1
|
Rodemoyer B, Kariyawasam G, Subramanian V, Schmidt K. Condensin II interacts with BLM helicase in S phase to maintain genome stability. Commun Biol 2025; 8:492. [PMID: 40133469 PMCID: PMC11937517 DOI: 10.1038/s42003-025-07916-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Vertebrates possess two condensins, I and II, that are essential for chromosome condensation and segregation. Condensin II has also been implicated in maintaining genome integrity outside of mitosis, though the underlying mechanisms are unclear. Here, we found that condensin II interacts with a short linear motif in the disordered N-terminal tail of the Bloom syndrome helicase BLM, contributing to BLM association with nascent DNA and genome stability. Disrupting the BLM-condensin II interaction reduced replication speed, increased fork stalling and sister-chromatid exchanges, delayed repair of DNA double-strand breaks, and led to micronuclei. In S phase, interactions of SMC2 with other condensin II subunits and with BLM weakened temporarily, suggesting a conformational change followed by phosphorylation-induced disruption of BLM interactions with TOP2A and RPA. Our findings suggest a new way by which BLM contributes to genome integrity and implicates condensin II in interphase functions linked to genome stability.
Collapse
Affiliation(s)
- Brian Rodemoyer
- Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA
| | - Ganesha Kariyawasam
- Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA
| | - Veena Subramanian
- Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA
| | - Kristina Schmidt
- Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA.
- Cancer Biology & Evolution Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
2
|
Cook D, Kozmin SG, Yeh E, Petes TD, Bloom K. Dicentric chromosomes are resolved through breakage and repair at their centromeres. Chromosoma 2024; 133:117-134. [PMID: 38165460 PMCID: PMC11180013 DOI: 10.1007/s00412-023-00814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/11/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Chromosomes with two centromeres provide a unique opportunity to study chromosome breakage and DNA repair using completely endogenous cellular machinery. Using a conditional transcriptional promoter to control the second centromere, we are able to activate the dicentric chromosome and follow the appearance of DNA repair products. We find that the rate of appearance of DNA repair products resulting from homology-based mechanisms exceeds the expected rate based on their limited centromere homology (340 bp) and distance from one another (up to 46.3 kb). In order to identify whether DNA breaks originate in the centromere, we introduced 12 single-nucleotide polymorphisms (SNPs) into one of the centromeres. Analysis of the distribution of SNPs in the recombinant centromeres reveals that recombination was initiated with about equal frequency within the conserved centromere DNA elements CDEII and CDEIII of the two centromeres. The conversion tracts range from about 50 bp to the full length of the homology between the two centromeres (340 bp). Breakage and repair events within and between the centromeres can account for the efficiency and distribution of DNA repair products. We propose that in addition to providing a site for kinetochore assembly, the centromere may be a point of stress relief in the face of genomic perturbations.
Collapse
Affiliation(s)
- Diana Cook
- Department of Biology, University of North Carolina Chapel Hill, Chapel Hill, NC, 27599-3280, USA
| | - Stanislav G Kozmin
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Elaine Yeh
- Department of Biology, University of North Carolina Chapel Hill, Chapel Hill, NC, 27599-3280, USA
| | - Thomas D Petes
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kerry Bloom
- Department of Biology, University of North Carolina Chapel Hill, Chapel Hill, NC, 27599-3280, USA.
| |
Collapse
|
3
|
Choudhary R, Niska-Blakie J, Adhil M, Liberi G, Achar YJ, Giannattasio M, Foiani M. Sen1 and Rrm3 ensure permissive topological conditions for replication termination. Cell Rep 2023; 42:112747. [PMID: 37405920 DOI: 10.1016/j.celrep.2023.112747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/17/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Replication forks terminate at TERs and telomeres. Forks that converge or encounter transcription generate topological stress. Combining genetics, genomics, and transmission electron microscopy, we find that Rrm3hPif1 and Sen1hSenataxin helicases assist termination at TERs; Sen1 specifically acts at telomeres. rrm3 and sen1 genetically interact and fail to terminate replication, exhibiting fragility at termination zones (TERs) and telomeres. sen1rrm3 accumulates RNA-DNA hybrids and X-shaped gapped or reversed converging forks at TERs; sen1, but not rrm3, builds up RNA polymerase II (RNPII) at TERs and telomeres. Rrm3 and Sen1 restrain Top1 and Top2 activities, preventing toxic accumulation of positive supercoil at TERs and telomeres. We suggest that Rrm3 and Sen1 coordinate the activities of Top1 and Top2 when forks encounter transcription head on or codirectionally, respectively, thus preventing the slowing down of DNA and RNA polymerases. Hence Rrm3 and Sen1 are indispensable to generate permissive topological conditions for replication termination.
Collapse
Affiliation(s)
- Ramveer Choudhary
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Joanna Niska-Blakie
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Mohamood Adhil
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Giordano Liberi
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza," CNR, Pavia, Italy
| | | | - Michele Giannattasio
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Marco Foiani
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy.
| |
Collapse
|
4
|
Topoisomerase II deficiency leads to a postreplicative structural shift in all Saccharomyces cerevisiae chromosomes. Sci Rep 2021; 11:14940. [PMID: 34294749 PMCID: PMC8298500 DOI: 10.1038/s41598-021-93875-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
The key role of Topoisomerase II (Top2) is the removal of topological intertwines between sister chromatids. In yeast, inactivation of Top2 brings about distinct cell cycle responses. In the case of the conditional top2-5 allele, interphase and mitosis progress on schedule but cells suffer from a chromosome segregation catastrophe. We here show that top2-5 chromosomes fail to enter a Pulsed-Field Gel Electrophoresis (PFGE) in the first cell cycle, a behavior traditionally linked to the presence of replication and recombination intermediates. We distinguished two classes of affected chromosomes: the rDNA-bearing chromosome XII, which fails to enter a PFGE at the beginning of S-phase, and all the other chromosomes, which fail at a postreplicative stage. In synchronously cycling cells, this late PFGE retention is observed in anaphase; however, we demonstrate that this behavior is independent of cytokinesis, stabilization of anaphase bridges, spindle pulling forces and, probably, anaphase onset. Strikingly, once the PFGE retention has occurred it becomes refractory to Top2 re-activation. DNA combing, two-dimensional electrophoresis, genetic analyses, and GFP-tagged DNA damage markers suggest that neither recombination intermediates nor unfinished replication account for the postreplicative PFGE shift, which is further supported by the fact that the shift does not trigger the G2/M checkpoint. We propose that the absence of Top2 activity leads to a general chromosome structural/topological change in mitosis.
Collapse
|
5
|
Boteva L, Nozawa RS, Naughton C, Samejima K, Earnshaw WC, Gilbert N. Common Fragile Sites Are Characterized by Faulty Condensin Loading after Replication Stress. Cell Rep 2021; 32:108177. [PMID: 32966795 PMCID: PMC7511797 DOI: 10.1016/j.celrep.2020.108177] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/22/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Cells coordinate interphase-to-mitosis transition, but recurrent cytogenetic lesions appear at common fragile sites (CFSs), termed CFS expression, in a tissue-specific manner after replication stress, marking regions of instability in cancer. Despite such a distinct defect, no model fully provides a molecular explanation for CFSs. We show that CFSs are characterized by impaired chromatin folding, manifesting as disrupted mitotic structures visible with molecular fluorescence in situ hybridization (FISH) probes in the presence and absence of replication stress. Chromosome condensation assays reveal that compaction-resistant chromatin lesions persist at CFSs throughout the cell cycle and mitosis. Cytogenetic and molecular lesions are marked by faulty condensin loading at CFSs, a defect in condensin-I-mediated compaction, and are coincident with mitotic DNA synthesis (MIDAS). This model suggests that, in conditions of exogenous replication stress, aberrant condensin loading leads to molecular defects and CFS expression, concomitantly providing an environment for MIDAS, which, if not resolved, results in chromosome instability.
Collapse
Affiliation(s)
- Lora Boteva
- MRC Human Genetics Unit, The University of Edinburgh, Crewe Rd South, Edinburgh EH4 2XU, UK
| | - Ryu-Suke Nozawa
- MRC Human Genetics Unit, The University of Edinburgh, Crewe Rd South, Edinburgh EH4 2XU, UK
| | - Catherine Naughton
- MRC Human Genetics Unit, The University of Edinburgh, Crewe Rd South, Edinburgh EH4 2XU, UK
| | - Kumiko Samejima
- Wellcome Centre for Cell Biology, The University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, The University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Nick Gilbert
- MRC Human Genetics Unit, The University of Edinburgh, Crewe Rd South, Edinburgh EH4 2XU, UK.
| |
Collapse
|
6
|
Kidiyoor GR, Li Q, Bastianello G, Bruhn C, Giovannetti I, Mohamood A, Beznoussenko GV, Mironov A, Raab M, Piel M, Restuccia U, Matafora V, Bachi A, Barozzi S, Parazzoli D, Frittoli E, Palamidessi A, Panciera T, Piccolo S, Scita G, Maiuri P, Havas KM, Zhou ZW, Kumar A, Bartek J, Wang ZQ, Foiani M. ATR is essential for preservation of cell mechanics and nuclear integrity during interstitial migration. Nat Commun 2020; 11:4828. [PMID: 32973141 PMCID: PMC7518249 DOI: 10.1038/s41467-020-18580-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
ATR responds to mechanical stress at the nuclear envelope and mediates envelope-associated repair of aberrant topological DNA states. By combining microscopy, electron microscopic analysis, biophysical and in vivo models, we report that ATR-defective cells exhibit altered nuclear plasticity and YAP delocalization. When subjected to mechanical stress or undergoing interstitial migration, ATR-defective nuclei collapse accumulating nuclear envelope ruptures and perinuclear cGAS, which indicate loss of nuclear envelope integrity, and aberrant perinuclear chromatin status. ATR-defective cells also are defective in neuronal migration during development and in metastatic dissemination from circulating tumor cells. Our findings indicate that ATR ensures mechanical coupling of the cytoskeleton to the nuclear envelope and accompanying regulation of envelope-chromosome association. Thus the repertoire of ATR-regulated biological processes extends well beyond its canonical role in triggering biochemical implementation of the DNA damage response. The nucleus is a mechanically stiff organelle of the cell and the DNA damage response protein ATR can localize to the nuclear envelope upon mechanical stress. Here, the authors show that ATR may contribute to the integrity of the nuclear envelope and may play a role in cell migration.
Collapse
Affiliation(s)
| | - Qingsen Li
- IFOM- FIRC Institute of Molecular Oncology, Milan, Italy
| | | | | | | | - Adhil Mohamood
- IFOM- FIRC Institute of Molecular Oncology, Milan, Italy
| | | | | | | | | | | | | | - Angela Bachi
- IFOM- FIRC Institute of Molecular Oncology, Milan, Italy
| | - Sara Barozzi
- IFOM- FIRC Institute of Molecular Oncology, Milan, Italy
| | | | | | | | | | - Stefano Piccolo
- IFOM- FIRC Institute of Molecular Oncology, Milan, Italy.,University of Padova, Padova, Italy
| | - Giorgio Scita
- IFOM- FIRC Institute of Molecular Oncology, Milan, Italy.,University of Milan, Milan, Italy
| | - Paolo Maiuri
- IFOM- FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Zhong-Wei Zhou
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany.,School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Amit Kumar
- Genome and Cell Integrity Lab, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Jiri Bartek
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Karolinska Institute, Stockholm, Sweden
| | - Zhao-Qi Wang
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany.,Friedrich-Schiller University, Jena, Germany
| | - Marco Foiani
- IFOM- FIRC Institute of Molecular Oncology, Milan, Italy. .,University of Milan, Milan, Italy.
| |
Collapse
|
7
|
Meza Gutierrez F, Simsek D, Mizrak A, Deutschbauer A, Braberg H, Johnson J, Xu J, Shales M, Nguyen M, Tamse-Kuehn R, Palm C, Steinmetz LM, Krogan NJ, Toczyski DP. Genetic analysis reveals functions of atypical polyubiquitin chains. eLife 2018; 7:42955. [PMID: 30547882 PMCID: PMC6305200 DOI: 10.7554/elife.42955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/30/2018] [Indexed: 12/27/2022] Open
Abstract
Although polyubiquitin chains linked through all lysines of ubiquitin exist, specific functions are well-established only for lysine-48 and lysine-63 linkages in Saccharomyces cerevisiae. To uncover pathways regulated by distinct linkages, genetic interactions between a gene deletion library and a panel of lysine-to-arginine ubiquitin mutants were systematically identified. The K11R mutant had strong genetic interactions with threonine biosynthetic genes. Consistently, we found that K11R mutants import threonine poorly. The K11R mutant also exhibited a strong genetic interaction with a subunit of the anaphase-promoting complex (APC), suggesting a role in cell cycle regulation. K11-linkages are important for vertebrate APC function, but this was not previously described in yeast. We show that the yeast APC also modifies substrates with K11-linkages in vitro, and that those chains contribute to normal APC-substrate turnover in vivo. This study reveals comprehensive genetic interactomes of polyubiquitin chains and characterizes the role of K11-chains in two biological pathways.
Collapse
Affiliation(s)
- Fernando Meza Gutierrez
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | | | - Arda Mizrak
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | | | - Hannes Braberg
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Jeffrey Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Jiewei Xu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Michelle Nguyen
- Stanford Genome Technology Center, Stanford University, Stanford, United States
| | - Raquel Tamse-Kuehn
- Stanford Genome Technology Center, Stanford University, Stanford, United States
| | - Curt Palm
- Stanford Genome Technology Center, Stanford University, Stanford, United States
| | - Lars M Steinmetz
- Stanford Genome Technology Center, Stanford University, Stanford, United States
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - David P Toczyski
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
8
|
DNA replication stress and its impact on chromosome segregation and tumorigenesis. Semin Cancer Biol 2018; 55:61-69. [PMID: 29692334 DOI: 10.1016/j.semcancer.2018.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 01/11/2023]
Abstract
Genome instability and cell cycle dysregulation are commonly associated with cancer. DNA replication stress driven by oncogene activation during tumorigenesis is now well established as a source of genome instability. Replication stress generates DNA damage not only during S phase, but also in the subsequent mitosis, where it impacts adversely on chromosome segregation. Some regions of the genome seem particularly sensitive to replication stress-induced instability; most notably, chromosome fragile sites. In this article, we review some of the important issues that have emerged in recent years concerning DNA replication stress and fragile site expression, as well as how chromosome instability is minimized by a family of ring-shaped protein complexes known as SMC proteins. Understanding how replication stress impacts on S phase and mitosis in cancer should provide opportunities for the development of novel and tumour-specific treatments.
Collapse
|
9
|
S-phase checkpoint regulations that preserve replication and chromosome integrity upon dNTP depletion. Cell Mol Life Sci 2017; 74:2361-2380. [PMID: 28220209 PMCID: PMC5487892 DOI: 10.1007/s00018-017-2474-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/29/2016] [Accepted: 01/23/2017] [Indexed: 11/18/2022]
Abstract
DNA replication stress, an important source of genomic instability, arises upon different types of DNA replication perturbations, including those that stall replication fork progression. Inhibitors of the cellular pool of deoxynucleotide triphosphates (dNTPs) slow down DNA synthesis throughout the genome. Following depletion of dNTPs, the highly conserved replication checkpoint kinase pathway, also known as the S-phase checkpoint, preserves the functionality and structure of stalled DNA replication forks and prevents chromosome fragmentation. The underlying mechanisms involve pathways extrinsic to replication forks, such as those involving regulation of the ribonucleotide reductase activity, the temporal program of origin firing, and cell cycle transitions. In addition, the S-phase checkpoint modulates the function of replisome components to promote replication integrity. This review summarizes the various functions of the replication checkpoint in promoting replication fork stability and genome integrity in the face of replication stress caused by dNTP depletion.
Collapse
|
10
|
Affiliation(s)
- Dana Branzei
- a IFOM, the FIRC Institute of Molecular Oncology , Milan , Italy
| | - Andrea Ciliberto
- a IFOM, the FIRC Institute of Molecular Oncology , Milan , Italy
| |
Collapse
|
11
|
Prado F, Maya D. Regulation of Replication Fork Advance and Stability by Nucleosome Assembly. Genes (Basel) 2017; 8:genes8020049. [PMID: 28125036 PMCID: PMC5333038 DOI: 10.3390/genes8020049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/04/2017] [Accepted: 01/16/2017] [Indexed: 12/13/2022] Open
Abstract
The advance of replication forks to duplicate chromosomes in dividing cells requires the disassembly of nucleosomes ahead of the fork and the rapid assembly of parental and de novo histones at the newly synthesized strands behind the fork. Replication-coupled chromatin assembly provides a unique opportunity to regulate fork advance and stability. Through post-translational histone modifications and tightly regulated physical and genetic interactions between chromatin assembly factors and replisome components, chromatin assembly: (1) controls the rate of DNA synthesis and adjusts it to histone availability; (2) provides a mechanism to protect the integrity of the advancing fork; and (3) regulates the mechanisms of DNA damage tolerance in response to replication-blocking lesions. Uncoupling DNA synthesis from nucleosome assembly has deleterious effects on genome integrity and cell cycle progression and is linked to genetic diseases, cancer, and aging.
Collapse
Affiliation(s)
- Felix Prado
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), Spanish National Research Council (CSIC), Seville 41092, Spain.
| | - Douglas Maya
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), Spanish National Research Council (CSIC), Seville 41092, Spain.
| |
Collapse
|
12
|
Sun Y, Ji P, Chen T, Zhou X, Yang D, Guo Y, Liu Y, Hu L, Xia D, Liu Y, Multani AS, Shmulevich I, Kucherlapati R, Kopetz S, Sood AK, Hamilton SR, Sun B, Zhang W. MIIP haploinsufficiency induces chromosomal instability and promotes tumour progression in colorectal cancer. J Pathol 2016; 241:67-79. [PMID: 27741356 DOI: 10.1002/path.4823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 12/20/2022]
Abstract
The gene encoding migration and invasion inhibitory protein (MIIP), located on 1p36.22, is a potential tumour suppressor gene in glioma. In this study, we aimed to explore the role and mechanism of action of MIIP in colorectal cancer (CRC). MIIP protein expression gradually decreased along the colorectal adenoma-carcinoma sequence and was negatively correlated with lymph node and distant metastasis in 526 colorectal tissue samples (p < 0.05 for all). Analysis of The Cancer Genome Atlas (TCGA) data showed that decreased MIIP expression was significantly associated with MIIP hemizygous deletion (p = 0.0005), which was detected in 27.7% (52/188) of CRC cases, and associated with lymph node and distant metastasis (p < 0.05 for both). We deleted one copy of the MIIP gene in HCT116 CRC cells using zinc finger nuclease technology and demonstrated that MIIP haploinsufficiency resulted in increased colony formation and cell migration and invasion, which was consistent with the results from siRNA-mediated MIIP knockdown in two CRC cell lines (p < 0.05 for all). Moreover, MIIP haploinsufficiency promoted CRC progression in vivo (p < 0.05). Genomic instability and spectral karyotyping assays demonstrated that MIIP haploinsufficiency induced chromosomal instability (CIN). Besides modulating the downstream proteins of APC/CCdc20 , securin and cyclin B1, MIIP haploinsufficiency inhibited topoisomerase II (Topo II) activity and induced chromosomal missegregation. Therefore, we report that MIIP is a novel potential tumour suppressor gene in CRC. Moreover, we characterized the MIIP gene as a novel CIN suppressor gene, through altering the stability of mitotic checkpoint proteins and disturbing Topo II activity. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yan Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ping Ji
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tao Chen
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xinhui Zhou
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Da Yang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuhong Guo
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yuexin Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Limei Hu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dianren Xia
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanxue Liu
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Asha S Multani
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Raju Kucherlapati
- Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stanley R Hamilton
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Wei Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston-Salem, NC 20174, USA
| |
Collapse
|
13
|
Vijayraghavan S, Tsai FL, Schwacha A. A Checkpoint-Related Function of the MCM Replicative Helicase Is Required to Avert Accumulation of RNA:DNA Hybrids during S-phase and Ensuing DSBs during G2/M. PLoS Genet 2016; 12:e1006277. [PMID: 27556397 PMCID: PMC4996524 DOI: 10.1371/journal.pgen.1006277] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/04/2016] [Indexed: 01/10/2023] Open
Abstract
The Mcm2-7 complex is the catalytic core of the eukaryotic replicative helicase. Here, we identify a new role for this complex in maintaining genome integrity. Using both genetic and cytological approaches, we find that a specific mcm allele (mcm2DENQ) causes elevated genome instability that correlates with the appearance of numerous DNA-damage associated foci of γH2AX and Rad52. We further find that the triggering events for this genome instability are elevated levels of RNA:DNA hybrids and an altered DNA topological state, as over-expression of either RNaseH (an enzyme specific for degradation of RNA in RNA:DNA hybrids) or Topoisomerase 1 (an enzyme that relieves DNA supercoiling) can suppress the mcm2DENQ DNA-damage phenotype. Moreover, the observed DNA damage has several additional unusual properties, in that DNA damage foci appear only after S-phase, in G2/M, and are dependent upon progression into metaphase. In addition, we show that the resultant DNA damage is not due to spontaneous S-phase fork collapse. In total, these unusual mcm2DENQ phenotypes are markedly similar to those of a special previously-studied allele of the checkpoint sensor kinase ATR/MEC1, suggesting a possible regulatory interplay between Mcm2-7 and ATR during unchallenged growth. As RNA:DNA hybrids primarily result from transcription perturbations, we suggest that surveillance-mediated modulation of the Mcm2-7 activity plays an important role in preventing catastrophic conflicts between replication forks and transcription complexes. Possible relationships among these effects and the recently discovered role of Mcm2-7 in the DNA replication checkpoint induced by HU treatment are discussed.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Feng-Ling Tsai
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anthony Schwacha
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
14
|
Earp C, Rowbotham S, Merényi G, Chabes A, Cha RS. S phase block following MEC1ATR inactivation occurs without severe dNTP depletion. Biol Open 2015; 4:1739-43. [PMID: 26603472 PMCID: PMC4736042 DOI: 10.1242/bio.015347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Inactivation of Mec1, the budding yeast ATR, results in a permanent S phase arrest followed by chromosome breakage and cell death during G2/M. The S phase arrest is proposed to stem from a defect in Mec1-mediated degradation of Sml1, a conserved inhibitor of ribonucleotide reductase (RNR), causing a severe depletion in cellular dNTP pools. Here, the casual link between the S phase arrest, Sml1, and dNTP-levels is examined using a temperature sensitive mec1 mutant. In addition to S phase arrest, thermal inactivation of Mec1 leads to constitutively high levels of Sml1 and an S phase arrest. Expression of a novel suppressor, GIS2, a conserved mRNA binding zinc finger protein, rescues the arrest without down-regulating Sml1 levels. The dNTP pool in mec1 is reduced by ∼17% and GIS2 expression restores it, but only partially, to ∼93% of a control. We infer that the permanent S phase block following Mec1 inactivation can be uncoupled from its role in Sml1 down-regulation. Furthermore, unexpectedly modest effects of mec1 and GIS2 on dNTP levels suggest that the S phase arrest is unlikely to result from a severe depletion of dNTP pool as assumed, but a heightened sensitivity to small changes in its availability. Summary: This study, using a temperature sensitive mec1 mutant, reveals that inactivation of Mec1 leads to S phase arrest, and that genome duplication in the absence of Mec1/ATR is exquisitely sensitive to small changes in dNTP levels.
Collapse
Affiliation(s)
- Caroline Earp
- Stem Cell Biology and Developmental Genetics, National Institute for Medical Research, MRC, London NW7 1AA, UK
| | - Samuel Rowbotham
- Stem Cell Biology and Developmental Genetics, National Institute for Medical Research, MRC, London NW7 1AA, UK
| | - Gábor Merényi
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE 901 87, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE 901 87, Sweden
| | - Rita S Cha
- Stem Cell Biology and Developmental Genetics, National Institute for Medical Research, MRC, London NW7 1AA, UK North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor LL57 2UW, UK
| |
Collapse
|
15
|
Thys RG, Lehman CE, Pierce LCT, Wang YH. DNA secondary structure at chromosomal fragile sites in human disease. Curr Genomics 2015; 16:60-70. [PMID: 25937814 PMCID: PMC4412965 DOI: 10.2174/1389202916666150114223205] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 11/22/2022] Open
Abstract
DNA has the ability to form a variety of secondary structures that can interfere with normal cellular processes, and many of these structures have been associated with neurological diseases and cancer. Secondary structure-forming sequences are often found at chromosomal fragile sites, which are hotspots for sister chromatid exchange, chromosomal translocations, and deletions. Structures formed at fragile sites can lead to instability by disrupting normal cellular processes such as DNA replication and transcription. The instability caused by disruption of replication and transcription can lead to DNA breakage, resulting in gene rearrangements and deletions that cause disease. In this review, we discuss the role of DNA secondary structure at fragile sites in human disease.
Collapse
Affiliation(s)
- Ryan G Thys
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Christine E Lehman
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| |
Collapse
|
16
|
Abstract
The primary goal of mitosis is to partition duplicated chromosomes into daughter cells. Eukaryotic chromosomes are equipped with two distinct classes of intrinsic machineries, cohesin and condensins, that ensure their faithful segregation during mitosis. Cohesin holds sister chromatids together immediately after their synthesis during S phase until the establishment of bipolar attachments to the mitotic spindle in metaphase. Condensins, on the other hand, attempt to "resolve" sister chromatids by counteracting cohesin. The products of the balancing acts of cohesin and condensins are metaphase chromosomes, in which two rod-shaped chromatids are connected primarily at the centromere. In anaphase, this connection is released by the action of separase that proteolytically cleaves the remaining population of cohesin. Recent studies uncover how this series of events might be mechanistically coupled with each other and intricately regulated by a number of regulatory factors.
Collapse
Affiliation(s)
- Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
17
|
Kumar A, Mazzanti M, Mistrik M, Kosar M, Beznoussenko GV, Mironov AA, Garrè M, Parazzoli D, Shivashankar GV, Scita G, Bartek J, Foiani M. ATR mediates a checkpoint at the nuclear envelope in response to mechanical stress. Cell 2015; 158:633-46. [PMID: 25083873 PMCID: PMC4121522 DOI: 10.1016/j.cell.2014.05.046] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 04/14/2014] [Accepted: 05/28/2014] [Indexed: 11/16/2022]
Abstract
ATR controls chromosome integrity and chromatin dynamics. We have previously shown that yeast Mec1/ATR promotes chromatin detachment from the nuclear envelope to counteract aberrant topological transitions during DNA replication. Here, we provide evidence that ATR activity at the nuclear envelope responds to mechanical stress. Human ATR associates with the nuclear envelope during S phase and prophase, and both osmotic stress and mechanical stretching relocalize ATR to nuclear membranes throughout the cell cycle. The ATR-mediated mechanical response occurs within the range of physiological forces, is reversible, and is independent of DNA damage signaling. ATR-defective cells exhibit aberrant chromatin condensation and nuclear envelope breakdown. We propose that mechanical forces derived from chromosome dynamics and torsional stress on nuclear membranes activate ATR to modulate nuclear envelope plasticity and chromatin association to the nuclear envelope, thus enabling cells to cope with the mechanical strain imposed by these molecular processes. ATR localizes at the nuclear envelope in S phase and prophase ATR responds to mechanical stress by relocalizing to the nuclear envelope The ATR mechanical response is fast and reversible ATR coordinates chromatin condensation and nuclear envelope breakdown
Collapse
Affiliation(s)
- Amit Kumar
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | | | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77115 Olomouc, Czech Republic
| | - Martin Kosar
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | - Galina V Beznoussenko
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Alexandre A Mironov
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Massimiliano Garrè
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Dario Parazzoli
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - G V Shivashankar
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, 117411 Singapore, Singapore
| | - Giorgio Scita
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy; Università degli Studi di Milano, 20122 Milan, Italy
| | - Jiri Bartek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77115 Olomouc, Czech Republic; Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic.
| | - Marco Foiani
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy; Università degli Studi di Milano, 20122 Milan, Italy.
| |
Collapse
|
18
|
Ramos-Pérez C, Lorenzo-Castrillejo I, Quevedo O, García-Luis J, Matos-Perdomo E, Medina-Coello C, Estévez-Braun A, Machín F. Yeast cytotoxic sensitivity to the antitumour agent β-lapachone depends mainly on oxidative stress and is largely independent of microtubule- or topoisomerase-mediated DNA damage. Biochem Pharmacol 2014; 92:206-19. [DOI: 10.1016/j.bcp.2014.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/09/2014] [Accepted: 09/09/2014] [Indexed: 01/15/2023]
|
19
|
Georgakilas AG, Tsantoulis P, Kotsinas A, Michalopoulos I, Townsend P, Gorgoulis VG. Are common fragile sites merely structural domains or highly organized "functional" units susceptible to oncogenic stress? Cell Mol Life Sci 2014; 71:4519-44. [PMID: 25238782 PMCID: PMC4232749 DOI: 10.1007/s00018-014-1717-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 01/07/2023]
Abstract
Common fragile sites (CFSs) are regions of the genome with a predisposition to DNA double-strand breaks in response to intrinsic (oncogenic) or extrinsic replication stress. CFS breakage is a common feature in carcinogenesis from its earliest stages. Given that a number of oncogenes and tumor suppressors are located within CFSs, a question that emerges is whether fragility in these regions is only a structural “passive” incident or an event with a profound biological effect. Furthermore, there is sparse evidence that other elements, like non-coding RNAs, are positioned with them. By analyzing data from various libraries, like miRbase and ENCODE, we show a prevalence of various cancer-related genes, miRNAs, and regulatory binding sites, such as CTCF within CFSs. We propose that CFSs are not only susceptible structural domains, but highly organized “functional” entities that when targeted, severe repercussion for cell homeostasis occurs.
Collapse
Affiliation(s)
- Alexandros G Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780, Athens, Greece
| | | | | | | | | | | |
Collapse
|
20
|
Kaufmann WK, Carson CC, Omolo B, Filgo AJ, Sambade MJ, Simpson DA, Shields JM, Ibrahim JG, Thomas NE. Mechanisms of chromosomal instability in melanoma. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:457-71. [PMID: 24616037 PMCID: PMC4128338 DOI: 10.1002/em.21859] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 05/25/2023]
Abstract
A systems biology approach was applied to investigate the mechanisms of chromosomal instability in melanoma cell lines. Chromosomal instability was quantified using array comparative genomic hybridization to identify somatic copy number alterations (deletions and duplications). Primary human melanocytes displayed an average of 8.5 alterations per cell primarily representing known polymorphisms. Melanoma cell lines displayed 25 to 131 alterations per cell, with an average of 68, indicative of chromosomal instability. Copy number alterations included approximately equal numbers of deletions and duplications with greater numbers of hemizygous (-1,+1) alterations than homozygous (-2,+2). Melanoma oncogenes, such as BRAF and MITF, and tumor suppressor genes, such as CDKN2A/B and PTEN, were included in these alterations. Duplications and deletions were functional as there were significant correlations between DNA copy number and mRNA expression for these genes. Spectral karyotype analysis of three lines confirmed extensive chromosomal instability with polyploidy, aneuploidy, deletions, duplications, and chromosome rearrangements. Bioinformatic analysis identified a signature of gene expression that was correlated with chromosomal instability but this signature provided no clues to the mechanisms of instability. The signature failed to generate a significant (P = 0.105) prediction of melanoma progression in a separate dataset. Chromosomal instability was not correlated with elements of DNA damage response (DDR) such as radiosensitivity, nucleotide excision repair, expression of the DDR biomarkers γH2AX and P-CHEK2, nor G1 or G2 checkpoint function. Chromosomal instability in melanoma cell lines appears to influence gene function but it is not simply explained by alterations in the system of DDR.
Collapse
Affiliation(s)
- William K Kaufmann
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cauwood JD, Johnson AL, Widger A, Cha RS. Recombinogenic conditions influence partner choice in spontaneous mitotic recombination. PLoS Genet 2013; 9:e1003931. [PMID: 24244194 PMCID: PMC3820797 DOI: 10.1371/journal.pgen.1003931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 09/16/2013] [Indexed: 11/18/2022] Open
Abstract
Mammalian common fragile sites are loci of frequent chromosome breakage and putative recombination hotspots. Here, we utilized Replication Slow Zones (RSZs), a budding yeast homolog of the mammalian common fragile sites, to examine recombination activities at these loci. We found that rates of URA3 inactivation of a hisG-URA3-hisG reporter at RSZ and non-RSZ loci were comparable under all conditions tested, including those that specifically promote chromosome breakage at RSZs (hydroxyurea [HU], mec1Δ sml1Δ, and high temperature), and those that suppress it (sml1Δ and rrm3Δ). These observations indicate that RSZs are not recombination hotspots and that chromosome fragility and recombination activity can be uncoupled. Results confirmed recombinogenic effects of HU, mec1Δ sml1Δ, and rrm3Δ and identified temperature as a regulator of mitotic recombination. We also found that these conditions altered the nature of recombination outcomes, leading to a significant increase in the frequency of URA3 inactivation via loss of heterozygosity (LOH), the type of genetic alteration involved in cancer development. Further analyses revealed that the increase was likely due to down regulation of intrachromatid and intersister (IC/IS) bias in mitotic recombination, and that RSZs exhibited greater sensitivity to HU dependent loss of IC/IS bias than non RSZ loci. These observations suggest that recombinogenic conditions contribute to genome rearrangements not only by increasing the overall recombination activity, but also by altering the nature of recombination outcomes by their effects on recombination partner choice. Similarly, fragile sites may contribute to cancer more frequently than non-fragile loci due their enhanced sensitivity to certain conditions that down-regulate the IC/IS bias rather than intrinsically higher rates of recombination. Chromosome rearrangements are frequently associated with human cancers. Such rearrangement can result from a DNA break followed by an erroneous repair. Mammalian common fragile sites are one of the most extensively studied naturally occurring breakage prone regions of the genome. It has been proposed that fragile sites are recombination hotspots and that increased recombination activity at these loci contribute to cancer. We examined this hypothesis using a model organism, budding yeast Saccharomyces cerevisiae, where a homolog of the mammalian common fragile sites has been identified. Unexpectedly, our results showed that the rate of recombination at the fragile sites was not any higher than non fragile sites, even under the conditions that promoted chromosome breakage at the fragile sites. However, we found that the frequency of loss of heterozygosity (LOH) and translocation, the type of recombination outcomes known to contribute to cancer, to be significantly elevated at fragile sites under certain conditions. These findings suggest that the fragile sites might indeed contribute to cancer more frequently than non-fragile loci, but the reason for this is likely to be due the nature of the recombination outcome(s) rather than higher rates of recombination.
Collapse
Affiliation(s)
- James D. Cauwood
- Stem Cell Biology and Developmental Genetics, National Institute for Medical Research, MRC, The Ridgeway, London, United Kingdom
| | - Anthony L. Johnson
- Stem Cell Biology and Developmental Genetics, National Institute for Medical Research, MRC, The Ridgeway, London, United Kingdom
| | - Alexander Widger
- Stem Cell Biology and Developmental Genetics, National Institute for Medical Research, MRC, The Ridgeway, London, United Kingdom
| | - Rita S. Cha
- Stem Cell Biology and Developmental Genetics, National Institute for Medical Research, MRC, The Ridgeway, London, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Abstract
Genomes are transmitted faithfully from dividing cells to their offspring. Changes that occur during DNA repair, chromosome duplication, and transmission or via recombination provide a natural source of genetic variation. They occur at low frequency because of the intrinsic variable nature of genomes, which we refer to as genome instability. However, genome instability can be enhanced by exposure to external genotoxic agents or as the result of cellular pathologies. We review the causes of genome instability as well as how it results in hyper-recombination, genome rearrangements, and chromosome fragmentation and loss, which are mainly mediated by double-strand breaks or single-strand gaps. Such events are primarily associated with defects in DNA replication and the DNA damage response, and show high incidence at repetitive DNA, non-B DNA structures, DNA-protein barriers, and highly transcribed regions. Identifying the causes of genome instability is crucial to understanding genome dynamics during cell proliferation and its role in cancer, aging, and a number of rare genetic diseases.
Collapse
Affiliation(s)
- Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, 41092 Seville, Spain;
| | | |
Collapse
|
23
|
Lambert S, Carr AM. Impediments to replication fork movement: stabilisation, reactivation and genome instability. Chromosoma 2013; 122:33-45. [DOI: 10.1007/s00412-013-0398-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 02/11/2013] [Accepted: 02/11/2013] [Indexed: 01/02/2023]
|