusion-capture on an extremely rapid time scale and functioning as a moonlighting enzyme.
Collapse
Affiliation(s)
- Marie Burghard-Schrod
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany.,Department of Chemistry, Philipps Universität Marburg, Marburg, Germany
| | - Stephan Altenburger
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany.,Department of Chemistry, Philipps Universität Marburg, Marburg, Germany
| | - Peter L Graumann
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany.,Department of Chemistry, Philipps Universität Marburg, Marburg, Germany
| |
Collapse
|
14
|
Mirouze N, Ferret C, Cornilleau C, Carballido-López R. Antibiotic sensitivity reveals that wall teichoic acids mediate DNA binding during competence in Bacillus subtilis. Nat Commun 2018; 9:5072. [PMID: 30498236 PMCID: PMC6265299 DOI: 10.1038/s41467-018-07553-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 10/22/2018] [Indexed: 12/02/2022] Open
Abstract
Despite decades of investigation of genetic transformation in the model Gram-positive bacterium Bacillus subtilis, the factors responsible for exogenous DNA binding at the surface of competent cells remain to be identified. Here, we report that wall teichoic acids (WTAs), cell wall-anchored anionic glycopolymers associated to numerous critical functions in Gram-positive bacteria, are involved in this initial step of transformation. Using a combination of cell wall-targeting antibiotics and fluorescence microscopy, we show that competence-specific WTAs are produced and specifically localized in the competent cells to mediate DNA binding at the proximity of the transformation apparatus. Furthermore, we propose that TuaH, a putative glycosyl transferase induced during competence, modifies competence-induced WTAs in order to promote (directly or indirectly) DNA binding. On the basis of our results and previous knowledge in the field, we propose a model for DNA binding and transport during genetic transformation in B. subtilis. Natural genetic transformation in bacteria requires DNA binding at the surface of competent cells. Here, Mirouze et al. show that wall teichoic acids are specifically produced or modified during competence in Bacillus subtilis and promote (directly or indirectly) DNA binding at the cell surface.
Collapse
Affiliation(s)
- Nicolas Mirouze
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France. .,Institute for Integrative Biology of the Cell (I2BC), INSERM, CEA, CNRS, Université Paris-Sud, Orsay, 91190, Gif sur Yvette, France.
| | - Cécile Ferret
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Charlène Cornilleau
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Inovarion, 75013, Paris, France
| | - Rut Carballido-López
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
15
|
Neiditch MB, Capodagli GC, Prehna G, Federle MJ. Genetic and Structural Analyses of RRNPP Intercellular Peptide Signaling of Gram-Positive Bacteria. Annu Rev Genet 2017; 51:311-333. [PMID: 28876981 PMCID: PMC6588834 DOI: 10.1146/annurev-genet-120116-023507] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacteria use diffusible chemical messengers, termed pheromones, to coordinate gene expression and behavior among cells in a community by a process known as quorum sensing. Pheromones of many gram-positive bacteria, such as Bacillus and Streptococcus, are small, linear peptides secreted from cells and subsequently detected by sensory receptors such as those belonging to the large family of RRNPP proteins. These proteins are cytoplasmic pheromone receptors sharing a structurally similar pheromone-binding domain that functions allosterically to regulate receptor activity. X-ray crystal structures of prototypical RRNPP members have provided atomic-level insights into their mechanism and regulation by pheromones. This review provides an overview of RRNPP prototype signaling; describes the structure-function of this protein family, which is spread widely among gram-positive bacteria; and suggests approaches to target RRNPP systems in order to manipulate beneficial and harmful bacterial behaviors.
Collapse
Affiliation(s)
- Matthew B Neiditch
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, USA; ,
| | - Glenn C Capodagli
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, USA; ,
| | - Gerd Prehna
- Center for Structural Biology, Research Resources Center and Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60607, USA;
| | - Michael J Federle
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA;
| |
Collapse
|
16
|
Diethmaier C, Chawla R, Canzoneri A, Kearns DB, Lele PP, Dubnau D. Viscous drag on the flagellum activates Bacillus subtilis entry into the K-state. Mol Microbiol 2017; 106:367-380. [PMID: 28800172 DOI: 10.1111/mmi.13770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2017] [Indexed: 12/23/2022]
Abstract
Bacillus subtilis flagella are not only required for locomotion but also act as sensors that monitor environmental changes. Although how the signal transmission takes place is poorly understood, it has been shown that flagella play an important role in surface sensing by transmitting a mechanical signal to control the DegS-DegU two-component system. Here we report a role for flagella in the regulation of the K-state, which enables transformability and antibiotic tolerance (persistence). Mutations impairing flagellar synthesis are inferred to increase DegU-P, which inhibits the expression of ComK, the master regulator for the K-state, and reduces transformability. Tellingly, both deletion of the flagellin gene and straight filament (hagA233V ) mutations increased DegU phosphorylation despite the fact that both mutants had wild type numbers of basal bodies and the flagellar motors were functional. We propose that higher viscous loads on flagellar motors result in lower DegU-P levels through an unknown signaling mechanism. This flagellar-load based mechanism ensures that cells in the motile subpopulation have a tenfold enhanced likelihood of entering the K-state and taking up DNA from the environment. Further, our results suggest that the developmental states of motility and competence are related and most commonly occur in the same epigenetic cell type.
Collapse
Affiliation(s)
- Christine Diethmaier
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Ravi Chawla
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station Texas, TX, USA
| | | | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Pushkar P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station Texas, TX, USA
| | - David Dubnau
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
17
|
Washington TA, Smith JL, Grossman AD. Genetic networks controlled by the bacterial replication initiator and transcription factor DnaA in Bacillus subtilis. Mol Microbiol 2017; 106:109-128. [PMID: 28752667 DOI: 10.1111/mmi.13755] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2017] [Indexed: 12/21/2022]
Abstract
DnaA is the widely conserved bacterial AAA+ ATPase that functions as both the replication initiator and a transcription factor. In many organisms, DnaA controls expression of its own gene and likely several others during growth and in response to replication stress. To evaluate the effects of DnaA on gene expression, separate from its role in replication initiation, we analyzed changes in mRNA levels in Bacillus subtilis cells with and without dnaA, using engineered strains in which dnaA is not essential. We found that dnaA was required for many of the changes in gene expression in response to replication stress. We also found that dnaA indirectly affected expression of several regulons during growth, including those controlled by the transcription factors Spo0A, AbrB, PhoP, SinR, RemA, Rok and YvrH. These effects were largely mediated by the effects of DnaA on expression of sda. DnaA activates transcription of sda, and Sda inhibits histidine protein kinases required for activation of the transcription factor Spo0A. We also found that loss of dnaA caused a decrease in the development of genetic competence. Together, our results indicate that DnaA plays an important role in modulating cell physiology, separate from its role in replication initiation.
Collapse
Affiliation(s)
- Tracy A Washington
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Janet L Smith
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
18
|
Tanner AW, Carabetta VJ, Martinie RJ, Mashruwala AA, Boyd JM, Krebs C, Dubnau D. The RicAFT (YmcA-YlbF-YaaT) complex carries two [4Fe-4S] 2+ clusters and may respond to redox changes. Mol Microbiol 2017; 104:837-850. [PMID: 28295778 DOI: 10.1111/mmi.13667] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2017] [Indexed: 01/10/2023]
Abstract
During times of environmental insult, Bacillus subtilis undergoes developmental changes leading to biofilm formation, sporulation and competence. Each of these states is regulated in part by the phosphorylated form of the master response regulator Spo0A (Spo0A∼P). The phosphorylation state of Spo0A is controlled by a multi-component phosphorelay. RicA, RicF and RicT (previously YmcA, YlbF and YaaT) have been shown to be important regulatory proteins for multiple developmental fates. These proteins directly interact and form a stable complex, which has been proposed to accelerate the phosphorelay. Indeed, this complex is sufficient to stimulate the rate of phosphotransfer amongst the phosphorelay proteins in vitro. In this study, we demonstrate that two [4Fe-4S]2+ clusters can be assembled on the complex. As with other iron-sulfur cluster-binding proteins, the complex was also found to bind FAD, hinting that these cofactors may be involved in sensing the cellular redox state. This work provides the first comprehensive characterization of an iron-sulfur protein complex that regulates Spo0A∼P levels. Phylogenetic and genetic evidence suggests that the complex plays a broader role beyond stimulation of the phosphorelay.
Collapse
Affiliation(s)
- Andrew W Tanner
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Valerie J Carabetta
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA.,Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Ryan J Martinie
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ameya A Mashruwala
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Carsten Krebs
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - David Dubnau
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA.,Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| |
Collapse
|
19
|
Miras M, Dubnau D. A DegU-P and DegQ-Dependent Regulatory Pathway for the K-state in Bacillus subtilis. Front Microbiol 2016; 7:1868. [PMID: 27920766 PMCID: PMC5118428 DOI: 10.3389/fmicb.2016.01868] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/07/2016] [Indexed: 12/04/2022] Open
Abstract
The K-state in the model bacterium Bacillus subtilis is associated with transformability (competence) as well as with growth arrest and tolerance for antibiotics. Entry into the K-state is determined by the stochastic activation of the transcription factor ComK and occurs in about ∼15% of the population in domesticated strains. Although the upstream mechanisms that regulate the K-state have been intensively studied and are well understood, it has remained unexplained why undomesticated isolates of B. subtilis are poorly transformable compared to their domesticated counterparts. We show here that this is because fewer cells enter the K-state, suggesting that a regulatory pathway limiting entry to the K-state is missing in domesticated strains. We find that loss of this limitation is largely due to an inactivating point mutation in the promoter of degQ. The resulting low level of DegQ decreases the concentration of phosphorylated DegU, which leads to the de-repression of the srfA operon and ultimately to the stabilization of ComK. As a result, more cells reach the threshold concentration of ComK needed to activate the auto-regulatory loop at the comK promoter. In addition, we demonstrate that the activation of srfA transcription in undomesticated strains is transient, turning off abruptly as cells enter the stationary phase. Thus, the K-state and transformability are more transient and less frequently expressed in the undomesticated strains. This limitation is more extreme than appreciated from studies of domesticated strains. Selection has apparently limited both the frequency and the duration of the bistably expressed K-state in wild strains, likely because of the high cost of growth arrest associated with the K-state. Future modeling of K-state regulation and of the fitness advantages and costs of the K-state must take these features into account.
Collapse
Affiliation(s)
- Mathieu Miras
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, NewarkNJ, USA; Laboratoire de Microbiologie et Génétique Moléculaires, Université de ToulouseToulouse, France
| | - David Dubnau
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark NJ, USA
| |
Collapse
|
20
|
Hsu C, Jaquet V, Maleki F, Becskei A. Contribution of Bistability and Noise to Cell Fate Transitions Determined by Feedback Opening. J Mol Biol 2016; 428:4115-4128. [PMID: 27498164 DOI: 10.1016/j.jmb.2016.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/26/2016] [Accepted: 07/29/2016] [Indexed: 01/06/2023]
Abstract
Alternative cell fates represent a form of non-genetic diversity, which can promote adaptation and functional specialization. It is difficult to predict the rate of the transition between two cell fates due to the strong effect of noise on feedback loops and missing parameters. We opened synthetic positive feedback loops experimentally to obtain open-loop functions. These functions allowed us to identify a deterministic model of bistability by bypassing noise and the requirement to resolve individual processes in the loop. Combining the open-loop function with kinetic measurements and reintroducing the measured noise, we were able to predict the transition rates for the feedback systems without parameter tuning. Noise in gene expression was the key determinant of the transition rates inside the bistable range. Transitions between two cell fates were also observed outside of the bistable range, evidenced by bimodality and hysteresis. In this case, a slow transient process was the rate-limiting step in the transitions. Thus, feedback opening is an effective approach to identify the determinants of cell fate transitions and to predict their rates.
Collapse
Affiliation(s)
- Chieh Hsu
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland; School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Vincent Jaquet
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Farzaneh Maleki
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Attila Becskei
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| |
Collapse
|
21
|
Dubnau EJ, Carabetta VJ, Tanner AW, Miras M, Diethmaier C, Dubnau D. A protein complex supports the production of Spo0A-P and plays additional roles for biofilms and the K-state in Bacillus subtilis. Mol Microbiol 2016; 101:606-24. [PMID: 27501195 DOI: 10.1111/mmi.13411] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2016] [Indexed: 01/19/2023]
Abstract
Bacillus subtilis can enter three developmental pathways to form spores, biofilms or K-state cells. The K-state confers competence for transformation and antibiotic tolerance. Transition into each of these states requires a stable protein complex formed by YlbF, YmcA and YaaT. We have reported that this complex acts in sporulation by accelerating the phosphorylation of the response regulator Spo0A. Phosphorelay acceleration was also predicted to explain their involvement in biofilm formation and the K-state. This view has been challenged in the case of biofilms, by the suggestion that the three proteins act in association with the mRNA degradation protein RNaseY (Rny) to destabilize the sinR transcript. Here, we reaffirm the roles of the three proteins in supporting the phosphorylation of Spo0A for all three developmental pathways and show that in their absence sinR mRNA is not stabilized. We demonstrate that the three proteins also play unknown Spo0A-P-independent roles in the expression of biofilm matrix and in the production of ComK, the master transcription factor for competence. Finally, we show that domesticated strains of B. subtilis carry a mutation in sigH, which influences the expression kinetics of the early spore gene spoIIG, thereby increasing the penetrance of the ylbF, ymcA and yaaT sporulation phenotypes.
Collapse
Affiliation(s)
- Eugenie J Dubnau
- Public Health Research Institute Center.,Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Valerie J Carabetta
- Public Health Research Institute Center.,Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Andrew W Tanner
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | | | | | - David Dubnau
- Public Health Research Institute Center.,Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| |
Collapse
|
22
|
Schultz D. Coordination of cell decisions and promotion of phenotypic diversity in B. subtilis via pulsed behavior of the phosphorelay. Bioessays 2016; 38:440-5. [PMID: 26941227 DOI: 10.1002/bies.201500199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The phosphorelay of Bacillus subtilis, a kinase cascade that activates master regulator Spo0A ~ P in response to starvation signals, is the core of a large network controlling the cell's decision to differentiate into sporulation and other phenotypes. This article reviews recent advances in understanding the origins and purposes of the complex dynamical behavior of the phosphorelay, which pulses with peaks of activity coordinated with the cell cycle. The transient imbalance in the expression of two critical genes caused by their strategic placement at opposing ends of the chromosome proved to be the key for this pulsed behavior. Feedback control loops in the phosphorelay use these pulses to implement a timer mechanism, which creates several windows of opportunity for phenotypic transitions over multiple generations. This strategy allows the cell to coordinate multiple differentiation programs in a decision process that fosters phenotypic diversity and adapts to current conditions.
Collapse
Affiliation(s)
- Daniel Schultz
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Rahmer R, Morabbi Heravi K, Altenbuchner J. Construction of a Super-Competent Bacillus subtilis 168 Using the P mtlA -comKS Inducible Cassette. Front Microbiol 2015; 6:1431. [PMID: 26732353 PMCID: PMC4685060 DOI: 10.3389/fmicb.2015.01431] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/01/2015] [Indexed: 11/16/2022] Open
Abstract
Competence is a physiological state that enables Bacillus subtilis 168 to take up and internalize extracellular DNA. In practice, only a small subpopulation of B. subtilis 168 cells becomes competent when they enter stationary phase. In this study, we developed a new transformation method to improve the transformation efficiency of B. subtilis 168, specially in rich media. At first, different competence genes, namely comK, comS, and dprA, were alone or together integrated into the chromosome of B. subtilis 168 under control of mannitol-inducible PmtlA promoter. Overexpression of both comK and comS increased the transformation efficiency of B. subtilis REG19 with plasmid DNA by 6.7-fold compared to the wild type strain 168. This transformation efficiency reached its maximal level after 1.5 h of induction by mannitol. Besides, transformability of the REG19 cells was saturated in the presence of 100 ng dimeric plasmid or 3000 ng chromosomal DNA. Studying the influence of global regulators on the development of competence pointed out that important competence development factors, such as Spo0A, ComQXPA, and DegU, could be removed in REG19. On the other hand, efficient REG19 transformation remained highly dependent on the original copies of comK and comS regardless of the presence of PmtlA-comKS. Finally, novel plasmid-free strategies were used for transformation of REG19 based on Gibson assembly.
Collapse
Affiliation(s)
- Regine Rahmer
- Institut für Industrielle Genetik, Universität Stuttgart Stuttgart, Germany
| | | | - Josef Altenbuchner
- Institut für Industrielle Genetik, Universität Stuttgart Stuttgart, Germany
| |
Collapse
|
24
|
Posttranslationally caused bioluminescence burst of the Escherichia coli luciferase reporter strain. Arch Microbiol 2015; 198:35-41. [DOI: 10.1007/s00203-015-1165-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
|
25
|
Abstract
Bacillus subtilis is an important model bacterium for the study of developmental adaptations that enhance survival in the face of fluctuating environmental challenges. These adaptations include sporulation, biofilm formation, motility, cannibalism, and competence. Remarkably, not all the cells in a given population exhibit the same response. The choice of fate by individual cells is random but is also governed by complex signal transduction pathways and cross talk mechanisms that reinforce decisions once made. The interplay of stochastic and deterministic mechanisms governing the selection of developmental fate on the single-cell level is discussed in this article.
Collapse
|
26
|
Gamba P, Jonker MJ, Hamoen LW. A Novel Feedback Loop That Controls Bimodal Expression of Genetic Competence. PLoS Genet 2015; 11:e1005047. [PMID: 26110430 PMCID: PMC4482431 DOI: 10.1371/journal.pgen.1005047] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 02/01/2015] [Indexed: 01/25/2023] Open
Abstract
Gene expression can be highly heterogeneous in isogenic cell populations. An extreme type of heterogeneity is the so-called bistable or bimodal expression, whereby a cell can differentiate into two alternative expression states. Stochastic fluctuations of protein levels, also referred to as noise, provide the necessary source of heterogeneity that must be amplified by specific genetic circuits in order to obtain a bimodal response. A classical model of bimodal differentiation is the activation of genetic competence in Bacillus subtilis. The competence transcription factor ComK activates transcription of its own gene, and an intricate regulatory network controls the switch to competence and ensures its reversibility. However, it is noise in ComK expression that determines which cells activate the ComK autostimulatory loop and become competent for genetic transformation. Despite its important role in bimodal gene expression, noise remains difficult to investigate due to its inherent stochastic nature. We adapted an artificial autostimulatory loop that bypasses all known ComK regulators to screen for possible factors that affect noise. This led to the identification of a novel protein Kre (YkyB) that controls the bimodal regulation of ComK. Interestingly, Kre appears to modulate the induction of ComK by affecting the stability of comK mRNA. The protein influences the expression of many genes, however, Kre is only found in bacteria that contain a ComK homologue and, importantly, kre expression itself is downregulated by ComK. The evolutionary significance of this new feedback loop for the reduction of transcriptional noise in comK expression is discussed. Our findings show the importance of mRNA stability in bimodal regulation, a factor that requires more attention when studying and modelling this non-deterministic developmental mechanism. Gene expression can be highly heterogeneous in clonal cell populations. An extreme type of heterogeneity is the so-called bistable or bimodal expression, whereby a cell can differentiate into two alternative expression states, and consequently a population will be composed of cells that are ‘ON’ and cells that are ‘OFF’. Stochastic fluctuations of protein levels, also referred to as noise, provide the necessary source of heterogeneity that must be amplified by autostimulatory feedback regulation to obtain the bimodal response. A classical model of bistable differentiation is the development of genetic competence in Bacillus subtilis. Noise in expression of the transcription factor ComK ultimately determines the fraction of cells that enter the competent state. Due to its intrinsic random nature, noise is difficult to investigate. We adapted an artificial autostimulatory loop that bypasses all known ComK regulators, to screen for possible factors that affect noise in the bimodal regulation of ComK. This led to the discovery of Kre, a novel factor that controls the bimodal expression of ComK. Kre appears to affect the stability of comK mRNA. Interestingly, ComK itself represses the expression of kre, adding a new double negative feedback loop to the intricate ComK regulation circuit. Our data emphasize that mRNA stability is an important factor in bimodal regulation.
Collapse
Affiliation(s)
- Pamela Gamba
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail: (PG); (LWH)
| | - Martijs J. Jonker
- MicroArray Department and Integrative Bioinformatics Unit, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Leendert W. Hamoen
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail: (PG); (LWH)
| |
Collapse
|
27
|
MreB-Dependent Inhibition of Cell Elongation during the Escape from Competence in Bacillus subtilis. PLoS Genet 2015; 11:e1005299. [PMID: 26091431 PMCID: PMC4474612 DOI: 10.1371/journal.pgen.1005299] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/26/2015] [Indexed: 02/02/2023] Open
Abstract
During bacterial exponential growth, the morphogenetic actin-like MreB proteins form membrane-associated assemblies that move processively following trajectories perpendicular to the long axis of the cell. Such MreB structures are thought to scaffold and restrict the movement of peptidoglycan synthesizing machineries, thereby coordinating sidewall elongation. In Bacillus subtilis, this function is performed by the redundant action of three MreB isoforms, namely MreB, Mbl and MreBH. mreB and mbl are highly transcribed from vegetative promoters. We have found that their expression is maximal at the end of exponential phase, and rapidly decreases to a low basal level upon entering stationary phase. However, in cells developing genetic competence, a stationary phase physiological adaptation, expression of mreB was specifically reactivated by the central competence regulator ComK. In competent cells, MreB was found in complex with several competence proteins by in vitro pull-down assays. In addition, it co-localized with the polar clusters formed by the late competence peripheral protein ComGA, in a ComGA-dependent manner. ComGA has been shown to be essential for the inhibition of cell elongation characteristic of cells escaping the competence state. We show here that the pathway controlling this elongation inhibition also involves MreB. Our findings suggest that ComGA sequesters MreB to prevent cell elongation and therefore the escape from competence. In bacterial cells, like in their eukaryotic counterparts, precise spatiotemporal localization of proteins is critical for their cellular function. This study shows that the expression and the localization of the bacterial actin-like MreB protein are growth phase-dependent. During exponential growth, we previously showed that MreB, together with other morphogenetic factors, forms discrete assemblies that move in a directed manner along peripheral tracks. Here, we demonstrate that in cells that develop genetic competence during stationary phase, transcription of mreB is specifically activated and MreB relocalizes to the cell poles. Our findings suggest a model in which MreB sequestration by the late competence protein ComGA prevents cell elongation during the escape from competence.
Collapse
|
28
|
Hahn J, Tanner AW, Carabetta VJ, Cristea IM, Dubnau D. ComGA-RelA interaction and persistence in the Bacillus subtilis K-state. Mol Microbiol 2015; 97:454-71. [PMID: 25899641 DOI: 10.1111/mmi.13040] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2015] [Indexed: 01/17/2023]
Abstract
The bistably expressed K-state of Bacillus subtilis is characterized by two distinct features; transformability and arrested growth when K-state cells are exposed to fresh medium. The arrest is manifested by a failure to assemble replisomes and by decreased rates of cell growth and rRNA synthesis. These phenotypes are all partially explained by the presence of the AAA(+) protein ComGA, which is also required for the binding of transforming DNA to the cell surface and for the assembly of the transformation pilus that mediates DNA transport. We have discovered that ComGA interacts with RelA and that the ComGA-dependent inhibition of rRNA synthesis is largely bypassed in strains that cannot synthesize the alarmone (p)ppGpp. We propose that the interaction of ComGA with RelA prevents the hydrolysis of (p)ppGpp in K-state cells, which are thus trapped in a non-growing state until ComGA is degraded. We show that some K-state cells exhibit tolerance to antibiotics, a form of type 1 persistence, and we propose that the bistable expression of both transformability and the growth arrest are bet-hedging adaptations that improve fitness in the face of varying environments, such as those presumably encountered by B. subtilis in the soil.
Collapse
Affiliation(s)
- Jeanette Hahn
- Public Health Research Institute Center of New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Andrew W Tanner
- Public Health Research Institute Center of New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Valerie J Carabetta
- Public Health Research Institute Center of New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - David Dubnau
- Public Health Research Institute Center of New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| |
Collapse
|
29
|
Nitzan M, Shimoni Y, Rosolio O, Margalit H, Biham O. Stochastic analysis of bistability in coherent mixed feedback loops combining transcriptional and posttranscriptional regulations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052706. [PMID: 26066198 DOI: 10.1103/physreve.91.052706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Indexed: 06/04/2023]
Abstract
Mixed feedback loops combining transcriptional and posttranscriptional regulations are common in cellular regulatory networks. They consist of two genes, encoding a transcription factor and a small noncoding RNA (sRNA), which mutually regulate each other's expression. We present a theoretical and numerical study of coherent mixed feedback loops of this type, in which both regulations are negative. Under suitable conditions, these feedback loops are expected to exhibit bistability, namely, two stable states, one dominated by the transcriptional repressor and the other dominated by the sRNA. We use deterministic methods based on rate equation models, in order to identify the range of parameters in which bistability takes place. However, the deterministic models do not account for the finite lifetimes of the bistable states and the spontaneous, fluctuation-driven transitions between them. Therefore, we use stochastic methods to calculate the average lifetimes of the two states. It is found that these lifetimes strongly depend on rate coefficients such as the transcription rates of the transcriptional repressor and the sRNA. In particular, we show that the fraction of time the system spends in the sRNA-dominated state follows a monotonically decreasing sigmoid function of the transcriptional repressor transcription rate. The biological relevance of these results is discussed in the context of such mixed feedback loops in Escherichia coli. It is shown that the fluctuation-driven transitions and the dependence of some rate coefficients on the biological conditions enable the cells to switch to the state which is better suited for the existing conditions and to remain in that state as long as these conditions persist.
Collapse
Affiliation(s)
- Mor Nitzan
- Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Yishai Shimoni
- Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
- Center for Computational Biology and Bioinformatics (C2B2), Columbia University, New York, New York 10027, USA
| | - Oded Rosolio
- Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Ofer Biham
- Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
30
|
Boguslawski KM, Hill PA, Griffith KL. Novel mechanisms of controlling the activities of the transcription factors Spo0A and ComA by the plasmid-encoded quorum sensing regulators Rap60-Phr60 in Bacillus subtilis. Mol Microbiol 2015; 96:325-48. [PMID: 25598361 DOI: 10.1111/mmi.12939] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2015] [Indexed: 01/09/2023]
Abstract
Bacillus subtilis and its closest relatives have multiple rap-phr quorum sensing gene pairs that coordinate a variety of physiological processes with population density. Extra-chromosomal rap-phr genes are also present on mobile genetic elements, yet relatively little is known about their function. In this work, we demonstrate that Rap60-Phr60 from plasmid pTA1060 coordinates a variety of biological processes with population density including sporulation, cannibalism, biofilm formation and genetic competence. Similar to other Rap proteins that control sporulation, Rap60 modulates phosphorylation of the transcription factor Spo0A by acting as a phosphatase of Spo0F∼P, an intermediate of the sporulation phosphorelay system. Additionally, Rap60 plays a noncanonical role in regulating the autophosphorylation of the sporulation-specific kinase KinA, a novel activity for Rap proteins. In contrast, Rap proteins that modulate genetic competence interfere with DNA binding by the transcription factor ComA. Rap60 regulates the activity of ComA in a unique manner by forming a Rap60-ComA-DNA ternary complex that inhibits transcription of target genes. Taken together, this work provides new insight into two novel mechanisms of regulating Spo0A and ComA by Rap60 and expands our general understanding of how plasmid-encoded quorum sensing pairs regulate important biological processes.
Collapse
Affiliation(s)
- Kristina M Boguslawski
- Medical Scientist Training Program, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | | | | |
Collapse
|
31
|
Martins BMC, Locke JCW. Microbial individuality: how single-cell heterogeneity enables population level strategies. Curr Opin Microbiol 2015; 24:104-12. [PMID: 25662921 DOI: 10.1016/j.mib.2015.01.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/05/2015] [Accepted: 01/08/2015] [Indexed: 12/19/2022]
Abstract
Much of our knowledge of microbial life is only a description of average population behaviours, but modern technologies provide a more inclusive view and reveal that microbes also have individuality. It is now acknowledged that isogenic cell-to-cell heterogeneity is common across organisms and across different biological processes. This heterogeneity can be regulated and functional, rather than just reflecting tolerance to noisy biochemistry. Here, we review recent advances in our understanding of microbial heterogeneity, with an emphasis on the pervasiveness of heterogeneity, the mechanisms that sustain it, and how heterogeneity enables collective function.
Collapse
Affiliation(s)
- Bruno M C Martins
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, United Kingdom
| | - James C W Locke
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, United Kingdom.
| |
Collapse
|
32
|
Jakobs M, Meinhardt F. What renders Bacilli genetically competent? A gaze beyond the model organism. Appl Microbiol Biotechnol 2014; 99:1557-70. [DOI: 10.1007/s00253-014-6316-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 12/20/2022]
|
33
|
Abstract
The nucleotide second messengers pppGpp and ppGpp [(p)ppGpp] are responsible for the global downregulation of transcription, translation, DNA replication, and growth rate that occurs during the stringent response. More recent studies suggest that (p)ppGpp is also an important effector in many nonstringent processes, including virulence, persister cell formation, and biofilm production. In Bacillus subtilis, (p)ppGpp production is primarily determined by the net activity of RelA, a bifunctional (p)ppGpp synthetase/hydrolase, and two monofunctional (p)ppGpp synthetases, YwaC and YjbM. We observe that in B. subtilis, a relA mutant grows exclusively as unchained, motile cells, phenotypes regulated by the alternative sigma factor SigD. Our data indicate that the relA mutant is trapped in a SigD "on" state during exponential growth, implicating RelA and (p)ppGpp levels in the regulation of cell chaining and motility in B. subtilis. Our results also suggest that minor variations in basal (p)ppGpp levels can significantly skew developmental decision-making outcomes.
Collapse
|
34
|
Ryo M, Oshikoshi Y, Doi S, Motoki S, Niimi A, Aoki S. Firefly luciferase as the reporter for transcriptional response to the environment in Escherichia coli. Anal Biochem 2013; 443:211-3. [PMID: 24012794 DOI: 10.1016/j.ab.2013.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/23/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Abstract
We demonstrate that firefly luciferase is a good reporter in Escherichia coli for transcription dynamics in response to the environment. E. coli strains, carrying a fusion of the promoter of the ycgZ gene and the coding region of the luciferase gene, showed transient bioluminescence on receiving blue light. This response was compromised in mutants lacking known regulators in manners consistent with each regulator's function. We also show that relA, a gene encoding a (p)ppGpp synthetase, affects ycgZ dynamics when nullified. Moreover, two unstable luciferase variants showed improved response dynamics and should be useful to study quick changes of gene expression.
Collapse
Affiliation(s)
- Masashi Ryo
- Graduate School of Information Science, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Growth phase and pH influence peptide signaling for competence development in Streptococcus mutans. J Bacteriol 2013; 196:227-36. [PMID: 24163340 DOI: 10.1128/jb.00995-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The development of competence by the dental caries pathogen Streptococcus mutans is mediated primarily through the alternative sigma factor ComX (SigX), which is under the control of multiple regulatory systems and activates the expression of genes involved in DNA uptake and recombination. Here we report that the induction of competence and competence gene expression by XIP (sigX-inducing peptide) and CSP (competence-stimulating peptide) is dependent on the growth phase and that environmental pH has a potent effect on the responses to XIP. A dramatic decline in comX and comS expression was observed in mid- and late-exponential-phase cells. XIP-mediated competence development and responses to XIP were optimal around a neutral pH, although mid-exponential-phase cells remained refractory to XIP treatment, and acidified late-exponential-phase cultures were resistant to killing by high concentrations of XIP. Changes in the expression of the genes for the oligopeptide permease (opp), which appears to be responsible for the internalization of XIP, could not entirely account for the behaviors observed. Interestingly, comS and comX expression was highly induced in response to endogenously overproduced XIP or ComS in mid-exponential-phase cells. In contrast to the effects of pH on XIP, competence induction and responses to CSP in complex medium were not affected by pH, although a decreased response to CSP in cells that had exited early-exponential phase was observed. Collectively, these results indicate that competence development may be highly sensitive to microenvironments within oral biofilms and that XIP and CSP signaling in biofilms could be spatially and temporally heterogeneous.
Collapse
|
36
|
A genome-wide transcriptional profiling of sporulating Bacillus subtilis strain lacking PrpE protein phosphatase. Mol Genet Genomics 2013; 288:469-81. [PMID: 23824080 PMCID: PMC3782651 DOI: 10.1007/s00438-013-0763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/15/2013] [Indexed: 11/01/2022]
Abstract
The sporulation process is a complex genetic developmental program leading to profound changes in global gene expression profile. In this work, we have applied genome-wide microarray approach for transcriptional profiling of Bacillus subtilis strain lacking a gene coding for PrpE protein phosphatase. This protein was previously shown to be involved in the regulation of germination of B. subtilis spores. Moreover, the deletion of prpE gene resulted in changing the resistance properties of spores. Our results provide genome-wide insight into the influence of this protein phosphatase on the physiology of B. subtilis cells. Although the precise role of PrpE in shaping the observed phenotype of ΔprpE mutant strain still remains beyond the understanding, our experiments brought observations of possible indirect implication of this protein in the regulation of cell motility and chemotaxis, as well as the development of competence. Surprisingly, prpE-deleted cells showed elevated level of general stress response, which turned out to be growth medium specific.
Collapse
|
37
|
|
38
|
Bacillus subtilis mutants with knockouts of the genes encoding ribonucleases RNase Y and RNase J1 are viable, with major defects in cell morphology, sporulation, and competence. J Bacteriol 2013; 195:2340-8. [PMID: 23504012 DOI: 10.1128/jb.00164-13] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The genes encoding the ribonucleases RNase J1 and RNase Y have long been considered essential for Bacillus subtilis cell viability, even before there was concrete knowledge of their function as two of the most important enzymes for RNA turnover in this organism. Here we show that this characterization is incorrect and that ΔrnjA and Δrny mutants are both viable. As expected, both strains grow relatively slowly, with doubling times in the hour range in rich medium. Knockout mutants have major defects in their sporulation and competence development programs. Both mutants are hypersensitive to a wide range of antibiotics and have dramatic alterations to their cell morphologies, suggestive of cell envelope defects. Indeed, RNase Y mutants are significantly smaller in diameter than wild-type strains and have a very disordered peptidoglycan layer. Strains lacking RNase J1 form long filaments in tight spirals, reminiscent of mutants of the actin-like proteins (Mre) involved in cell shape determination. Finally, we combined the rnjA and rny mutations with mutations in other components of the degradation machinery and show that many of these strains are also viable. The implications for the two known RNA degradation pathways of B. subtilis are discussed.
Collapse
|
39
|
Botella E, Noone D, Salzberg LI, Hokamp K, Devine SK, Fogg M, Wilkinson AJ, Devine KM. High-resolution temporal analysis of global promoter activity in Bacillus subtilis. METHODS IN MICROBIOLOGY 2012. [DOI: 10.1016/b978-0-08-099387-4.00001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|