1
|
Rafiei N, Ronceret A. The plant early recombinosome: a high security complex to break DNA during meiosis. PLANT REPRODUCTION 2024; 37:421-440. [PMID: 39331138 PMCID: PMC11511760 DOI: 10.1007/s00497-024-00509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
KEY MESSAGE The formacion of numerous unpredictable DNA Double Strand Breaks (DSBs) on chromosomes iniciates meiotic recombination. In this perspective, we propose a 'multi-key lock' model to secure the risky but necesary breaks as well as a 'one per pair of cromatids' model for the topoisomerase-like early recombinosome. During meiosis, homologous chromosomes recombine at few sites of crossing-overs (COs) to ensure correct segregation. The initiation of meiotic recombination involves the formation of DNA double strand breaks (DSBs) during prophase I. Too many DSBs are dangerous for genome integrity: if these DSBs are not properly repaired, it could potentially lead to chromosomal fragmentation. Too few DSBs are also problematic: if the obligate CO cannot form between bivalents, catastrophic unequal segregation of univalents lead to the formation of sterile aneuploid spores. Research on the regulation of the formation of these necessary but risky DSBs has recently advanced in yeast, mammals and plants. DNA DSBs are created by the enzymatic activity of the early recombinosome, a topoisomerase-like complex containing SPO11. This opinion paper reviews recent insights on the regulation of the SPO11 cofactors necessary for the introduction of temporally and spatially controlled DSBs. We propose that a 'multi-key-lock' model for each subunit of the early recombinosome complex is required to secure the formation of DSBs. We also discuss the hypothetical implications that the established topoisomerase-like nature of the SPO11 core-complex can have in creating DSB in only one of the two replicated chromatids of early prophase I meiotic chromosomes. This hypothetical 'one per pair of chromatids' DSB formation model could optimize the faithful repair of the self-inflicted DSBs. Each DSB could use three potential intact homologous DNA sequences as repair template: one from the sister chromatid and the two others from the homologous chromosomes.
Collapse
Affiliation(s)
- Nahid Rafiei
- Department of Plant Molecular Biology, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Arnaud Ronceret
- Department of Plant Molecular Biology, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México.
| |
Collapse
|
2
|
Gao J, Zhang N, Liu G, Tian J, Chen M, Wang Y, Xing Y, Zhang Y, Zhao C, Mu X, Yu Y, Niu H, Li J, Tang J, Gou M. Regulation of maize growth and immunity by ZmSKI3-mediated RNA decay and post-transcriptional gene silencing. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2561-2577. [PMID: 39360899 PMCID: PMC11583846 DOI: 10.1111/jipb.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/30/2024] [Accepted: 09/01/2024] [Indexed: 11/24/2024]
Abstract
Disease resistance is often associated with compromised plant growth and yield due to defense-growth tradeoffs. However, key components and mechanisms underlying the defense-growth tradeoffs are rarely explored in maize. In this study, we find that ZmSKI3, a putative subunit of the SUPERKILLER (SKI) complex that mediates the 3'-5' degradation of RNA, regulates both plant development and disease resistance in maize. The Zmski3 mutants showed retarded plant growth and constitutively activated defense responses, while the ZmSKI3 overexpression lines are more susceptible to Curvularia lunata and Bipolaris maydis. Consistently, the expression of defense-related genes was generally up-regulated, while expressions of growth-related genes were mostly down-regulated in leaves of the Zmski3-1 mutant compared to that of wild type. In addition, 223 differentially expressed genes that are up-regulated in Zmski3-1 mutant but down-regulated in the ZmSKI3 overexpression line are identified as potential target genes of ZmSKI3. Moreover, small interfering RNAs targeting the transcripts of the defense- and growth-related genes are differentially accumulated, likely to combat the increase of defense-related transcripts but decrease of growth-related transcripts in Zmski3-1 mutant. Taken together, our study indicates that plant growth and immunity could be regulated by both ZmSKI3-mediated RNA decay and post-transcriptional gene silencing in maize.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Na Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Guohui Liu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Jinjun Tian
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Mengyao Chen
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Ying Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Ye Xing
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Ying Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Chenyang Zhao
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Xiaohuan Mu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhou450002China
- The Shennong LaboratoryZhengzhou450002China
| | - Yanwen Yu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhou450002China
- The Shennong LaboratoryZhengzhou450002China
| | - Hongbin Niu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhou450002China
| | - Jiankun Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhou450002China
- The Shennong LaboratoryZhengzhou450002China
| | - Jihua Tang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhou450002China
- The Shennong LaboratoryZhengzhou450002China
| | - Mingyue Gou
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhou450002China
- The Shennong LaboratoryZhengzhou450002China
| |
Collapse
|
3
|
Xu G, Liu Y, Yu S, Kong D, Tang K, Dai Z, Sun J, Cheng C, Deng C, Yang Z, Tang Q, Li C, Su J, Zhang X. CsMIKC1 regulates inflorescence development and grain production in Cannabis sativa plants. HORTICULTURE RESEARCH 2024; 11:uhae161. [PMID: 39108581 PMCID: PMC11298619 DOI: 10.1093/hr/uhae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/03/2024] [Indexed: 10/13/2024]
Abstract
Female inflorescence is the primary output of medical Cannabis. It contains hundreds of cannabinoids that accumulate in the glandular trichomes. However, little is known about the genetic mechanisms governing Cannabis inflorescence development. In this study, we reported the map-based cloning of a gene determining the number of inflorescences per branch. We named this gene CsMIKC1 since it encodes a transcription factor that belongs to the MIKC-type MADS subfamily. Constitutive overexpression of CsMIKC1 increases inflorescence number per branch, thereby promoting flower production as well as grain yield in transgenic Cannabis plants. We further identified a plant-specific transcription factor, CsBPC2, promoting the expression of CsMIKC1. CsBPC2 mutants and CsMIKC1 mutants were successfully created using the CRISPR-Cas9 system; they exhibited similar inflorescence degeneration and grain reduction. We also validated the interaction of CsMIKC1 with CsVIP3, which suppressed expression of four inflorescence development-related genes in Cannabis. Our findings establish important roles for CsMIKC1 in Cannabis, which could represent a previously unrecognized mechanism of inflorescence development regulated by ethylene.
Collapse
Affiliation(s)
- Gencheng Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsa, Hunan 410205, China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongbei Liu
- School of Pharmacy, Hunan Vocational College of Science and Technology, Changsa, Hunan 410004, China
| | - Shuhao Yu
- Department of Horticulture and Landscape Architecture, Oklahoma State University, Stillwater, OK 74078, USA
| | - Dejing Kong
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Kailei Tang
- The College of Agriculture, Yunan University, Kunming, Yunnan 650504, China
| | - Zhigang Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsa, Hunan 410205, China
| | - Jian Sun
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
- Huazhi Biotech Co., Ltd, Changsha, Hunan 410128, China
| | - Chaohua Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsa, Hunan 410205, China
| | - Canhui Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsa, Hunan 410205, China
| | - Zemao Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsa, Hunan 410205, China
| | - Qing Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsa, Hunan 410205, China
| | - Chao Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianguang Su
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsa, Hunan 410205, China
| | - Xiaoyu Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsa, Hunan 410205, China
| |
Collapse
|
4
|
Blanco-Touriñán N, Pérez-Alemany J, Bourbousse C, Latrasse D, Ait-Mohamed O, Benhamed M, Barneche F, Blázquez MA, Gallego-Bartolomé J, Alabadí D. The plant POLYMERASE-ASSOCIATED FACTOR1 complex links transcription and H2B monoubiquitination genome wide. PLANT PHYSIOLOGY 2024; 195:640-651. [PMID: 38285074 PMCID: PMC11060679 DOI: 10.1093/plphys/kiae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/30/2024]
Abstract
The evolutionarily conserved POLYMERASE-ASSOCIATED FACTOR1 complex (Paf1C) participates in transcription, and research in animals and fungi suggests that it facilitates RNA POLYMERASE II (RNAPII) progression through chromatin. We examined the genomic distribution of the EARLY FLOWERING7 (ELF7) and VERNALIZATION INDEPENDENCE3 subunits of Paf1C in Arabidopsis (Arabidopsis thaliana). The occupancy of both subunits was confined to thousands of gene bodies and positively associated with RNAPII occupancy and the level of gene expression, supporting a role as a transcription elongation factor. We found that monoubiquitinated histone H2B, which marks most transcribed genes, was strongly reduced genome wide in elf7 seedlings. Genome-wide profiling of RNAPII revealed that in elf7 mutants, RNAPII occupancy was reduced throughout the gene body and at the transcription end site of Paf1C-targeted genes, suggesting a direct role for the complex in transcription elongation. Overall, our observations suggest a direct functional link between Paf1C activity, monoubiquitination of histone H2B, and the transition of RNAPII to productive elongation. However, for several genes, Paf1C may also act independently of H2Bub deposition or occupy these genes more stable than H2Bub marking, possibly reflecting the dynamic nature of Paf1C association and H2Bub turnover during transcription.
Collapse
Affiliation(s)
- Noel Blanco-Touriñán
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022 Valencia, Spain
| | - Jaime Pérez-Alemany
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022 Valencia, Spain
| | - Clara Bourbousse
- Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Supérieure (CNRS), CNRS, INSERM, Université PSL, 75230 Paris, France
| | - David Latrasse
- Institute of Plant Sciences Paris-Saclay (Université Paris-Saclay-CNRS), 91190 Gif-sur-Yvette, France
| | - Ouardia Ait-Mohamed
- Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Supérieure (CNRS), CNRS, INSERM, Université PSL, 75230 Paris, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (Université Paris-Saclay-CNRS), 91190 Gif-sur-Yvette, France
| | - Fredy Barneche
- Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Supérieure (CNRS), CNRS, INSERM, Université PSL, 75230 Paris, France
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022 Valencia, Spain
| | | | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022 Valencia, Spain
| |
Collapse
|
5
|
Trinh DC, Martin M, Bald L, Maizel A, Trehin C, Hamant O. Increased gene expression variability hinders the formation of regional mechanical conflicts leading to reduced organ shape robustness. Proc Natl Acad Sci U S A 2023; 120:e2302441120. [PMID: 37459526 PMCID: PMC10372692 DOI: 10.1073/pnas.2302441120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/04/2023] [Indexed: 07/20/2023] Open
Abstract
To relate gene networks and organ shape, one needs to address two wicked problems: i) Gene expression is often variable locally, and shape is reproducible globally; ii) gene expression can have cascading effects on tissue mechanics, with possibly counterintuitive consequences for the final organ shape. Here, we address such wicked problems, taking advantage of simpler plant organ development where shape only emerges from cell division and elongation. We confirm that mutation in VERNALIZATION INDEPENDENCE 3 (VIP3), a subunit of the conserved polymerase-associated factor 1 complex (Paf1C), increases gene expression variability in Arabidopsis. Then, we focused on the Arabidopsis sepal, which exhibits a reproducible shape and stereotypical regional growth patterns. In vip3 sepals, we measured higher growth heterogeneity between adjacent cells. This even culminated in the presence of negatively growing cells in specific growth conditions. Interestingly, such increased local noise interfered with the stereotypical regional pattern of growth. We previously showed that regional differential growth at the wild-type sepal tip triggers a mechanical conflict, to which cells resist by reinforcing their walls, leading to growth arrest. In vip3, the disturbed regional growth pattern delayed organ growth arrest and increased final organ shape variability. Altogether, we propose that gene expression variability is managed by Paf1C to ensure organ robustness by building up mechanical conflicts at the regional scale, instead of the local scale.
Collapse
Affiliation(s)
- Duy-Chi Trinh
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CNRS, 69364Lyon Cedex 07, France
- Department of Pharmacological, Medical and Agronomical Biotechnology, University of Science and Technology of Hanoi, Cau Giay District, Hanoi11300, Vietnam
| | - Marjolaine Martin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CNRS, 69364Lyon Cedex 07, France
| | - Lotte Bald
- Center for Organismal Studies, University of Heidelberg, 69120Heidelberg, Germany
| | - Alexis Maizel
- Center for Organismal Studies, University of Heidelberg, 69120Heidelberg, Germany
| | - Christophe Trehin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CNRS, 69364Lyon Cedex 07, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CNRS, 69364Lyon Cedex 07, France
| |
Collapse
|
6
|
Wucher V, Sodaei R, Amador R, Irimia M, Guigó R. Day-night and seasonal variation of human gene expression across tissues. PLoS Biol 2023; 21:e3001986. [PMID: 36745672 PMCID: PMC9934459 DOI: 10.1371/journal.pbio.3001986] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 02/16/2023] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
Circadian and circannual cycles trigger physiological changes whose reflection on human transcriptomes remains largely uncharted. We used the time and season of death of 932 individuals from GTEx to jointly investigate transcriptomic changes associated with those cycles across multiple tissues. Overall, most variation across tissues during day-night and among seasons was unique to each cycle. Although all tissues remodeled their transcriptomes, brain and gonadal tissues exhibited the highest seasonality, whereas those in the thoracic cavity showed stronger day-night regulation. Core clock genes displayed marked day-night differences across multiple tissues, which were largely conserved in baboon and mouse, but adapted to their nocturnal or diurnal habits. Seasonal variation of expression affected multiple pathways, and it was enriched among genes associated with the immune response, consistent with the seasonality of viral infections. Furthermore, they unveiled cytoarchitectural changes in brain regions. Altogether, our results provide the first combined atlas of how transcriptomes from human tissues adapt to major cycling environmental conditions. This atlas may have multiple applications; for example, drug targets with day-night or seasonal variation in gene expression may benefit from temporally adjusted doses.
Collapse
Affiliation(s)
- Valentin Wucher
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- MeLiS, SynatAc Team, UCBL1—CNRS UMR5284—Inserm U1314, Lyon, France
- French Reference Center on Paraneoplastic Neurological Syndrome, Hospices Civils de Lyon, Lyon, France
- University of Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Reza Sodaei
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Raziel Amador
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- ICREA, Barcelona, Spain
- * E-mail: (MI); (RG)
| | - Roderic Guigó
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail: (MI); (RG)
| |
Collapse
|
7
|
Vigh ML, Bressendorff S, Thieffry A, Arribas-Hernández L, Brodersen P. Nuclear and cytoplasmic RNA exosomes and PELOTA1 prevent miRNA-induced secondary siRNA production in Arabidopsis. Nucleic Acids Res 2022; 50:1396-1415. [PMID: 35037064 PMCID: PMC8860578 DOI: 10.1093/nar/gkab1289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/13/2021] [Accepted: 01/03/2022] [Indexed: 11/14/2022] Open
Abstract
Amplification of short interfering RNA (siRNAs) via RNA-dependent RNA polymerases (RdRPs) is of fundamental importance in RNA silencing. Plant microRNA (miRNA) action generally does not involve engagement of RdRPs, in part thanks to a poorly understood activity of the cytoplasmic exosome adaptor SKI2. Here, we show that inactivation of the exosome subunit RRP45B and SKI2 results in similar patterns of miRNA-induced siRNA production. Furthermore, loss of the nuclear exosome adaptor HEN2 leads to secondary siRNA production from miRNA targets largely distinct from those producing siRNAs in ski2. Importantly, mutation of the Release Factor paralogue PELOTA1 required for subunit dissociation of stalled ribosomes causes siRNA production from miRNA targets overlapping with, but distinct from, those affected in ski2 and rrp45b mutants. We also show that in exosome mutants, miRNA targets can be sorted into producers and non-producers of illicit secondary siRNAs based on trigger miRNA levels and miRNA:target affinity rather than on presence of 5′-cleavage fragments. We propose that stalled RNA-Induced Silencing Complex (RISC) and ribosomes, but not mRNA cleavage fragments released from RISC, trigger siRNA production, and that the exosome limits siRNA amplification by reducing RISC dwell time on miRNA target mRNAs while PELOTA1 does so by reducing ribosome stalling.
Collapse
Affiliation(s)
- Maria L Vigh
- University of Copenhagen, Copenhagen Plant Science Center, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Simon Bressendorff
- University of Copenhagen, Copenhagen Plant Science Center, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Axel Thieffry
- University of Copenhagen, Copenhagen Plant Science Center, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Laura Arribas-Hernández
- University of Copenhagen, Copenhagen Plant Science Center, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Peter Brodersen
- University of Copenhagen, Copenhagen Plant Science Center, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
8
|
Wucher V, Sodaei R, Amador R, Irimia M, Guigó R. Day-night and seasonal variation of human gene expression across tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.02.28.433266. [PMID: 33688644 PMCID: PMC7941615 DOI: 10.1101/2021.02.28.433266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Circadian and circannual cycles trigger physiological changes whose reflection on human transcriptomes remains largely uncharted. We used the time and season of death of 932 individuals from GTEx to jointly investigate transcriptomic changes associated with those cycles across multiple tissues. Overall, most variation across tissues during day-night and among seasons was unique to each cycle. Although all tissues remodeled their transcriptomes, brain and gonadal tissues exhibited the highest seasonality, whereas those in the thoracic cavity showed stronger day-night regulation. Core clock genes displayed marked day-night differences across multiple tissues, which were largely conserved in baboon and mouse, but adapted to their nocturnal or diurnal habits. Seasonal variation of expression affected multiple pathways and it was enriched among genes associated with the immune response, consistent with the seasonality of viral infections. Furthermore, they unveiled cytoarchitectural changes in brain regions. Altogether, our results provide the first combined atlas of how transcriptomes from human tissues adapt to major cycling environmental conditions.
Collapse
Affiliation(s)
- Valentin Wucher
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- NeuroMyogene Institute, SynatAc Team, INSERM U1217/UMR CNRS 5310, Lyon, France
- French Reference Center on Paraneoplastic Neurological Syndrome, Hospices Civils de Lyon, Lyon, France
- University of Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Reza Sodaei
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Raziel Amador
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Roderic Guigó
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
9
|
Pelayo MA, Yamaguchi N, Ito T. One factor, many systems: the floral homeotic protein AGAMOUS and its epigenetic regulatory mechanisms. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102009. [PMID: 33640614 DOI: 10.1016/j.pbi.2021.102009] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 05/15/2023]
Abstract
Tissue-specific transcription factors allow cells to specify new fates by exerting control over gene regulatory networks and the epigenetic landscape of a cell. However, our knowledge of the molecular mechanisms underlying cell fate decisions is limited. In Arabidopsis, the MADS-box transcription factor AGAMOUS (AG) plays a central role in regulating reproductive organ identity and meristem determinacy during flower development. During the vegetative phase, AG transcription is repressed by Polycomb complexes and intronic noncoding RNA. Once AG is transcribed in a spatiotemporally regulated manner during the reproductive phase, AG functions with chromatin regulators to change the chromatin structure at key target gene loci. The concerted actions of AG and the transcription factors functioning downstream of AG recruit general transcription machinery for proper cell fate decision. In this review, we describe progress in AG research that has provided important insights into the regulatory and epigenetic mechanisms underlying cell fate determination in plants.
Collapse
Affiliation(s)
- Margaret Anne Pelayo
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan.
| | - Toshiro Ito
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
10
|
Abstract
The RNA exosome is a ribonucleolytic multiprotein complex that is conserved and essential in all eukaryotes. Although we tend to speak of "the" exosome complex, it should be more correctly viewed as several different subtypes that share a common core. Subtypes of the exosome complex are present in the cytoplasm, the nucleus and the nucleolus of all eukaryotic cells, and carry out the 3'-5' processing and/or degradation of a wide range of RNA substrates.Because the substrate specificity of the exosome complex is determined by cofactors, the system is highly adaptable, and different organisms have adjusted the machinery to their specific needs. Here, we present an overview of exosome complexes and their cofactors that have been described in different eukaryotes.
Collapse
Affiliation(s)
- Cornelia Kilchert
- Institut für Biochemie, Justus-Liebig-Universität Gießen, Gießen, Germany.
| |
Collapse
|
11
|
Fal K, Cortes M, Liu M, Collaudin S, Das P, Hamant O, Trehin C. Paf1c defects challenge the robustness of flower meristem termination in Arabidopsis thaliana. Development 2019; 146:dev.173377. [PMID: 31540913 PMCID: PMC6826038 DOI: 10.1242/dev.173377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 09/11/2019] [Indexed: 11/20/2022]
Abstract
Although accumulating evidence suggests that gene regulation is highly stochastic, genetic screens have successfully uncovered master developmental regulators, questioning the relationship between transcriptional noise and intrinsic robustness of development. To identify developmental modules that are more or less resilient to large-scale genetic perturbations, we used the Arabidopsis polymerase II-associated factor 1 complex (Paf1c) mutant vip3, which is impaired in several RNA polymerase II-dependent transcriptional processes. We found that the control of flower termination was not as robust as classically pictured. In angiosperms, the floral female organs, called carpels, display determinate growth: their development requires the arrest of stem cell maintenance. In vip3 mutant flowers, carpels displayed a highly variable morphology, with different degrees of indeterminacy defects up to wild-type size inflorescence emerging from carpels. This phenotype was associated with variable expression of two key regulators of flower termination and stem cell maintenance in flowers, WUSCHEL and AGAMOUS. The phenotype was also dependent on growth conditions. Together, these results highlight the surprisingly plastic nature of stem cell maintenance in plants and its dependence on Paf1c. Summary: Using a mutant with increased transcriptional noise, we reveal that stem cell maintenance is not as robust as anticipated in plants, even leading to major defects in essential developmental processes such as flower indeterminacy.
Collapse
Affiliation(s)
- Kateryna Fal
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Matthieu Cortes
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Mengying Liu
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Sam Collaudin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Pradeep Das
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Christophe Trehin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRA, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
12
|
Lange H, Ndecky SYA, Gomez-Diaz C, Pflieger D, Butel N, Zumsteg J, Kuhn L, Piermaria C, Chicher J, Christie M, Karaaslan ES, Lang PLM, Weigel D, Vaucheret H, Hammann P, Gagliardi D. RST1 and RIPR connect the cytosolic RNA exosome to the Ski complex in Arabidopsis. Nat Commun 2019; 10:3871. [PMID: 31455787 PMCID: PMC6711988 DOI: 10.1038/s41467-019-11807-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/05/2019] [Indexed: 02/01/2023] Open
Abstract
The RNA exosome is a key 3’−5’ exoribonuclease with an evolutionarily conserved structure and function. Its cytosolic functions require the co-factors SKI7 and the Ski complex. Here we demonstrate by co-purification experiments that the ARM-repeat protein RESURRECTION1 (RST1) and RST1 INTERACTING PROTEIN (RIPR) connect the cytosolic Arabidopsis RNA exosome to the Ski complex. rst1 and ripr mutants accumulate RNA quality control siRNAs (rqc-siRNAs) produced by the post-transcriptional gene silencing (PTGS) machinery when mRNA degradation is compromised. The small RNA populations observed in rst1 and ripr mutants are also detected in mutants lacking the RRP45B/CER7 core exosome subunit. Thus, molecular and genetic evidence supports a physical and functional link between RST1, RIPR and the RNA exosome. Our data reveal the existence of additional cytosolic exosome co-factors besides the known Ski subunits. RST1 is not restricted to plants, as homologues with a similar domain architecture but unknown function exist in animals, including humans. Cytosolic RNA degradation by the RNA exosome requires the Ski complex. Here the authors show that the proteins RST1 and RIPR assist the RNA exosome and the Ski complex in RNA degradation, thereby preventing the production of secondary siRNAs from endogenous mRNAs.
Collapse
Affiliation(s)
- Heike Lange
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| | - Simon Y A Ndecky
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Carlos Gomez-Diaz
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - David Pflieger
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Nicolas Butel
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Julie Zumsteg
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Lauriane Kuhn
- Plateforme protéomique Strasbourg Esplanade FR1589 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Christina Piermaria
- Plateforme protéomique Strasbourg Esplanade FR1589 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Johana Chicher
- Plateforme protéomique Strasbourg Esplanade FR1589 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Michael Christie
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ezgi S Karaaslan
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Detlef Weigel
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Philippe Hammann
- Plateforme protéomique Strasbourg Esplanade FR1589 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Dominique Gagliardi
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
13
|
Li T, Natran A, Chen Y, Vercruysse J, Wang K, Gonzalez N, Dubois M, Inzé D. A genetics screen highlights emerging roles for CPL3, RST1 and URT1 in RNA metabolism and silencing. NATURE PLANTS 2019; 5:539-550. [PMID: 31076735 DOI: 10.1038/s41477-019-0419-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 03/28/2019] [Indexed: 05/19/2023]
Abstract
Post-transcriptional gene silencing (PTGS) is a major mechanism regulating gene expression in higher eukaryotes. To identify novel players in PTGS, a forward genetics screen was performed on an Arabidopsis thaliana line overexpressing a strong growth-repressive gene, ETHYLENE RESPONSE FACTOR6 (ERF6). We identified six independent ethyl-methanesulfonate mutants rescuing the dwarfism of ERF6-overexpressing plants as a result of transgene silencing. Among the causative genes, ETHYLENE-INSENSITIVE5, SUPERKILLER2 and HASTY1 have previously been reported to inhibit PTGS. Notably, the three other causative genes have not, to date, been related to PTGS: UTP:RNA-URIDYLYLTRANSFERASE1 (URT1), C-TERMINAL DOMAIN PHOSPHATASE-LIKE3 (CPL3) and RESURRECTION1 (RST1). We show that these genes may participate in protecting the 3' end of transgene transcripts. We present a model in which URT1, CPL3 and RST1 are classified as PTGS suppressors, as compromisation of these genes provokes the accumulation of aberrant transcripts which, in turn, trigger the production of small interfering RNAs, initiating RNA silencing.
Collapse
Affiliation(s)
- Ting Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Annelore Natran
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Yanjun Chen
- College of Life Science, Wuhan University, Wuhan, China
| | - Jasmien Vercruysse
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Kun Wang
- College of Life Science, Wuhan University, Wuhan, China
| | - Nathalie Gonzalez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- INRA, Université de Bordeaux, Villenave d'Ornon, France
| | - Marieke Dubois
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
14
|
Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance. Proc Natl Acad Sci U S A 2018; 115:3174-3179. [PMID: 29432165 PMCID: PMC5866533 DOI: 10.1073/pnas.1705927115] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Crops carrying broad-spectrum resistance loci provide an effective strategy for controlling infectious disease because these loci typically confer resistance to diverse races of a pathogen or even multiple species of pathogens. Despite their importance, only a few crop broad-spectrum resistance loci have been reported. Here, we report the identification and characterization of the rice bsr-k1 (broad-spectrum resistance Kitaake-1) mutant, which confers broad-spectrum resistance against Magnaporthe oryzae and Xanthomonas oryzae pv oryzae with no major penalty on key agronomic traits. Map-based cloning reveals that Bsr-k1 encodes a tetratricopeptide repeats (TPRs)-containing protein, which binds to mRNAs of multiple OsPAL (OsPAL1-7) genes and promotes their turnover. Loss of function of the Bsr-k1 gene leads to accumulation of OsPAL1-7 mRNAs in the bsr-k1 mutant. Furthermore, overexpression of OsPAL1 in wild-type rice TP309 confers resistance to M. oryzae, supporting the role of OsPAL1 Our discovery of the bsr-k1 allele constitutes a significant conceptual advancement and provides a valuable tool for breeding broad-spectrum resistant rice.
Collapse
|
15
|
Chantarachot T, Bailey-Serres J. Polysomes, Stress Granules, and Processing Bodies: A Dynamic Triumvirate Controlling Cytoplasmic mRNA Fate and Function. PLANT PHYSIOLOGY 2018; 176:254-269. [PMID: 29158329 PMCID: PMC5761823 DOI: 10.1104/pp.17.01468] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/17/2017] [Indexed: 05/05/2023]
Abstract
Discoveries illuminate highly regulated dynamics of mRNA translation, sequestration, and degradation within the cytoplasm of plants.
Collapse
Affiliation(s)
- Thanin Chantarachot
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| |
Collapse
|
16
|
Fal K, Liu M, Duisembekova A, Refahi Y, Haswell ES, Hamant O. Phyllotactic regularity requires the Paf1 complex in Arabidopsis. Development 2017; 144:4428-4436. [PMID: 28982682 PMCID: PMC5769633 DOI: 10.1242/dev.154369] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022]
Abstract
In plants, aerial organs are initiated at stereotyped intervals, both spatially (every 137° in a pattern called phyllotaxis) and temporally (at prescribed time intervals called plastochrons). To investigate the molecular basis of such regularity, mutants with altered architecture have been isolated. However, most of them only exhibit plastochron defects and/or produce a new, albeit equally reproducible, phyllotactic pattern. This leaves open the question of a molecular control of phyllotaxis regularity. Here, we show that phyllotaxis regularity depends on the function of VIP proteins, components of the RNA polymerase II-associated factor 1 complex (Paf1c). Divergence angles between successive organs along the stem exhibited increased variance in vip3-1 and vip3-2 compared with the wild type, in two different growth conditions. Similar results were obtained with the weak vip3-6 allele and in vip6, a mutant for another Paf1c subunit. Mathematical analysis confirmed that these defects could not be explained solely by plastochron defects. Instead, increased variance in phyllotaxis in vip3 was observed at the meristem and related to defects in spatial patterns of auxin activity. Thus, the regularity of spatial, auxin-dependent, patterning at the meristem requires Paf1c.
Collapse
Affiliation(s)
- Kateryna Fal
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Mengying Liu
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Assem Duisembekova
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Yassin Refahi
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Elizabeth S Haswell
- Department of Biology, Mailbox 1137, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| |
Collapse
|
17
|
Bobik K, McCray TN, Ernest B, Fernandez JC, Howell KA, Lane T, Staton M, Burch-Smith TM. The chloroplast RNA helicase ISE2 is required for multiple chloroplast RNA processing steps in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:114-131. [PMID: 28346704 DOI: 10.1111/tpj.13550] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 03/14/2017] [Accepted: 03/21/2017] [Indexed: 05/06/2023]
Abstract
INCREASED SIZE EXCLUSION LIMIT2 (ISE2) is a chloroplast-localized RNA helicase that is indispensable for proper plant development. Chloroplasts in leaves with reduced ISE2 expression have previously been shown to exhibit reduced thylakoid contents and increased stromal volume, indicative of defective development. It has recently been reported that ISE2 is required for the splicing of group II introns from chloroplast transcripts. The current study extends these findings, and presents evidence for ISE2's role in multiple aspects of chloroplast RNA processing beyond group II intron splicing. Loss of ISE2 from Arabidopsis thaliana leaves resulted in defects in C-to-U RNA editing, altered accumulation of chloroplast transcripts and chloroplast-encoded proteins, and defective processing of chloroplast ribosomal RNAs. Potential ISE2 substrates were identified by RNA immunoprecipitation followed by next-generation sequencing (RIP-seq), and the diversity of RNA species identified supports ISE2's involvement in multiple aspects of chloroplast RNA metabolism. Comprehensive phylogenetic analyses revealed that ISE2 is a non-canonical Ski2-like RNA helicase that represents a separate sub-clade unique to green photosynthetic organisms, consistent with its function as an essential protein. Thus ISE2's evolutionary conservation may be explained by its numerous roles in regulating chloroplast gene expression.
Collapse
Affiliation(s)
- Krzysztof Bobik
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tyra N McCray
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Ben Ernest
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jessica C Fernandez
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Katharine A Howell
- Plant Energy Biology, ARC Center of Excellence, University of Western Australia, Perth, Australia
| | - Thomas Lane
- Department of Entomology and Plant Pathology, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Margaret Staton
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Entomology and Plant Pathology, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
18
|
Jensen GS, Fal K, Hamant O, Haswell ES. The RNA Polymerase-Associated Factor 1 Complex Is Required for Plant Touch Responses. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:499-511. [PMID: 28204553 PMCID: PMC5441907 DOI: 10.1093/jxb/erw439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Thigmomorphogenesis is a stereotypical developmental alteration in the plant body plan that can be induced by repeatedly touching plant organs. To unravel how plants sense and record multiple touch stimuli we performed a novel forward genetic screen based on the development of a shorter stem in response to repetitive touch. The touch insensitive (ths1) mutant identified in this screen is defective in some aspects of shoot and root thigmomorphogenesis. The ths1 mutant is an intermediate loss-of-function allele of VERNALIZATION INDEPENDENCE 3 (VIP3), a previously characterized gene whose product is part of the RNA polymerase II-associated factor 1 (Paf1) complex. The Paf1 complex is found in yeast, plants and animals, and has been implicated in histone modification and RNA processing. Several components of the Paf1 complex are required for reduced stem height in response to touch and normal root slanting and coiling responses. Global levels of histone H3K36 trimethylation are reduced in VIP3 mutants. In addition, THS1/VIP3 is required for wild type histone H3K36 trimethylation at the TOUCH3 (TCH3) and TOUCH4 (TCH4) loci and for rapid touch-induced upregulation of TCH3 and TCH4 transcripts. Thus, an evolutionarily conserved chromatin-modifying complex is required for both short- and long-term responses to mechanical stimulation, providing insight into how plants record mechanical signals for thigmomorphogenesis.
Collapse
Affiliation(s)
- Gregory S Jensen
- Department of Biology, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Kateryna Fal
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
| | - Elizabeth S Haswell
- Department of Biology, Washington University in Saint Louis, Saint Louis, MO, USA
| |
Collapse
|
19
|
Zhao L, Kunst L. SUPERKILLER Complex Components Are Required for the RNA Exosome-Mediated Control of Cuticular Wax Biosynthesis in Arabidopsis Inflorescence Stems. PLANT PHYSIOLOGY 2016; 171:960-73. [PMID: 27208312 PMCID: PMC4902624 DOI: 10.1104/pp.16.00450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 04/26/2016] [Indexed: 05/19/2023]
Abstract
ECERIFERUM7 (CER7)/AtRRP45B core subunit of the exosome, the main cellular 3'-to-5' exoribonuclease, is a positive regulator of cuticular wax biosynthesis in Arabidopsis (Arabidopsis thaliana) inflorescence stems. CER7-dependent exosome activity determines stem wax load by controlling transcript levels of the wax-related gene CER3 Characterization of the second-site suppressors of the cer7 mutant revealed that small interfering RNAs (siRNAs) are direct effectors of CER3 expression. To explore the relationship between the exosome and posttranscriptional gene silencing (PTGS) in regulating CER3 transcript levels, we investigated two additional suppressor mutants, wax restorer1 (war1) and war7. We show that WAR1 and WAR7 encode Arabidopsis SUPERKILLER3 (AtSKI3) and AtSKI2, respectively, components of the SKI complex that associates with the exosome during cytoplasmic 3'-to-5' RNA degradation, and that CER7-dependent regulation of wax biosynthesis also requires participation of AtSKI8. Our study further reveals that it is the impairment of the exosome-mediated 3'-5' decay of CER3 transcript in the cer7 mutant that triggers extensive production of siRNAs and efficient PTGS of CER3. This identifies PTGS as a general mechanism for eliminating highly abundant endogenous transcripts that is activated when 3'-to-5' mRNA turnover by the exosome is disrupted. Diminished efficiency of PTGS in ski mutants compared with cer7, as evidenced by lower accumulation of CER3-related siRNAs, suggests that reduced amounts of CER3 transcript are available for siRNA synthesis, possibly because CER3 mRNA that does not interact with SKI is degraded by 5'-to-3' XRN4 exoribonuclease.
Collapse
Affiliation(s)
- Lifang Zhao
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Ljerka Kunst
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
20
|
Branscheid A, Marchais A, Schott G, Lange H, Gagliardi D, Andersen SU, Voinnet O, Brodersen P. SKI2 mediates degradation of RISC 5'-cleavage fragments and prevents secondary siRNA production from miRNA targets in Arabidopsis. Nucleic Acids Res 2015; 43:10975-88. [PMID: 26464441 PMCID: PMC4678812 DOI: 10.1093/nar/gkv1014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/24/2015] [Indexed: 12/19/2022] Open
Abstract
Small regulatory RNAs are fundamental in eukaryotic and prokaryotic gene regulation. In plants, an important element of post-transcriptional control is effected by 20–24 nt microRNAs (miRNAs) and short interfering RNAs (siRNAs) bound to the ARGONAUTE1 (AGO1) protein in an RNA induced silencing complex (RISC). AGO1 may cleave target mRNAs with small RNA complementarity, but the fate of the resulting cleavage fragments remains incompletely understood. Here, we show that SKI2, SKI3 and SKI8, subunits of a cytoplasmic cofactor of the RNA exosome, are required for degradation of RISC 5′, but not 3′-cleavage fragments in Arabidopsis. In the absence of SKI2 activity, many miRNA targets produce siRNAs via the RNA-dependent RNA polymerase 6 (RDR6) pathway. These siRNAs are low-abundant, and map close to the cleavage site. In most cases, siRNAs were produced 5′ to the cleavage site, but several examples of 3′-spreading were also identified. These observations suggest that siRNAs do not simply derive from RDR6 action on stable 5′-cleavage fragments and hence that SKI2 has a direct role in limiting secondary siRNA production in addition to its function in mediating degradation of 5′-cleavage fragments.
Collapse
Affiliation(s)
- Anja Branscheid
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Antonin Marchais
- Swiss Federal Institute of Technology (ETH) Zürich, Department of Biology, LFW D17/D18, Universitätsstrasse 2, CH-8092 Zürich, Switzerland
| | - Gregory Schott
- Swiss Federal Institute of Technology (ETH) Zürich, Department of Biology, LFW D17/D18, Universitätsstrasse 2, CH-8092 Zürich, Switzerland
| | - Heike Lange
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 Rue du Général Zimmer, F-67084 Strasbourg Cedex, France
| | - Dominique Gagliardi
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 Rue du Général Zimmer, F-67084 Strasbourg Cedex, France
| | - Stig Uggerhøj Andersen
- Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
| | - Olivier Voinnet
- Swiss Federal Institute of Technology (ETH) Zürich, Department of Biology, LFW D17/D18, Universitätsstrasse 2, CH-8092 Zürich, Switzerland
| | - Peter Brodersen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
21
|
Zhang X, Zhu Y, Liu X, Hong X, Xu Y, Zhu P, Shen Y, Wu H, Ji Y, Wen X, Zhang C, Zhao Q, Wang Y, Lu J, Guo H. Plant biology. Suppression of endogenous gene silencing by bidirectional cytoplasmic RNA decay in Arabidopsis. Science 2015; 348:120-3. [PMID: 25838384 DOI: 10.1126/science.aaa2618] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Plant immunity against foreign gene invasion takes advantage of posttranscriptional gene silencing (PTGS). How plants elaborately avert inappropriate PTGS of endogenous coding genes remains unclear. We demonstrate in Arabidopsis that both 5'-3' and 3'-5' cytoplasmic RNA decay pathways act as repressors of transgene and endogenous PTGS. Disruption of bidirectional cytoplasmic RNA decay leads to pleiotropic developmental defects and drastic transcriptomic alterations, which are substantially rescued by PTGS mutants. Upon dysfunction of bidirectional RNA decay, a large number of 21- to 22-nucleotide endogenous small interfering RNAs are produced from coding transcripts, including multiple microRNA targets, which could interfere with their cognate gene expression and functions. This study highlights the risk of unwanted PTGS and identifies cytoplasmic RNA decay pathways as safeguards of plant transcriptome and development.
Collapse
Affiliation(s)
- Xinyan Zhang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Zhu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaodan Liu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xinyu Hong
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yang Xu
- Biodynamic Optical Imaging Center, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ping Zhu
- Biodynamic Optical Imaging Center, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yang Shen
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Huihui Wu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yusi Ji
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chen Zhang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qiong Zhao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yichuan Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China. Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Hongwei Guo
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China. Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
22
|
Lange H, Zuber H, Sement FM, Chicher J, Kuhn L, Hammann P, Brunaud V, Bérard C, Bouteiller N, Balzergue S, Aubourg S, Martin-Magniette ML, Vaucheret H, Gagliardi D. The RNA helicases AtMTR4 and HEN2 target specific subsets of nuclear transcripts for degradation by the nuclear exosome in Arabidopsis thaliana. PLoS Genet 2014; 10:e1004564. [PMID: 25144737 PMCID: PMC4140647 DOI: 10.1371/journal.pgen.1004564] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 06/28/2014] [Indexed: 11/19/2022] Open
Abstract
The RNA exosome is the major 3'-5' RNA degradation machine of eukaryotic cells and participates in processing, surveillance and turnover of both nuclear and cytoplasmic RNA. In both yeast and human, all nuclear functions of the exosome require the RNA helicase MTR4. We show that the Arabidopsis core exosome can associate with two related RNA helicases, AtMTR4 and HEN2. Reciprocal co-immunoprecipitation shows that each of the RNA helicases co-purifies with the exosome core complex and with distinct sets of specific proteins. While AtMTR4 is a predominantly nucleolar protein, HEN2 is located in the nucleoplasm and appears to be excluded from nucleoli. We have previously shown that the major role of AtMTR4 is the degradation of rRNA precursors and rRNA maturation by-products. Here, we demonstrate that HEN2 is involved in the degradation of a large number of polyadenylated nuclear exosome substrates such as snoRNA and miRNA precursors, incompletely spliced mRNAs, and spurious transcripts produced from pseudogenes and intergenic regions. Only a weak accumulation of these exosome substrate targets is observed in mtr4 mutants, suggesting that MTR4 can contribute, but plays rather a minor role for the degradation of non-ribosomal RNAs and cryptic transcripts in Arabidopsis. Consistently, transgene post-transcriptional gene silencing (PTGS) is marginally affected in mtr4 mutants, but increased in hen2 mutants, suggesting that it is mostly the nucleoplasmic exosome that degrades aberrant transgene RNAs to limit their entry in the PTGS pathway. Interestingly, HEN2 is conserved throughout green algae, mosses and land plants but absent from metazoans and other eukaryotic lineages. Our data indicate that, in contrast to human and yeast, plants have two functionally specialized RNA helicases that assist the exosome in the degradation of specific nucleolar and nucleoplasmic RNA populations, respectively.
Collapse
Affiliation(s)
- Heike Lange
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Hélène Zuber
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, Strasbourg, France
| | - François M. Sement
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Johana Chicher
- Platforme Protéomique Strasbourg-Esplanade, Centre National de la Recherche Scientifique, FRC 1589, Université de Strasbourg, Strasbourg, France
| | - Lauriane Kuhn
- Platforme Protéomique Strasbourg-Esplanade, Centre National de la Recherche Scientifique, FRC 1589, Université de Strasbourg, Strasbourg, France
| | - Philippe Hammann
- Platforme Protéomique Strasbourg-Esplanade, Centre National de la Recherche Scientifique, FRC 1589, Université de Strasbourg, Strasbourg, France
| | - Véronique Brunaud
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165, Université d'Evry Val d'Essonne, Saclay Plant Sciences, ERL CNRS 8196, Evry, France
| | | | - Nathalie Bouteiller
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Versailles, France
| | - Sandrine Balzergue
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165, Université d'Evry Val d'Essonne, Saclay Plant Sciences, ERL CNRS 8196, Evry, France
| | - Sébastien Aubourg
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165, Université d'Evry Val d'Essonne, Saclay Plant Sciences, ERL CNRS 8196, Evry, France
| | - Marie-Laure Martin-Magniette
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165, Université d'Evry Val d'Essonne, Saclay Plant Sciences, ERL CNRS 8196, Evry, France
- UMR AgroParisTech-INRA MIA 518, Paris, France
| | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Versailles, France
| | - Dominique Gagliardi
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
23
|
Fabre A, Breton A, Coste ME, Colomb V, Dubern B, Lachaux A, Lemale J, Mancini J, Marinier E, Martinez-Vinson C, Peretti N, Perry A, Roquelaure B, Venaille A, Sarles J, Goulet O, Badens C. Syndromic (phenotypic) diarrhoea of infancy/tricho-hepato-enteric syndrome. Arch Dis Child 2014; 99:35-8. [PMID: 24108068 DOI: 10.1136/archdischild-2013-304016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Syndromic diarrhoea/tricho-hepato-enteric syndrome (SD/THE) is a rare congenital syndrome. The main features are intractable diarrhoea of infancy, hair abnormalities, facial dysmorphism, intrauterine growth restriction and immune system abnormalities. It has been linked to abnormalities in two components of the putative human ski complex: SKIV2L and TTC37. The long-term outcome of this syndrome is still unknown. We aim to describe the long-term outcome, in the French cohort of patients born since 1992. DESIGN Review of the clinical and biological features of the 15 patients with SD/THE, followed in France and born between 1992 and 2010. RESULTS All patients presented typical SD/THE syndrome features, of intractable diarrhoea in infancy requiring parenteral nutrition, a facial dysmorphism with hair abnormalities, and immunological disorders. Half of them also had liver and skin abnormalities. Five children died, among which 3 died due to infections. Probabilities of survival according to the Kaplan-Meier method were 93.3%, 86.7%, 74.3 and 61.9%, respectively at 1 year, 5 years, 10 years and 15 years of age. 3/15 were weaned from parenteral nutrition (PN) with likelihood of weaning being 10% at 5 years and 40% at 10 years. At birth 80% were small for gestational age and the short stature persisted in 60%. Haemophagocytic syndrome was noted in 60% and mild mental retardation was present in 60%. CONCLUSIONS SD/THE is a rare disease with high morbidity and mortality. Management should be focused on nutrition and immunological defects.
Collapse
Affiliation(s)
- Alexandre Fabre
- Service de Pédiatrie Multidisciplinaire, Hôpital d'enfants de la Timone, , Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Iglesias J, Trigueros M, Rojas-Triana M, Fernández M, Albar JP, Bustos R, Paz-Ares J, Rubio V. Proteomics identifies ubiquitin–proteasome targets and new roles for chromatin-remodeling in the Arabidopsis response to phosphate starvation. J Proteomics 2013; 94:1-22. [DOI: 10.1016/j.jprot.2013.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/30/2013] [Accepted: 08/14/2013] [Indexed: 11/29/2022]
|
25
|
Schneider C, Tollervey D. Threading the barrel of the RNA exosome. Trends Biochem Sci 2013; 38:485-93. [PMID: 23910895 PMCID: PMC3838930 DOI: 10.1016/j.tibs.2013.06.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/20/2013] [Accepted: 06/26/2013] [Indexed: 12/22/2022]
Abstract
A wide range of in vivo targets for the exosome complex has been established. RNA polymerase III transcripts have emerged as major substrates. The human nucleus has spatially localized forms of the exosome, with matching cofactors. Structural analyses reveal a highly conserved RNA path through the eukaryotic exosome.
In eukaryotes, the exosome complex degrades RNA backbones and plays key roles in RNA processing and surveillance. It was predicted that RNA substrates are threaded through a central channel. This pathway is conserved between eukaryotic and archaeal complexes, even though nuclease activity was lost from the nine-subunit eukaryotic core (EXO-9) and transferred to associated proteins. The exosome cooperates with nuclear and cytoplasmic cofactors, including RNA helicases Mtr4 and Ski2, respectively. Structures of an RNA-bound exosome and both helicases revealed how substrates are channeled through EXO-9 to the associated nuclease Rrp44. Recent high-throughput analyses provided fresh insights relating exosome structure to its diverse in vivo functions. They also revealed surprisingly high degradation rates for newly synthesized RNAs, particularly RNA polymerase III transcripts.
Collapse
Affiliation(s)
- Claudia Schneider
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University, Newcastle upon Tyne, UK.
| | | |
Collapse
|
26
|
Suppression of Arabidopsis protophloem differentiation and root meristem growth by CLE45 requires the receptor-like kinase BAM3. Proc Natl Acad Sci U S A 2013; 110:7074-9. [PMID: 23569225 DOI: 10.1073/pnas.1222314110] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peptide signaling presumably occupies a central role in plant development, yet only few concrete examples of receptor-ligand pairs that act in the context of specific differentiation processes have been described. Here we report that second-site null mutations in the Arabidopsis leucine-rich repeat receptor-like kinase gene barely any meristem 3 (BAM3) perfectly suppress the postembryonic root meristem growth defect and the associated perturbed protophloem development of the brevis radix (brx) mutant. The roots of bam3 mutants specifically resist growth inhibition by the CLAVATA3/ENDOSPERM SURROUNDING REGION 45 (CLE45) peptide ligand. WT plants transformed with a construct for ectopic overexpression of CLE45 could not be recovered, with the exception of a single severely dwarfed and sterile plant that eventually died. By contrast, we obtained numerous transgenic bam3 mutants transformed with the same construct. These transgenic plants displayed a WT phenotype, however, supporting the notion that CLE45 is the likely BAM3 ligand. The results correlate with the observation that external CLE45 application represses protophloem differentiation in WT, but not in bam3 mutants. BAM3, BRX, and CLE45 are expressed in a similar spatiotemporal trend along the developing protophloem, up to the end of the transition zone. Induction of BAM3 expression upon CLE45 application, ectopic overexpression of BAM3 in brx root meristems, and laser ablation experiments suggest that intertwined regulatory activity of BRX, BAM3, and CLE45 could be involved in the proper transition of protophloem cells from proliferation to differentiation, thereby impinging on postembryonic growth capacity of the root meristem.
Collapse
|
27
|
Fabre A, Martinez-Vinson C, Goulet O, Badens C. Syndromic diarrhea/Tricho-hepato-enteric syndrome. Orphanet J Rare Dis 2013; 8:5. [PMID: 23302111 PMCID: PMC3560276 DOI: 10.1186/1750-1172-8-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 12/18/2012] [Indexed: 12/17/2022] Open
Abstract
Abstract Syndromic diarrhea/Tricho-hepato-enteric syndrome (SD/THE) is a rare and severe bowel disorder caused by mutation in SKIV2L or in TTC37, 2 genes encoding subunits of the putative human SKI complex. The estimated prevalence is 1/1,000,000 births and the transmission is autosomal recessive. The classical form is characterized by 5 clinical signs: intractable diarrhea of infancy beginning in the first month of life, usually leading to failure to thrive and requiring parenteral nutrition; facial dysmorphism characterised by prominent forehead and cheeks, broad nasal root and hypertelorism; hair abnormalities described as woolly and easily removable; immune disorders resulting from defective antibody production; intrauterine growth restriction. The aetiology is a defect in TTC37, a TPR containing protein, or in the RNA helicase SKIV2L, both constituting the putative human ski complex. The ski complex is a heterotetrameric cofactor of the cytoplasmic RNA exosome which ensures aberrants mRNAs decay. The diagnosis SD/THE is initially based on clinical findings and confirmed by direct sequencing of TTC37 and SKIV2L. Differential diagnosis with the other causes of intractable diarrhea is easily performed by pathologic investigations. During their clinical course, most of the children require parenteral nutrition and often immunoglobulin supplementation. With time, some of them can be weaned off parenteral nutrition and immunoglobulin supplementation. The prognosis depends on the management and is largely related to the occurrence of parenteral nutrition complications or infections. Even with optimal management, most of the children seem to experience failure to thrive and final short stature. Mild mental retardation is observed in half of the cases. Abstract in French Les diarrhées syndromiques ou syndrome tricho-hepato-enterique (SD/THE) sont un syndrome rare et sévère dont l’incidence est estimée à 1 cas pour 1 million de naissances et la transmission autosomique récessive. La forme typique associe 5 signes cliniques: une diarrhée grave rebelle nécessitant dans la majorité des cas une nutrition parentérale du fait de la malnutrition, une dysmorphie avec un front large et bombé, une racine du nez large et un hypertélorisme, des anomalies des cheveux qui sont fragiles, cassants, incoiffables et qualifiés de « laineux », un retard de croissance intra utérine et des anomalies de l’immunité à type de déficit en immunoglobuline ou d’absence de réponse aux antigènes vaccinaux. Des anomalies de deux protéines peuvent être à l’origine du syndrome SD/THE: TTC37, une protéine à motif TPR et SKIV2L, une hélicase à ARN, toutes 2 étant des constituants du complexe SKI humain. Le complexe SKI est un co-facteur de l’exosome cytoplasmique qui assure la dégradation des ARN aberrants ou exogènes. Le diagnostic est d’abord clinique puis confirmé par le séquençage des gènes TTC37 et SKIV2L. Le diagnostic différentiel avec les autres formes de diarrhées intraitables est fait grâce aux analyses anatomopathologiques qui montrent dans les autres formes, des lésions spécifiques. La prise en charge clinique repose sur la nutrition parentérale et la supplémentation en immunoglobuline si nécessaire. Un certain nombre d’enfants peuvent être sevrés de la nutrition parentérale et des supplémentations en immunoglobulines. En cas d’atteinte hépatique, celle-ci peut être sévère et conduire au décès. Même avec une prise en charge optimale, les enfants présentent une petite taille et, dans la moitié des cas, un retard mental modéré. Disease name/synonyms – Syndromic diarrhea – Phenotypic diarrhea – Tricho-hepato-enteric syndrome – Intractable diarrhea of infancy with facial dysmorphism – Trichorrhexis nodosa and cirrhosis – Neonatal hemochromatosis phenotype with intractable diarrhea and hair abnormalities – Intractable infant diarrhea associated with phenotypic abnormalities and immune deficiency- Syndromatic diarrhea. [ORPHA84064 MIM 222470 and MIM614602]. Possibly chronic diarrhea and skin hyperpigmentation.
Collapse
Affiliation(s)
- Alexandre Fabre
- UMR_S 910, Inserm-Faculté de Médecine, Aix-Marseille Université, 13385 Marseille, France
| | | | | | | |
Collapse
|
28
|
Takagi N, Ueguchi C. Enhancement of meristem formation bybouquet-1, a mis-sense allele of theVERNALIZATION INDEPENDENCE 3gene encoding a WD40 repeat protein inArabidopsis thaliana. Genes Cells 2012; 17:982-93. [DOI: 10.1111/gtc.12014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/05/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Naoto Takagi
- Bioscience and Biotechnology Center; Nagoya University; Chikusa-ku; Nagoya; 464-8601; Japan
| | - Chiharu Ueguchi
- Bioscience and Biotechnology Center; Nagoya University; Chikusa-ku; Nagoya; 464-8601; Japan
| |
Collapse
|
29
|
Plant Exosomes and Cofactors. EUKARYOTIC RNASES AND THEIR PARTNERS IN RNA DEGRADATION AND BIOGENESIS, PART A 2012; 31:31-52. [DOI: 10.1016/b978-0-12-404740-2.00002-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|