1
|
Liu P, Zhou G. The evolving role of histone H1 in shaping chromatin and epigenetic landscapes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 358:112557. [PMID: 40381700 DOI: 10.1016/j.plantsci.2025.112557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/11/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
Histone H1, long recognized for its fundamental role in stabilizing nucleosomes and compacting chromatin, is now emerging as a highly dynamic and versatile regulator essential for diverse nuclear processes. This review synthesizes recent advancements that move beyond H1's canonical structural functions, illuminating its intricate, often context-dependent, control over epigenetic modifications, gene expression, and 3D genome organization across eukaryotes. H1's ability to modulate chromatin accessibility and architecture, influenced by its local density, variant composition, and dynamic binding, dictates its species- and locus-specific impacts. H1 critically shapes DNA methylation landscapes and the deposition of key histone marks H3K27me3, often by affecting enzyme accessibility and inter-pathway dynamics. Its transcriptional impact transcends canonical transposable element silencing, extending to the selective fine-tuning of gene expression, with certain H1 variants even functioning as direct transcriptional activators. Regarding 3D genome organization, while H1's local density drives compartmentalization and influences epigenetic states in mammals, in Arabidopsis, it exhibits more complex, locus-specific roles including modulating telomere clustering, interstitial telomeric repeat insulation, and facilitating phase separation for heterochromatin foci assembly. Collectively, these findings establish histone H1 not merely as a structural backbone, but as a sophisticated regulator that intricately links chromatin's physical state to its functional outputs, profoundly impacting genome integrity, gene regulation, and cellular identity.
Collapse
Affiliation(s)
- Peng Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guisheng Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; College for Overseas Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Provincial Key Lab of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Hisaoka M, Komatsu T, Hashimoto T, Lin J, Ohkawa Y, Okuwaki M. Function of HP1BP3 as a linker histone is regulated by linker histone chaperones, NPM1 and TAF-I. Epigenetics Chromatin 2025; 18:14. [PMID: 40140990 PMCID: PMC11948679 DOI: 10.1186/s13072-025-00581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Linker histones constitute a class of proteins that are responsible for the formation of higher-order chromatin structures. Core histones are integral components of nucleosome core particles (NCPs), whereas linker histones bind to linker DNA between NCPs. Heterochromatin protein 1 binding protein 3 (HP1BP3) displays sequence similarity to linker histones, with the exception of the presence of three globular domains in its central region. However, the function of HP1BP3 as a linker histone has not been analyzed previously. The present study aimed to elucidate the function of full-length HP1BP3 as a linker histone variant. RESULTS The results of biochemical analyses demonstrate that HP1BP3 efficiently binds to NCPs with similar efficiency as linker histones, thereby forming a chromatosome. Notwithstanding the presence of three globular domains, the results suggest that a single HP1BP3 binds to a single NCP under our biochemical assay condition. Moreover, our findings revealed that the NCP binding activity of HP1BP3 is regulated by linker histone chaperones, nucleophosmin (NPM1) and template activating factor-I (TAF-I). The globular domains and the C-terminal disordered region of HP1BP3 are responsible for binding to histone chaperones. Chromatin immunoprecipitation-sequence analyses demonstrated that HP1BP3 exhibited weak preferences for the genomic loci where histone H3 active modification marks were enriched, whereas a linker histone variant, H1.2, showed weak preferences for the genomic loci where histone H3 inactive modification marks were enriched. It is noteworthy that the preferential binding tendencies of HP1BP3 and H1.2 to active and inactive genomic loci, respectively, are diminished upon the knockdown of either NPM1 or TAF-I. CONCLUSIONS Our findings indicate that HP1BP3 functions as a linker histone variant and that the chromatin binding preference of linker histones, including HP1BP3, is regulated by linker histone chaperones.
Collapse
Affiliation(s)
- Miharu Hisaoka
- Graduate School of Comprehensive Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305- 8575, Japan
| | - Tetsuro Komatsu
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, 371-8512, Japan
| | - Takuma Hashimoto
- Laboratory of Biochemistry, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Jianhuang Lin
- Graduate School of Comprehensive Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305- 8575, Japan
- PhD Program of Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, 812-0054, Fukuoka, Japan
| | - Mitsuru Okuwaki
- Laboratory of Biochemistry, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
3
|
Gopi S, Brandani GB, Tan C, Jung J, Gu C, Mizutani A, Ochiai H, Sugita Y, Takada S. In silico nanoscope to study the interplay of genome organization and transcription regulation. Nucleic Acids Res 2025; 53:gkaf189. [PMID: 40114377 PMCID: PMC11925733 DOI: 10.1093/nar/gkaf189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/10/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025] Open
Abstract
In eukaryotic genomes, regulated access and communication between cis-regulatory elements (CREs) are necessary for enhancer-mediated transcription of genes. The molecular framework of the chromatin organization underlying such communication remains poorly understood. To better understand it, we develop a multiscale modeling pipeline to build near-atomistic models of the 200 kb Nanog gene locus in mouse embryonic stem cells comprising nucleosomes, transcription factors, co-activators, and RNA polymerase II-mediator complexes. By integrating diverse experimental data, including protein localization, genomic interaction frequencies, cryo-electron microscopy, and single-molecule fluorescence studies, our model offers novel insights into chromatin organization and its role in enhancer-promoter communication. The models equilibrated by high-performance molecular dynamics simulations span a scale of ∼350 nm, revealing an experimentally consistent local and global organization of chromatin and transcriptional machinery. Our models elucidate that the sequence-regulated chromatin accessibility facilitates the recruitment of transcription regulatory proteins exclusively at CREs, guided by the contrasting nucleosome organization compared to other regions. By constructing an experimentally consistent near-atomic model of chromatin in the cellular environment, our approach provides a robust framework for future studies on nuclear compartmentalization, chromatin organization, and transcription regulation.
Collapse
Affiliation(s)
- Soundhararajan Gopi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Giovanni B Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Cheng Tan
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe 650-0047, Japan
| | - Jaewoon Jung
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe 650-0047, Japan
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| | - Chenyang Gu
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Azuki Mizutani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroshi Ochiai
- Division of Gene Expression Dynamics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-0054, Japan
| | - Yuji Sugita
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe 650-0047, Japan
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Li Z, Portillo-Ledesma S, Janani M, Schlick T. Incorporating multiscale methylation effects into nucleosome-resolution chromatin models for simulating mesoscale fibers. J Chem Phys 2025; 162:094107. [PMID: 40047512 PMCID: PMC11888786 DOI: 10.1063/5.0242199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/04/2025] [Indexed: 03/09/2025] Open
Abstract
Histone modifications play a crucial role in regulating chromatin architecture and gene expression. Here we develop a multiscale model for incorporating methylation in our nucleosome-resolution physics-based chromatin model to investigate the mechanisms by which H3K9 and H3K27 trimethylation (H3K9me3 and H3K27me3) influence chromatin structure and gene regulation. We apply three types of energy terms for this purpose: short-range potentials are derived from all-atom molecular dynamics simulations of wildtype and methylated chromatosomes, which revealed subtle local changes; medium-range potentials are derived by incorporating contacts between HP1 and nucleosomes modified by H3K9me3, to incorporate experimental results of enhanced contacts for short chromatin fibers (12 nucleosomes); for long-range interactions we identify H3K9me3- and H3K27me3-associated contacts based on Hi-C maps with a machine learning approach. These combined multiscale effects can model methylation as a first approximation in our mesoscale chromatin model, and applications to gene systems offer new insights into the epigenetic regulation of genomes mediated by H3K9me3 and H3K27me3.
Collapse
Affiliation(s)
| | | | - Moshe Janani
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, New York 10003, USA
| | | |
Collapse
|
5
|
O'Dwyer MR, Azagury M, Furlong K, Alsheikh A, Hall-Ponsele E, Pinto H, Fyodorov DV, Jaber M, Papachristoforou E, Benchetrit H, Ashmore J, Makedonski K, Rahamim M, Hanzevacki M, Yassen H, Skoda S, Levy A, Pollard SM, Skoultchi AI, Buganim Y, Soufi A. Nucleosome fibre topology guides transcription factor binding to enhancers. Nature 2025; 638:251-260. [PMID: 39695228 PMCID: PMC11798873 DOI: 10.1038/s41586-024-08333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
Cellular identity requires the concerted action of multiple transcription factors (TFs) bound together to enhancers of cell-type-specific genes. Despite TFs recognizing specific DNA motifs within accessible chromatin, this information is insufficient to explain how TFs select enhancers1. Here we compared four different TF combinations that induce different cell states, analysing TF genome occupancy, chromatin accessibility, nucleosome positioning and 3D genome organization at the nucleosome resolution. We show that motif recognition on mononucleosomes can decipher only the individual binding of TFs. When bound together, TFs act cooperatively or competitively to target nucleosome arrays with defined 3D organization, displaying motifs in particular patterns. In one combination, motif directionality funnels TF combinatorial binding along chromatin loops, before infiltrating laterally to adjacent enhancers. In other combinations, TFs assemble on motif-dense and highly interconnected loop junctions, and subsequently translocate to nearby lineage-specific sites. We propose a guided-search model in which motif grammar on nucleosome fibres acts as signpost elements, directing TF combinatorial binding to enhancers.
Collapse
Affiliation(s)
- Michael R O'Dwyer
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Meir Azagury
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Katharine Furlong
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, UK
| | - Amani Alsheikh
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Elisa Hall-Ponsele
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Hugo Pinto
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Dmitry V Fyodorov
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Mohammad Jaber
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Eleni Papachristoforou
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Hana Benchetrit
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - James Ashmore
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Kirill Makedonski
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Moran Rahamim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Marta Hanzevacki
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Hazar Yassen
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Samuel Skoda
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Adi Levy
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Steven M Pollard
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, UK
| | - Arthur I Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | - Abdenour Soufi
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK.
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
6
|
Venati SR, Uversky VN. Exploring Intrinsic Disorder in Human Synucleins and Associated Proteins. Int J Mol Sci 2024; 25:8399. [PMID: 39125972 PMCID: PMC11313516 DOI: 10.3390/ijms25158399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
In this work, we explored the intrinsic disorder status of the three members of the synuclein family of proteins-α-, β-, and γ-synucleins-and showed that although all three human synucleins are highly disordered, the highest levels of disorder are observed in γ-synuclein. Our analysis of the peculiarities of the amino acid sequences and modeled 3D structures of the human synuclein family members revealed that the pathological mutations A30P, E46K, H50Q, A53T, and A53E associated with the early onset of Parkinson's disease caused some increase in the local disorder propensity of human α-synuclein. A comparative sequence-based analysis of the synuclein proteins from various evolutionary distant species and evaluation of their levels of intrinsic disorder using a set of commonly used bioinformatics tools revealed that, irrespective of their origin, all members of the synuclein family analyzed in this study were predicted to be highly disordered proteins, indicating that their intrinsically disordered nature represents an evolutionary conserved and therefore functionally important feature. A detailed functional disorder analysis of the proteins in the interactomes of the human synuclein family members utilizing a set of commonly used disorder analysis tools showed that the human α-synuclein interactome has relatively higher levels of intrinsic disorder as compared with the interactomes of human β- and γ- synucleins and revealed that, relative to the β- and γ-synuclein interactomes, α-synuclein interactors are involved in a much broader spectrum of highly diversified functional pathways. Although proteins interacting with three human synucleins were characterized by highly diversified functionalities, this analysis also revealed that the interactors of three human synucleins were involved in three common functional pathways, such as the synaptic vesicle cycle, serotonergic synapse, and retrograde endocannabinoid signaling. Taken together, these observations highlight the critical importance of the intrinsic disorder of human synucleins and their interactors in various neuronal processes.
Collapse
Affiliation(s)
- Sriya Reddy Venati
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
7
|
He S, Yu Y, Wang L, Zhang J, Bai Z, Li G, Li P, Feng X. Linker histone H1 drives heterochromatin condensation via phase separation in Arabidopsis. THE PLANT CELL 2024; 36:1829-1843. [PMID: 38309957 PMCID: PMC11062459 DOI: 10.1093/plcell/koae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/01/2023] [Accepted: 11/25/2023] [Indexed: 02/05/2024]
Abstract
In the eukaryotic nucleus, heterochromatin forms highly condensed, visible foci known as heterochromatin foci (HF). These HF are enriched with linker histone H1, a key player in heterochromatin condensation and silencing. However, it is unknown how H1 aggregates HF and condenses heterochromatin. In this study, we established that H1 facilitates heterochromatin condensation by enhancing inter- and intrachromosomal interactions between and within heterochromatic regions of the Arabidopsis (Arabidopsis thaliana) genome. We demonstrated that H1 drives HF formation via phase separation, which requires its C-terminal intrinsically disordered region (C-IDR). A truncated H1 lacking the C-IDR fails to form foci or recover HF in the h1 mutant background, whereas C-IDR with a short stretch of the globular domain (18 out of 71 amino acids) is sufficient to rescue both defects. In addition, C-IDR is essential for H1's roles in regulating nucleosome repeat length and DNA methylation in Arabidopsis, indicating that phase separation capability is required for chromatin functions of H1. Our data suggest that bacterial H1-like proteins, which have been shown to condense DNA, are intrinsically disordered and capable of mediating phase separation. Therefore, we propose that phase separation mediated by H1 or H1-like proteins may represent an ancient mechanism for condensing chromatin and DNA.
Collapse
Affiliation(s)
- Shengbo He
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yiming Yu
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
| | - Liang Wang
- Institute of Biophysics, Chinese Academy of Science, 15 Datun Road, Chaoyang District, Beijing 100101, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingyi Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhengyong Bai
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Guohong Li
- Institute of Biophysics, Chinese Academy of Science, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Pilong Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoqi Feng
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
| |
Collapse
|
8
|
Zhao J, Lan J, Wang M, Liu C, Fang Z, Song A, Zhang T, Wang L, Zhu B, Chen P, Yu J, Li G. H2AK119ub1 differentially fine-tunes gene expression by modulating canonical PRC1- and H1-dependent chromatin compaction. Mol Cell 2024; 84:1191-1205.e7. [PMID: 38458202 DOI: 10.1016/j.molcel.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/15/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024]
Abstract
Polycomb repressive complex 1 (PRC1) is a key transcriptional regulator in development via modulating chromatin structure and catalyzing histone H2A ubiquitination at Lys119 (H2AK119ub1). H2AK119ub1 is one of the most abundant histone modifications in mammalian cells. However, the function of H2AK119ub1 in polycomb-mediated gene silencing remains debated. In this study, we reveal that H2AK119ub1 has two distinct roles in gene expression, through differentially modulating chromatin compaction mediated by canonical PRC1 and the linker histone H1. Interestingly, we find that H2AK119ub1 plays a positive role in transcription through interfering with the binding of canonical PRC1 to nucleosomes and therefore counteracting chromatin condensation. Conversely, we demonstrate that H2AK119ub1 facilitates H1-dependent chromatin condensation and enhances the silencing of developmental genes in mouse embryonic stem cells, suggesting that H1 may be one of several possible pathways for H2AK119ub1 in repressing transcription. These results provide insights and molecular mechanisms by which H2AK119ub1 differentially fine-tunes developmental gene expression.
Collapse
Affiliation(s)
- Jicheng Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Lan
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Min Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zheng Fang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Aoqun Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tiantian Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Wang
- Beijing Advanced Innovation Center for Structure Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100101, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Juan Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China; New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
9
|
Salinas-Pena M, Rebollo E, Jordan A. Imaging analysis of six human histone H1 variants reveals universal enrichment of H1.2, H1.3, and H1.5 at the nuclear periphery and nucleolar H1X presence. eLife 2024; 12:RP91306. [PMID: 38530350 DOI: 10.7554/elife.91306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.
Collapse
Affiliation(s)
| | - Elena Rebollo
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Albert Jordan
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| |
Collapse
|
10
|
Salinas-Pena M, Serna-Pujol N, Jordan A. Genomic profiling of six human somatic histone H1 variants denotes that H1X accumulates at recently incorporated transposable elements. Nucleic Acids Res 2024; 52:1793-1813. [PMID: 38261975 PMCID: PMC10899769 DOI: 10.1093/nar/gkae014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024] Open
Abstract
Histone H1, a vital component in chromatin structure, binds to linker DNA and regulates nuclear processes. We have investigated the distribution of histone H1 variants in a breast cancer cell line using ChIP-Seq. Two major groups of variants are identified: H1.2, H1.3, H1.5 and H1.0 are abundant in low GC regions (B compartment), while H1.4 and H1X preferentially localize in high GC regions (A compartment). Examining their abundance within transposable elements (TEs) reveals that H1X and H1.4 are enriched in recently-incorporated TEs (SVA and SINE-Alu), while H1.0/H1.2/H1.3/H1.5 are more abundant in older elements. Notably, H1X is particularly enriched in SVA families, while H1.4 shows the highest abundance in young AluY elements. Although low GC variants are generally enriched in LINE, LTR and DNA repeats, H1X and H1.4 are also abundant in a subset of recent LINE-L1 and LTR repeats. H1X enrichment at SVA and Alu is consistent across multiple cell lines. Further, H1X depletion leads to TE derepression, suggesting its role in maintaining TE repression. Overall, this study provides novel insights into the differential distribution of histone H1 variants among repetitive elements, highlighting the potential involvement of H1X in repressing TEs recently incorporated within the human genome.
Collapse
Affiliation(s)
- Mónica Salinas-Pena
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Department of Structural and Molecular Biology, Barcelona 08028, Spain
| | - Núria Serna-Pujol
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Department of Structural and Molecular Biology, Barcelona 08028, Spain
| | - Albert Jordan
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Department of Structural and Molecular Biology, Barcelona 08028, Spain
| |
Collapse
|
11
|
Li Z, Schlick T. Hi-BDiSCO: folding 3D mesoscale genome structures from Hi-C data using brownian dynamics. Nucleic Acids Res 2024; 52:583-599. [PMID: 38015443 PMCID: PMC10810283 DOI: 10.1093/nar/gkad1121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/12/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023] Open
Abstract
The structure and dynamics of the eukaryotic genome are intimately linked to gene regulation and transcriptional activity. Many chromosome conformation capture experiments like Hi-C have been developed to detect genome-wide contact frequencies and quantify loop/compartment structures for different cellular contexts and time-dependent processes. However, a full understanding of these events requires explicit descriptions of representative chromatin and chromosome configurations. With the exponentially growing amount of data from Hi-C experiments, many methods for deriving 3D structures from contact frequency data have been developed. Yet, most reconstruction methods use polymer models with low resolution to predict overall genome structure. Here we present a Brownian Dynamics (BD) approach termed Hi-BDiSCO for producing 3D genome structures from Hi-C and Micro-C data using our mesoscale-resolution chromatin model based on the Discrete Surface Charge Optimization (DiSCO) model. Our approach integrates reconstruction with chromatin simulations at nucleosome resolution with appropriate biophysical parameters. Following a description of our protocol, we present applications to the NXN, HOXC, HOXA and Fbn2 mouse genes ranging in size from 50 to 100 kb. Such nucleosome-resolution genome structures pave the way for pursuing many biomedical applications related to the epigenomic regulation of chromatin and control of human disease.
Collapse
Affiliation(s)
- Zilong Li
- Department of Chemistry, 100 Washington Square East, Silver Building, New York University, New York, NY 10003, USA
- Simons Center for Computational Physical Chemistry, 24 Waverly Place, Silver Building, New York University, New York, NY 10003, USA
| | - Tamar Schlick
- Department of Chemistry, 100 Washington Square East, Silver Building, New York University, New York, NY 10003, USA
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012, USA
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200122, China
- Simons Center for Computational Physical Chemistry, 24 Waverly Place, Silver Building, New York University, New York, NY 10003, USA
| |
Collapse
|
12
|
Portillo-Ledesma S, Chung S, Hoffman J, Schlick T. Regulation of chromatin architecture by transcription factor binding. eLife 2024; 12:RP91320. [PMID: 38241351 PMCID: PMC10945602 DOI: 10.7554/elife.91320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024] Open
Abstract
Transcription factors (TF) bind to chromatin and regulate the expression of genes. The pair Myc:Max binds to E-box regulatory DNA elements throughout the genome to control the transcription of a large group of specific genes. We introduce an implicit modeling protocol for Myc:Max binding to mesoscale chromatin fibers at nucleosome resolution to determine TF effect on chromatin architecture and shed light into its mechanism of gene regulation. We first bind Myc:Max to different chromatin locations and show how it can direct fiber folding and formation of microdomains, and how this depends on the linker DNA length. Second, by simulating increasing concentrations of Myc:Max binding to fibers that differ in the DNA linker length, linker histone density, and acetylation levels, we assess the interplay between Myc:Max and other chromatin internal parameters. Third, we study the mechanism of gene silencing by Myc:Max binding to the Eed gene loci. Overall, our results show how chromatin architecture can be regulated by TF binding. The position of TF binding dictates the formation of microdomains that appear visible only at the ensemble level. At the same time, the level of linker histone and tail acetylation, or different linker DNA lengths, regulates the concentration-dependent effect of TF binding. Furthermore, we show how TF binding can repress gene expression by increasing fiber folding motifs that help compact and occlude the promoter region. Importantly, this effect can be reversed by increasing linker histone density. Overall, these results shed light on the epigenetic control of the genome dictated by TF binding.
Collapse
Affiliation(s)
- Stephanie Portillo-Ledesma
- Department of Chemistry, 100 Washington Square East, Silver Building, New York UniversityNew YorkUnited States
- Simons Center for Computational Physical Chemistry, 24 Waverly Place, Silver Building, New York UniversityNew YorkUnited States
| | - Suckwoo Chung
- Department of Chemistry, 100 Washington Square East, Silver Building, New York UniversityNew YorkUnited States
| | - Jill Hoffman
- Department of Chemistry, 100 Washington Square East, Silver Building, New York UniversityNew YorkUnited States
| | - Tamar Schlick
- Department of Chemistry, 100 Washington Square East, Silver Building, New York UniversityNew YorkUnited States
- Simons Center for Computational Physical Chemistry, 24 Waverly Place, Silver Building, New York UniversityNew YorkUnited States
- Courant Institute of Mathematical Sciences, New York UniversityNew YorkUnited States
- New York University-East China Normal University Center for Computational Chemistry, New York University ShanghaiShanghaiChina
| |
Collapse
|
13
|
Portillo-Ledesma S, Chung S, Hoffman J, Schlick T. Regulation of Chromatin Architecture by Transcription Factor Binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559535. [PMID: 37808867 PMCID: PMC10557667 DOI: 10.1101/2023.09.26.559535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Transcription factors (TF) bind to chromatin and regulate the expression of genes. The pair Myc:Max binds to E-box regulatory DNA elements throughout the genome, controlling transcription of a large group of specific genes. We introduce an implicit modeling protocol for Myc:Max binding to mesoscale chromatin fibers to determine TF effect on chromatin architecture and shed light on its mechanism of gene regulation. We first bind Myc:Max to different chromatin locations and show how it can direct fiber folding and formation of microdomains, and how this depends on the linker DNA length. Second, by simulating increasing concentrations of Myc:Max binding to fibers that differ in the DNA linker length, linker histone density, and acetylation levels, we assess the interplay between Myc:Max and other chromatin internal parameters. Third, we study the mechanism of gene silencing by Myc:Max binding to the Eed gene loci. Overall, our results show how chromatin architecture can be regulated by TF binding. The position of TF binding dictates the formation of microdomains that appear visible only at the ensemble level. On the other hand, the presence of linker histone, acetylations, or different linker DNA lengths regulates the concentration-dependent effect of TF binding. Furthermore, we show how TF binding can repress gene expression by increasing fiber folding motifs that help compact and occlude the promoter region. Importantly, this effect can be reversed by increasing linker histone density. Overall, these results shed light on the epigenetic control of the genome dictated by TF binding.
Collapse
Affiliation(s)
- Stephanie Portillo-Ledesma
- Department of Chemistry, 100 Washington Square East, Silver Building, New York University, New York, NY 10003 U.S.A
- Simons Center for Computational Physical Chemistry, 24 Waverly Place, Silver Building, New York University, New York, NY 10003 U.S.A
| | - Suckwoo Chung
- Department of Chemistry, 100 Washington Square East, Silver Building, New York University, New York, NY 10003 U.S.A
| | - Jill Hoffman
- Department of Chemistry, 100 Washington Square East, Silver Building, New York University, New York, NY 10003 U.S.A
| | - Tamar Schlick
- Department of Chemistry, 100 Washington Square East, Silver Building, New York University, New York, NY 10003 U.S.A
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 U.S.A
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200122 China
- Simons Center for Computational Physical Chemistry, 24 Waverly Place, Silver Building, New York University, New York, NY 10003 U.S.A
| |
Collapse
|
14
|
Teano G, Concia L, Wolff L, Carron L, Biocanin I, Adamusová K, Fojtová M, Bourge M, Kramdi A, Colot V, Grossniklaus U, Bowler C, Baroux C, Carbone A, Probst AV, Schrumpfová PP, Fajkus J, Amiard S, Grob S, Bourbousse C, Barneche F. Histone H1 protects telomeric repeats from H3K27me3 invasion in Arabidopsis. Cell Rep 2023; 42:112894. [PMID: 37515769 DOI: 10.1016/j.celrep.2023.112894] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 12/02/2022] [Accepted: 07/13/2023] [Indexed: 07/31/2023] Open
Abstract
While the pivotal role of linker histone H1 in shaping nucleosome organization is well established, its functional interplays with chromatin factors along the epigenome are just starting to emerge. Here we show that, in Arabidopsis, as in mammals, H1 occupies Polycomb Repressive Complex 2 (PRC2) target genes where it favors chromatin condensation and H3K27me3 deposition. We further show that, contrasting with its conserved function in PRC2 activation at genes, H1 selectively prevents H3K27me3 accumulation at telomeres and large pericentromeric interstitial telomeric repeat (ITR) domains by restricting DNA accessibility to Telomere Repeat Binding (TRB) proteins, a group of H1-related Myb factors mediating PRC2 cis recruitment. This study provides a mechanistic framework by which H1 avoids the formation of gigantic H3K27me3-rich domains at telomeric sequences and contributes to safeguard nucleus architecture.
Collapse
Affiliation(s)
- Gianluca Teano
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France; Université Paris-Saclay, 91190 Orsay, France
| | - Lorenzo Concia
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Léa Wolff
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Léopold Carron
- Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Ivona Biocanin
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France; Université Paris-Saclay, 91190 Orsay, France
| | - Kateřina Adamusová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michael Bourge
- Cytometry Facility, Imagerie-Gif, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Amira Kramdi
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Vincent Colot
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Chris Bowler
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Célia Baroux
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Alessandra Carbone
- Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Aline V Probst
- CNRS UMR6293, Université Clermont Auvergne, INSERM U1103, GReD, CRBC, Clermont-Ferrand, France
| | - Petra Procházková Schrumpfová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Simon Amiard
- CNRS UMR6293, Université Clermont Auvergne, INSERM U1103, GReD, CRBC, Clermont-Ferrand, France
| | - Stefan Grob
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Clara Bourbousse
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Fredy Barneche
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
15
|
Kumar A, Hu MY, Mei Y, Fan Y. CSSQ: a ChIP-seq signal quantifier pipeline. Front Cell Dev Biol 2023; 11:1167111. [PMID: 37305684 PMCID: PMC10248417 DOI: 10.3389/fcell.2023.1167111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Chromatin immunoprecipitation followed by sequencing (ChIP-seq) has revolutionized the studies of epigenomes and the massive increase in ChIP-seq datasets calls for robust and user-friendly computational tools for quantitative ChIP-seq. Quantitative ChIP-seq comparisons have been challenging due to noisiness and variations inherent to ChIP-seq and epigenomes. By employing innovative statistical approaches specially catered to ChIP-seq data distribution and sophisticated simulations along with extensive benchmarking studies, we developed and validated CSSQ as a nimble statistical analysis pipeline capable of differential binding analysis across ChIP-seq datasets with high confidence and sensitivity and low false discovery rate with any defined regions. CSSQ models ChIP-seq data as a finite mixture of Gaussians faithfully that reflects ChIP-seq data distribution. By a combination of Anscombe transformation, k-means clustering, estimated maximum normalization, CSSQ minimizes noise and bias from experimental variations. Further, CSSQ utilizes a non-parametric approach and incorporates comparisons under the null hypothesis by unaudited column permutation to perform robust statistical tests to account for fewer replicates of ChIP-seq datasets. In sum, we present CSSQ as a powerful statistical computational pipeline tailored for ChIP-seq data quantitation and a timely addition to the tool kits of differential binding analysis to decipher epigenomes.
Collapse
Affiliation(s)
- Ashwath Kumar
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Michael Y. Hu
- Department of Computer Science, Princeton University, Princeton, NJ, United States
| | - Yajun Mei
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Yuhong Fan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
16
|
Structural basis of RNA polymerase II transcription on the chromatosome containing linker histone H1. Nat Commun 2022; 13:7287. [PMID: 36435862 PMCID: PMC9701232 DOI: 10.1038/s41467-022-35003-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/15/2022] [Indexed: 11/28/2022] Open
Abstract
In chromatin, linker histone H1 binds to nucleosomes, forming chromatosomes, and changes the transcription status. However, the mechanism by which RNA polymerase II (RNAPII) transcribes the DNA in the chromatosome has remained enigmatic. Here we report the cryo-electron microscopy (cryo-EM) structures of transcribing RNAPII-chromatosome complexes (forms I and II), in which RNAPII is paused at the entry linker DNA region of the chromatosome due to H1 binding. In the form I complex, the H1 bound to the nucleosome restricts the linker DNA orientation, and the exit linker DNA is captured by the RNAPII DNA binding cleft. In the form II complex, the RNAPII progresses a few bases ahead by releasing the exit linker DNA from the RNAPII cleft, and directly clashes with the H1 bound to the nucleosome. The transcription elongation factor Spt4/5 masks the RNAPII DNA binding region, and drastically reduces the H1-mediated RNAPII pausing.
Collapse
|
17
|
Gallego A, Fernández-Justel JM, Martín-Vírgala S, Maslon MM, Gómez M. Slow RNAPII Transcription Elongation Rate, Low Levels of RNAPII Pausing, and Elevated Histone H1 Content at Promoters Associate with Higher m6A Deposition on Nascent mRNAs. Genes (Basel) 2022; 13:genes13091652. [PMID: 36140819 PMCID: PMC9498810 DOI: 10.3390/genes13091652] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
N6-methyladenosine modification (m6A) fine-tunes RNA fate in a variety of ways, thus regulating multiple fundamental biological processes. m6A writers bind to chromatin and interact with RNA polymerase II (RNAPII) during transcription. To evaluate how the dynamics of the transcription process impact m6A deposition, we studied RNAPII elongation rates in mouse embryonic stem cells with altered chromatin configurations, due to reductions in linker histone H1 content. We found that genes transcribed at slow speed are preferentially methylated and display unique signatures at their promoter region, namely high levels of histone H1, together with marks of bivalent chromatin and low RNAPII pausing. They are also highly susceptible to m6A loss upon histone H1 reduction. These results indicate that RNAPII velocity links chromatin structure and the deposition of m6A, highlighting the intricate relationship between different regulatory layers on nascent mRNA molecules.
Collapse
Affiliation(s)
- Alicia Gallego
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - José Miguel Fernández-Justel
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Sara Martín-Vírgala
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Magdalena M. Maslon
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznań, Poland
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| | - María Gómez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
- Correspondence:
| |
Collapse
|
18
|
Fernández-Justel JM, Santa-María C, Martín-Vírgala S, Ramesh S, Ferrera-Lagoa A, Salinas-Pena M, Isoler-Alcaraz J, Maslon MM, Jordan A, Cáceres JF, Gómez M. Histone H1 regulates non-coding RNA turnover on chromatin in a m6A-dependent manner. Cell Rep 2022; 40:111329. [PMID: 36103831 PMCID: PMC7613722 DOI: 10.1016/j.celrep.2022.111329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/04/2022] [Accepted: 08/17/2022] [Indexed: 12/24/2022] Open
Abstract
Linker histones are highly abundant chromatin-associated proteins with well-established structural roles in chromatin and as general transcriptional repressors. In addition, it has been long proposed that histone H1 exerts context-specific effects on gene expression. Here, we identify a function of histone H1 in chromatin structure and transcription using a range of genomic approaches. In the absence of histone H1, there is an increase in the transcription of non-coding RNAs, together with reduced levels of m6A modification leading to their accumulation on chromatin and causing replication-transcription conflicts. This strongly suggests that histone H1 prevents non-coding RNA transcription and regulates non-coding transcript turnover on chromatin. Accordingly, altering the m6A RNA methylation pathway rescues the replicative phenotype of H1 loss. This work unveils unexpected regulatory roles of histone H1 on non-coding RNA turnover and m6A deposition, highlighting the intimate relationship between chromatin conformation, RNA metabolism, and DNA replication to maintain genome performance.
Collapse
Affiliation(s)
- José Miguel Fernández-Justel
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Cristina Santa-María
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Sara Martín-Vírgala
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Shreya Ramesh
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Alberto Ferrera-Lagoa
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Mónica Salinas-Pena
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Carrer de Baldiri Reixac, 15, 08028 Barcelona, Spain
| | - Javier Isoler-Alcaraz
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Magdalena M Maslon
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe South Road, Edinburgh EH4 2XU, UK
| | - Albert Jordan
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Carrer de Baldiri Reixac, 15, 08028 Barcelona, Spain
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe South Road, Edinburgh EH4 2XU, UK
| | - María Gómez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Nicolás Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
19
|
Serna-Pujol N, Salinas-Pena M, Mugianesi F, Le Dily F, Marti-Renom MA, Jordan A. Coordinated changes in gene expression, H1 variant distribution and genome 3D conformation in response to H1 depletion. Nucleic Acids Res 2022; 50:3892-3910. [PMID: 35380694 PMCID: PMC9023279 DOI: 10.1093/nar/gkac226] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/12/2022] Open
Abstract
Up to seven members of the histone H1 family may contribute to chromatin compaction and its regulation in human somatic cells. In breast cancer cells, knock-down of multiple H1 variants deregulates many genes, promotes the appearance of genome-wide accessibility sites and triggers an interferon response via activation of heterochromatic repeats. However, how these changes in the expression profile relate to the re-distribution of H1 variants as well as to genome conformational changes have not been yet studied. Here, we combined ChIP-seq of five endogenous H1 variants with Chromosome Conformation Capture analysis in wild-type and H1.2/H1.4 knock-down T47D cells. The results indicate that H1 variants coexist in the genome in two large groups depending on the local GC content and that their distribution is robust with respect to H1 depletion. Despite the small changes in H1 variants distribution, knock-down of H1 translated into more isolated but de-compacted chromatin structures at the scale of topologically associating domains (TADs). Such changes in TAD structure correlated with a coordinated gene expression response of their resident genes. This is the first report describing simultaneous profiling of five endogenous H1 variants and giving functional evidence of genome topology alterations upon H1 depletion in human cancer cells.
Collapse
Affiliation(s)
- Núria Serna-Pujol
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, 08028 Spain
| | - Mónica Salinas-Pena
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, 08028 Spain
| | - Francesca Mugianesi
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona 08028, Spain
| | - François Le Dily
- Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, Carrer del Doctor Aiguader 88, Barcelona 08003, Spain
| | - Marc A Marti-Renom
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona 08028, Spain.,Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, Carrer del Doctor Aiguader 88, Barcelona 08003, Spain.,Pompeu Fabra University, Doctor Aiguader 88, Barcelona 08003, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Albert Jordan
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, 08028 Spain
| |
Collapse
|
20
|
Zhang S, Postnikov Y, Lobanov A, Furusawa T, Deng T, Bustin M. H3K27ac nucleosomes facilitate HMGN localization at regulatory sites to modulate chromatin binding of transcription factors. Commun Biol 2022; 5:159. [PMID: 35197580 PMCID: PMC8866397 DOI: 10.1038/s42003-022-03099-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 02/01/2022] [Indexed: 11/09/2022] Open
Abstract
Nucleosomes containing acetylated H3K27 are a major epigenetic mark of active chromatin and identify cell-type specific chromatin regulatory regions which serve as binding sites for transcription factors. Here we show that the ubiquitous nucleosome binding proteins HMGN1 and HMGN2 bind preferentially to H3K27ac nucleosomes at cell-type specific chromatin regulatory regions. HMGNs bind directly to the acetylated nucleosome; the H3K27ac residue and linker DNA facilitate the preferential binding of HMGNs to the modified nucleosomes. Loss of HMGNs increases the levels of H3K27me3 and the histone H1 occupancy at enhancers and promoters and alters the interaction of transcription factors with chromatin. These experiments indicate that the H3K27ac epigenetic mark enhances the interaction of architectural protein with chromatin regulatory sites and identify determinants that facilitate the localization of HMGN proteins at regulatory sites to modulate cell-type specific gene expression.
Collapse
Affiliation(s)
- Shaofei Zhang
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Maryland, USA
| | - Yuri Postnikov
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Maryland, USA
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Maryland, MD, USA
| | - Takashi Furusawa
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Maryland, USA
| | - Tao Deng
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Maryland, USA
- Cell Translation Laboratory, NCATS, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Michael Bustin
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Maryland, USA.
| |
Collapse
|
21
|
Abstract
In eukaryotic cells, protein and RNA factors involved in genome activities like transcription, RNA processing, DNA replication, and repair accumulate in self-organizing membraneless chromatin subcompartments. These structures contribute to efficiently conduct chromatin-mediated reactions and to establish specific cellular programs. However, the underlying mechanisms for their formation are only partly understood. Recent studies invoke liquid-liquid phase separation (LLPS) of proteins and RNAs in the establishment of chromatin activity patterns. At the same time, the folding of chromatin in the nucleus can drive genome partitioning into spatially distinct domains. Here, the interplay between chromatin organization, chromatin binding, and LLPS is discussed by comparing and contrasting three prototypical chromatin subcompartments: the nucleolus, clusters of active RNA polymerase II, and pericentric heterochromatin domains. It is discussed how the different ways of chromatin compartmentalization are linked to transcription regulation, the targeting of soluble factors to certain parts of the genome, and to disease-causing genetic aberrations.
Collapse
Affiliation(s)
- Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, 69120 Heidelberg, Germany
| |
Collapse
|
22
|
Soshnev AA, Allis CD, Cesarman E, Melnick AM. Histone H1 Mutations in Lymphoma: A Link(er) between Chromatin Organization, Developmental Reprogramming, and Cancer. Cancer Res 2021; 81:6061-6070. [PMID: 34580064 PMCID: PMC8678342 DOI: 10.1158/0008-5472.can-21-2619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
Aberrant cell fate decisions due to transcriptional misregulation are central to malignant transformation. Histones are the major constituents of chromatin, and mutations in histone-encoding genes are increasingly recognized as drivers of oncogenic transformation. Mutations in linker histone H1 genes were recently identified as drivers of peripheral lymphoid malignancy. Loss of H1 in germinal center B cells results in widespread chromatin decompaction, redistribution of core histone modifications, and reactivation of stem cell-specific transcriptional programs. This review explores how linker histones and mutations therein regulate chromatin structure, highlighting reciprocal relationships between epigenetic circuits, and discusses the emerging role of aberrant three-dimensional chromatin architecture in malignancy.
Collapse
Affiliation(s)
- Alexey A Soshnev
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York.
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Ari M Melnick
- Division of Hematology & Medical Oncology, Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
23
|
Choi J, Lyons DB, Zilberman D. Histone H1 prevents non-CG methylation-mediated small RNA biogenesis in Arabidopsis heterochromatin. eLife 2021; 10:72676. [PMID: 34850679 PMCID: PMC8828055 DOI: 10.7554/elife.72676] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/30/2021] [Indexed: 11/27/2022] Open
Abstract
Flowering plants utilize small RNA (sRNA) molecules to guide DNA methyltransferases to genomic sequences. This RNA-directed DNA methylation (RdDM) pathway preferentially targets euchromatic transposable elements. However, RdDM is thought to be recruited by methylation of histone H3 at lysine 9 (H3K9me), a hallmark of heterochromatin. How RdDM is targeted to euchromatin despite an affinity for H3K9me is unclear. Here, we show that loss of histone H1 enhances heterochromatic RdDM, preferentially at nucleosome linker DNA. Surprisingly, this does not require SHH1, the RdDM component that binds H3K9me. Furthermore, H3K9me is dispensable for RdDM, as is CG DNA methylation. Instead, we find that non-CG methylation is specifically associated with sRNA biogenesis, and without H1 sRNA production quantitatively expands to non-CG-methylated loci. Our results demonstrate that H1 enforces the separation of euchromatic and heterochromatic DNA methylation pathways by excluding the sRNA-generating branch of RdDM from non-CG-methylated heterochromatin. Cells adapt to different roles by turning different groups of genes on and off. One way cells control which genes are on or off is by creating regions of active and inactive DNA, which are created and maintained by different groups of proteins. Genes in active DNA regions can be turned on, while genes in inactive regions are switched off or silenced. Silenced DNA regions also turn off ‘transposable elements’: pieces of DNA that can copy themselves and move to other regions of the genome if they become active. Transposons can be dangerous if they are activated, because they can disrupt genes or regulatory sequences when they move. There are different types of active and inactive DNA, but it is not always clear why these differences exist, or how they are maintained over time. In plants, such as the commonly-studied weed Arabidopsis thaliana, there are two types of inactive DNA, called E and H, that can silence transposons. In both types, DNA has small chemicals called methyl groups attached to it, which help inactivate the DNA. Type E DNA is methylated by a process called RNA-directed DNA methylation (RdDM), but RdDM is rarely seen in type H DNA. Choi, Lyons and Zilberman showed that RdDM is attracted to E and H regions by previously existing methylated DNA. However, in the H regions, a protein called histone H1 blocks RdDM from attaching methyl groups. This helps focus RdDM onto E regions where it is most needed, because E regions contain the types of transposons RdDM is best suited to silence. When Choi, Lyons and Zilberman examined genetically modified A. thaliana plants that do not produce histone H1, they found that RdDM happened in both E and H regions. There are many more H regions than E regions, so stretching RdDM across both made it less effective at silencing DNA. This work shows how different DNA silencing processes are focused onto specific genetic regions, helping explain why there are different types of active and inactive DNA within cells. RdDM has been studied as a way to affect crop growth and yield by altering DNA methylation. These results may help such studies by explaining how RdDM is naturally targeted.
Collapse
Affiliation(s)
- Jaemyung Choi
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - David B Lyons
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Daniel Zilberman
- Department of Cell and Developmental Biology, John Innes Centre, Klosterneuburg, Austria
| |
Collapse
|
24
|
Nirala NK, Li Q, Ghule PN, Chen HJ, Li R, Zhu LJ, Wang R, Rice NP, Mao J, Stein JL, Stein GS, van Wijnen AJ, Ip YT. Hinfp is a guardian of the somatic genome by repressing transposable elements. Proc Natl Acad Sci U S A 2021; 118:e2100839118. [PMID: 34620709 PMCID: PMC8521681 DOI: 10.1073/pnas.2100839118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 12/19/2022] Open
Abstract
Germ cells possess the Piwi-interacting RNA pathway to repress transposable elements and maintain genome stability across generations. Transposable element mobilization in somatic cells does not affect future generations, but nonetheless can lead to pathological outcomes in host tissues. We show here that loss of function of the conserved zinc-finger transcription factor Hinfp causes dysregulation of many host genes and derepression of most transposable elements. There is also substantial DNA damage in somatic tissues of Drosophila after loss of Hinfp. Interference of transposable element mobilization by reverse-transcriptase inhibitors can suppress some of the DNA damage phenotypes. The key cell-autonomous target of Hinfp in this process is Histone1, which encodes linker histones essential for higher-order chromatin assembly. Transgenic expression of Hinfp or Histone1, but not Histone4 of core nucleosome, is sufficient to rescue the defects in repressing transposable elements and host genes. Loss of Hinfp enhances Ras-induced tissue growth and aging-related phenotypes. Therefore, Hinfp is a physiological regulator of Histone1-dependent silencing of most transposable elements, as well as many host genes, and serves as a venue for studying genome instability, cancer progression, neurodegeneration, and aging.
Collapse
Affiliation(s)
- Niraj K Nirala
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Qi Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Prachi N Ghule
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405
- University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405
| | - Hsi-Ju Chen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Rui Li
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Lihua Julie Zhu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ruijia Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Nicholas P Rice
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Junhao Mao
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Janet L Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405
- University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405
| | - Gary S Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405
- University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
25
|
Llorens-Giralt P, Camilleri-Robles C, Corominas M, Climent-Cantó P. Chromatin Organization and Function in Drosophila. Cells 2021; 10:cells10092362. [PMID: 34572010 PMCID: PMC8465611 DOI: 10.3390/cells10092362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022] Open
Abstract
Eukaryotic genomes are packaged into high-order chromatin structures organized in discrete territories inside the cell nucleus, which is surrounded by the nuclear envelope acting as a barrier. This chromatin organization is complex and dynamic and, thus, determining the spatial and temporal distribution and folding of chromosomes within the nucleus is critical for understanding the role of chromatin topology in genome function. Primarily focusing on the regulation of gene expression, we review here how the genome of Drosophila melanogaster is organized into the cell nucleus, from small scale histone–DNA interactions to chromosome and lamina interactions in the nuclear space.
Collapse
|
26
|
Abstract
In this review, Prendergast and Reinberg discuss the likelihood that the family of histone H1 variants may be key to understanding several fundamental processes in chromatin biology and underscore their particular contributions to distinctly significant chromatin-related processes. Major advances in the chromatin and epigenetics fields have uncovered the importance of core histones, histone variants and their post-translational modifications (PTMs) in modulating chromatin structure. However, an acutely understudied related feature of chromatin structure is the role of linker histone H1. Previous assumptions of the functional redundancy of the 11 nonallelic H1 variants are contrasted by their strong evolutionary conservation, variability in their potential PTMs, and increased reports of their disparate functions, sub-nuclear localizations and unique expression patterns in different cell types. The commonly accepted notion that histone H1 functions solely in chromatin compaction and transcription repression is now being challenged by work from multiple groups. These studies highlight histone H1 variants as underappreciated facets of chromatin dynamics that function independently in various chromatin-based processes. In this review, we present notable findings involving the individual somatic H1 variants of which there are seven, underscoring their particular contributions to distinctly significant chromatin-related processes.
Collapse
Affiliation(s)
- Laura Prendergast
- Howard Hughes Medical Institute, New York University Langone Health, New York, New York 10016, USA.,Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical School, New York, New York 10016, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, New York University Langone Health, New York, New York 10016, USA.,Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical School, New York, New York 10016, USA
| |
Collapse
|
27
|
DNA sequence-dependent positioning of the linker histone in a nucleosome: A single-pair FRET study. Biophys J 2021; 120:3747-3763. [PMID: 34293303 DOI: 10.1016/j.bpj.2021.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/25/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
Linker histones (LHs) bind to nucleosomes with their globular domain (gH) positioned in either an on- or an off-dyad binding mode. Here, we study the effect of the linker DNA (L-DNA) sequence on the binding of a full-length LH, Xenopus laevis H1.0b, to a Widom 601 nucleosome core particle (NCP) flanked by two 40 bp long L-DNA arms, by single-pair FRET spectroscopy. We varied the sequence of the 11 bp of L-DNA adjoining the NCP on either side, making the sequence either A-tract, purely GC, or mixed with 64% AT. The labeled gH consistently exhibited higher FRET efficiency with the labeled L-DNA containing the A-tract than that with the pure-GC stretch, even when the stretches were swapped. However, it did not exhibit higher FRET efficiency with the L-DNA containing 64% AT-rich mixed DNA when compared to the pure-GC stretch. We explain our observations with a model that shows that the gH binds on dyad and that two arginines mediate recognition of the A-tract via its characteristically narrow minor groove. To investigate whether this on-dyad minor groove-based recognition was distinct from previously identified off-dyad major groove-based recognition, a nucleosome was designed with A-tracts on both the L-DNA arms. One A-tract was complementary to thymine and the other to deoxyuridine. The major groove of the thymine-tract was lined with methyl groups that were absent from the major groove of the deoxyuridine tract. The gH exhibited similar FRET for both these A-tracts, suggesting that it does not interact with the thymine methyl groups exposed on the major groove. Our observations thus complement previous studies that suggest that different LH isoforms may employ different ways of recognizing AT-rich DNA and A-tracts. This adaptability may enable the LH to universally compact scaffold-associated regions and constitutive heterochromatin, which are rich in such sequences.
Collapse
|
28
|
Hao F, Murphy KJ, Kujirai T, Kamo N, Kato J, Koyama M, Okamato A, Hayashi G, Kurumizaka H, Hayes JJ. Acetylation-modulated communication between the H3 N-terminal tail domain and the intrinsically disordered H1 C-terminal domain. Nucleic Acids Res 2021; 48:11510-11520. [PMID: 33125082 PMCID: PMC7672455 DOI: 10.1093/nar/gkaa949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/02/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Linker histones (H1s) are key structural components of the chromatin of higher eukaryotes. However, the mechanisms by which the intrinsically disordered linker histone carboxy-terminal domain (H1 CTD) influences chromatin structure and gene regulation remain unclear. We previously demonstrated that the CTD of H1.0 undergoes a significant condensation (reduction of end-to-end distance) upon binding to nucleosomes, consistent with a transition to an ordered structure or ensemble of structures. Here, we show that deletion of the H3 N-terminal tail or the installation of acetylation mimics or bona fide acetylation within H3 N-terminal tail alters the condensation of the nucleosome-bound H1 CTD. Additionally, we present evidence that the H3 N-tail influences H1 CTD condensation through direct protein-protein interaction, rather than alterations in linker DNA trajectory. These results support an emerging hypothesis wherein the H1 CTD serves as a nexus for signaling in the nucleosome.
Collapse
Affiliation(s)
- Fanfan Hao
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Kevin J Murphy
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Naoki Kamo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junko Kato
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masako Koyama
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Akimitsu Okamato
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Gosuke Hayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8603, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Jeffrey J Hayes
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
29
|
Lyubitelev AV, Kirpichnikov MP, Studitsky VM. The Role of Linker Histones in Carcinogenesis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Willcockson MA, Healton SE, Weiss CN, Bartholdy BA, Botbol Y, Mishra LN, Sidhwani DS, Wilson TJ, Pinto HB, Maron MI, Skalina KA, Toro LN, Zhao J, Lee CH, Hou H, Yusufova N, Meydan C, Osunsade A, David Y, Cesarman E, Melnick AM, Sidoli S, Garcia BA, Edelmann W, Macian F, Skoultchi AI. H1 histones control the epigenetic landscape by local chromatin compaction. Nature 2021; 589:293-298. [PMID: 33299182 PMCID: PMC8110206 DOI: 10.1038/s41586-020-3032-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 10/06/2020] [Indexed: 01/29/2023]
Abstract
H1 linker histones are the most abundant chromatin-binding proteins1. In vitro studies indicate that their association with chromatin determines nucleosome spacing and enables arrays of nucleosomes to fold into more compact chromatin structures. However, the in vivo roles of H1 are poorly understood2. Here we show that the local density of H1 controls the balance of repressive and active chromatin domains by promoting genomic compaction. We generated a conditional triple-H1-knockout mouse strain and depleted H1 in haematopoietic cells. H1 depletion in T cells leads to de-repression of T cell activation genes, a process that mimics normal T cell activation. Comparison of chromatin structure in normal and H1-depleted CD8+ T cells reveals that H1-mediated chromatin compaction occurs primarily in regions of the genome containing higher than average levels of H1: the chromosome conformation capture (Hi-C) B compartment and regions of the Hi-C A compartment marked by PRC2. Reduction of H1 stoichiometry leads to decreased H3K27 methylation, increased H3K36 methylation, B-to-A-compartment shifting and an increase in interaction frequency between compartments. In vitro, H1 promotes PRC2-mediated H3K27 methylation and inhibits NSD2-mediated H3K36 methylation. Mechanistically, H1 mediates these opposite effects by promoting physical compaction of the chromatin substrate. Our results establish H1 as a critical regulator of gene silencing through localized control of chromatin compaction, 3D genome organization and the epigenetic landscape.
Collapse
Affiliation(s)
| | - Sean E Healton
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Cary N Weiss
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Boris A Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Yair Botbol
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
| | - Laxmi N Mishra
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Dhruv S Sidhwani
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Tommy J Wilson
- Department of Neurology, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Hugo B Pinto
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Maxim I Maron
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Karin A Skalina
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
| | - Laura Norwood Toro
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jie Zhao
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Chul-Hwan Lee
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea
| | - Harry Hou
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Nevin Yusufova
- Cell & Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
- Division of Hematology/Oncology, Department of Medicine, Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Adewola Osunsade
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ari M Melnick
- Division of Hematology/Oncology, Department of Medicine, Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Simone Sidoli
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, PA, USA
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, PA, USA
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Fernando Macian
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
| | - Arthur I Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
31
|
Yusufova N, Kloetgen A, Teater M, Osunsade A, Camarillo JM, Chin CR, Doane AS, Venters BJ, Portillo-Ledesma S, Conway J, Phillip JM, Elemento O, Scott DW, Béguelin W, Licht JD, Kelleher NL, Staudt LM, Skoultchi AI, Keogh MC, Apostolou E, Mason CE, Imielinski M, Schlick T, David Y, Tsirigos A, Allis CD, Soshnev AA, Cesarman E, Melnick AM. Histone H1 loss drives lymphoma by disrupting 3D chromatin architecture. Nature 2021; 589:299-305. [PMID: 33299181 PMCID: PMC7855728 DOI: 10.1038/s41586-020-3017-y] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 10/08/2020] [Indexed: 01/08/2023]
Abstract
Linker histone H1 proteins bind to nucleosomes and facilitate chromatin compaction1, although their biological functions are poorly understood. Mutations in the genes that encode H1 isoforms B-E (H1B, H1C, H1D and H1E; also known as H1-5, H1-2, H1-3 and H1-4, respectively) are highly recurrent in B cell lymphomas, but the pathogenic relevance of these mutations to cancer and the mechanisms that are involved are unknown. Here we show that lymphoma-associated H1 alleles are genetic driver mutations in lymphomas. Disruption of H1 function results in a profound architectural remodelling of the genome, which is characterized by large-scale yet focal shifts of chromatin from a compacted to a relaxed state. This decompaction drives distinct changes in epigenetic states, primarily owing to a gain of histone H3 dimethylation at lysine 36 (H3K36me2) and/or loss of repressive H3 trimethylation at lysine 27 (H3K27me3). These changes unlock the expression of stem cell genes that are normally silenced during early development. In mice, loss of H1c and H1e (also known as H1f2 and H1f4, respectively) conferred germinal centre B cells with enhanced fitness and self-renewal properties, ultimately leading to aggressive lymphomas with an increased repopulating potential. Collectively, our data indicate that H1 proteins are normally required to sequester early developmental genes into architecturally inaccessible genomic compartments. We also establish H1 as a bona fide tumour suppressor and show that mutations in H1 drive malignant transformation primarily through three-dimensional genome reorganization, which leads to epigenetic reprogramming and derepression of developmentally silenced genes.
Collapse
Affiliation(s)
- Nevin Yusufova
- Division of Hematology and Medical Oncology, Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Andreas Kloetgen
- Department of Pathology, NYU School of Medicine, New York, NY, USA
- Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Matt Teater
- Division of Hematology and Medical Oncology, Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Adewola Osunsade
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Jeannie M Camarillo
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Christopher R Chin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biomedicine, New York, NY, USA
| | - Ashley S Doane
- Tri-Institutional PhD Program in Computational Biomedicine, New York, NY, USA
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Joseph Conway
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jude M Phillip
- Division of Hematology and Medical Oncology, Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - David W Scott
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Wendy Béguelin
- Division of Hematology and Medical Oncology, Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan D Licht
- University of Florida Health Cancer Center, The University of Florida Cancer and Genetics Research Complex, Gainesville, FL, USA
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arthur I Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | | | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Marcin Imielinski
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, New York, NY, USA
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
- New York University-East China Normal University Center for Computational Chemistry at New York University Shanghai, Shanghai, China
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU School of Medicine, New York, NY, USA
- Institute for Computational Medicine, NYU School of Medicine, New York, NY, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| | - Alexey A Soshnev
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA.
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Ari M Melnick
- Division of Hematology and Medical Oncology, Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
32
|
Portillo-Ledesma S, Tsao LH, Wagley M, Lakadamyali M, Cosma MP, Schlick T. Nucleosome Clutches are Regulated by Chromatin Internal Parameters. J Mol Biol 2020; 433:166701. [PMID: 33181171 DOI: 10.1016/j.jmb.2020.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 01/17/2023]
Abstract
Nucleosomes cluster together when chromatin folds in the cell to form heterogeneous groups termed "clutches". These structural units add another level of chromatin regulation, for example during cell differentiation. Yet, the mechanisms that regulate their size and compaction remain obscure. Here, using our chromatin mesoscale model, we dissect clutch patterns in fibers with different combinations of nucleosome positions, linker histone density, and acetylation levels to investigate their role in clutch regulation. First, we isolate the effect of each chromatin parameter by studying systems with regular nucleosome spacing; second, we design systems with naturally-occurring linker lengths that fold onto specific clutch patterns; third, we model gene-encoding fibers to understand how these combined factors contribute to gene structure. Our results show how these chromatin parameters act together to produce different-sized nucleosome clutches. The length of nucleosome free regions (NFRs) profoundly affects clutch size, while the length of linker DNA has a moderate effect. In general, higher linker histone densities produce larger clutches by a chromatin compaction mechanism, while higher acetylation levels produce smaller clutches by a chromatin unfolding mechanism. We also show that it is possible to design fibers with naturally-occurring DNA linkers and NFRs that fold onto specific clutch patterns. Finally, in gene-encoding systems, a complex combination of variables dictates a gene-specific clutch pattern. Together, these results shed light into the mechanisms that regulate nucleosome clutches and suggest a new epigenetic mechanism by which chromatin parameters regulate transcriptional activity via the three-dimensional folded state of the genome at a nucleosome level.
Collapse
Affiliation(s)
- Stephanie Portillo-Ledesma
- Department of Chemistry, New York University, 1021 Silver, 100 Washington Square East, New York, NY, 10003, USA
| | - Lucille H Tsao
- Department of Chemistry, New York University, 1021 Silver, 100 Washington Square East, New York, NY, 10003, USA
| | - Meghna Wagley
- Department of Chemistry, New York University, 1021 Silver, 100 Washington Square East, New York, NY, 10003, USA
| | - Melike Lakadamyali
- Perelman School of Medicine, Department of Physiology, University of Pennsylvania, Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA 19104, USA; Perelman School of Medicine, Department of Cell and Developmental Biology, University of Pennsylvania, Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Tamar Schlick
- Department of Chemistry, New York University, 1021 Silver, 100 Washington Square East, New York, NY, 10003, USA; New York University-East China Normal University Center for Computational Chemistry at New York University Shanghai, Room 340, Geography Building, 3663 North Zhongshan Road, Shanghai, 200062, China; Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, New York, NY, 10012, USA.
| |
Collapse
|
33
|
LSH mediates gene repression through macroH2A deposition. Nat Commun 2020; 11:5647. [PMID: 33159050 PMCID: PMC7648012 DOI: 10.1038/s41467-020-19159-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
The human Immunodeficiency Centromeric Instability Facial Anomalies (ICF) 4 syndrome is a severe disease with increased mortality caused by mutation in the LSH gene. Although LSH belongs to a family of chromatin remodeling proteins, it remains unknown how LSH mediates its function on chromatin in vivo. Here, we use chemical-induced proximity to rapidly recruit LSH to an engineered locus and find that LSH specifically induces macroH2A1.2 and macroH2A2 deposition in an ATP-dependent manner. Tethering of LSH induces transcriptional repression and silencing is dependent on macroH2A deposition. Loss of LSH decreases macroH2A enrichment at repeat sequences and results in transcriptional reactivation. Likewise, reduction of macroH2A by siRNA interference mimicks transcriptional reactivation. ChIP-seq analysis confirmed that LSH is a major regulator of genome-wide macroH2A distribution. Tethering of ICF4 mutations fails to induce macroH2A deposition and ICF4 patient cells display reduced macroH2A deposition and transcriptional reactivation supporting a pathogenic role for altered marcoH2A deposition. We propose that LSH is a major chromatin modulator of the histone variant macroH2A and that its ability to insert marcoH2A into chromatin and transcriptionally silence is disturbed in the ICF4 syndrome. The human ICF 4 syndrome is caused by mutation of the chromatin remodeller LSH. Here, the authors show that LSH depletion disrupts the ability of histone variant macroH2A to insert into chromatin and silence transcription.
Collapse
|
34
|
Serna-Pujol N, Salinas-Pena M, Mugianesi F, Lopez-Anguita N, Torrent-Llagostera F, Izquierdo-Bouldstridge A, Marti-Renom MA, Jordan A. TADs enriched in histone H1.2 strongly overlap with the B compartment, inaccessible chromatin, and AT-rich Giemsa bands. FEBS J 2020; 288:1989-2013. [PMID: 32896099 DOI: 10.1111/febs.15549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/22/2020] [Accepted: 09/01/2020] [Indexed: 01/04/2023]
Abstract
Giemsa staining of metaphase chromosomes results in a characteristic banding useful for identification of chromosomes and its alterations. We have investigated in silico whether Giemsa bands (G bands) correlate with epigenetic and topological features of the interphase genome. Staining of G-positive bands decreases with GC content; nonetheless, G-negative bands are GC heterogeneous. High GC bands are enriched in active histone marks, RNA polymerase II, and SINEs and associate with gene richness, gene expression, and early replication. Low GC bands are enriched in repressive marks, lamina-associated domains, and LINEs. Histone H1 variants distribute heterogeneously among G bands: H1X is enriched at high GC bands and H1.2 is abundant at low GC, compacted bands. According to epigenetic features and H1 content, G bands can be organized in clusters useful to compartmentalize the genome. Indeed, we have obtained Hi-C chromosome interaction maps and compared topologically associating domains (TADs) and A/B compartments to G banding. TADs with high H1.2/H1X ratio strongly overlap with B compartment, late replicating, and inaccessible chromatin and low GC bands. We propose that GC content is a strong driver of chromatin compaction and 3D genome organization, that Giemsa staining recapitulates this organization denoted by high-throughput techniques, and that H1 variants distribute at distinct chromatin domains. DATABASES: Hi-C data on T47D breast cancer cells have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE147627.
Collapse
Affiliation(s)
| | | | - Francesca Mugianesi
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Spain
| | | | | | | | - Marc A Marti-Renom
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Spain.,Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, Spain.,Pompeu Fabra University, Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Albert Jordan
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Spain
| |
Collapse
|
35
|
Climent-Cantó P, Carbonell A, Tatarski M, Reina O, Bujosa P, Font-Mateu J, Bernués J, Beato M, Azorín F. The embryonic linker histone dBigH1 alters the functional state of active chromatin. Nucleic Acids Res 2020; 48:4147-4160. [PMID: 32103264 PMCID: PMC7192587 DOI: 10.1093/nar/gkaa122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/30/2020] [Accepted: 02/25/2020] [Indexed: 11/13/2022] Open
Abstract
Linker histones H1 are principal chromatin components, whose contribution to the epigenetic regulation of chromatin structure and function is not fully understood. In metazoa, specific linker histones are expressed in the germline, with female-specific H1s being normally retained in the early-embryo. Embryonic H1s are present while the zygotic genome is transcriptionally silent and they are replaced by somatic variants upon activation, suggesting a contribution to transcriptional silencing. Here we directly address this question by ectopically expressing dBigH1 in Drosophila S2 cells, which lack dBigH1. We show that dBigH1 binds across chromatin, replaces somatic dH1 and reduces nucleosome repeat length (NRL). Concomitantly, dBigH1 expression down-regulates gene expression by impairing RNApol II binding and histone acetylation. These effects depend on the acidic N-terminal ED-domain of dBigH1 since a truncated form lacking this domain binds across chromatin and replaces dH1 like full-length dBigH1, but it does not affect NRL either transcription. In vitro reconstitution experiments using Drosophila preblastodermic embryo extracts corroborate these results. Altogether these results suggest that the negatively charged N-terminal tail of dBigH1 alters the functional state of active chromatin compromising transcription.
Collapse
Affiliation(s)
- Paula Climent-Cantó
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Albert Carbonell
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Milos Tatarski
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Oscar Reina
- Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Paula Bujosa
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Jofre Font-Mateu
- Centre de Regulació Genòmica (CRG). The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jordi Bernués
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Miguel Beato
- Centre de Regulació Genòmica (CRG). The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028 Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona. The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| |
Collapse
|
36
|
|
37
|
H1 linker histones silence repetitive elements by promoting both histone H3K9 methylation and chromatin compaction. Proc Natl Acad Sci U S A 2020; 117:14251-14258. [PMID: 32513732 DOI: 10.1073/pnas.1920725117] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nearly 50% of mouse and human genomes are composed of repetitive sequences. Transcription of these sequences is tightly controlled during development to prevent genomic instability, inappropriate gene activation and other maladaptive processes. Here, we demonstrate an integral role for H1 linker histones in silencing repetitive elements in mouse embryonic stem cells. Strong H1 depletion causes a profound de-repression of several classes of repetitive sequences, including major satellite, LINE-1, and ERV. Activation of repetitive sequence transcription is accompanied by decreased H3K9 trimethylation of repetitive sequence chromatin. H1 linker histones interact directly with Suv39h1, Suv39h2, and SETDB1, the histone methyltransferases responsible for H3K9 trimethylation of chromatin within these regions, and stimulate their activity toward chromatin in vitro. However, we also implicate chromatin compaction mediated by H1 as an additional, dominant repressive mechanism for silencing of repetitive major satellite sequences. Our findings elucidate two distinct, H1-mediated pathways for silencing heterochromatin.
Collapse
|
38
|
Teif VB, Gould TJ, Clarkson CT, Boyd L, Antwi EB, Ishaque N, Olins AL, Olins DE. Linker histone epitopes are hidden by in situ higher-order chromatin structure. Epigenetics Chromatin 2020; 13:26. [PMID: 32505195 PMCID: PMC7276084 DOI: 10.1186/s13072-020-00345-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 05/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Histone H1 is the most mobile histone in the cell nucleus. Defining the positions of H1 on chromatin in situ, therefore, represents a challenge. Immunoprecipitation of formaldehyde-fixed and sonicated chromatin, followed by DNA sequencing (xChIP-seq), is traditionally the method for mapping histones onto DNA elements. But since sonication fragmentation precedes ChIP, there is a consequent loss of information about chromatin higher-order structure. Here, we present a new method, xxChIP-seq, employing antibody binding to fixed intact in situ chromatin, followed by extensive washing, a second fixation, sonication and immunoprecipitation. The second fixation is intended to prevent the loss of specifically bound antibody during washing and subsequent sonication and to prevent antibody shifting to epitopes revealed by the sonication process. In many respects, xxChIP-seq is comparable to immunostaining microscopy, which also involves interaction of the primary antibody with fixed and permeabilized intact cells. The only epitopes displayed after immunostaining are the "exposed" epitopes, not "hidden" by the fixation of chromatin higher-order structure. Comparison of immunoprecipitated fragments between xChIP-seq versus xxChIP-seq should indicate which epitopes become inaccessible with fixation and identify their associated DNA elements. RESULTS We determined the genomic distribution of histone variants H1.2 and H1.5 in human myeloid leukemia cells HL-60/S4 and compared their epitope exposure by both xChIP-seq and xxChIP-seq, as well as high-resolution microscopy, illustrating the influences of preserved chromatin higher-order structure in situ. We found that xChIP and xxChIP H1 signals are in general negatively correlated, with differences being more pronounced near active regulatory regions. Among the intriguing observations, we find that transcription-related regions and histone PTMs (i.e., enhancers, promoters, CpG islands, H3K4me1, H3K4me3, H3K9ac, H3K27ac and H3K36me3) exhibit significant deficiencies (depletions) in H1.2 and H1.5 xxChIP-seq reads, compared to xChIP-seq. These observations suggest the existence of in situ transcription-related chromatin higher-order structures stabilized by formaldehyde. CONCLUSION Comparison of H1 xxChIP-seq to H1 xChIP-seq allows the development of hypotheses on the chromosomal localization of (stabilized) higher-order structure, indicated by the generation of "hidden" H1 epitopes following formaldehyde crosslinking. Changes in H1 epitope exposure surrounding averaged chromosomal binding sites or epigenetic modifications can also indicate whether these sites have chromatin higher-order structure. For example, comparison between averaged active or inactive promoter regions suggests that both regions can acquire stabilized higher-order structure with hidden H1 epitopes. However, the H1 xChIP-seq comparison cannot define their differences. Application of the xxChIP-seq versus H1 xChIP-seq method is particularly relevant to chromatin-associated proteins, such as linker histones, that play dynamic roles in establishing chromatin higher-order structure.
Collapse
Affiliation(s)
- Vladimir B Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| | - Travis J Gould
- Department of Physics & Astronomy, Bates College, Lewiston, ME, USA
| | | | - Logan Boyd
- Department of Physics & Astronomy, Bates College, Lewiston, ME, USA.,StarBird Technologies, LLC, Brunswick, ME, USA
| | - Enoch B Antwi
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.,Molecular and Cellular Engineering, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, Freiburg im Breisgau, 79104 , Germany
| | - Naveed Ishaque
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Digital Health Centre, Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, Berlin, 10178 , Germany
| | - Ada L Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, 716 Stevens Avenue, Portland, ME, 04103, USA
| | - Donald E Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, 716 Stevens Avenue, Portland, ME, 04103, USA.
| |
Collapse
|
39
|
Hayakawa K, Tani R, Nishitani K, Tanaka S. Linker histone variant H1T functions as a chromatin de-condenser on genic regions. Biochem Biophys Res Commun 2020; 528:685-690. [PMID: 32513538 DOI: 10.1016/j.bbrc.2020.05.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/16/2020] [Indexed: 10/24/2022]
Abstract
Linker histone H1 is mainly localized in the linker DNA region, between two nucleosome cores, and regulates chromatin structures linking gene expression. There are 11 variants in histone H1, and each variant has unique functions. Our previous study demonstrates that one of the H1 variants, H1T is mainly localized in the nucleolus and targets the rDNA repeat region. Moreover, H1T condenses the chromatin structures on rDNA to repress pre-rRNA expression. Although H1T is partially localized in the nucleoplasm area, the functions of H1T in the non-repeat genic region are unclear. In this study, we aimed to identify the target loci and the role of H1T in the genic region. Chromatin immunoprecipitation sequencing analysis showed that H1T is localized around the transcriptional start site and the chromatin structures of the region were relaxed. H1T knockdown and overexpression experiments revealed that H1T induced chromatin de-condensation and was associated with the increased expression of target genes. Moreover, we observed H1T co-localization with transcriptional factor SPZ1 on the genic region. Collectively, H1T has opposing roles in the genic region and in rDNA repeats; H1T functions to facilitate chromatin relaxation linked gene activation.
Collapse
Affiliation(s)
- Koji Hayakawa
- Department of Toxicology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari-shi, Ehime, Japan; Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Ruiko Tani
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kenta Nishitani
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Tanaka
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
40
|
Esmaeili M, Blythe SA, Tobias JW, Zhang K, Yang J, Klein PS. Chromatin accessibility and histone acetylation in the regulation of competence in early development. Dev Biol 2020; 462:20-35. [PMID: 32119833 PMCID: PMC7225061 DOI: 10.1016/j.ydbio.2020.02.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/29/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
As development proceeds, inductive cues are interpreted by competent tissues in a spatially and temporally restricted manner. While key inductive signaling pathways within competent cells are well-described at a molecular level, the mechanisms by which tissues lose responsiveness to inductive signals are not well understood. Localized activation of Wnt signaling before zygotic gene activation in Xenopus laevis leads to dorsal development, but competence to induce dorsal genes in response to Wnts is lost by the late blastula stage. We hypothesize that loss of competence is mediated by changes in histone modifications leading to a loss of chromatin accessibility at the promoters of Wnt target genes. We use ATAC-seq to evaluate genome-wide changes in chromatin accessibility across several developmental stages. Based on overlap with p300 binding, we identify thousands of putative cis-regulatory elements at the gastrula stage, including sites that lose accessibility by the end of gastrulation and are enriched for pluripotency factor binding motifs. Dorsal Wnt target gene promoters are not accessible after the loss of competence in the early gastrula while genes involved in mesoderm and neural crest development maintain accessibility at their promoters. Inhibition of histone deacetylases increases acetylation at the promoters of dorsal Wnt target genes and extends competence for dorsal gene induction by Wnt signaling. Histone deacetylase inhibition, however, is not sufficient to extend competence for mesoderm or neural crest induction. These data suggest that chromatin state regulates the loss of competence to inductive signals in a context-dependent manner.
Collapse
Affiliation(s)
- Melody Esmaeili
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shelby A Blythe
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - John W Tobias
- Penn Genomic Analysis Core and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Peter S Klein
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Departments of Medicine (Hematology-Oncology) and Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
41
|
Flickinger R. Polymorphism of simple sequence repeats may quantitatively regulate gene transcription. Exp Cell Res 2020; 390:111969. [PMID: 32199920 DOI: 10.1016/j.yexcr.2020.111969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/15/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
The degree of polymorphism, i.e., DNA sequence divergence, of short AT-rich tandemly arranged simple sequence repeats at or near promoters and 5'- untranslated regions of mRNA may quantitatively regulate transcription of tissue-specific genes. Less polymorphic repeats allow greater gene expression. Preferential binding of hypophosphorylated H1 histone to these repeats may diminish binding of transcription factors. Preferential binding of hypophosphorylated high mobility group chromatin proteins would increase this binding. Shorter simple sequence repeats have undergone fewer point mutations than longer repeats, hence they are less polymorphic and more conserved. The role of transcribed simple sequence repeats in frog embryo germ layer determination is considered.
Collapse
Affiliation(s)
- Reed Flickinger
- Department of Biological Sciences, State University of New York, Buffalo, N.Y. 14260, Mailing Address:P.O. Box 741 Captain Cook, HI, 96704, USA.
| |
Collapse
|
42
|
DNA Methylation and Histone H1 Jointly Repress Transposable Elements and Aberrant Intragenic Transcripts. Mol Cell 2020; 77:310-323.e7. [DOI: 10.1016/j.molcel.2019.10.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 08/26/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
|
43
|
Blanco E, González-Ramírez M, Alcaine-Colet A, Aranda S, Di Croce L. The Bivalent Genome: Characterization, Structure, and Regulation. Trends Genet 2019; 36:118-131. [PMID: 31818514 DOI: 10.1016/j.tig.2019.11.004] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/28/2019] [Accepted: 11/08/2019] [Indexed: 02/05/2023]
Abstract
An intricate molecular machinery is at the core of gene expression regulation in every cell. During the initial stages of organismal development, the coordinated activation of diverse transcriptional programs is crucial and must be carefully executed to shape every organ and tissue. Bivalent promoters and poised enhancers are regulatory regions decorated with histone marks that are associated with both positive and negative transcriptional outcomes. These apparently contradictory signals are important for setting bivalent genes in a poised state, which is subsequently resolved during differentiation into either active or repressive states. We discuss the origins of bivalent promoters and the mechanisms implicated in their acquisition and maintenance. We further review how the presence of bivalent marks influences genome architecture. Finally, we highlight the potential link between bivalency and cancer which could drive biomedical research in disease etiology and treatment.
Collapse
Affiliation(s)
- Enrique Blanco
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Mar González-Ramírez
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Anna Alcaine-Colet
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Sergi Aranda
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Plaça de la Mercè 10, 08002 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
44
|
Zhang S, Deng T, Tang W, He B, Furusawa T, Ambs S, Bustin M. Epigenetic regulation of REX1 expression and chromatin binding specificity by HMGNs. Nucleic Acids Res 2019; 47:4449-4461. [PMID: 30838422 DOI: 10.1093/nar/gkz161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 12/16/2022] Open
Abstract
HMGN proteins localize to chromatin regulatory sites and modulate the cell-type specific transcription profile; however, the molecular mechanism whereby these ubiquitous nucleosome binding proteins affect gene expression is not fully understood. Here, we show that HMGNs regulate the expression of Rex1, one of the most highly transcribed genes in mouse embryonic stem cells (ESCs), by recruiting the transcription factors NANOG, OCT4 and SOX2 to an ESC-specific super enhancer located in the 5' region of Rex1. HMGNs facilitate the establishment of an epigenetic landscape characteristic of active chromatin and enhancer promoter interactions, as seen by chromatin conformation capture. Loss of HMGNs alters the local epigenetic profile, increases histone H1 occupancy, decreases transcription factors binding and reduces enhancer promoter interactions, thereby downregulating, but not abolishing Rex1 expression. ChIP-seq analyses show high colocalization of HMGNs and of REX1, a zinc finger protein, at promoters and enhancers. Loss of HMGNs preferentially reduces the specific binding of REX1 to these chromatin regulatory sites. Thus, HMGNs affects both the expression and the chromatin binding specificity of REX1. We suggest that HMGNs affect cell-type specific gene expression by modulating the binding specificity of transcription factors to chromatin.
Collapse
Affiliation(s)
- Shaofei Zhang
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tao Deng
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Tang
- Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Bing He
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Takashi Furusawa
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Michael Bustin
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
45
|
Gibson BA, Doolittle LK, Schneider MWG, Jensen LE, Gamarra N, Henry L, Gerlich DW, Redding S, Rosen MK. Organization of Chromatin by Intrinsic and Regulated Phase Separation. Cell 2019; 179:470-484.e21. [PMID: 31543265 DOI: 10.1016/j.cell.2019.08.037] [Citation(s) in RCA: 698] [Impact Index Per Article: 116.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/12/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
Eukaryotic chromatin is highly condensed but dynamically accessible to regulation and organized into subdomains. We demonstrate that reconstituted chromatin undergoes histone tail-driven liquid-liquid phase separation (LLPS) in physiologic salt and when microinjected into cell nuclei, producing dense and dynamic droplets. Linker histone H1 and internucleosome linker lengths shared across eukaryotes promote phase separation of chromatin, tune droplet properties, and coordinate to form condensates of consistent density in manners that parallel chromatin behavior in cells. Histone acetylation by p300 antagonizes chromatin phase separation, dissolving droplets in vitro and decreasing droplet formation in nuclei. In the presence of multi-bromodomain proteins, such as BRD4, highly acetylated chromatin forms a new phase-separated state with droplets of distinct physical properties, which can be immiscible with unmodified chromatin droplets, mimicking nuclear chromatin subdomains. Our data suggest a framework, based on intrinsic phase separation of the chromatin polymer, for understanding the organization and regulation of eukaryotic genomes.
Collapse
Affiliation(s)
- Bryan A Gibson
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lynda K Doolittle
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maximillian W G Schneider
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Liv E Jensen
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nathan Gamarra
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lisa Henry
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Sy Redding
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
46
|
Rutowicz K, Lirski M, Mermaz B, Teano G, Schubert J, Mestiri I, Kroteń MA, Fabrice TN, Fritz S, Grob S, Ringli C, Cherkezyan L, Barneche F, Jerzmanowski A, Baroux C. Linker histones are fine-scale chromatin architects modulating developmental decisions in Arabidopsis. Genome Biol 2019; 20:157. [PMID: 31391082 PMCID: PMC6685187 DOI: 10.1186/s13059-019-1767-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/21/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Chromatin provides a tunable platform for gene expression control. Besides the well-studied core nucleosome, H1 linker histones are abundant chromatin components with intrinsic potential to influence chromatin function. Well studied in animals, little is known about the evolution of H1 function in other eukaryotic lineages for instance plants. Notably, in the model plant Arabidopsis, while H1 is known to influence heterochromatin and DNA methylation, its contribution to transcription, molecular, and cytological chromatin organization remains elusive. RESULTS We provide a multi-scale functional study of Arabidopsis linker histones. We show that H1-deficient plants are viable yet show phenotypes in seed dormancy, flowering time, lateral root, and stomata formation-complemented by either or both of the major variants. H1 depletion also impairs pluripotent callus formation. Fine-scale chromatin analyses combined with transcriptome and nucleosome profiling reveal distinct roles of H1 on hetero- and euchromatin: H1 is necessary to form heterochromatic domains yet dispensable for silencing of most transposable elements; H1 depletion affects nucleosome density distribution and mobility in euchromatin, spatial arrangement of nanodomains, histone acetylation, and methylation. These drastic changes affect moderately the transcription but reveal a subset of H1-sensitive genes. CONCLUSIONS H1 variants have a profound impact on the molecular and spatial (nuclear) chromatin organization in Arabidopsis with distinct roles in euchromatin and heterochromatin and a dual causality on gene expression. Phenotypical analyses further suggest the novel possibility that H1-mediated chromatin organization may contribute to the epigenetic control of developmental and cellular transitions.
Collapse
Affiliation(s)
- Kinga Rutowicz
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Maciej Lirski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Benoît Mermaz
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
- Department of Molecular, Cellular & Developmental Biology, Yale University, 352a Osborn memorial laboratories, New Haven, CT, 06511, USA
| | - Gianluca Teano
- Département de Biologie, IBENS, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, F-75005, Paris, France
| | - Jasmin Schubert
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Imen Mestiri
- Département de Biologie, IBENS, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, F-75005, Paris, France
| | - Magdalena A Kroteń
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 02-089, Warsaw, Poland
| | - Tohnyui Ndinyanka Fabrice
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Simon Fritz
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Stefan Grob
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Christoph Ringli
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Lusik Cherkezyan
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Fredy Barneche
- Département de Biologie, IBENS, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, F-75005, Paris, France
| | - Andrzej Jerzmanowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.
- Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Célia Baroux
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
47
|
Portillo-Ledesma S, Schlick T. Bridging chromatin structure and function over a range of experimental spatial and temporal scales by molecular modeling. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019; 10. [PMID: 34046090 DOI: 10.1002/wcms.1434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chromatin structure, dynamics, and function are being intensely investigated by a variety of methods, including microscopy, X-ray diffraction, nuclear magnetic resonance, biochemical crosslinking, chromosome conformation capture, and computation. A range of experimental techniques combined with modeling is clearly valuable to help interpret experimental data and, importantly, generate configurations and mechanisms related to the 3D organization and function of the genome. Contact maps, in particular, as obtained by a variety of chromosome conformation capture methods, are of increasing interest due to their implications on genome structure and regulation on many levels. In this perspective, using seven examples from our group's studies, we illustrate how molecular modeling can help interpret such experimental data. Specifically, we show how computed contact maps related to experimental systems can be used to explain structures of nucleosomes, chromatin higher-order folding, domain segregation mechanisms, gene organization, and the effect on chromatin structure of external and internal fiber parameters, such as nucleosome positioning, presence of nucleosome free regions, histone posttranslational modifications, and linker histone binding. We argue that such computations on multiple spatial and temporal scales will be increasingly important for the integration of genomic, epigenomic, and biophysical data on chromatin structure and related cellular processes.
Collapse
Affiliation(s)
- Stephanie Portillo-Ledesma
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, New York, 10003, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, 1001 Silver, 100 Washington Square East, New York, New York, 10003, USA.,Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, New York, New York, 10012, USA.,New York University-East China Normal University Center for Computational Chemistry at New York University Shanghai, Room 340, Geography Building, 3663 North Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
48
|
He S, Vickers M, Zhang J, Feng X. Natural depletion of histone H1 in sex cells causes DNA demethylation, heterochromatin decondensation and transposon activation. eLife 2019; 8:42530. [PMID: 31135340 PMCID: PMC6594752 DOI: 10.7554/elife.42530] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/26/2019] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs), the movement of which can damage the genome, are epigenetically silenced in eukaryotes. Intriguingly, TEs are activated in the sperm companion cell - vegetative cell (VC) - of the flowering plant Arabidopsis thaliana. However, the extent and mechanism of this activation are unknown. Here we show that about 100 heterochromatic TEs are activated in VCs, mostly by DEMETER-catalyzed DNA demethylation. We further demonstrate that DEMETER access to some of these TEs is permitted by the natural depletion of linker histone H1 in VCs. Ectopically expressed H1 suppresses TEs in VCs by reducing DNA demethylation and via a methylation-independent mechanism. We demonstrate that H1 is required for heterochromatin condensation in plant cells and show that H1 overexpression creates heterochromatic foci in the VC progenitor cell. Taken together, our results demonstrate that the natural depletion of H1 during male gametogenesis facilitates DEMETER-directed DNA demethylation, heterochromatin relaxation, and TE activation.
Collapse
Affiliation(s)
- Shengbo He
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Martin Vickers
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Jingyi Zhang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Xiaoqi Feng
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
49
|
Shimada M, Chen WY, Nakadai T, Onikubo T, Guermah M, Rhodes D, Roeder RG. Gene-Specific H1 Eviction through a Transcriptional Activator→p300→NAP1→H1 Pathway. Mol Cell 2019; 74:268-283.e5. [PMID: 30902546 DOI: 10.1016/j.molcel.2019.02.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 01/07/2019] [Accepted: 02/12/2019] [Indexed: 02/03/2023]
Abstract
Linker histone H1 has been correlated with transcriptional inhibition, but the mechanistic basis of the inhibition and its reversal during gene activation has remained enigmatic. We report that H1-compacted chromatin, reconstituted in vitro, blocks transcription by abrogating core histone modifications by p300 but not activator and p300 binding. Transcription from H1-bound chromatin is elicited by the H1 chaperone NAP1, which is recruited in a gene-specific manner through direct interactions with activator-bound p300 that facilitate core histone acetylation (by p300) and concomitant eviction of H1 and H2A-H2B. An analysis in B cells confirms the strong dependency on NAP1-mediated H1 eviction for induction of the silent CD40 gene and further demonstrates that H1 eviction, seeded by activator-p300-NAP1-H1 interactions, is propagated over a CCCTC-binding factor (CTCF)-demarcated region through a distinct mechanism that also involves NAP1. Our results confirm direct transcriptional inhibition by H1 and establish a gene-specific H1 eviction mechanism through an activator→p300→NAP1→H1 pathway.
Collapse
Affiliation(s)
- Miho Shimada
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Wei-Yi Chen
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan; Cancer Progression Research Center, National Yang-Ming University, Taipei 112, Taiwan
| | - Tomoyoshi Nakadai
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Takashi Onikubo
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Mohamed Guermah
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Daniela Rhodes
- NTU Institute of Structural Biology and School of Biological Sciences, Nanyang Technological University, Singapore 636921, Singapore
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
50
|
Bascom GD, Myers CG, Schlick T. Mesoscale modeling reveals formation of an epigenetically driven HOXC gene hub. Proc Natl Acad Sci U S A 2019; 116:4955-4962. [PMID: 30718394 PMCID: PMC6421463 DOI: 10.1073/pnas.1816424116] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gene expression is orchestrated at the structural level by nucleosome positioning, histone tail acetylation, and linker histone (LH) binding. Here, we integrate available data on nucleosome positioning, nucleosome-free regions (NFRs), acetylation islands, and LH binding sites to "fold" in silico the 55-kb HOXC gene cluster and investigate the role of each feature on the gene's folding. The gene cluster spontaneously forms a dynamic connection hub, characterized by hierarchical loops which accommodate multiple contacts simultaneously and decrease the average distance between promoters by ∼100 nm. Contact probability matrices exhibit "stripes" near promoter regions, a feature associated with transcriptional regulation. Interestingly, while LH proteins alone decrease long-range contacts and acetylation alone increases transient contacts, combined LH and acetylation produce long-range contacts. Thus, our work emphasizes how chromatin architecture is coordinated strongly by epigenetic factors and opens the way for nucleosome resolution models incorporating epigenetic modifications to understand and predict gene activity.
Collapse
Affiliation(s)
- Gavin D Bascom
- Department of Chemistry, New York University, New York, NY 10003
| | | | - Tamar Schlick
- Department of Chemistry, New York University, New York, NY 10003;
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, 200122 Shanghai, China
| |
Collapse
|