1
|
Jouravleva K, Zamore PD. A guide to the biogenesis and functions of endogenous small non-coding RNAs in animals. Nat Rev Mol Cell Biol 2025; 26:347-370. [PMID: 39856370 DOI: 10.1038/s41580-024-00818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 01/27/2025]
Abstract
Small non-coding RNAs can be categorized into two main classes: structural RNAs and regulatory RNAs. Structural RNAs, which are abundant and ubiquitously expressed, have essential roles in the maturation of pre-mRNAs, modification of rRNAs and the translation of coding transcripts. By contrast, regulatory RNAs are often expressed in a developmental-specific, tissue-specific or cell-type-specific manner and exert precise control over gene expression. Reductions in cost and improvements in the accuracy of high-throughput RNA sequencing have led to the identification of many new small RNA species. In this Review, we provide a broad discussion of the genomic origins, biogenesis and functions of structural small RNAs, including tRNAs, small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), vault RNAs (vtRNAs) and Y RNAs as well as their derived RNA fragments, and of regulatory small RNAs, such as microRNAs (miRNAs), endogenous small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs), in animals.
Collapse
Affiliation(s)
- Karina Jouravleva
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France.
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Huang X, Feng X, Yan YH, Xu D, Wang K, Zhu C, Dong MQ, Huang X, Guang S, Chen X. Compartmentalized localization of perinuclear proteins within germ granules in C. elegans. Dev Cell 2025; 60:1251-1270.e3. [PMID: 39742661 DOI: 10.1016/j.devcel.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/26/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025]
Abstract
Germ granules, or nuage, are RNA-rich condensates that are often docked on the cytoplasmic surface of germline nuclei. C. elegans perinuclear germ granules are composed of multiple subcompartments, including P granules, Mutator foci, Z granules, SIMR foci, P -bodies, and E granules. Although many perinuclear proteins have been identified, their precise localization within the subcompartments of the germ granule is still unclear. Here, we systematically labeled perinuclear proteins with fluorescent tags via CRISPR-Cas9 technology. Using this nematode strain library, we identified a series of proteins localized in Z or E granules and extended the characterization of the D granule. Finally, we found that the LOTUS domain protein MIP-1/EGGD-1 regulated the multiphase organization of the germ granule. Overall, our work identified the germ-granule architecture and redefined the compartmental localization of perinuclear proteins. Additionally, the library of genetically modified nematode strains will facilitate research on C. elegans germ granules.
Collapse
Affiliation(s)
- Xiaona Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Xuezhu Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yong-Hong Yan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Demin Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Ke Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xinya Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| | - Xiangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
3
|
McJunkin K, Gottesman S. What goes up must come down: off switches for regulatory RNAs. Genes Dev 2024; 38:597-613. [PMID: 39111824 PMCID: PMC11368247 DOI: 10.1101/gad.351934.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Small RNAs base pair with and regulate mRNA translation and stability. For both bacterial small regulatory RNAs and eukaryotic microRNAs, association with partner proteins is critical for the stability and function of the regulatory RNAs. We review the mechanisms for degradation of these RNAs: displacement of the regulatory RNA from its protein partner (in bacteria) or destruction of the protein and its associated microRNAs (in eukaryotes). These mechanisms can allow specific destruction of a regulatory RNA via pairing with a decay trigger RNA or function as global off switches by disrupting the stability or function of the protein partner.
Collapse
Affiliation(s)
- Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases Intramural Research Program, Bethesda, Maryland 20892, USA;
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
4
|
Ahmadi Asouri S, Aghadavood E, Mirzaei H, Abaspour A, Esmaeil Shahaboddin M. PIWI-interacting RNAs (PiRNAs) as emerging biomarkers and therapeutic targets in biliary tract cancers: A comprehensive review. Heliyon 2024; 10:e33767. [PMID: 39040379 PMCID: PMC11261894 DOI: 10.1016/j.heliyon.2024.e33767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/09/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Cancers affecting the biliary tract, such as gallbladder cancer and cholangiocarcinoma, make up a small percentage of adult gastrointestinal malignancies, but their incidence is on the rise. Due to the lack of dependable molecular biomarkers for diagnosis and prognosis, these cancers are often not detected until later stages and have limited treatment options. Piwi-interacting RNAs (piRNAs) are a type of small noncoding RNA that interacts with Piwi proteins and has been linked to various diseases, especially cancer. Manipulation of piRNA expression has the potential to serve as an important biomarker and target for therapy. This review uncovers the relationship between PIWI-interacting RNA (piRNA) and a variety of gastrointestinal cancers, including biliary tract cancer (BTC). It is evident that piRNAs have the ability to impact gene expression and regulate key genes and pathways related to the advancement of digestive cancers. Abnormal expression of piRNAs plays a significant role in the development and progression of digestive-related malignancies. The potential of piRNAs as potential biomarkers for diagnosis and prognosis, as well as therapeutic targets in BTC, is noteworthy. Nevertheless, there are obstacles and limitations that require further exploration to fully comprehend piRNAs' role in BTC and to devise effective diagnostic and therapeutic approaches using piRNAs. In summary, this review underscores the value of piRNAs as valuable biomarkers and promising targets for treating BTC, as we delve into the association between piRNAs and various gastrointestinal cancers, including BTC, and how piRNAs can impact gene expression and control essential pathways for digestive cancer advancement. The present research consists of a thorough evaluation presented in a storytelling style. The databases utilized to locate original sources were PubMed, MEDLINE, and Google Scholar, and the search was conducted using the designated keywords.
Collapse
Affiliation(s)
- Sahar Ahmadi Asouri
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Esmat Aghadavood
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Institute for Basic Sciences, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Abaspour
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Esmaeil Shahaboddin
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Institute for Basic Sciences, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Chen X, Wang K, Mufti FUD, Xu D, Zhu C, Huang X, Zeng C, Jin Q, Huang X, Yan YH, Dong MQ, Feng X, Shi Y, Kennedy S, Guang S. Germ granule compartments coordinate specialized small RNA production. Nat Commun 2024; 15:5799. [PMID: 38987544 PMCID: PMC11236994 DOI: 10.1038/s41467-024-50027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/26/2024] [Indexed: 07/12/2024] Open
Abstract
Germ granules are biomolecular condensates present in most animal germ cells. One function of germ granules is to help maintain germ cell totipotency by organizing mRNA regulatory machinery, including small RNA-based gene regulatory pathways. The C. elegans germ granule is compartmentalized into multiple subcompartments whose biological functions are largely unknown. Here, we identify an uncharted subcompartment of the C. elegans germ granule, which we term the E granule. The E granule is nonrandomly positioned within the germ granule. We identify five proteins that localize to the E granule, including the RNA-dependent RNA polymerase (RdRP) EGO-1, the Dicer-related helicase DRH-3, the Tudor domain-containing protein EKL-1, and two intrinsically disordered proteins, EGC-1 and ELLI-1. Localization of EGO-1 to the E granule enables synthesis of a specialized class of 22G RNAs, which derive exclusively from 5' regions of a subset of germline-expressed mRNAs. Defects in E granule assembly elicit disordered production of endogenous siRNAs, which disturbs fertility and the RNAi response. Our results define a distinct subcompartment of the C. elegans germ granule and suggest that one function of germ granule compartmentalization is to facilitate the localized production of specialized classes of small regulatory RNAs.
Collapse
Affiliation(s)
- Xiangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ke Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Farees Ud Din Mufti
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Demin Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xinya Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Chenming Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Qile Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiaona Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yong-Hong Yan
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xuezhu Feng
- School of Basic Medicine, Anhui Medical University, Hefei, China.
| | - Yunyu Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Scott Kennedy
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA, 02115, USA.
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Hefei, Anhui, 230027, China.
| |
Collapse
|
6
|
Kotagama K, Grimme AL, Braviner L, Yang B, Sakhawala R, Yu G, Benner LK, Joshua-Tor L, McJunkin K. Catalytic residues of microRNA Argonautes play a modest role in microRNA star strand destabilization in C. elegans. Nucleic Acids Res 2024; 52:4985-5001. [PMID: 38471816 PMCID: PMC11109956 DOI: 10.1093/nar/gkae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Many microRNA (miRNA)-guided Argonaute proteins can cleave RNA ('slicing'), even though miRNA-mediated target repression is generally cleavage-independent. Here we use Caenorhabditis elegans to examine the role of catalytic residues of miRNA Argonautes in organismal development. In contrast to previous work, mutations in presumed catalytic residues did not interfere with development when introduced by CRISPR. We find that unwinding and decay of miRNA star strands is weakly defective in the catalytic residue mutants, with the largest effect observed in embryos. Argonaute-Like Gene 2 (ALG-2) is more dependent on catalytic residues for unwinding than ALG-1. The miRNAs that displayed the greatest (albeit minor) dependence on catalytic residues for unwinding tend to form stable duplexes with their star strand, and in some cases, lowering duplex stability alleviates dependence on catalytic residues. While a few miRNA guide strands are reduced in the mutant background, the basis of this is unclear since changes were not dependent on EBAX-1, an effector of Target-Directed miRNA Degradation (TDMD). Overall, this work defines a role for the catalytic residues of miRNA Argonautes in star strand decay; future work should examine whether this role contributes to the selection pressure to conserve catalytic activity of miRNA Argonautes across the metazoan phylogeny.
Collapse
Affiliation(s)
- Kasuen Kotagama
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Acadia L Grimme
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
- Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Leah Braviner
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Bing Yang
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Rima M Sakhawala
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
- Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Guoyun Yu
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Lars Kristian Benner
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Leemor Joshua-Tor
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Montgomery BE, Knittel TL, Reed KJ, Chong MC, Isolehto IJ, Cafferty ER, Smith MJ, Sprister RA, Magelky CN, Scherman H, Ketting RF, Montgomery TA. Regulation of Microprocessor assembly and localization via Pasha's WW domain in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590772. [PMID: 38712061 PMCID: PMC11071396 DOI: 10.1101/2024.04.23.590772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Primary microRNA (pri-miRNA) transcripts are processed by the Microprocessor, a protein complex that includes the ribonuclease Drosha and its RNA binding partner DGCR8/Pasha. We developed a live, whole animal, fluorescence-based sensor that reliably monitors pri-miRNA processing with high sensitivity in C. elegans. Through a forward genetic selection for alleles that desilence the sensor, we identified a mutation in the conserved G residue adjacent to the namesake W residue of Pasha's WW domain. Using genome editing we also mutated the W residue and reveal that both the G and W residue are required for dimerization of Pasha and proper assembly of the Microprocessor. Surprisingly, we find that the WW domain also facilitates nuclear localization of Pasha, which in turn promotes nuclear import or retention of Drosha. Furthermore, depletion of Pasha or Drosha causes both components of the Microprocessor to mislocalize to the cytoplasm. Thus, Pasha and Drosha mutually regulate each other's spatial expression in C. elegans.
Collapse
Affiliation(s)
| | - Thiago L. Knittel
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Kailee J. Reed
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Madeleine C. Chong
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Ida J. Isolehto
- Biology of Non-coding RNA group, Institute of Molecular Biology, Mainz, Germany
- International PhD Program on Gene Regulation, Epigenetics and Genome Stability, Mainz, Germany
| | - Erin R. Cafferty
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Margaret J. Smith
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Reese A. Sprister
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Colin N. Magelky
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Hataichanok Scherman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Rene F. Ketting
- Biology of Non-coding RNA group, Institute of Molecular Biology, Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz, Germany
| | - Taiowa A. Montgomery
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
8
|
Pastore B, Hertz HL, Tang W. Pre-piRNA trimming safeguards piRNAs against erroneous targeting by RNA-dependent RNA polymerase. Cell Rep 2024; 43:113692. [PMID: 38244197 PMCID: PMC10949418 DOI: 10.1016/j.celrep.2024.113692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
The Piwi/Piwi-interacting RNA (piRNA) pathway protects genome integrity in animal germ lines. Maturation of piRNAs involves nucleolytic processing at both 5' and 3' ends. The ribonuclease PARN-1 and its orthologs mediate piRNA 3' trimming in worms, insects, and mammals. However, the significance of this evolutionarily conserved processing step is not fully understood. Employing C. elegans as a model, we recently discovered that 3' trimming protects piRNAs against non-templated nucleotide additions and degradation. Here, we find that worms lacking PARN-1 accumulate an uncharacterized RNA species termed anti-piRNAs, which are antisense to piRNAs. Anti-piRNAs associate with Piwi proteins, are 17-19 nucleotides long, and begin with 5' guanine or adenine. Untrimmed pre-piRNAs are misdirected by the terminal nucleotidyltransferase RDE-3 and RNA-dependent RNA polymerase EGO-1, leading to the formation of anti-piRNAs. This work identifies a class of small RNAs in parn-1 mutants and provides insight into the activities of RDE-3, EGO-1, and Piwi proteins.
Collapse
Affiliation(s)
- Benjamin Pastore
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Hannah L Hertz
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Wen Tang
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
9
|
Chen S, Phillips CM. HRDE-2 drives small RNA specificity for the nuclear Argonaute protein HRDE-1. Nat Commun 2024; 15:957. [PMID: 38302462 PMCID: PMC10834429 DOI: 10.1038/s41467-024-45245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
RNA interference (RNAi) is a conserved gene silencing process that exists in diverse organisms to protect genome integrity and regulate gene expression. In C. elegans, the majority of RNAi pathway proteins localize to perinuclear, phase-separated germ granules, which are comprised of sub-domains referred to as P granules, Mutator foci, Z granules, and SIMR foci. However, the protein components and function of the newly discovered SIMR foci are unknown. Here we demonstrate that HRDE-2 localizes to SIMR foci and interacts with the germline nuclear Argonaute HRDE-1 in its small RNA unbound state. In the absence of HRDE-2, HRDE-1 exclusively loads CSR-class 22G-RNAs rather than WAGO-class 22G-RNAs, resulting in inappropriate H3K9me3 deposition on CSR-target genes. Thus, our study demonstrates that the recruitment of unloaded HRDE-1 to germ granules, mediated by HRDE-2, is critical to ensure that the correct small RNAs are used to guide nuclear RNA silencing in the C. elegans germline.
Collapse
Affiliation(s)
- Shihui Chen
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Carolyn M Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
10
|
Fallet M, Wilson R, Sarkies P. Cisplatin exposure alters tRNA-derived small RNAs but does not affect epimutations in C. elegans. BMC Biol 2023; 21:276. [PMID: 38031056 PMCID: PMC10688063 DOI: 10.1186/s12915-023-01767-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The individual lifestyle and environment of an organism can influence its phenotype and potentially the phenotype of its offspring. The different genetic and non-genetic components of the inheritance system and their mutual interactions are key mechanisms to generate inherited phenotypic changes. Epigenetic changes can be transmitted between generations independently from changes in DNA sequence. In Caenorhabditis elegans, epigenetic differences, i.e. epimutations, mediated by small non-coding RNAs, particularly 22G-RNAs, as well as chromatin have been identified, and their average persistence is three to five generations. In addition, previous research showed that some epimutations had a longer duration and concerned genes that were enriched for multiple components of xenobiotic response pathways. These results raise the possibility that environmental stresses might change the rate at which epimutations occur, with potential significance for adaptation. RESULTS In this work, we explore this question by propagating C. elegans lines either in control conditions or in moderate or high doses of cisplatin, which introduces genotoxic stress by damaging DNA. Our results show that cisplatin has a limited effect on global small non-coding RNA epimutations and epimutations in gene expression levels. However, cisplatin exposure leads to increased fluctuations in the levels of small non-coding RNAs derived from tRNA cleavage. We show that changes in tRNA-derived small RNAs may be associated with gene expression changes. CONCLUSIONS Our work shows that epimutations are not substantially altered by cisplatin exposure but identifies transient changes in tRNA-derived small RNAs as a potential source of variation induced by genotoxic stress.
Collapse
Affiliation(s)
- Manon Fallet
- Department of Biochemistry, Evolutionary Epigenetics Group, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd., Oxford, OX1 3QU, UK.
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182, Örebro, Sweden.
| | - Rachel Wilson
- Department of Biochemistry, Evolutionary Epigenetics Group, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd., Oxford, OX1 3QU, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Peter Sarkies
- Department of Biochemistry, Evolutionary Epigenetics Group, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd., Oxford, OX1 3QU, UK.
| |
Collapse
|
11
|
Podvalnaya N, Bronkhorst AW, Lichtenberger R, Hellmann S, Nischwitz E, Falk T, Karaulanov E, Butter F, Falk S, Ketting RF. piRNA processing by a trimeric Schlafen-domain nuclease. Nature 2023; 622:402-409. [PMID: 37758951 PMCID: PMC10567574 DOI: 10.1038/s41586-023-06588-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Transposable elements are genomic parasites that expand within and spread between genomes1. PIWI proteins control transposon activity, notably in the germline2,3. These proteins recognize their targets through small RNA co-factors named PIWI-interacting RNAs (piRNAs), making piRNA biogenesis a key specificity-determining step in this crucial genome immunity system. Although the processing of piRNA precursors is an essential step in this process, many of the molecular details remain unclear. Here, we identify an endoribonuclease, precursor of 21U RNA 5'-end cleavage holoenzyme (PUCH), that initiates piRNA processing in the nematode Caenorhabditis elegans. Genetic and biochemical studies show that PUCH, a trimer of Schlafen-like-domain proteins (SLFL proteins), executes 5'-end piRNA precursor cleavage. PUCH-mediated processing strictly requires a 7-methyl-G cap (m7G-cap) and a uracil at position three. We also demonstrate how PUCH interacts with PETISCO, a complex that binds to piRNA precursors4, and that this interaction enhances piRNA production in vivo. The identification of PUCH concludes the search for the 5'-end piRNA biogenesis factor in C. elegans and uncovers a type of RNA endonuclease formed by three SLFL proteins. Mammalian Schlafen (SLFN) genes have been associated with immunity5, exposing a molecular link between immune responses in mammals and deeply conserved RNA-based mechanisms that control transposable elements.
Collapse
Affiliation(s)
- Nadezda Podvalnaya
- Biology of Non-coding RNA group, Institute of Molecular Biology, Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
| | - Alfred W Bronkhorst
- Biology of Non-coding RNA group, Institute of Molecular Biology, Mainz, Germany
| | - Raffael Lichtenberger
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Svenja Hellmann
- Biology of Non-coding RNA group, Institute of Molecular Biology, Mainz, Germany
| | - Emily Nischwitz
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
- Quantitative Proteomics group, Institute of Molecular Biology, Mainz, Germany
| | - Torben Falk
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Emil Karaulanov
- Bioinformatics Core Facility, Institute of Molecular Biology, Mainz, Germany
| | - Falk Butter
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
- Institute of Molecular Virology and Cell Biology, Friedrich Loeffler Institute, Greifswald, Germany
| | - Sebastian Falk
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria.
| | - René F Ketting
- Biology of Non-coding RNA group, Institute of Molecular Biology, Mainz, Germany.
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
12
|
Pastore B, Hertz HL, Tang W. Pre-piRNA trimming safeguards piRNAs against erroneous targeting by RNA-dependent RNA Polymerase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559619. [PMID: 37808652 PMCID: PMC10557677 DOI: 10.1101/2023.09.26.559619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
In animal germ lines, The Piwi/piRNA pathway plays a crucial role in safeguarding genome integrity and promoting fertility. Following transcription from discrete genomic loci, piRNA precursors undergo nucleolytic processing at both 5' and 3' ends. The ribonuclease PARN-1 and its orthologs mediate piRNA 3' trimming in worms, insects and mammals. Yet, the significance of this evolutionarily conserved processing step is not well understood. Employing C. elegans as a model organism, our recent work has demonstrated that 3' trimming protects piRNAs against non-templated nucleotide additions and degradation. In this study, we present an unexpected finding that C. elegans deficient for PARN-1 accumulate a heretofore uncharacterized RNA species termed anti-piRNAs, which are antisense to piRNAs. These anti-piRNAs associate with Piwi proteins and display the propensity for a length of 17-19 nucleotides and 5' guanine and adenine residues. We show that untrimmed pre-piRNAs in parn-1 mutants are modified by the terminal nucleotidyltransferase RDE-3 and erroneously targeted by the RNA-dependent RNA polymerase EGO-1, thereby giving rise to anti-piRNAs. Taken together, our work identifies a previously unknown class of small RNAs upon loss of parn-1 and provides mechanistic insight to activities of RDE-3, EGO-1 and Piwi proteins.
Collapse
|
13
|
Price IF, Wagner JA, Pastore B, Hertz HL, Tang W. C. elegans germ granules sculpt both germline and somatic RNAome. Nat Commun 2023; 14:5965. [PMID: 37749091 PMCID: PMC10520050 DOI: 10.1038/s41467-023-41556-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023] Open
Abstract
Germ granules are membrane-less organelles essential for small RNA biogenesis and germline development. Among the conserved properties of germ granules is their association with the nuclear membrane. Recent studies demonstrated that LOTUS domain proteins, EGGD-1 and EGGD-2 (also known as MIP-1 and MIP-2 respectively), promote the formation of perinuclear germ granules in C. elegans. This finding presents a unique opportunity to evaluate the significance of perinuclear localization of germ granules. Here we show that loss of eggd-1 causes the coalescence of germ granules and formation of abnormal cytoplasmic aggregates. Impairment of perinuclear granules affects certain germline classes of small RNAs including Piwi-interacting RNAs. Transcriptome profiling reveals overexpression of spermatogenic and cuticle-related genes in eggd-1 hermaphrodites. We further demonstrate that disruption of germ granules activates HLH-30-mediated transcriptional program in somatic tissues. Collectively, our findings underscore the essential role of EGGD-1 in germ granule organization and reveal an unexpected germ granule-to-soma communication.
Collapse
Affiliation(s)
- Ian F Price
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Jillian A Wagner
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Benjamin Pastore
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Hannah L Hertz
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Wen Tang
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
14
|
Tabara H, Mitani S, Mochizuki M, Kohara Y, Nagata K. A small RNA system ensures accurate homologous pairing and unpaired silencing of meiotic chromosomes. EMBO J 2023; 42:e105002. [PMID: 37078421 PMCID: PMC10233376 DOI: 10.15252/embj.2020105002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
During meiosis, chromosomes with homologous partners undergo synaptonemal complex (SC)-mediated pairing, while the remaining unpaired chromosomes are heterochromatinized through unpaired silencing. Mechanisms underlying homolog recognition during SC formation are still unclear. Here, we show that the Caenorhabditis elegans Argonaute proteins, CSR-1 and its paralog CSR-2, interacting with 22G-RNAs, are required for synaptonemal complex formation with accurate homology. CSR-1 in nuclei and meiotic cohesin, constituting the SC lateral elements, were associated with nonsimple DNA repeats, including minisatellites and transposons, and weakly associated with coding genes. CSR-1-associated CeRep55 minisatellites were expressing 22G-RNAs and long noncoding (lnc) RNAs that colocalized with synaptonemal complexes on paired chromosomes and with cohesin regions of unpaired chromosomes. CeRep55 multilocus deletions reduced the efficiencies of homologous pairing and unpaired silencing, which were supported by the csr-1 activity. Moreover, CSR-1 and CSR-2 were required for proper heterochromatinization of unpaired chromosomes. These findings suggest that CSR-1 and CSR-2 play crucial roles in homology recognition, achieving accurate SC formation between chromosome pairs and condensing unpaired chromosomes by targeting repeat-derived lncRNAs.
Collapse
Affiliation(s)
- Hiroaki Tabara
- Advanced Genomics CenterNational Institute of GeneticsShizuokaJapan
- Tokyo Women's Medical UniversityTokyoJapan
- Faculty of MedicineUniversity of TsukubaIbarakiJapan
| | | | | | - Yuji Kohara
- Advanced Genomics CenterNational Institute of GeneticsShizuokaJapan
| | | |
Collapse
|
15
|
Renaud MS, Seroussi U, Claycomb JM. Analysis of C. elegans Germline Small RNA Pathways. Methods Mol Biol 2023; 2677:37-59. [PMID: 37464234 DOI: 10.1007/978-1-0716-3259-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Sequence-specific gene regulation by small RNA (sRNA) pathways is essential for the development and function of organisms in all domains of life. These regulatory complexes, containing an Argonaute protein (AGO) guided by a bound sRNA, have the potential to regulate thousands of individual target transcripts at both the co- and post-transcriptional level. Determining the repertoire of transcripts that an AGO is capable of regulating in a particular context is essential to understanding the function of these regulatory modules. Immunoprecipitation (IP) of AGOs and subsequent RNA sequencing of their bound sRNAs allows for the inference of their target transcripts by mapping the sequences of the co-precipitated sRNAs back to their complementary target transcripts. This approach can be complemented by sequencing sRNAs from ago mutants as sRNA transcripts are degraded in the absence of their AGO binding partner. Here, we describe a framework for analyzing AGO/sRNA pathways in the germline, from using CRISPR-Cas9 to tag or mutate AGOs, through protocols for the extraction, sequencing, and analysis of sRNAs from AGO IPs and ago mutants.
Collapse
Affiliation(s)
- Mathias S Renaud
- Department of Molecular Genetics, University of Toronto, Toronto, ON, USA
| | - Uri Seroussi
- Department of Molecular Genetics, University of Toronto, Toronto, ON, USA
| | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, ON, USA.
| |
Collapse
|
16
|
Phillips CM, Updike DL. Germ granules and gene regulation in the Caenorhabditis elegans germline. Genetics 2022; 220:6541922. [PMID: 35239965 PMCID: PMC8893257 DOI: 10.1093/genetics/iyab195] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/10/2021] [Indexed: 01/27/2023] Open
Abstract
The transparency of Caenorhabditis elegans provides a unique window to observe and study the function of germ granules. Germ granules are specialized ribonucleoprotein (RNP) assemblies specific to the germline cytoplasm, and they are largely conserved across Metazoa. Within the germline cytoplasm, they are positioned to regulate mRNA abundance, translation, small RNA production, and cytoplasmic inheritance to help specify and maintain germline identity across generations. Here we provide an overview of germ granules and focus on the significance of more recent observations that describe how they further demix into sub-granules, each with unique compositions and functions.
Collapse
Affiliation(s)
- Carolyn M Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA,Corresponding author: (C.M.P.); (D.L.U.)
| | - Dustin L Updike
- The Mount Desert Island Biological Laboratory, Bar Harbor, ME 04672, USA,Corresponding author: (C.M.P.); (D.L.U.)
| |
Collapse
|
17
|
Pastore B, Hertz HL, Tang W. Comparative analysis of piRNA sequences, targets and functions in nematodes. RNA Biol 2022; 19:1276-1292. [PMID: 36412988 PMCID: PMC9683057 DOI: 10.1080/15476286.2022.2149170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Piwi proteins and Piwi-interacting RNAs (piRNAs) are best known for their roles in suppressing transposons and promoting fertility. Yet piRNA biogenesis and its mechanisms of action differ widely between distantly related species. To better understand the evolution of piRNAs, we characterized the piRNA pathway in C. briggsae, a sibling species of the model organism C. elegans. Our analyses define 25,883 piRNA producing-loci in C. briggsae. piRNA sequences in C. briggsae are extremely divergent from their counterparts in C. elegans, yet both species adopt similar genomic organization that drive piRNA expression. By examining production of Piwi-mediated secondary small RNAs, we identified a set of protein-coding genes that are evolutionarily conserved piRNA targets. In contrast to C. elegans, small RNAs targeting ribosomal RNAs or histone transcripts are not hyper-accumulated in C. briggsae Piwi mutants. Instead, we found that transcripts with few introns are prone to small RNA overamplification. Together our work highlights evolutionary conservation and divergence of the nematode piRNA pathway and provides insights into its role in endogenous gene regulation.
Collapse
Affiliation(s)
- Benjamin Pastore
- Department of Biological Chemistry and Pharmacology, The Ohio State University,Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA,Center for RNA Biology, Ohio State University, Columbus, OH, USA
| | - Hannah L. Hertz
- Department of Biological Chemistry and Pharmacology, The Ohio State University,Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Wen Tang
- Department of Biological Chemistry and Pharmacology, The Ohio State University,Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA,CONTACT Wen Tang Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
18
|
Montgomery BE, Vijayasarathy T, Marks TN, Cialek CA, Reed KJ, Montgomery TA. Dual roles for piRNAs in promoting and preventing gene silencing in C. elegans. Cell Rep 2021; 37:110101. [PMID: 34879267 PMCID: PMC8730336 DOI: 10.1016/j.celrep.2021.110101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/25/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) regulate many biological processes through mechanisms that are not fully understood. In Caenorhabditis elegans, piRNAs intersect the endogenous RNA interference (RNAi) pathway, involving a distinct class of small RNAs called 22G-RNAs, to regulate gene expression in the germline. In the absence of piRNAs, 22G-RNA production from many genes is reduced, pointing to a role for piRNAs in facilitating endogenous RNAi. Here, however, we show that many genes gain, rather than lose, 22G-RNAs in the absence of piRNAs, which is in some instances coincident with RNA silencing. Aberrant 22G-RNA production is somewhat stochastic but once established can occur within a population for at least 50 generations. Thus, piRNAs both promote and suppress 22G-RNA production and gene silencing. rRNAs and histones are hypersusceptible to aberrant silencing, but we do not find evidence that their misexpression is the primary cause of the transgenerational sterility observed in piRNA-defective mutants. Montgomery et al. show that piRNAs both promote and suppress siRNA production and RNA silencing in C. elegans. Gain or loss of siRNAs occurs somewhat stochastically in piRNA-defective mutants but once established, it occurs across numerous generations.
Collapse
Affiliation(s)
- Brooke E Montgomery
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Tarah Vijayasarathy
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Taylor N Marks
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Charlotte A Cialek
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA; Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Kailee J Reed
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA; Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Taiowa A Montgomery
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA; Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
19
|
Gainetdinov I, Colpan C, Cecchini K, Arif A, Jouravleva K, Albosta P, Vega-Badillo J, Lee Y, Özata DM, Zamore PD. Terminal modification, sequence, length, and PIWI-protein identity determine piRNA stability. Mol Cell 2021; 81:4826-4842.e8. [PMID: 34626567 DOI: 10.1016/j.molcel.2021.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022]
Abstract
In animals, PIWI-interacting RNAs (piRNAs) silence transposons, fight viral infections, and regulate gene expression. piRNA biogenesis concludes with 3' terminal trimming and 2'-O-methylation. Both trimming and methylation influence piRNA stability. Our biochemical data show that multiple mechanisms destabilize unmethylated mouse piRNAs, depending on whether the piRNA 5' or 3' sequence is complementary to a trigger RNA. Unlike target-directed degradation of microRNAs, complementarity-dependent destabilization of piRNAs in mice and flies is blocked by 3' terminal 2'-O-methylation and does not require base pairing to both the piRNA seed and the 3' sequence. In flies, 2'-O-methylation also protects small interfering RNAs (siRNAs) from complementarity-dependent destruction. By contrast, pre-piRNA trimming protects mouse piRNAs from a degradation pathway unaffected by trigger complementarity. In testis lysate and in vivo, internal or 3' terminal uridine- or guanine-rich tracts accelerate pre-piRNA decay. Loss of both trimming and 2'-O-methylation causes the mouse piRNA pathway to collapse, demonstrating that these modifications collaborate to stabilize piRNAs.
Collapse
Affiliation(s)
- Ildar Gainetdinov
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| | - Cansu Colpan
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Katharine Cecchini
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Amena Arif
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Karina Jouravleva
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Paul Albosta
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Joel Vega-Badillo
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Yongjin Lee
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Deniz M Özata
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
20
|
Wang X, Zeng C, Liao S, Zhu Z, Zhang J, Tu X, Yao X, Feng X, Guang S, Xu C. Molecular basis for PICS-mediated piRNA biogenesis and cell division. Nat Commun 2021; 12:5595. [PMID: 34552083 PMCID: PMC8458385 DOI: 10.1038/s41467-021-25896-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/02/2021] [Indexed: 11/12/2022] Open
Abstract
By incorporating two mutually exclusive factors, PID-1 and TOST-1, C. elegans PICS complex plays important roles in piRNA biogenesis, chromosome segregation and cell division. We firstly map the interaction network between PICS subunits, then uncover the mechanisms underlying the interactions between PICS subunits by solving several complex structures, including those of TOFU-6/PICS-1, ERH-2/PICS-1, and ERH-2/TOST-1. Our biochemical experiment also demonstrates that PICS exists as an octamer consisting of two copies of each subunit. Combining structural analyses with mutagenesis experiments, we identify interfacial residues of PICS subunits that are critical for maintaining intact PICS complex in vitro. Furthermore, using genetics, cell biology and imaging experiments, we find that those mutants impairing the in vitro interaction network within PICS, also lead to dysfunction of PICS in vivo, including mislocalization of PICS, and reduced levels of piRNAs or aberrant chromosome segregation and cell division. Therefore, our work provides structural insights into understanding the PICS-mediated piRNA biogenesis and cell division.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Chenming Zeng
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Shanhui Liao
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Zhongliang Zhu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Jiahai Zhang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Xiaoming Tu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Xuebiao Yao
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Xuezhu Feng
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.
| | - Shouhong Guang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.
| | - Chao Xu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.
| |
Collapse
|
21
|
Zhou Y, Fang Y, Dai C, Wang Y. PiRNA pathway in the cardiovascular system: a novel regulator of cardiac differentiation, repair and regeneration. J Mol Med (Berl) 2021; 99:1681-1690. [PMID: 34533602 DOI: 10.1007/s00109-021-02132-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 07/18/2021] [Accepted: 08/20/2021] [Indexed: 11/25/2022]
Abstract
Piwi-interacting RNAs (piRNAs) are a novel group of small non-coding RNA molecules with lengths of 21-35 nucleotides, first identified from the germline. PiRNAs and their associated PIWI clade Argonaute proteins constitute a key part of the piRNA pathway, with the best-known biological function to silence transposable elements in germ cells. The piRNA pathway, in fact, is not exclusive to the germline. Somatic functions of piRNAs have been recorded since their first discovery. To date, involvement of the piRNA pathway has been identified within the biological functions of genome rearrangement, epigenetic regulation, protein regulation in the germline and/or the soma transcriptionally or post-transcriptionally. Emerging evidence has shown that the piRNA pathway is essential for the normal function of the cardiovascular system and that its abnormal expression is correlated with cardiovascular dysfunction, although comprehensive roles of the piRNA pathway in the cardiovascular system and underlying mechanisms remain unclear. In this review, we discuss current findings of piRNA pathway expression in cardiac cell types and their potential functions in cardiac differentiation, repair and regeneration, thus providing new insights into cardiovascular disease development associated with the piRNA pathway.
Collapse
Affiliation(s)
- Yuling Zhou
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital Xiamen University, Xiamen, China
- The School of Economics, Xiamen University, Xiamen, China
| | - Ya Fang
- School of Public Health, Key Laboratory of Health Technology Assessment of Fujian Province University, Xiamen University, Xiang'an South Road, Xiang'an District, Xiamen, 361102, Fujian, China
| | - Cuilian Dai
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital Xiamen University, Xiamen, China
| | - Yan Wang
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital Xiamen University, Xiamen, China.
| |
Collapse
|
22
|
Lite C, Sridhar VV, Sriram S, Juliet M, Arshad A, Arockiaraj J. Functional role of piRNAs in animal models and its prospects in aquaculture. REVIEWS IN AQUACULTURE 2021; 13:2038-2052. [DOI: 10.1111/raq.12557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/01/2021] [Indexed: 10/16/2023]
Abstract
AbstractThe recent advances in the field of aquaculture over the last decade has helped the cultured‐fish industry production sector to identify problems and choose the best approaches to achieve high‐volume production. Understanding the emerging roles of non‐coding RNA (ncRNA) in the regulation of fish physiology and health will assist in gaining knowledge on the possible applications of ncRNAs for the advancement of aquaculture. There is information available on the practical considerations of epigenetic mechanisms like DNA methylation, histone modification and ncRNAs, such as microRNA in aquaculture, for both fish and shellfish. Among the non‐coding RNAs, PIWI‐interacting RNA (piRNA) is 24–31 bp long transcripts, which is primarily involved in silencing the germline transposons. Besides, the burgeoning reports and studies establish piRNAs' role in various aspects of biology. Till date, there are no reviews that summarize the recent findings available on piRNAs in animal models, especially on piRNAs biogenesis and biological action. To gain a better understanding and get an overview on the process of piRNA genesis among the different animals, this work reviews the literature available on the processes of piRNA biogenesis in animal models with special reference to aquatic animal model zebrafish. This review also presents a short discussion and prospects of piRNA’s application in relevance to the aquaculture industry.
Collapse
Affiliation(s)
- Christy Lite
- Endocrine and Exposome (E2) Laboratory Department of Zoology Madras Christian College Chennai India
| | - Vasisht Varsh Sridhar
- Department of Biotechnology School of Bioengineering SRM Institute of Science and Technology Chennai India
| | - Swati Sriram
- Department of Biotechnology School of Bioengineering SRM Institute of Science and Technology Chennai India
| | - Melita Juliet
- Department of Oral and Maxillofacial Surgery SRM Dental College and Hospital, SRM Institute of Science and Technology Chennai India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS) Universiti Putra Malaysia Port Dickson Malaysia
- Department of Aquaculture Faculty of Agriculture Universiti Putra Malaysia Serdang Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute SRM Institute of Science and Technology Chennai India
- Department of Biotechnology, Faculty of Science and Humanities SRM Institute of Science and Technology Chennai India
| |
Collapse
|
23
|
Pastore B, Hertz HL, Price IF, Tang W. pre-piRNA trimming and 2'-O-methylation protect piRNAs from 3' tailing and degradation in C. elegans. Cell Rep 2021; 36:109640. [PMID: 34469728 PMCID: PMC8459939 DOI: 10.1016/j.celrep.2021.109640] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/24/2021] [Accepted: 08/10/2021] [Indexed: 11/30/2022] Open
Abstract
The Piwi-interacting RNA (piRNA) pathway suppresses transposable elements and promotes fertility in diverse organisms. Maturation of piRNAs involves pre-piRNA trimming followed by 2'-O-methylation at their 3' termini. Here, we report that the 3' termini of Caenorhabditis elegans piRNAs are subject to nontemplated nucleotide addition, and piRNAs with 3' addition exhibit extensive base-pairing interaction with their target RNAs. Animals deficient for PARN-1 (pre-piRNA trimmer) and HENN-1 (2'-O-methyltransferase) accumulate piRNAs with 3' nontemplated nucleotides. In henn-1 mutants, piRNAs are shortened prior to 3' addition, whereas long isoforms of untrimmed piRNAs are preferentially modified in parn-1 mutant animals. Loss of either PARN-1 or HENN-1 results in modest reduction in steady-state levels of piRNAs. Deletion of both enzymes leads to depletion of piRNAs, desilenced piRNA targets, and impaired fecundity. Together, our findings suggest that pre-piRNA trimming and 2'-O-methylation act collaboratively to protect piRNAs from tailing and degradation.
Collapse
Affiliation(s)
- Benjamin Pastore
- Department of Biological Chemistry and Pharmacology, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; Ohio State Biochemistry Program, Columbus, OH 43210, USA
| | - Hannah L Hertz
- Department of Biological Chemistry and Pharmacology, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ian F Price
- Department of Biological Chemistry and Pharmacology, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; Ohio State Biochemistry Program, Columbus, OH 43210, USA
| | - Wen Tang
- Department of Biological Chemistry and Pharmacology, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
24
|
Huang X, Cheng P, Weng C, Xu Z, Zeng C, Xu Z, Chen X, Zhu C, Guang S, Feng X. A chromodomain protein mediates heterochromatin-directed piRNA expression. Proc Natl Acad Sci U S A 2021; 118:e2103723118. [PMID: 34187893 PMCID: PMC8271797 DOI: 10.1073/pnas.2103723118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) play significant roles in suppressing transposons, maintaining genome integrity, and defending against viral infections. How piRNA source loci are efficiently transcribed is poorly understood. Here, we show that in Caenorhabditis elegans, transcription of piRNA clusters depends on the chromatin microenvironment and a chromodomain-containing protein, UAD-2. piRNA clusters form distinct focus in germline nuclei. We conducted a forward genetic screening and identified UAD-2 that is required for piRNA focus formation. In the absence of histone 3 lysine 27 methylation or proper chromatin-remodeling status, UAD-2 is depleted from the piRNA focus. UAD-2 recruits the upstream sequence transcription complex (USTC), which binds the Ruby motif to piRNA promoters and promotes piRNA generation. Vice versa, the USTC complex is required for UAD-2 to associate with the piRNA focus. Thus, transcription of heterochromatic small RNA source loci relies on coordinated recruitment of both the readers of histone marks and the core transcriptional machinery to DNA.
Collapse
Affiliation(s)
- Xinya Huang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Peng Cheng
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Chenchun Weng
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Zongxiu Xu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Chenming Zeng
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Zheng Xu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Xiangyang Chen
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China;
| | - Chengming Zhu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China;
| | - Shouhong Guang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China;
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Hefei 230027, People's Republic of China
| | - Xuezhu Feng
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China;
| |
Collapse
|
25
|
Kingston ER, Bartel DP. Ago2 protects Drosophila siRNAs and microRNAs from target-directed degradation, even in the absence of 2'- O-methylation. RNA (NEW YORK, N.Y.) 2021; 27:710-724. [PMID: 33853897 PMCID: PMC8127995 DOI: 10.1261/rna.078746.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/07/2021] [Indexed: 05/07/2023]
Abstract
Target-directed microRNA (miRNA) degradation (TDMD), which is mediated by the protein ZSWIM8, plays a widespread role in shaping miRNA abundances across bilateria. Some endogenous small interfering RNAs (siRNAs) of Drosophila cells have target sites resembling those that trigger TDMD, raising the question as to whether they too might undergo such regulation by Dora, the Drosophila ZSWIM8 homolog. Here, we find that some of these siRNAs are indeed sensitive to Dora when loaded into Ago1, the Argonaute paralog that preferentially associates with miRNAs. Despite this sensitivity when loaded into Ago1, these siRNAs are not detectably regulated by target-directed degradation because most molecules are loaded into Ago2, the Argonaute paralog that preferentially associates with siRNAs, and we find that siRNAs and miRNAs loaded into Ago2 are insensitive to Dora. One explanation for the protection of these small RNAs loaded into Ago2 is that these small RNAs are 2'-O-methylated at their 3' termini. However, 2'-O-methylation does not protect these RNAs from Dora-mediated target-directed degradation, which indicates that their protection is instead conferred by features of the Ago2 protein itself. Together, these observations clarify the requirements for regulation by target-directed degradation and expand our understanding of the role of 2'-O-methylation in small-RNA biology.
Collapse
Affiliation(s)
- Elena R Kingston
- Howard Hughes Medical Institute and Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - David P Bartel
- Howard Hughes Medical Institute and Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
26
|
Fontenla S, Rinaldi G, Tort JF. Lost and Found: Piwi and Argonaute Pathways in Flatworms. Front Cell Infect Microbiol 2021; 11:653695. [PMID: 34123869 PMCID: PMC8191739 DOI: 10.3389/fcimb.2021.653695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Platyhelminthes comprise one of the major phyla of invertebrate animals, inhabiting a wide range of ecosystems, and one of the most successful in adapting to parasitic life. Small non-coding RNAs have been implicated in regulating complex developmental transitions in model parasitic species. Notably, parasitic flatworms have lost Piwi RNA pathways but gained a novel Argonaute gene. Herein, we analyzed, contrasted and compared the conservation of small RNA pathways among several free-living species (a paraphyletic group traditionally known as ‘turbellarians’) and parasitic species (organized in the monophyletic clade Neodermata) to disentangle possible adaptations during the transition to parasitism. Our findings showed that complete miRNA and RNAi pathways are present in all analyzed free-living flatworms. Remarkably, whilst all ‘turbellarians’ have Piwi proteins, these were lost in parasitic Neodermantans. Moreover, two clusters of Piwi class Argonaute genes are present in all ‘turbellarians’. Interestingly, we identified a divergent Piwi class Argonaute in free living flatworms exclusively, which we named ‘Fliwi’. In addition, other key proteins of the Piwi pathways were conserved in ‘turbellarians’, while none of them were detected in Neodermatans. Besides Piwi and the canonical Argonaute proteins, a flatworm-specific class of Argonautes (FL-Ago) was identified in the analyzed species confirming its ancestrallity to all Platyhelminthes. Remarkably, this clade was expanded in parasitic Neodermatans, but not in free-living species. These phyla-specific Argonautes showed lower sequence conservation compared to other Argonaute proteins, suggesting that they might have been subjected to high evolutionary rates. However, key residues involved in the interaction with the small RNA and mRNA cleavage in the canonical Argonautes were more conserved in the FL-Agos than in the Piwi Argonautes. Whether this is related to specialized functions and adaptations to parasitism in Neodermatans remains unclear. In conclusion, differences detected in gene conservation, sequence and structure of the Argonaute family suggest tentative biological and evolutionary diversifications that are unique to Platyhelminthes. The remarkable divergencies in the small RNA pathways between free-living and parasitic flatworms indicate that they may have been involved in the adaptation to parasitism of Neodermatans.
Collapse
Affiliation(s)
- Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | | | - Jose F Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| |
Collapse
|
27
|
Huang X, Wong G. An old weapon with a new function: PIWI-interacting RNAs in neurodegenerative diseases. Transl Neurodegener 2021; 10:9. [PMID: 33685517 PMCID: PMC7938595 DOI: 10.1186/s40035-021-00233-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are small non-coding transcripts that are highly conserved across species and regulate gene expression through pre- and post-transcriptional processes. piRNAs were originally discovered in germline cells and protect against transposable element expression to promote and maintain genome stability. In the recent decade, emerging roles of piRNAs have been revealed, including the roles in sterility, tumorigenesis, metabolic homeostasis, neurodevelopment, and neurodegenerative diseases. In this review, we summarize piRNA biogenesis in C. elegans, Drosophila, and mice, and further elaborate upon how piRNAs mitigate the harmful effects of transposons. Lastly, the most recent findings on piRNA participation in neurological diseases are highlighted. We speculate on the mechanisms of piRNA action in the development and progression of neurodegenerative diseases. Understanding the roles of piRNAs in neurological diseases may facilitate their applications in diagnostic and therapeutic practice.
Collapse
Affiliation(s)
- Xiaobing Huang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, 999078, S.A.R., China
| | - Garry Wong
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, 999078, S.A.R., China.
| |
Collapse
|
28
|
Dwivedi SKD, Rao G, Dey A, Mukherjee P, Wren JD, Bhattacharya R. Small Non-Coding-RNA in Gynecological Malignancies. Cancers (Basel) 2021; 13:1085. [PMID: 33802524 PMCID: PMC7961667 DOI: 10.3390/cancers13051085] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Gynecologic malignancies, which include cancers of the cervix, ovary, uterus, vulva, vagina, and fallopian tube, are among the leading causes of female mortality worldwide, with the most prevalent being endometrial, ovarian, and cervical cancer. Gynecologic malignancies are complex, heterogeneous diseases, and despite extensive research efforts, the molecular mechanisms underlying their development and pathology remain largely unclear. Currently, mechanistic and therapeutic research in cancer is largely focused on protein targets that are encoded by about 1% of the human genome. Our current understanding of 99% of the genome, which includes noncoding RNA, is limited. The discovery of tens of thousands of noncoding RNAs (ncRNAs), possessing either structural or regulatory functions, has fundamentally altered our understanding of genetics, physiology, pathophysiology, and disease treatment as they relate to gynecologic malignancies. In recent years, it has become clear that ncRNAs are relatively stable, and can serve as biomarkers for cancer diagnosis and prognosis, as well as guide therapy choices. Here we discuss the role of small non-coding RNAs, i.e., microRNAs (miRs), P-Element induced wimpy testis interacting (PIWI) RNAs (piRNAs), and tRNA-derived small RNAs in gynecological malignancies, specifically focusing on ovarian, endometrial, and cervical cancer.
Collapse
Affiliation(s)
- Shailendra Kumar Dhar Dwivedi
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.K.D.D.); (A.D.)
| | - Geeta Rao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (G.R.); (P.M.)
| | - Anindya Dey
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.K.D.D.); (A.D.)
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (G.R.); (P.M.)
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jonathan D. Wren
- Biochemistry and Molecular Biology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.K.D.D.); (A.D.)
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
29
|
Berkyurek AC, Furlan G, Lampersberger L, Beltran T, Weick E, Nischwitz E, Cunha Navarro I, Braukmann F, Akay A, Price J, Butter F, Sarkies P, Miska EA. The RNA polymerase II subunit RPB-9 recruits the integrator complex to terminate Caenorhabditis elegans piRNA transcription. EMBO J 2021; 40:e105565. [PMID: 33533030 PMCID: PMC7917558 DOI: 10.15252/embj.2020105565] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 01/03/2023] Open
Abstract
PIWI-interacting RNAs (piRNAs) are genome-encoded small RNAs that regulate germ cell development and maintain germline integrity in many animals. Mature piRNAs engage Piwi Argonaute proteins to silence complementary transcripts, including transposable elements and endogenous genes. piRNA biogenesis mechanisms are diverse and remain poorly understood. Here, we identify the RNA polymerase II (RNA Pol II) core subunit RPB-9 as required for piRNA-mediated silencing in the nematode Caenorhabditis elegans. We show that rpb-9 initiates heritable piRNA-mediated gene silencing at two DNA transposon families and at a subset of somatic genes in the germline. We provide genetic and biochemical evidence that RPB-9 is required for piRNA biogenesis by recruiting the Integrator complex at piRNA genes, hence promoting transcriptional termination. We conclude that, as a part of its rapid evolution, the piRNA pathway has co-opted an ancient machinery for high-fidelity transcription.
Collapse
Affiliation(s)
- Ahmet C Berkyurek
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Giulia Furlan
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Lisa Lampersberger
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Toni Beltran
- MRC London Institute of Medical SciencesLondonUK
- Institute of Clinical SciencesImperial College LondonLondonUK
| | - Eva‐Maria Weick
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Present address:
Structural Biology ProgramSloan Kettering InstituteMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Emily Nischwitz
- Quantitative ProteomicsInstitute of Molecular BiologyMainzGermany
| | - Isabela Cunha Navarro
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Fabian Braukmann
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Alper Akay
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
- Present address:
School of Biological SciencesUniversity of East AngliaNorwich, NorfolkUK
| | - Jonathan Price
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Falk Butter
- Quantitative ProteomicsInstitute of Molecular BiologyMainzGermany
| | - Peter Sarkies
- MRC London Institute of Medical SciencesLondonUK
- Institute of Clinical SciencesImperial College LondonLondonUK
| | - Eric A Miska
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
- Wellcome Sanger InstituteWellcome Trust Genome CampusCambridgeUK
| |
Collapse
|
30
|
Okabe E, Uno M, Kishimoto S, Nishida E. Intertissue small RNA communication mediates the acquisition and inheritance of hormesis in Caenorhabditis elegans. Commun Biol 2021; 4:207. [PMID: 33594200 PMCID: PMC7886853 DOI: 10.1038/s42003-021-01692-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/12/2021] [Indexed: 12/16/2022] Open
Abstract
Environmental conditions can cause phenotypic changes, part of which can be inherited by subsequent generations via soma-to-germline communication. However, the signaling molecules or pathways that mediate intertissue communication remain unclear. Here, we show that intertissue small RNA communication systems play a key role in the acquisition and inheritance of hormesis effects – stress-induced stress resistance – in Caenorhabditis elegans. The miRNA-processing enzyme DRSH-1 is involved in both the acquisition and the inheritance of hormesis, whereas worm-specific Argonaute (WAGO) proteins, which function with endo-siRNAs, are involved only in its inheritance. Further analyses demonstrate that the miRNA production system in the neuron and the small RNA transport machinery in the intestine are both essential for its acquisition and that both the transport of small RNAs in the germline and the germline Argonaute HRDE-1 complex are required for its inheritance. Our results thus demonstrate that overlapping and distinct roles of small RNA systems in the acquisition and inheritance of hormesis effects. Okabe et al. show that the miRNA production system in the neuron and the small RNA transport machinery in the intestine are required for the acquisition of hormesis. For its inheritance, both the transport of small RNAs in the germline and the germline Argonaute HRDE-1 complex are needed, highlighting distinct contribution of small RNA systems to hormesis.
Collapse
Affiliation(s)
- Emiko Okabe
- RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, 650-0047, Japan.,Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Masaharu Uno
- RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, 650-0047, Japan. .,Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Saya Kishimoto
- RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, 650-0047, Japan.,Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Eisuke Nishida
- RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, 650-0047, Japan.,Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
31
|
Placentino M, de Jesus Domingues AM, Schreier J, Dietz S, Hellmann S, de Albuquerque BFM, Butter F, Ketting RF. Intrinsically disordered protein PID-2 modulates Z granules and is required for heritable piRNA-induced silencing in the Caenorhabditis elegans embryo. EMBO J 2021; 40:e105280. [PMID: 33231880 PMCID: PMC7849312 DOI: 10.15252/embj.2020105280] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
In Caenorhabditis elegans, the piRNA (21U RNA) pathway is required to establish proper gene regulation and an immortal germline. To achieve this, PRG-1-bound 21U RNAs trigger silencing mechanisms mediated by RNA-dependent RNA polymerase (RdRP)-synthetized 22G RNAs. This silencing can become PRG-1-independent and heritable over many generations, a state termed RNA-induced epigenetic gene silencing (RNAe). How and when RNAe is established, and how it is maintained, is not known. We show that maternally provided 21U RNAs can be sufficient for triggering RNAe in embryos. Additionally, we identify PID-2, a protein containing intrinsically disordered regions (IDRs), as a factor required for establishing and maintaining RNAe. PID-2 interacts with two newly identified and partially redundant eTudor domain-containing proteins, PID-4 and PID-5. PID-5 has an additional domain related to the X-prolyl aminopeptidase APP-1, and binds APP-1, implicating potential N-terminal proteolysis in RNAe. All three proteins are required for germline immortality, localize to perinuclear foci, affect size and appearance of RNA inheritance-linked Z granules, and are required for balancing of 22G RNA populations. Overall, our study identifies three new proteins with crucial functions in C. elegans small RNA silencing.
Collapse
Affiliation(s)
- Maria Placentino
- Biology of Non‐coding RNA GroupInstitute of Molecular Biology (IMB)MainzGermany
- International PhD Programme on Gene Regulation, Epigenetics & Genome StabilityMainzGermany
| | | | - Jan Schreier
- Biology of Non‐coding RNA GroupInstitute of Molecular Biology (IMB)MainzGermany
- International PhD Programme on Gene Regulation, Epigenetics & Genome StabilityMainzGermany
| | - Sabrina Dietz
- International PhD Programme on Gene Regulation, Epigenetics & Genome StabilityMainzGermany
- Quantitative Proteomics GroupInstitute of Molecular Biology (IMB)MainzGermany
| | - Svenja Hellmann
- Biology of Non‐coding RNA GroupInstitute of Molecular Biology (IMB)MainzGermany
| | - Bruno FM de Albuquerque
- Biology of Non‐coding RNA GroupInstitute of Molecular Biology (IMB)MainzGermany
- Graduate Program in Areas of Basic and Applied BiologyUniversity of PortoPortoPortugal
| | - Falk Butter
- Quantitative Proteomics GroupInstitute of Molecular Biology (IMB)MainzGermany
| | - René F Ketting
- Biology of Non‐coding RNA GroupInstitute of Molecular Biology (IMB)MainzGermany
- Institute of Developmental Biology and NeurobiologyJohannses Gutenberg UniversityMainzGermany
| |
Collapse
|
32
|
Abstract
Han et al. (2020) and Shi et al. (2020) report that the E3 ubiquitin ligase ZSWIM8 senses when an RNA and an Argonaute protein-bound microRNA are extensively base paired and directs Argonaute destruction by the proteasome. The result is degradation of the microRNA.
Collapse
Affiliation(s)
- Pei-Hsuan Wu
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| | - Phillip D Zamore
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
33
|
Padeken J, Methot S, Zeller P, Delaney CE, Kalck V, Gasser SM. Argonaute NRDE-3 and MBT domain protein LIN-61 redundantly recruit an H3K9me3 HMT to prevent embryonic lethality and transposon expression. Genes Dev 2021; 35:82-101. [PMID: 33303642 PMCID: PMC7778263 DOI: 10.1101/gad.344234.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022]
Abstract
The establishment and maintenance of chromatin domains shape the epigenetic memory of a cell, with the methylation of histone H3 lysine 9 (H3K9me) defining transcriptionally silent heterochromatin. We show here that the C. elegans SET-25 (SUV39/G9a) histone methyltransferase (HMT), which catalyzes H3K9me1, me2 and me3, can establish repressed chromatin domains de novo, unlike the SETDB1 homolog MET-2. Thus, SET-25 is needed to silence novel insertions of RNA or DNA transposons, and repress tissue-specific genes de novo during development. We identify two partially redundant pathways that recruit SET-25 to its targets. One pathway requires LIN-61 (L3MBTL2), which uses its four MBT domains to bind the H3K9me2 deposited by MET-2. The second pathway functions independently of MET-2 and involves the somatic Argonaute NRDE-3 and small RNAs. This pathway targets primarily highly conserved RNA and DNA transposons. These redundant SET-25 targeting pathways (MET-2-LIN-61-SET-25 and NRDE-3-SET-25) ensure repression of intact transposons and de novo insertions, while MET-2 can act alone to repress simple and satellite repeats. Removal of both pathways in the met-2;nrde-3 double mutant leads to the loss of somatic H3K9me2 and me3 and the synergistic derepression of transposons in embryos, strongly elevating embryonic lethality.
Collapse
Affiliation(s)
- Jan Padeken
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Stephen Methot
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Peter Zeller
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Colin E Delaney
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Veronique Kalck
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
34
|
Abstract
A diversity of gene regulatory mechanisms drives the changes in gene expression required for animal development. Here, we discuss the developmental roles of a class of gene regulatory factors composed of a core protein subunit of the Argonaute family and a 21-26-nucleotide RNA cofactor. These represent ancient regulatory complexes, originally evolved to repress genomic parasites such as transposons, viruses and retroviruses. However, over the course of evolution, small RNA-guided pathways have expanded and diversified, and they play multiple roles across all eukaryotes. Pertinent to this review, Argonaute and small RNA-mediated regulation has acquired numerous functions that affect all aspects of animal life. The regulatory function is provided by the Argonaute protein and its interactors, while the small RNA provides target specificity, guiding the Argonaute to a complementary RNA. C. elegans has 19 different, functional Argonautes, defining distinct yet interconnected pathways. Each Argonaute binds a relatively well-defined class of small RNA with distinct molecular properties. A broad classification of animal small RNA pathways distinguishes between two groups: (i) the microRNA pathway is involved in repressing relatively specific endogenous genes and (ii) the other small RNA pathways, which effectively act as a genomic immune system to primarily repress expression of foreign or "non-self" RNA while maintaining correct endogenous gene expression. microRNAs play prominent direct roles in all developmental stages, adult physiology and lifespan. The other small RNA pathways act primarily in the germline, but their impact extends far beyond, into embryogenesis and adult physiology, and even to subsequent generations. Here, we review the mechanisms and developmental functions of the diverse small RNA pathways of C. elegans.
Collapse
Affiliation(s)
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
35
|
Rogers AK, Phillips CM. A Small-RNA-Mediated Feedback Loop Maintains Proper Levels of 22G-RNAs in C. elegans. Cell Rep 2020; 33:108279. [PMID: 33086057 PMCID: PMC7603289 DOI: 10.1016/j.celrep.2020.108279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/27/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
RNA interference (RNAi) is an essential regulatory mechanism in all animals. In Caenorhabditis elegans, several classes of small RNAs act to silence or license expression of mRNA targets. ERI-6/7 is required for the production of some endogenous small interfering RNAs (siRNAs) and acts as a negative regulator of the exogenous RNAi pathway. We find that the genomic locus encoding eri-6/7 contains two distinct regions that are targeted by endogenous siRNAs. Loss of these siRNAs disrupts eri-6/7 mRNA expression, resulting in increased production of siRNAs from other small RNA pathways because these pathways compete with eri-6/7-dependent transcripts for access to the downstream siRNA amplification machinery. Thus, the pathway acts like a small-RNA-mediated feedback loop to ensure homeostasis of gene expression by small RNA pathways. Similar feedback loops that maintain chromatin homeostasis have been identified in yeast and Drosophila melanogaster, suggesting an evolutionary conservation of feedback mechanisms in gene regulatory pathways.
Collapse
Affiliation(s)
- Alicia K Rogers
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Carolyn M Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
36
|
Svendsen JM, Reed KJ, Vijayasarathy T, Montgomery BE, Tucci RM, Brown KC, Marks TN, Nguyen DAH, Phillips CM, Montgomery TA. henn-1/HEN1 Promotes Germline Immortality in Caenorhabditis elegans. Cell Rep 2020; 29:3187-3199.e4. [PMID: 31801082 PMCID: PMC6922003 DOI: 10.1016/j.celrep.2019.10.114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/28/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022] Open
Abstract
The germline contains an immortal cell lineage that ensures the faithful transmission of genetic and, in some instances, epigenetic information from one generation to the next. Here, we show that in Caenorhabditis elegans, the small RNA 3′-2′-O-methyltransferase henn-1/HEN1 is required for sustained fertility across generations. In the absence of henn-1, animals become progressively less fertile, becoming sterile after ~30 generations at 25°C. Sterility in henn-1 mutants is accompanied by severe defects in germline proliferation and maintenance. The requirement for henn-1 in transgenerational fertility is likely due to its role in methylating and, thereby, stabilizing Piwi-interacting RNAs (piRNAs). However, despite being essential for piRNA stability in embryos, henn-1 is not required for piRNA stability in adults. Thus, we propose that methylation is important for the role of piRNAs in establishing proper gene silencing during early stages of development but is dispensable for their role in the proliferated germline. Svendsen et al. identify a requirement for the small RNA methyltransferase HENN-1 in germline immortality. HENN-1 is required for piRNA stability during embryogenesis but is dispensable in the adult germline, pointing to a role for piRNAs in establishing a gene regulatory network in embryos that protects the germline throughout development.
Collapse
Affiliation(s)
- Joshua M Svendsen
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA; Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Kailee J Reed
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA; Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Tarah Vijayasarathy
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Brooke E Montgomery
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Rachel M Tucci
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Kristen C Brown
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA; Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Taylor N Marks
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Dieu An H Nguyen
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Carolyn M Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Taiowa A Montgomery
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
37
|
Epitranscriptomics in Normal and Malignant Hematopoiesis. Int J Mol Sci 2020; 21:ijms21186578. [PMID: 32916783 PMCID: PMC7555315 DOI: 10.3390/ijms21186578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Epitranscriptomics analyze the biochemical modifications borne by RNA and their downstream influence. From this point of view, epitranscriptomics represent a new layer for the control of genetic information and can affect a variety of molecular processes including the cell cycle and the differentiation. In physiological conditions, hematopoiesis is a tightly regulated process that produces differentiated blood cells starting from hematopoietic stem cells. Alteration of this process can occur at different levels in the pathway that leads from the genetic information to the phenotypic manifestation producing malignant hematopoiesis. This review focuses on the role of epitranscriptomic events that are known to be implicated in normal and malignant hematopoiesis, opening a new pathophysiological and therapeutic scenario. Moreover, an evolutionary vision of this mechanism will be provided.
Collapse
|
38
|
Suen KM, Braukmann F, Butler R, Bensaddek D, Akay A, Lin CC, Milonaitytė D, Doshi N, Sapetschnig A, Lamond A, Ladbury JE, Miska EA. DEPS-1 is required for piRNA-dependent silencing and PIWI condensate organisation in Caenorhabditis elegans. Nat Commun 2020; 11:4242. [PMID: 32843637 PMCID: PMC7447803 DOI: 10.1038/s41467-020-18089-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/18/2020] [Indexed: 12/13/2022] Open
Abstract
Membraneless organelles are sites for RNA biology including small non-coding RNA (ncRNA) mediated gene silencing. How small ncRNAs utilise phase separated environments for their function is unclear. We investigated how the PIWI-interacting RNA (piRNA) pathway engages with the membraneless organelle P granule in Caenorhabditis elegans. Proteomic analysis of the PIWI protein PRG-1 reveals an interaction with the constitutive P granule protein DEPS-1. DEPS-1 is not required for piRNA biogenesis but piRNA-dependent silencing: deps-1 mutants fail to produce the secondary endo-siRNAs required for the silencing of piRNA targets. We identify a motif on DEPS-1 which mediates a direct interaction with PRG-1. DEPS-1 and PRG-1 form intertwining clusters to build elongated condensates in vivo which are dependent on the Piwi-interacting motif of DEPS-1. Additionally, we identify EDG-1 as an interactor of DEPS-1 and PRG-1. Our study reveals how specific protein-protein interactions drive the spatial organisation and piRNA-dependent silencing within membraneless organelles.
Collapse
Affiliation(s)
- Kin Man Suen
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Fabian Braukmann
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Richard Butler
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Dalila Bensaddek
- Laboratory for Quantitative Proteomics, Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
- Bioscience Core labs, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Alper Akay
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Chi-Chuan Lin
- School of Molecular and Cellular Biology, University of Leeds, LC Miall Building, Leeds, LS2 9JT, UK
| | - Dovilė Milonaitytė
- School of Molecular and Cellular Biology, University of Leeds, LC Miall Building, Leeds, LS2 9JT, UK
| | - Neel Doshi
- University of Cambridge, School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0SP, UK
| | | | - Angus Lamond
- Laboratory for Quantitative Proteomics, Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - John Edward Ladbury
- School of Molecular and Cellular Biology, University of Leeds, LC Miall Building, Leeds, LS2 9JT, UK
| | - Eric Alexander Miska
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK.
| |
Collapse
|
39
|
Rogers AK, Phillips CM. RNAi pathways repress reprogramming of C. elegans germ cells during heat stress. Nucleic Acids Res 2020; 48:4256-4273. [PMID: 32187370 PMCID: PMC7192617 DOI: 10.1093/nar/gkaa174] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 01/08/2023] Open
Abstract
Repression of cellular reprogramming in germ cells is critical to maintaining cell fate and fertility. When germ cells mis-express somatic genes they can be directly converted into other cell types, resulting in loss of totipotency and reproductive potential. Identifying the molecular mechanisms that coordinate these cell fate decisions is an active area of investigation. Here we show that RNAi pathways play a key role in maintaining germline gene expression and totipotency after heat stress. By examining transcriptional changes that occur in mut-16 mutants, lacking a key protein in the RNAi pathway, at elevated temperature we found that genes normally expressed in the soma are mis-expressed in germ cells. Furthermore, these genes displayed increased chromatin accessibility in the germlines of mut-16 mutants at elevated temperature. These findings indicate that the RNAi pathway plays a key role in preventing aberrant expression of somatic genes in the germline during heat stress. This regulation occurs in part through the maintenance of germline chromatin, likely acting through the nuclear RNAi pathway. Identification of new pathways governing germ cell reprogramming is critical to understanding how cells maintain proper gene expression and may provide key insights into how cell identity is lost in some germ cell tumors.
Collapse
Affiliation(s)
- Alicia K Rogers
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Carolyn M Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
40
|
Wu X, Pan Y, Fang Y, Zhang J, Xie M, Yang F, Yu T, Ma P, Li W, Shu Y. The Biogenesis and Functions of piRNAs in Human Diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:108-120. [PMID: 32516734 PMCID: PMC7283962 DOI: 10.1016/j.omtn.2020.05.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/17/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
Piwi-interacting RNAs (piRNAs) are a novel type of small noncoding RNAs, which are 26-30 nt in length and bind to Piwi proteins. These short RNAs were originally discovered in germline cells and are considered as key regulators for germline maintenance. A growing body of evidence has now extended our views into piRNA biological significance showing that they can also regulate gene expression in somatic cells through transposon silencing, epigenetic programming, DNA rearrangements, mRNA turnover, and translational control. Mounting studies have revealed that the dysregulation of piRNAs may cause epigenetic changes and contribute to diverse diseases. This review illustrates piRNA biogenesis, mechanisms behind piRNA-mediated gene regulation, and changes of piRNAs in different diseases, especially in cancers.
Collapse
Affiliation(s)
- Xi Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yutian Pan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yuan Fang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Jingxin Zhang
- Department of General Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, People's Republic of China
| | - Mengyan Xie
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Fengming Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Tao Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China.
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China; Department of Oncology, Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing 211166, People's Republic of China.
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China; Department of Oncology, Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing 211166, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China.
| |
Collapse
|
41
|
Manage KI, Rogers AK, Wallis DC, Uebel CJ, Anderson DC, Nguyen DAH, Arca K, Brown KC, Cordeiro Rodrigues RJ, de Albuquerque BF, Ketting RF, Montgomery TA, Phillips CM. A tudor domain protein, SIMR-1, promotes siRNA production at piRNA-targeted mRNAs in C. elegans. eLife 2020; 9:56731. [PMID: 32338603 PMCID: PMC7255803 DOI: 10.7554/elife.56731] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
piRNAs play a critical role in the regulation of transposons and other germline genes. In Caenorhabditis elegans, regulation of piRNA target genes is mediated by the mutator complex, which synthesizes high levels of siRNAs through the activity of an RNA-dependent RNA polymerase. However, the steps between mRNA recognition by the piRNA pathway and siRNA amplification by the mutator complex are unknown. Here, we identify the Tudor domain protein, SIMR-1, as acting downstream of piRNA production and upstream of mutator complex-dependent siRNA biogenesis. Interestingly, SIMR-1 also localizes to distinct subcellular foci adjacent to P granules and Mutator foci, two phase-separated condensates that are the sites of piRNA-dependent mRNA recognition and mutator complex-dependent siRNA amplification, respectively. Thus, our data suggests a role for multiple perinuclear condensates in organizing the piRNA pathway and promoting mRNA regulation by the mutator complex. In the biological world, a process known as RNA interference helps cells to switch genes on and off and to defend themselves against harmful genetic material. This mechanism works by deactivating RNA sequences, the molecular templates cells can use to create proteins. Overall, RNA interference relies on the cell creating small RNA molecules that can target and inhibit the harmful RNA sequences that need to be silenced. More precisely, in round worms such as Caenorhabditis elegans, RNA interference happens in two steps. First, primary small RNAs identify the target sequences, which are then combatted by newly synthetised, secondary small RNAs. A number of proteins are also involved in both steps of the process. RNA interference is particularly important to preserve fertility, guarding sex cells against ‘rogue’ segments of genetic information that could be passed on to the next generation. In future sex cells, the proteins involved in RNA interference cluster together, forming a structure called a germ granule. Yet, little is known about the roles and identity of these proteins. To fill this knowledge gap, Manage et al. focused on the second stage of the RNA interference pathway in the germ granules of C. elegans, examining the molecules that physically interact with a key protein. This work revealed a new protein called SIMR-1. Looking into the role of SIMR-1 showed that the protein is required to amplify secondary small RNAs, but not to identify target sequences. However, it only promotes the creation of secondary small RNAs if a specific subtype of primary small RNAs have recognized the target RNAs for silencing. Further experiments also showed that within the germ granule, SIMR-1 is present in a separate substructure different from any compartment previously identified. This suggests that each substep of the RNA interference process takes place at a different location in the granule. In both C. elegans and humans, disruptions in the RNA interference pathway can lead to conditions such as cancer or infertility. Dissecting the roles of the proteins involved in this process in roundworms may help to better grasp how this process unfolds in mammals, and how it could be corrected in the case of disease.
Collapse
Affiliation(s)
- Kevin I Manage
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Alicia K Rogers
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Dylan C Wallis
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Celja J Uebel
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Dorian C Anderson
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Dieu An H Nguyen
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Katerina Arca
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Kristen C Brown
- Department of Biology, Colorado State University, Fort Collins, United States.,Cell and Molecular Biology Program, Colorado State University, Fort Collins, United States
| | - Ricardo J Cordeiro Rodrigues
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Mainz, Germany.,International PhD Programme on Gene Regulation, Epigenetics, and Genome Stability, Mainz, Germany
| | | | - René F Ketting
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Mainz, Germany
| | - Taiowa A Montgomery
- Department of Biology, Colorado State University, Fort Collins, United States
| | - Carolyn Marie Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| |
Collapse
|
42
|
Abstract
Transposons are major genome constituents that can mobilize and trigger mutations, DNA breaks and chromosome rearrangements. Transposon silencing is particularly important in the germline, which is dedicated to transmission of the inherited genome. Piwi-interacting RNAs (piRNAs) guide a host defence system that transcriptionally and post-transcriptionally silences transposons during germline development. While germline control of transposons by the piRNA pathway is conserved, many piRNA pathway genes are evolving rapidly under positive selection, and the piRNA biogenesis machinery shows remarkable phylogenetic diversity. Conservation of core function combined with rapid gene evolution is characteristic of a host–pathogen arms race, suggesting that transposons and the piRNA pathway are engaged in an evolutionary tug of war that is driving divergence of the biogenesis machinery. Recent studies suggest that this process may produce biochemical incompatibilities that contribute to reproductive isolation and species divergence.
Collapse
Affiliation(s)
- Swapnil S Parhad
- Program in Molecular Medicine, University of Massachusetts Medical School , 373 Plantation Street, Worcester, MA 01605 , USA
| | - William E Theurkauf
- Program in Molecular Medicine, University of Massachusetts Medical School , 373 Plantation Street, Worcester, MA 01605 , USA
| |
Collapse
|
43
|
Ozata DM, Gainetdinov I, Zoch A, O'Carroll D, Zamore PD. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet 2019; 20:89-108. [PMID: 30446728 DOI: 10.1038/s41576-018-0073-3] [Citation(s) in RCA: 733] [Impact Index Per Article: 122.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In animals, PIWI-interacting RNAs (piRNAs) of 21-35 nucleotides in length silence transposable elements, regulate gene expression and fight viral infection. piRNAs guide PIWI proteins to cleave target RNA, promote heterochromatin assembly and methylate DNA. The architecture of the piRNA pathway allows it both to provide adaptive, sequence-based immunity to rapidly evolving viruses and transposons and to regulate conserved host genes. piRNAs silence transposons in the germ line of most animals, whereas somatic piRNA functions have been lost, gained and lost again across evolution. Moreover, most piRNA pathway proteins are deeply conserved, but different animals employ remarkably divergent strategies to produce piRNA precursor transcripts. Here, we discuss how a common piRNA pathway allows animals to recognize diverse targets, ranging from selfish genetic elements to genes essential for gametogenesis.
Collapse
Affiliation(s)
- Deniz M Ozata
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ildar Gainetdinov
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ansgar Zoch
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Dónal O'Carroll
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
44
|
Cordeiro Rodrigues RJ, de Jesus Domingues AM, Hellmann S, Dietz S, de Albuquerque BFM, Renz C, Ulrich HD, Sarkies P, Butter F, Ketting RF. PETISCO is a novel protein complex required for 21U RNA biogenesis and embryonic viability. Genes Dev 2019; 33:857-870. [PMID: 31147388 PMCID: PMC6601512 DOI: 10.1101/gad.322446.118] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/26/2019] [Indexed: 01/05/2023]
Abstract
Piwi proteins are important for germ cell development in most animals. These proteins are guided to specific targets by small guide RNAs, referred to as piRNAs or 21U RNAs in Caenorhabditis elegans In this organism, even though genetic screens have uncovered 21U RNA biogenesis factors, little is known about how these factors interact or what they do. Based on the previously identified 21U biogenesis factor PID-1 (piRNA-induced silencing-defective 1), we here define a novel protein complex, PETISCO (PID-3, ERH-2, TOFU-6, and IFE-3 small RNA complex), that is required for 21U RNA biogenesis. PETISCO contains both potential 5' cap and 5' phosphate RNA-binding domains and interacts with capped 21U precursor RNA. We resolved the architecture of PETISCO and revealed a second function for PETISCO in embryonic development. This essential function of PETISCO is mediated not by PID-1 but by the novel protein TOST-1 (twenty-one U pathway antagonist). In contrast, TOST-1 is not essential for 21U RNA biogenesis. Both PID-1 and TOST-1 interact directly with ERH-2 using a conserved sequence motif. Finally, our data suggest a role for TOST-1:PETISCO in SL1 homeostasis in the early embryo. Our work describes a key complex for 21U RNA processing in C. elegans and strengthens the view that 21U RNA biogenesis is built on an snRNA-related pathway.
Collapse
Affiliation(s)
- Ricardo J Cordeiro Rodrigues
- Biology of Non-coding RNA Group, Institute of Molecular Biology, 55128 Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics, and Genome Stability, 55128 Mainz, Germany
| | | | - Svenja Hellmann
- Biology of Non-coding RNA Group, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Sabrina Dietz
- International PhD Programme on Gene Regulation, Epigenetics, and Genome Stability, 55128 Mainz, Germany
- Quantitative Proteomics Group, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Bruno F M de Albuquerque
- Biology of Non-coding RNA Group, Institute of Molecular Biology, 55128 Mainz, Germany
- Graduate Program in Areas of Basic and Applied Biology, University of Porto, 4099-003 Porto, Portugal
| | - Christian Renz
- Maintenance of Genome Stability Group, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Helle D Ulrich
- Maintenance of Genome Stability Group, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Peter Sarkies
- Medical Research Council London Institute of Medical Sciences, London W12 0NN, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Falk Butter
- Quantitative Proteomics Group, Institute of Molecular Biology, 55128 Mainz, Germany
| | - René F Ketting
- Biology of Non-coding RNA Group, Institute of Molecular Biology, 55128 Mainz, Germany
| |
Collapse
|
45
|
Weiser NE, Kim JK. Multigenerational Regulation of the Caenorhabditis elegans Chromatin Landscape by Germline Small RNAs. Annu Rev Genet 2019; 53:289-311. [PMID: 31150586 DOI: 10.1146/annurev-genet-112618-043505] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In animals, small noncoding RNAs that are expressed in the germline and transmitted to progeny control gene expression to promote fertility. Germline-expressed small RNAs, including endogenous small interfering RNAs (endo-siRNAs) and Piwi-interacting RNAs (piRNAs), drive the repression of deleterious transcripts such as transposons, repetitive elements, and pseudogenes. Recent studies have highlighted an important role for small RNAs in transgenerational epigenetic inheritance via regulation of heritable chromatin marks; therefore, small RNAs are thought to convey an epigenetic memory of genomic self and nonself elements. Small RNA pathways are highly conserved in metazoans and have been best described for the model organism Caenorhabditis elegans. In this review, we describe the biogenesis, regulation, and function of C. elegans endo-siRNAs and piRNAs, along with recent insights into how these distinct pathways are integrated to collectively regulate germline gene expression, transgenerational epigenetic inheritance, and ultimately, animal fertility.
Collapse
Affiliation(s)
- Natasha E Weiser
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - John K Kim
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| |
Collapse
|
46
|
Pinzón N, Bertrand S, Subirana L, Busseau I, Escrivá H, Seitz H. Functional lability of RNA-dependent RNA polymerases in animals. PLoS Genet 2019; 15:e1007915. [PMID: 30779744 PMCID: PMC6396948 DOI: 10.1371/journal.pgen.1007915] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 03/01/2019] [Accepted: 12/24/2018] [Indexed: 11/18/2022] Open
Abstract
RNA interference (RNAi) requires RNA-dependent RNA polymerases (RdRPs) in many eukaryotes, and RNAi amplification constitutes the only known function for eukaryotic RdRPs. Yet in animals, classical model organisms can elicit RNAi without possessing RdRPs, and only nematode RNAi was shown to require RdRPs. Here we show that RdRP genes are much more common in animals than previously thought, even in insects, where they had been assumed not to exist. RdRP genes were present in the ancestors of numerous clades, and they were subsequently lost at a high frequency. In order to probe the function of RdRPs in a deuterostome (the cephalochordate Branchiostoma lanceolatum), we performed high-throughput analyses of small RNAs from various Branchiostoma developmental stages. Our results show that Branchiostoma RdRPs do not appear to participate in RNAi: we did not detect any candidate small RNA population exhibiting classical siRNA length or sequence features. Our results show that RdRPs have been independently lost in dozens of animal clades, and even in a clade where they have been conserved (cephalochordates) their function in RNAi amplification is not preserved. Such a dramatic functional variability reveals an unexpected plasticity in RNA silencing pathways. RNA interference (RNAi) is a conserved gene regulation system in eukaryotes. In non-animal eukaryotes, it necessitates RNA-dependent RNA polymerases (“RdRPs”). Among animals, only nematodes appear to require RdRPs for RNAi. Yet additional animal clades have RdRPs and it is assumed that they participate in RNAi. Here, we find that RdRPs are much more common in animals than previously thought, but their genes were independently lost in many lineages. Focusing on a species with RdRP genes (a cephalochordate), we found that it does not use them for RNAi. While RNAi is the only known function for eukaryotic RdRPs, our results suggest additional roles. Eukaryotic RdRPs thus have a complex evolutionary history in animals, with frequent independent losses and apparent functional diversification.
Collapse
Affiliation(s)
- Natalia Pinzón
- Institut de Génétique Humaine, UMR 9002 CNRS and université de Montpellier, 141, rue de la Cardonille, 34396 Montpellier CEDEX 5, France
| | - Stéphanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650 Banyuls-sur-Mer, France
| | - Lucie Subirana
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650 Banyuls-sur-Mer, France
| | - Isabelle Busseau
- Institut de Génétique Humaine, UMR 9002 CNRS and université de Montpellier, 141, rue de la Cardonille, 34396 Montpellier CEDEX 5, France
| | - Hector Escrivá
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650 Banyuls-sur-Mer, France
| | - Hervé Seitz
- Institut de Génétique Humaine, UMR 9002 CNRS and université de Montpellier, 141, rue de la Cardonille, 34396 Montpellier CEDEX 5, France
- * E-mail:
| |
Collapse
|
47
|
Almeida MV, de Jesus Domingues AM, Ketting RF. Maternal and zygotic gene regulatory effects of endogenous RNAi pathways. PLoS Genet 2019; 15:e1007784. [PMID: 30759082 PMCID: PMC6391025 DOI: 10.1371/journal.pgen.1007784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/26/2019] [Accepted: 01/23/2019] [Indexed: 11/30/2022] Open
Abstract
Endogenous small RNAs (sRNAs) and Argonaute proteins are ubiquitous regulators of gene expression in germline and somatic tissues. sRNA-Argonaute complexes are often expressed in gametes and are consequently inherited by the next generation upon fertilization. In Caenorhabditis elegans, 26G-RNAs are primary endogenous sRNAs that trigger the expression of downstream secondary sRNAs. Two subpopulations of 26G-RNAs exist, each of which displaying strongly compartmentalized expression: one is expressed in the spermatogenic gonad and associates with the Argonautes ALG-3/4; plus another expressed in oocytes and in embryos, which associates with the Argonaute ERGO-1. The determinants and dynamics of gene silencing elicited by 26G-RNAs are largely unknown. Here, we provide diverse new insights into these endogenous sRNA pathways of C. elegans. Using genetics and deep sequencing, we dissect a maternal effect of the ERGO-1 branch of the 26G-RNA pathway. We find that maternal primary sRNAs can trigger the production of zygotic secondary sRNAs that are able to silence targets, even in the absence of zygotic primary triggers. Thus, the interaction of maternal and zygotic sRNA populations, assures target gene silencing throughout animal development. Furthermore, we explore other facets of 26G-RNA biology related to the ALG-3/4 branch. We find that sRNA abundance, sRNA pattern of origin and the 3’ UTR length of target transcripts are predictors of the regulatory outcome by the Argonautes ALG-3/4. Lastly, we provide evidence suggesting that ALG-3 and ALG-4 regulate their own mRNAs in a negative feedback loop. Altogether, we provide several new regulatory insights on the dynamics, target regulation and self-regulation of the endogenous RNAi pathways of C. elegans. Small RNAs (sRNAs) and their partner Argonaute proteins regulate the expression of target RNAs. When sperm and egg meet upon fertilization, a diverse set of proteins and RNA, including sRNA-Argonaute complexes, is passed on to the developing progeny. Thus, these two players are important to initiate specific gene expression programs in the next generation. The nematode Caenorhabditis elegans expresses several classes of sRNAs. 26G-RNAs are a particular class of sRNAs that are divided into two subpopulations: one expressed in the spermatogenic gonad and another expressed in oocytes and in embryos. In this work, we describe the dynamics whereby oogenic 26G-RNAs setup gene silencing in the next generation. In addition, we show several ways that spermatogenic 26G-RNAs and their partner Argonautes, ALG-3 and ALG-4, use to regulate their targets. Finally, we show that ALG-3 and ALG-4 are fine-tuning their own expression, a rare role of Argonaute proteins. Overall, we provide new insights into how sRNAs and Argonautes are regulating gene expression.
Collapse
Affiliation(s)
- Miguel Vasconcelos Almeida
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Ackermannweg 4, Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
| | | | - René F. Ketting
- Biology of Non-coding RNA Group, Institute of Molecular Biology, Ackermannweg 4, Mainz, Germany
- * E-mail:
| |
Collapse
|
48
|
Almeida MV, Andrade-Navarro MA, Ketting RF. Function and Evolution of Nematode RNAi Pathways. Noncoding RNA 2019; 5:E8. [PMID: 30650636 PMCID: PMC6468775 DOI: 10.3390/ncrna5010008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/11/2022] Open
Abstract
Selfish genetic elements, like transposable elements or viruses, are a threat to genomic stability. A variety of processes, including small RNA-based RNA interference (RNAi)-like pathways, has evolved to counteract these elements. Amongst these, endogenous small interfering RNA and Piwi-interacting RNA (piRNA) pathways were implicated in silencing selfish genetic elements in a variety of organisms. Nematodes have several incredibly specialized, rapidly evolving endogenous RNAi-like pathways serving such purposes. Here, we review recent research regarding the RNAi-like pathways of Caenorhabditis elegans as well as those of other nematodes, to provide an evolutionary perspective. We argue that multiple nematode RNAi-like pathways share piRNA-like properties and together form a broad nematode toolkit that allows for silencing of foreign genetic elements.
Collapse
Affiliation(s)
| | - Miguel A Andrade-Navarro
- Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany.
- Faculty of Biology, Johannes Gutenberg Universität, 55122 Mainz, Germany.
| | - René F Ketting
- Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany.
| |
Collapse
|
49
|
Weng C, Kosalka J, Berkyurek AC, Stempor P, Feng X, Mao H, Zeng C, Li WJ, Yan YH, Dong MQ, Morero NR, Zuliani C, Barabas O, Ahringer J, Guang S, Miska EA. The USTC co-opts an ancient machinery to drive piRNA transcription in C. elegans. Genes Dev 2019; 33:90-102. [PMID: 30567997 PMCID: PMC6317315 DOI: 10.1101/gad.319293.118] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/19/2018] [Indexed: 01/15/2023]
Abstract
Piwi-interacting RNAs (piRNAs) engage Piwi proteins to suppress transposons and nonself nucleic acids and maintain genome integrity and are essential for fertility in a variety of organisms. In Caenorhabditis elegans, most piRNA precursors are transcribed from two genomic clusters that contain thousands of individual piRNA transcription units. While a few genes have been shown to be required for piRNA biogenesis, the mechanism of piRNA transcription remains elusive. Here we used functional proteomics approaches to identify an upstream sequence transcription complex (USTC) that is essential for piRNA biogenesis. The USTC contains piRNA silencing-defective 1 (PRDE-1), SNPC-4, twenty-one-U fouled-up 4 (TOFU-4), and TOFU-5. The USTC forms unique piRNA foci in germline nuclei and coats the piRNA cluster genomic loci. USTC factors associate with the Ruby motif just upstream of type I piRNA genes. USTC factors are also mutually dependent for binding to the piRNA clusters and forming the piRNA foci. Interestingly, USTC components bind differentially to piRNAs in the clusters and other noncoding RNA genes. These results reveal the USTC as a striking example of the repurposing of a general transcription factor complex to aid in genome defense against transposons.
Collapse
Affiliation(s)
- Chenchun Weng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Joanna Kosalka
- Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Ahmet C Berkyurek
- Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Przemyslaw Stempor
- Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Xuezhu Feng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Hui Mao
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chenming Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Wen-Jun Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yong-Hong Yan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Natalia Rosalía Morero
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Cecilia Zuliani
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Orsolya Barabas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Julie Ahringer
- Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Shouhong Guang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Eric A Miska
- Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Wellcome Sanger Institute, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
50
|
Hsu PJ, Fei Q, Dai Q, Shi H, Dominissini D, Ma L, He C. Single base resolution mapping of 2'-O-methylation sites in human mRNA and in 3' terminal ends of small RNAs. Methods 2018; 156:85-90. [PMID: 30471344 DOI: 10.1016/j.ymeth.2018.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 01/07/2023] Open
Abstract
The post-transcriptional modification 2'-O-Methyl (2'OMe) could be present on the ribose of all four ribonucleosides, and is highly prevalent in a wide variety of RNA species, including the 5' RNA cap of viruses and higher eukaryotes, as well as internally in transfer RNA and ribosomal RNA. Recent studies have suggested that 2'OMe is also located internally in low-abundance RNA species such as viral RNA and mRNA. To profile 2'OMe on different RNA species, we have developed Nm-seq, which could identify 2'OMe sites at single base resolution. Nm-seq is particularly useful for identifying 2'OMe sites located at the 3' terminal ends of small RNAs. Here, we present an optimized protocol for Nm-seq and a protocol for applying Nm-seq to identify 2'OMe sites on small RNA 3' terminal ends.
Collapse
Affiliation(s)
- Phillip J Hsu
- Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA; Medical Scientist Training Program, Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA
| | - Qili Fei
- Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Qing Dai
- Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Hailing Shi
- Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Dan Dominissini
- Cancer Research Center, Wohl Centre for Translational Medicine, Chaim Sheba Medical Center, Tel-Hashomer 52621, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lijia Ma
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|