1
|
Sempere LF, Azmi AS, Moore A. microRNA-based diagnostic and therapeutic applications in cancer medicine. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1662. [PMID: 33998154 PMCID: PMC8519065 DOI: 10.1002/wrna.1662] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 01/18/2023]
Abstract
It has been almost two decades since the first link between microRNAs and cancer was established. In the ensuing years, this abundant class of short noncoding regulatory RNAs has been studied in virtually all cancer types. This tremendously large body of research has generated innovative technological advances for detection of microRNAs in tissue and bodily fluids, identified the diagnostic, prognostic, and/or predictive value of individual microRNAs or microRNA signatures as potential biomarkers for patient management, shed light on regulatory mechanisms of RNA-RNA interactions that modulate gene expression, uncovered cell-autonomous and cell-to-cell communication roles of specific microRNAs, and developed a battery of viral and nonviral delivery approaches for therapeutic intervention. Despite these intense and prolific research efforts in preclinical and clinical settings, there are a limited number of microRNA-based applications that have been incorporated into clinical practice. We review recent literature and ongoing clinical trials that highlight most promising approaches and standing challenges to translate these findings into viable microRNA-based clinical tools for cancer medicine. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Lorenzo F. Sempere
- Department of Radiology, Precision Health ProgramMichigan State UniversityEast LansingMichiganUSA
| | - Asfar S. Azmi
- Department of OncologyWayne State University School of MedicineDetroitMichiganUSA
- Karmanos Cancer InstituteDetroitMichiganUSA
| | - Anna Moore
- Departments of Radiology and Physiology, Precision Health ProgramMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
2
|
Morais M, Dias F, Teixeira AL, Medeiros R. MicroRNAs and altered metabolism of clear cell renal cell carcinoma: Potential role as aerobic glycolysis biomarkers. Biochim Biophys Acta Gen Subj 2017; 1861:2175-2185. [PMID: 28579513 DOI: 10.1016/j.bbagen.2017.05.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/09/2017] [Accepted: 05/30/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Warburg Effect is a metabolic switch that occurs in most of cancer cells but its advantages are not fully understood. This switch is known to happen in renal cell carcinoma (RCC), which is the most common solid cancer of the adult kidney. RCC carcinogenesis is related to pVHL loss and Hypoxia Inducible Factor (HIF) activation, ultimately leading to the activation of several genes related to glycolysis. MicroRNAs (miRNAs) regulate gene expression at a post-transcriptional level and are also deregulated in several cancers, including RCC. SCOPE OF REVIEW This review focuses in the miRNAs that direct target enzymes involved in glycolysis and that are deregulated in several cancers. It also reviews the possible application of miRNAs in the improvement of clinical patients' management. MAJOR CONCLUSIONS Several miRNAs that direct target enzymes involved in glycolysis are downregulated in cancer, strongly influencing the Warburg Effect. Due to this strong influence, FDG-PET can possibly benefit from measurement of these miRNAs. Restoring their levels can also bring an improvement to the current therapies. GENERAL SIGNIFICANCE Despite being known for almost a hundred years, the Warburg Effect is not fully understood. MiRNAs are now known to be intrinsically connected with this effect and present an opportunity to understand it. They also open a new door to improve current diagnosis and prognosis tests as well as to complement current therapies. This is urgent for cancers like RCC, mostly due to the lack of an efficient screening test for early relapse detection and follow-up and the development of resistance to current therapies.
Collapse
Affiliation(s)
- Mariana Morais
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal; ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal; ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Portugal; Research Department, LPCC-Portuguese League, Against Cancer (NRNorte), Porto, Portugal
| | - Ana L Teixeira
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal; Research Department, LPCC-Portuguese League, Against Cancer (NRNorte), Porto, Portugal.
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal; Research Department, LPCC-Portuguese League, Against Cancer (NRNorte), Porto, Portugal; CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, Porto, Portugal; FMUP, Faculty of Medicine, University of Porto, Portugal.
| |
Collapse
|
3
|
Chen J. The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harb Perspect Med 2016; 6:a026104. [PMID: 26931810 DOI: 10.1101/cshperspect.a026104] [Citation(s) in RCA: 792] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
P53 is a transcription factor highly inducible by many stress signals such as DNA damage, oncogene activation, and nutrient deprivation. Cell-cycle arrest and apoptosis are the most prominent outcomes of p53 activation. Many studies showed that p53 cell-cycle and apoptosis functions are important for preventing tumor development. p53 also regulates many cellular processes including metabolism, antioxidant response, and DNA repair. Emerging evidence suggests that these noncanonical p53 activities may also have potent antitumor effects within certain context. This review focuses on the cell-cycle arrest and apoptosis functions of p53, their roles in tumor suppression, and the regulation of cell fate decision after p53 activation.
Collapse
Affiliation(s)
- Jiandong Chen
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, Florida 33612
| |
Collapse
|
4
|
Fritz HK, Gustafsson A, Ljungberg B, Ceder Y, Axelson H, Dahlbäck B. The Axl-Regulating Tumor Suppressor miR-34a Is Increased in ccRCC but Does Not Correlate with Axl mRNA or Axl Protein Levels. PLoS One 2015; 10:e0135991. [PMID: 26287733 PMCID: PMC4546115 DOI: 10.1371/journal.pone.0135991] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/28/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND High expression of the receptor tyrosine kinase Axl is associated with poor prognosis in patients with Renal Cell Carcinoma (RCC), the most common malignancy of the kidney. The miR-34a has been shown to directly regulate Axl in cancer cells. The miR-34a is a mediator of p53-dependent tumor suppression, and low expression of miR-34a has been associated with worse prognosis in several cancers. Our aim was to elucidate whether miR-34a or the other members of the miR-34 family (miR-34b/c) regulate Axl in RCC. METHODOLOGY AND RESULTS Using western blot, flow cytometry, and RT-qPCR, we showed that Axl mRNA and protein are downregulated in 786-O cells by miR-34a and miR-34c but not by miR-34b. A luciferase reporter assay demonstrated direct interaction between the Axl 3' UTR and miR-34a and miR-34c. The levels of miR-34a/b/c were measured in tumor tissue in a cohort of 198 RCC patients, and the levels of miR-34a were found to be upregulated in clear cell RCC (ccRCC) tumors, but not associated with patient outcome. Neither of the miR-34 family members correlated with Axl mRNA, soluble Axl protein in serum, nor with immunohistochemistry of Axl in tumor tissue. In addition, we measured mRNA levels of a known miR-34a target, HNF4A, and found the HNF4A levels to be decreased in ccRCC tumors, but unexpectedly correlated positively rather than negatively with miR-34a. CONCLUSIONS Although miR-34a and miR-34c can regulate Axl expression in vitro, our data indicates that the miR-34 family members are not the primary regulators of Axl expression in RCC.
Collapse
Affiliation(s)
- Helena K. Fritz
- Lund University, Department of Translational Medicine, Section of Clinical Chemistry, University Hospital Malmö, Malmö, Sweden
| | - Anna Gustafsson
- Lund University, Department of Translational Medicine, Section of Clinical Chemistry, University Hospital Malmö, Malmö, Sweden
| | - Börje Ljungberg
- Umeå University, Departments of Surgical and Perioperative Sciences, Urology and Andrology, Umeå, Sweden
| | - Yvonne Ceder
- Lund University, Department of Laboratory Medicine, Division of Translational Cancer Research, Medicon Village, Lund, Sweden
| | - Håkan Axelson
- Lund University, Department of Laboratory Medicine, Division of Translational Cancer Research, Medicon Village, Lund, Sweden
| | - Björn Dahlbäck
- Lund University, Department of Translational Medicine, Section of Clinical Chemistry, University Hospital Malmö, Malmö, Sweden
- * E-mail:
| |
Collapse
|
5
|
Quantitative proteomic analysis of gene regulation by miR-34a and miR-34c. PLoS One 2014; 9:e92166. [PMID: 24637697 PMCID: PMC3956911 DOI: 10.1371/journal.pone.0092166] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/19/2014] [Indexed: 12/16/2022] Open
Abstract
microRNAs (miRNAs) repress target genes by destabilizing mRNAs and/or by inhibiting translation. The best known factor for target recognition is the so called seed--a short continuous region of Watson-Crick base pairing between nucleotides 2-7 of the miRNA and complementary sequences in 3' untranslated regions of target mRNAs. The miR-34 family consists of three conserved members with important tumor suppressor functions linked to the p53 pathway. The family members share the same seed, raising the question if they also have the same targets. Here, we analyse the effect of miR-34a and miR-34c on protein synthesis by pSILAC. Despite significant overlap, we observe that the impact of both family members on protein synthesis differs. The ability to identify specific targets of a family member is complicated by the occurrence of * strand mediated repression. Transfection of miR-34 chimeras indicates that the 3'end of the miRNA might be responsible for differential regulation in case of targets without a perfect seed site. Pathway analysis of regulated proteins indicates overlapping functions related to cell cycle and the p53 pathway and preferential targeting of several anti-apoptotic proteins by miR-34a. We used luciferase assays to confirm that Vcl and Fkbp8, an important anti-apoptotic protein, are specifically repressed by miR-34a. In summary, we find that miR-34a and miR-34c down-regulate distinct subsets of targets which might mediate different cellular outcomes. Our data provides a rich resource of miR-34 targets that might be relevant for clinical trials that want to implement the miR-34 family in cancer therapy.
Collapse
|
6
|
MicroRNA-34a is dispensable for p53 function as teratogenesis inducer. Arch Toxicol 2014; 88:1749-63. [PMID: 24623309 DOI: 10.1007/s00204-014-1223-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/03/2014] [Indexed: 12/19/2022]
Abstract
The tumor suppressor protein p53 is a powerful regulator of the embryo's susceptibility to diverse teratogenic stimuli, functioning both as a teratogenesis inducer and suppressor. However, the targets that p53 engages to fulfill its functions remain largely undefined. We asked whether the microRNA (miRNA) miR-34 family, identified as one of the main targets of p53, mediates its function as a teratogenesis inducer. For this, pregnant ICR-, p53- and miR-34a-deficient mice, as well as rats, were exposed to 5-aza-2'-deoxycytidine (5-aza), a teratogen inducing limb reduction anomalies (LRA) of the hindlimbs in mice and either the hindlimbs or forelimbs in rats. Using hind- and forelimb buds of 5-aza-exposed embryos, we identified that the miR-34 family members are the most upregulated miRNAs in mouse and rat limb buds, with their increase level being significantly higher in limb buds destined for LRA. We showed that p53 mediates the 5-aza-induced miR-34 transcription followed by met proto-oncogene and growth-arrest-specific 1 target suppression in embryonic limb buds. We demonstrated that p53 regulates the teratogenic response to 5-aza acting as a teratogenesis inducer albeit miR-34a deletion does not affect the susceptibility of mice to 5-aza. Overall, our study thoroughly characterizes the expression and regulation of miR-34 family in teratogen-resistant and teratogen-sensitive embryonic structures and discusses the involvement of epigenetic miRNA-mediated pathway(s) in induced teratogenesis.
Collapse
|
7
|
Okada N, Lin CP, Ribeiro MC, Biton A, Lai G, He X, Bu P, Vogel H, Jablons DM, Keller AC, Wilkinson JE, He B, Speed TP, He L. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev 2014; 28:438-50. [PMID: 24532687 PMCID: PMC3950342 DOI: 10.1101/gad.233585.113] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
As bona fide p53 transcriptional targets, miR-34 microRNAs (miRNAs) exhibit frequent alterations in many human tumor types and elicit multiple p53 downstream effects upon overexpression. Unexpectedly, miR-34 deletion alone fails to impair multiple p53-mediated tumor suppressor effects in mice, possibly due to the considerable redundancy in the p53 pathway. Here, we demonstrate that miR-34a represses HDM4, a potent negative regulator of p53, creating a positive feedback loop acting on p53. In a Kras-induced mouse lung cancer model, miR-34a deficiency alone does not exhibit a strong oncogenic effect. However, miR-34a deficiency strongly promotes tumorigenesis when p53 is haploinsufficient, suggesting that the defective p53-miR-34 feedback loop can enhance oncogenesis in a specific context. The importance of the p53/miR-34/HDM4 feedback loop is further confirmed by an inverse correlation between miR-34 and full-length HDM4 in human lung adenocarcinomas. In addition, human lung adenocarcinomas generate an elevated level of a short HDM4 isoform through alternative polyadenylation. This short HDM4 isoform lacks miR-34-binding sites in the 3' untranslated region (UTR), thereby evading miR-34 regulation to disable the p53-miR-34 positive feedback. Taken together, our results elucidated the intricate cross-talk between p53 and miR-34 miRNAs and revealed an important tumor suppressor effect generated by this positive feedback loop.
Collapse
Affiliation(s)
- Nobuhiro Okada
- Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, California 94705, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Melis JPM, Derks KWJ, Pronk TE, Wackers P, Schaap MM, Zwart E, van Ijcken WFJ, Jonker MJ, Breit TM, Pothof J, van Steeg H, Luijten M. In vivo murine hepatic microRNA and mRNA expression signatures predicting the (non-)genotoxic carcinogenic potential of chemicals. Arch Toxicol 2014; 88:1023-34. [PMID: 24390151 DOI: 10.1007/s00204-013-1189-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/18/2013] [Indexed: 01/06/2023]
Abstract
There is a high need to improve the assessment of, especially non-genotoxic, carcinogenic features of chemicals. We therefore explored a toxicogenomics-based approach using genome-wide microRNA and mRNA expression profiles upon short-term exposure in mice. For this, wild-type mice were exposed for seven days to three different classes of chemicals, i.e., four genotoxic carcinogens (GTXC), seven non-genotoxic carcinogens (NGTXC), and five toxic non-carcinogens. Hepatic expression patterns of mRNA and microRNA transcripts were determined after exposure and used to assess the discriminative power of the in vivo transcriptome for GTXC and NGTXC. A final classifier set, discriminative for GTXC and NGTXC, was generated from the transcriptomic data using a tiered approach. This appeared to be a valid approach, since the predictive power of the final classifier set in three different classifier algorithms was very high for the original training set of chemicals. Subsequent validation in an additional set of chemicals revealed that the predictive power for GTXC remained high, in contrast to NGTXC, which appeared to be more troublesome. Our study demonstrated that the in vivo microRNA-ome has less discriminative power to correctly identify (non-)genotoxic carcinogen classes. The results generally indicate that single mRNA transcripts do have the potential to be applied in risk assessment, but that additional (genomic) strategies are necessary to correctly predict the non-genotoxic carcinogenic potential of a chemical.
Collapse
Affiliation(s)
- Joost P M Melis
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
MicroRNAs (miRNAs) are ~22 nt RNAs that coordinate vast regulatory networks in animals and thereby influence myriad processes. This Review examines evidence that miRNAs have continuous roles in adults in ways that are separable from developmental control. Adult-specific activities for miRNAs have been described in various stem cell populations, in the context of neural function and cardiovascular biology, in metabolism and ageing, and during cancer. In addition to reviewing recent results, we also discuss methods for studying miRNA activities specifically in adults and evaluate their relative strengths and weaknesses. A fuller understanding of continuous functions of miRNAs in adults has bearing on efforts and opportunities to manipulate miRNAs for therapeutic purposes.
Collapse
Affiliation(s)
- Kailiang Sun
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Ave, Box 252, New York, NY 10065
| | - Eric C. Lai
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Ave, Box 252, New York, NY 10065
| |
Collapse
|
10
|
Associations of pri-miR-34b/c and pre-miR-196a2 polymorphisms and their multiplicative interactions with hepatitis B virus mutations with hepatocellular carcinoma risk. PLoS One 2013; 8:e58564. [PMID: 23516510 PMCID: PMC3596299 DOI: 10.1371/journal.pone.0058564] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/05/2013] [Indexed: 02/08/2023] Open
Abstract
Background Genetic polymorphisms of pri-miR-34b/c and pre-miR-196a2 have been reported to be associated with the susceptibility to cancers. However, the effect of these polymorphisms and their interactions with hepatitis B virus (HBV) mutations on the development of hepatocellular carcinoma (HCC) remains largely unknown. We hypothesized that these polymorphisms might interact with the HBV mutations and play a role in hepatocarcinogenesis. Methods Pri-miR-34b/c rs4938723 (T>C) and pre-miR-196a2 rs11614913 (T>C) were genotyped in 3,325 subjects including 1,021 HBV-HCC patients using quantitative PCR. HBV mutations were determined by direct sequencing. Contributions of the polymorphisms and their multiplicative interactions with gender or HCC-related HBV mutations to HCC risk were assessed using multivariate regression analyses. Results rs4938723 CC genotype was significantly associated with HCC risk compared to HBV natural clearance subjects, adjusted for age and gender (adjusted odds ratio [AOR] = 2.01, 95% confidence interval [CI] = 1.16–3.49). rs4938723 variant genotypes in dominant model significantly increased HCC risk in women, compared to female healthy controls (AOR = 1.85, 95% CI = 1.20–2.84) or female HCC-free subjects (AOR = 1.62, 95% CI = 1.14–2.31). rs4938723 CC genotype and rs11614913 TC genotype were significantly associated with increased frequencies of the HCC-related HBV mutations T1674C/G and G1896A, respectively. rs11614913 was not significantly associated with HCC risk, but its CC genotype significantly enhanced the effect of rs4938723 in women. In multivariate regression analyses, rs4938723 in dominant model increased HCC risk (AOR = 1.62, 95% CI = 1.05–2.49), whereas its multiplicative interaction with C1730G, a HBV mutation inversely associated with HCC risk, reduced HCC risk (AOR = 0.34, 95% CI = 0.15–0.81); rs11614913 strengthened the G1896A effect but attenuated the A3120G/T effect on HCC risk. Conclusions rs4938723 might be a genetic risk factor of HCC but its effect on HCC is significantly affected by the HBV mutations. rs11614913 might not be a HCC susceptible factor but it might affect the effects of the HBV mutations or rs4938723 on HCC risk.
Collapse
|