1
|
Fiser O, Muller P. Role of HSF1 in cell division, tumorigenesis and therapy: a literature review. Cell Div 2025; 20:11. [PMID: 40287736 PMCID: PMC12034185 DOI: 10.1186/s13008-025-00153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Heat shock factor 1 (HSF1) is the master orchestrator of the heat shock response (HSR), a critical process for maintaining cellular health and protein homeostasis. These effects are achieved through rapid expression of molecular chaperones, the heat shock proteins (HSPs), which ensure correct protein folding, repair, degradation and stabilization of multiprotein complexes. In addition to its role in the HSR, HSF1 influences the cell cycle, including processes such as S phase progression and regulation of the p53 pathway, highlighting its importance in cellular protein synthesis and division. While HSF1 activity offers neuroprotective benefits in neurodegenerative diseases, its proteome-stabilizing function may also reinforce tumorigenic transformation. HSF1 overexpression in many types of cancer reportedly enhances cell growth enables survival, alters metabolism, weakens immune response and promotes angiogenesis or epithelial-mesenchymal transition (EMT) as these cells enter a form of "HSF1 addiction". Furthermore, the client proteins of HSF1-regulated chaperones, particularly Hsp90, include numerous key players in classical tumorigenic pathways. HSF1 thus presents a promising therapeutic target for cancer treatment, potentially in combination with HSP inhibitors to alleviate typical initiation of HSR upon their use.
Collapse
Affiliation(s)
- Otakar Fiser
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Muller
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic.
| |
Collapse
|
2
|
Jia K, Shi P, Zhang L, Yan X, Xu J, Liao K. HSF1 Mediates Palmitic Acid-Disrupted Lipid Metabolism and Inflammatory Response by Maintaining Endoplasmic Reticulum Homeostasis in Fish. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5236-5247. [PMID: 39987503 DOI: 10.1021/acs.jafc.4c09302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Fish oil (FO) is being progressively replaced by palm oil (PO), which is rich in palmitic acid (PA). However, our understanding of the effects of PA on fish and the underlying molecular mechanisms remains limited. Heat shock transcription factor 1 (HSF1) is a critical transcription factor involved in stress response, but whether it responds to the effects of PA in fish remains unknown. In this study, in vitro and in vivo experiments were combined to investigate the molecular mechanisms by which HSF1 responds to PA. Our results indicated that PA induced fat accumulation, inflammation, and activation of protein processing in the endoplasmic reticulum (PPER) in the PaL cells. Moreover, the nuclear translocation of HSF1 was significantly increased by PA. After HSF1 was disrupted using small molecules (HSF1A and KRIBB11) or through HSF1A knockout, the PA-induced fat accumulation and expression levels of key genes related to PPER, lipid metabolism, and inflammation were significantly altered. Additionally, the analysis of CUT&Tag sequencing and dual-luciferase reporter showed that HSF1 protein can directly bind to the promoters of genes involved in PPER, lipid metabolism, and inflammatory response, thereby activating their transcriptional activity, especially HSC70, HSP90α, and HSP90β. Eicosapentaenoic acid (EPA) supplementation significantly improved the survival rate and growth performance of juvenile silver pomfret and reduced PA-induced adverse effects by inhibiting the activation of HSF1 in the liver. This study proves that HSF1 protein may respond to PA-induced lipid metabolism disorder and inflammatory response by maintaining endoplasmic reticulum stability in fish. Furthermore, EPA supplementation effectively counteracts PA-induced adverse effects.
Collapse
Affiliation(s)
- Kun Jia
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Peng Shi
- Animal Husbandry and Fisheries Research Center of Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
| | - Lei Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jilin Xu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Kai Liao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
3
|
Stanley TR, Otero EM, Knight AL, Saxton AD, Ding X, Borgen M, Kraemer BC, Kim Guisbert KS, Guisbert E. Activation of the heat shock response as a therapeutic strategy for tau toxicity. Dis Model Mech 2024; 17:dmm050635. [PMID: 39352120 PMCID: PMC11463952 DOI: 10.1242/dmm.050635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/15/2024] [Indexed: 10/03/2024] Open
Abstract
Alzheimer's disease is associated with the misfolding and aggregation of two distinct proteins, beta-amyloid and tau. Previously, it has been shown that activation of the cytoprotective heat shock response (HSR) pathway reduces beta-amyloid toxicity. Here, we show that activation of the HSR is also protective against tau toxicity in a cell-autonomous manner. Overexpression of HSF-1, the master regulator of the HSR, ameliorates the motility defect and increases the lifespan of transgenic C. elegans expressing human tau. By contrast, RNA interference of HSF-1 exacerbates the motility defect and shortens lifespan. Targeting regulators of the HSR also affects tau toxicity. Additionally, two small-molecule activators of the HSR, Geranylgeranylacetone (GGA) and Arimoclomol (AC), have substantial beneficial effects. Taken together, this research expands the therapeutic potential of HSR manipulation to tauopathies and reveals that the HSR can impact both beta-amyloid and tau proteotoxicity in Alzheimer's disease.
Collapse
Affiliation(s)
- Taylor R. Stanley
- Biomedical Sciences Program, Florida Institute of Technology, Melbourne, Florida
| | - Elizabeth M. Otero
- Biomedical Sciences Program, Florida Institute of Technology, Melbourne, Florida
| | - Amy L. Knight
- Biomedical Sciences Program, Florida Institute of Technology, Melbourne, Florida
| | - Aleen D. Saxton
- Geriatrics Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Healthcare System, 1660 South Columbian Way Seattle, WA 98108-1532, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington Harborview Medical Center, 325 9th Ave, Box 359755, Seattle, WA 98104-2499, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, 1959 NE Pacific Street, Box 356560, Seattle, WA 98195-6560, USA
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific Street, Box 357470, Seattle, WA 98195, USA
| | - Xinxing Ding
- Biomedical Sciences Program, Florida Institute of Technology, Melbourne, Florida
| | - Melissa Borgen
- Biomedical Sciences Program, Florida Institute of Technology, Melbourne, Florida
| | - Brian C. Kraemer
- Geriatrics Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Healthcare System, 1660 South Columbian Way Seattle, WA 98108-1532, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington Harborview Medical Center, 325 9th Ave, Box 359755, Seattle, WA 98104-2499, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, 1959 NE Pacific Street, Box 356560, Seattle, WA 98195-6560, USA
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific Street, Box 357470, Seattle, WA 98195, USA
| | - Karen S. Kim Guisbert
- Biomedical Sciences Program, Florida Institute of Technology, Melbourne, Florida
- Department of Biology, College of Arts and Sciences, University of Nebraska Omaha, Omaha, Nebraska
| | - Eric Guisbert
- Biomedical Sciences Program, Florida Institute of Technology, Melbourne, Florida
- Department of Biology, College of Arts and Sciences, University of Nebraska Omaha, Omaha, Nebraska
| |
Collapse
|
4
|
Tataridas-Pallas N, Aman Y, Williams R, Chapman H, Cheng KJ, Gomez-Paredes C, Bates GP, Labbadia J. Mitochondrial clearance and increased HSF-1 activity are coupled to promote longevity in fasted Caenorhabditis elegans. iScience 2024; 27:109834. [PMID: 38784016 PMCID: PMC11112483 DOI: 10.1016/j.isci.2024.109834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/27/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Fasting has emerged as a potent means of preserving tissue function with age in multiple model organisms. However, our understanding of the relationship between food removal and long-term health is incomplete. Here, we demonstrate that in the nematode worm Caenorhabditis elegans, a single period of early-life fasting is sufficient to selectively enhance HSF-1 activity, maintain proteostasis capacity and promote longevity without compromising fecundity. These effects persist even when food is returned, and are dependent on the mitochondrial sirtuin, SIR-2.2 and the H3K27me3 demethylase, JMJD-3.1. We find that increased HSF-1 activity upon fasting is associated with elevated SIR-2.2 levels, decreased mitochondrial copy number and reduced H3K27me3 levels at the promoters of HSF-1 target genes. Furthermore, consistent with our findings in worms, HSF-1 activity is also enhanced in muscle tissue from fasted mice, suggesting that the potentiation of HSF-1 is a conserved response to food withdrawal.
Collapse
Affiliation(s)
- Nikolaos Tataridas-Pallas
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Yahyah Aman
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Rhianna Williams
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Hannah Chapman
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Kevin J.H. Cheng
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Casandra Gomez-Paredes
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Gillian P. Bates
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - John Labbadia
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London WC1E 6BT, UK
| |
Collapse
|
5
|
Rubio-Tomás T, Alegre-Cortés E, Lionaki E, Fuentes JM, Tavernarakis N. Heat shock and thermotolerance in Caenorhabditis elegans: An overview of laboratory techniques. Methods Cell Biol 2024; 185:1-17. [PMID: 38556443 DOI: 10.1016/bs.mcb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The soil nematode worm Caenorhabditis elegans is a simple and well-established model for the study of many biological processes. Heat shock and thermotolerance assays have been developed for this nematode, and have been used to decipher the molecular relationships between thermal stress and aging, among others. Nevertheless, a systematic and methodological comparison of the different approaches and tools utilized is lacking in the literature. Here, we aim to provide a comprehensive summary of the most commonly used strategies for carrying out heat shock and thermotolerance assays that have been reported, highlighting specific readouts and scientific questions that can be addressed. Furthermore, we offer examples of thermotolerance assays performed with wild type nematodes, that can serve as a gauge of the animal survival under diverse conditions of stress.
Collapse
Affiliation(s)
- Teresa Rubio-Tomás
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Eva Alegre-Cortés
- Universidad de Extremadura, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Cáceres, Spain; Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - José M Fuentes
- Universidad de Extremadura, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Cáceres, Spain; Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain.
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece.
| |
Collapse
|
6
|
Abstract
Understanding the factors that shape viral evolution is critical for developing effective antiviral strategies, accurately predicting viral evolution, and preventing pandemics. One fundamental determinant of viral evolution is the interplay between viral protein biophysics and the host machineries that regulate protein folding and quality control. Most adaptive mutations in viruses are biophysically deleterious, resulting in a viral protein product with folding defects. In cells, protein folding is assisted by a dynamic system of chaperones and quality control processes known as the proteostasis network. Host proteostasis networks can determine the fates of viral proteins with biophysical defects, either by assisting with folding or by targeting them for degradation. In this review, we discuss and analyze new discoveries revealing that host proteostasis factors can profoundly shape the sequence space accessible to evolving viral proteins. We also discuss the many opportunities for research progress proffered by the proteostasis perspective on viral evolution and adaptation.
Collapse
Affiliation(s)
- Jimin Yoon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Jessica E Patrick
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - C Brandon Ogbunugafor
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
7
|
Wit J, Dilks CM, Zhang G, Guisbert KSK, Zdraljevic S, Guisbert E, Andersen EC. Praziquantel inhibits Caenorhabditis elegans development and species-wide differences might be cct-8-dependent. PLoS One 2023; 18:e0286473. [PMID: 37561720 PMCID: PMC10414639 DOI: 10.1371/journal.pone.0286473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Anthelmintic drugs are used to treat parasitic roundworm and flatworm infections in humans and other animals. Caenorhabditis elegans is an established model to investigate anthelmintics used to treat roundworms. In this study, we use C. elegans to examine the mode of action and the mechanisms of resistance against the flatworm anthelmintic drug praziquantel (PZQ), used to treat trematode and cestode infections. We found that PZQ inhibited development and that this developmental delay varies by genetic background. Interestingly, both enantiomers of PZQ are equally effective against C. elegans, but the right-handed PZQ (R-PZQ) is most effective against schistosome infections. We conducted a genome-wide association mapping with 74 wild C. elegans strains to identify a region on chromosome IV that is correlated with differential PZQ susceptibility. Five candidate genes in this region: cct-8, znf-782, Y104H12D.4, Y104H12D.2, and cox-18, might underlie this variation. The gene cct-8, a subunit of the protein folding complex TRiC, has variation that causes a putative protein coding change (G226V), which is correlated with reduced developmental delay. Gene expression analysis suggests that this variant correlates with slightly increased expression of both cct-8 and hsp-70. Acute exposure to PZQ caused increased expression of hsp-70, indicating that altered TRiC function might be involved in PZQ responses. To test if this variant affects development upon exposure to PZQ, we used CRISPR-Cas9 genome editing to introduce the V226 allele into the N2 genetic background (G226) and the G226 allele into the JU775 genetic background (V226). These experiments revealed that this variant was not sufficient to explain the effects of PZQ on development. Nevertheless, this study shows that C. elegans can be used to study PZQ mode of action and resistance mechanisms. Additionally, we show that the TRiC complex requires further evaluation for PZQ responses in C. elegans.
Collapse
Affiliation(s)
- Janneke Wit
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Clayton M. Dilks
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States of America
| | - Gaotian Zhang
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Karen S. Kim Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
| | - Stefan Zdraljevic
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States of America
| | - Eric Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
| | - Erik C. Andersen
- Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| |
Collapse
|
8
|
Wu K, Zhao X, Xiao X, Chen M, Wu L, Jiang C, Jin J, Li L, Ruan Q, Guo J. BuShen HuoXue decoction improves fertility through intestinal hsp-16.2-mediated heat-shock signaling pathway in Caenorhabditis elegans. Front Pharmacol 2023; 14:1210701. [PMID: 37332356 PMCID: PMC10272376 DOI: 10.3389/fphar.2023.1210701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction: BuShen HuoXue (BSHX) decoction is commonly used in the clinical treatment of premature ovarian failure because it can increase estradiol level and decrease follicle-stimulating hormone level. In this study, we determined the potential therapeutic effects of BSHX decoction via anti-stress pathway and the underlying mechanism by using the nematode Caenorhabditis elegans as an assay system. Methods: Bisphenol A (BPA, 175 μg/mL) was used to establish a fertility-defective C. elegans model. Nematodes were cultivated according to standard methods. Brood size, DTC, the number of apoptotic cells and oocytes were used to evaluate the fertility of nematodes. Nematodes were cultivated at 35°C as heat stress. RNA isolation and RT-qPCR were used to detect the mRNA expression level of genes. Intestinal ROS and intestinal permeability were used to evaluate the function of intestinal barrier. BSHX decoction was extracted with water and analyzed by LC/Q-TOF. Results and Discussion: In BPA-treated N2 nematodes, 62.5 mg/mL BSHX decoction significantly improved the brood size and the oocytes quality at different developmental stages. BSHX decoction improved resistance to heat stress through the hsf-1-mediated heat-shock signaling pathway. Further analysis showed that the decoction significantly improved the transcriptional levels of hsf-1 downstream target genes, such as hsp-16.1, hsp-16.2, hsp-16.41, and hsp-16.48. Other than hsp-16.2 expression in the gonad, the decoction also affected intestinal hsp-16.2 expression and significantly reversed the adverse effects induced by BPA. Moreover, the decoction ameliorated intestinal ROS and permeability. Thus, BSHX decoction can improve fertility by increasing intestinal barrier function via hsp-16.2-mediated heat-shock signaling pathway in C. elegans. These findings reveal the underlying regulatory mechanisms of hsp-16.2-mediated heat resistance against fertility defect.
Collapse
Affiliation(s)
- Kanglu Wu
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xudong Zhao
- Department of General Practice, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xian Xiao
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Miao Chen
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liang Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Jiang
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Jin
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Lei Li
- Department of General Practice, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qinli Ruan
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Guo
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Regulation of germline proteostasis by HSF1 and insulin/IGF-1 signaling. Biochem Soc Trans 2023; 51:501-512. [PMID: 36892215 DOI: 10.1042/bst20220616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/10/2023]
Abstract
Protein homeostasis (proteostasis) is essential for cellular function and organismal health and requires the concerted actions of protein synthesis, folding, transport, and turnover. In sexually reproducing organisms, the immortal germline lineage passes genetic information across generations. Accumulating evidence indicates the importance of proteome integrity for germ cells as genome stability. As gametogenesis involves very active protein synthesis and is highly energy-demanding, it has unique requirements for proteostasis regulation and is sensitive to stress and nutrient availability. The heat shock factor 1 (HSF1), a key transcriptional regulator of cellular response to cytosolic and nuclear protein misfolding has evolutionarily conserved roles in germline development. Similarly, insulin/insulin-like growth factor-1 (IGF-1) signaling, a major nutrient-sensing pathway, impacts many aspects of gametogenesis. Here, we focus on HSF1 and IIS to review insights into their roles in germline proteostasis and discuss the implications on gamete quality control during stress and aging.
Collapse
|
10
|
Miles J, Townend S, Milonaitytė D, Smith W, Hodge F, Westhead DR, van Oosten-Hawle P. Transcellular chaperone signaling is an intercellular stress-response distinct from the HSF-1-mediated heat shock response. PLoS Biol 2023; 21:e3001605. [PMID: 36780563 PMCID: PMC9956597 DOI: 10.1371/journal.pbio.3001605] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 02/24/2023] [Accepted: 01/20/2023] [Indexed: 02/15/2023] Open
Abstract
Organismal proteostasis is maintained by intercellular signaling processes including cell nonautonomous stress responses such as transcellular chaperone signaling (TCS). When TCS is activated upon tissue-specific knockdown of hsp-90 in the Caenorhabditis elegans intestine, heat-inducible hsp-70 is induced in muscle cells at the permissive temperature resulting in increased heat stress resistance and lifespan extension. However, our understanding of the molecular mechanism and signaling factors mediating transcellular activation of hsp-70 expression from one tissue to another is still in its infancy. Here, we conducted a combinatorial approach using transcriptome RNA-Seq profiling and a forward genetic mutagenesis screen to elucidate how stress signaling from the intestine to the muscle is regulated. We find that the TCS-mediated "gut-to-muscle" induction of hsp-70 expression is suppressed by HSF-1 and instead relies on transcellular-X-cross-tissue (txt) genes. We identify a key role for the PDZ-domain guanylate cyclase txt-1 and the homeobox transcription factor ceh-58 as signaling hubs in the stress receiving muscle cells to initiate hsp-70 expression and facilitate TCS-mediated heat stress resistance and lifespan extension. Our results provide a new view on cell-nonautonomous regulation of "inter-tissue" stress responses in an organism that highlight a key role for the gut. Our data suggest that the HSF-1-mediated heat shock response is switched off upon TCS activation, in favor of an intercellular stress-signaling route to safeguard survival.
Collapse
Affiliation(s)
- Jay Miles
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sarah Townend
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Dovilė Milonaitytė
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - William Smith
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Francesca Hodge
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - David R. Westhead
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Patricija van Oosten-Hawle
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
The Thermal Stress Coping Network of the Nematode Caenorhabditis elegans. Int J Mol Sci 2022; 23:ijms232314907. [PMID: 36499234 PMCID: PMC9737000 DOI: 10.3390/ijms232314907] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Response to hyperthermia, highly conserved from bacteria to humans, involves transcriptional upregulation of genes involved in battling the cytotoxicity caused by misfolded and denatured proteins, with the aim of proteostasis restoration. C. elegans senses and responds to changes in growth temperature or noxious thermal stress by well-defined signaling pathways. Under adverse conditions, regulation of the heat shock response (HSR) in C. elegans is controlled by a single transcription factor, heat-shock factor 1 (HSF-1). HSR and HSF-1 in particular are proven to be central to survival under proteotoxic stress, with additional roles in normal physiological processes. For years, it was a common belief that upregulation of heat shock proteins (HSPs) by HSF-1 was the main and most important step toward thermotolerance. However, an ever-growing number of studies have shown that targets of HSF-1 involved in cytoskeletal and exoskeletal integrity preservation as well as other HSF-1 dependent and independent pathways are equally important. In this review, we follow the thermal stimulus from reception by the nematode nerve endings till the activation of cellular response programs. We analyze the different HSF-1 functions in HSR as well as all the recently discovered mechanisms that add to the knowledge of the heat stress coping network of C. elegans.
Collapse
|
12
|
Musa M, Dionisio PA, Casqueiro R, Milosevic I, Raimundo N, Krisko A. Lack of peroxisomal catalase affects heat shock response in Caenorhabditis elegans. Life Sci Alliance 2022; 6:6/1/e202201737. [PMID: 36347545 PMCID: PMC9644420 DOI: 10.26508/lsa.202201737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Exact mechanisms of heat shock-induced lifespan extension, although documented across species, are still not well understood. Here, we show that fully functional peroxisomes, specifically peroxisomal catalase, are needed for the activation of canonical heat shock response and heat-induced hormesis in Caenorhabditis elegans Although during heat shock, the HSP-70 chaperone is strongly up-regulated in the WT and in the absence of peroxisomal catalase (ctl-2(ua90)II), the small heat shock proteins display modestly increased expression in the mutant. Nuclear foci formation of HSF-1 is reduced in the ctl-2(ua90)II mutant. In addition, heat-induced lifespan extension, observed in the WT, is absent in the ctl-2(ua90)II strain. Activation of the antioxidant response and pentose phosphate pathway are the most prominent changes observed during heat shock in the WT worm but not in the ctl-2(ua90)II mutant. Involvement of peroxisomes in the cell-wide cellular response to transient heat shock reported here gives new insight into the role of organelle communication in the organism's stress response.
Collapse
Affiliation(s)
- Marina Musa
- Mediterranean Institute for Life Sciences, Split, Croatia
| | - Pedro A Dionisio
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Ricardo Casqueiro
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Ira Milosevic
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal,Nuffield Department of Medicine, Wellcome Centre for Human Genetics, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Nuno Raimundo
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal,Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Anita Krisko
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
13
|
Lessons Learned from Two Decades of Modeling the Heat-Shock Response. Biomolecules 2022; 12:biom12111645. [DOI: 10.3390/biom12111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
The Heat Shock Response (HSR) is a highly conserved genetic system charged with protecting the proteome in a wide range of organisms and species. Experiments since the early 1980s have elucidated key elements in these pathways and revealed a canonical mode of regulation, which relies on a titration feedback. This system has been subject to substantial modeling work, addressing questions about resilience, design and control. The compact core regulatory circuit, as well as its apparent conservation, make this system an ideal ‘hydrogen atom’ model for the regulation of stress response. Here we take a broad view of the models of the HSR, focusing on the different questions asked and the approaches taken. After 20 years of modeling work, we ask what lessons had been learned that would have been hard to discover without mathematical models. We find that while existing models lay strong foundations, many important questions that can benefit from quantitative modeling are still awaiting investigation.
Collapse
|
14
|
Loss of MTCH-1 suppresses age-related proteostasis collapse through the inhibition of programmed cell death factors. Cell Rep 2022; 41:111690. [DOI: 10.1016/j.celrep.2022.111690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 09/12/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022] Open
|
15
|
Lazaro-Pena MI, Ward ZC, Yang S, Strohm A, Merrill AK, Soto CA, Samuelson AV. HSF-1: Guardian of the Proteome Through Integration of Longevity Signals to the Proteostatic Network. FRONTIERS IN AGING 2022; 3:861686. [PMID: 35874276 PMCID: PMC9304931 DOI: 10.3389/fragi.2022.861686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Discoveries made in the nematode Caenorhabditis elegans revealed that aging is under genetic control. Since these transformative initial studies, C. elegans has become a premier model system for aging research. Critically, the genes, pathways, and processes that have fundamental roles in organismal aging are deeply conserved throughout evolution. This conservation has led to a wealth of knowledge regarding both the processes that influence aging and the identification of molecular and cellular hallmarks that play a causative role in the physiological decline of organisms. One key feature of age-associated decline is the failure of mechanisms that maintain proper function of the proteome (proteostasis). Here we highlight components of the proteostatic network that act to maintain the proteome and how this network integrates into major longevity signaling pathways. We focus in depth on the heat shock transcription factor 1 (HSF1), the central regulator of gene expression for proteins that maintain the cytosolic and nuclear proteomes, and a key effector of longevity signals.
Collapse
Affiliation(s)
- Maria I. Lazaro-Pena
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Zachary C. Ward
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Sifan Yang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Alexandra Strohm
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Alyssa K. Merrill
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Celia A. Soto
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, United States
- Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Andrew V. Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Andrew V. Samuelson,
| |
Collapse
|
16
|
Nisaa K, Ben-Zvi A. HLH-1 Modulates Muscle Proteostasis During Caenorhabditis elegans Larval Development. Front Cell Dev Biol 2022; 10:920569. [PMID: 35733850 PMCID: PMC9207508 DOI: 10.3389/fcell.2022.920569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Muscle proteostasis is shaped by the myogenic transcription factor MyoD which regulates the expression of chaperones during muscle differentiation. Whether MyoD can also modulate chaperone expression in terminally differentiated muscle cells remains open. Here we utilized a temperature-sensitive (ts) conditional knockdown nonsense mutation in MyoD ortholog in C. elegans, HLH-1, to ask whether MyoD plays a role in maintaining muscle proteostasis post myogenesis. We showed that hlh-1 is expressed during larval development and that hlh-1 knockdown at the first, second, or third larval stages resulted in severe defects in motility and muscle organization. Motility defects and myofilament organization were rescued when the clearance of hlh-1(ts) mRNA was inhibited, and hlh-1 mRNA levels were restored. Moreover, hlh-1 knockdown modulated the expression of chaperones with putative HLH-1 binding sites in their promoters, supporting HLH-1 role in muscle maintenance during larval development. Finally, mild disruption of hlh-1 expression during development resulted in earlier dysregulation of muscle maintenance and function during adulthood. We propose that the differentiation transcription factor, HLH-1, contributes to muscle maintenance and regulates cell-specific chaperone expression post differentiation. HLH-1 may thus impact muscle proteostasis and potentially the onset and manifestation of sarcopenia.
Collapse
Affiliation(s)
| | - Anat Ben-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
17
|
Schmauder L, Sima S, Hadj AB, Cesar R, Richter K. Binding of the HSF-1 DNA-binding domain to multimeric C. elegans consensus HSEs is guided by cooperative interactions. Sci Rep 2022; 12:8984. [PMID: 35643773 PMCID: PMC9148306 DOI: 10.1038/s41598-022-12736-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
The protein HSF-1 is the controlling transcription factor of the heat-shock response (HSR). Its binding to the heat-shock elements (HSEs) induces the strong upregulation of conserved heat-shock proteins, including Hsp70s, Hsp40s and small HSPs. Next to these commonly known HSPs, more than 4000 other HSEs are found in the promoter regions of C. elegans genes. In microarray experiments, few of the HSE-containing genes are specifically upregulated during the heat-shock response. Most of the 4000 HSE-containing genes instead are unaffected by elevated temperatures and coexpress with genes unrelated to the HSR. This is also the case for several genes related to the HSP chaperone system, like dnj-12, dnj-13, and hsp-1. Interestingly, several promoters of the dedicated HSR-genes, like F44E5.4p, hsp-16.48p or hsp-16.2p, contain extended HSEs in their promoter region, composed of four or five HSE-elements instead of the common trimeric HSEs. We here aim at understanding how HSF-1 interacts with the different promoter regions. To this end we purify the nematode HSF-1 DBD and investigate the interaction with DNA sequences containing these regions. EMSA assays suggest that the HSF-1 DBD interacts with most of these HSE-containing dsDNAs, but with different characteristics. We employ sedimentation analytical ultracentrifugation (SV-AUC) to determine stoichiometry, affinity, and cooperativity of HSF-1 DBD binding to these HSEs. Interestingly, most HSEs show cooperative binding of the HSF-1 DBD with up to five DBDs being bound. In most cases binding to the HSEs of inducible promoters is stronger, even though the consensus scores are not always higher. The observed high affinity of HSF-1 DBD to the non-inducible HSEs of dnj-12, suggests that constitutive expression may be supported from some promoter regions, a fact that is evident for this transcription factor, that is essential also under non-stress conditions.
Collapse
|
18
|
Golden NL, Foley MK, Kim Guisbert KS, Guisbert E. Divergent regulatory roles of NuRD chromatin remodeling complex subunits GATAD2 and CHD4 in Caenorhabditis elegans. Genetics 2022; 221:iyac046. [PMID: 35323946 PMCID: PMC9071545 DOI: 10.1093/genetics/iyac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/11/2022] [Indexed: 11/12/2022] Open
Abstract
During proteotoxic stress, a pathway known as the heat shock response is induced to maintain protein-folding homeostasis or proteostasis. Previously, we identified the Caenorhabditis elegans GATAD2 ortholog, dcp-66, as a novel regulator of the heat shock response. Here, we extend these findings to show that dcp-66 positively regulates the heat shock response at the cellular, molecular, and organismal levels. As GATAD2 is a subunit of the nucleosome remodeling and deacetylase chromatin remodeling complex, we examined other nucleosome remodeling and deacetylase subunits and found that the let-418 (CHD4) nucleosome repositioning core also regulates the heat shock response. However, let-418 acts as a negative regulator of the heat shock response, in contrast to positive regulation by dcp-66. The divergent effects of these two nucleosome remodeling and deacetylase subunits extend to the regulation of other stress responses including oxidative, genotoxic, and endoplasmic reticulum stress. Furthermore, a transcriptomic approach reveals additional divergently regulated pathways, including innate immunity and embryogenesis. Taken together, this work establishes new insights into the role of nucleosome remodeling and deacetylase subunits in organismal physiology. We incorporate these findings into a molecular model whereby different mechanisms of recruitment to promoters can result in the divergent effects of nucleosome remodeling and deacetylase subunits.
Collapse
Affiliation(s)
- Nicole L Golden
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Michaela K Foley
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Karen S Kim Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Eric Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| |
Collapse
|
19
|
Dudanova I. Biosensors for Studying Neuronal Proteostasis. Front Mol Neurosci 2022; 15:829365. [PMID: 35345600 PMCID: PMC8957107 DOI: 10.3389/fnmol.2022.829365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/31/2022] [Indexed: 01/18/2023] Open
Abstract
Cellular health depends on the integrity and functionality of the proteome. Each cell is equipped with a protein quality control machinery that maintains protein homeostasis (proteostasis) by helping proteins adopt and keep their native structure, and ensuring the degradation of damaged proteins. Postmitotic cells such as neurons are especially vulnerable to disturbances of proteostasis. Defects of protein quality control occur in aging and have been linked to several disorders, including neurodegenerative diseases. However, the exact nature and time course of such disturbances in the context of brain diseases remain poorly understood. Sensors that allow visualization and quantitative analysis of proteostasis capacity in neurons are essential for gaining a better understanding of disease mechanisms and for testing potential therapies. Here, I provide an overview of available biosensors for assessing the functionality of the neuronal proteostasis network, point out the advantages and limitations of different sensors, and outline their potential for biological discoveries and translational applications.
Collapse
Affiliation(s)
- Irina Dudanova
- Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| |
Collapse
|
20
|
Bouchama A, Abuyassin B, Lehe C, Laitano O, Jay O, O'Connor FG, Leon LR. Classic and exertional heatstroke. Nat Rev Dis Primers 2022; 8:8. [PMID: 35115565 DOI: 10.1038/s41572-021-00334-6] [Citation(s) in RCA: 193] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
In the past two decades, record-breaking heatwaves have caused an increasing number of heat-related deaths, including heatstroke, globally. Heatstroke is a heat illness characterized by the rapid rise of core body temperature above 40 °C and central nervous system dysfunction. It is categorized as classic when it results from passive exposure to extreme environmental heat and as exertional when it develops during strenuous exercise. Classic heatstroke occurs in epidemic form and contributes to 9-37% of heat-related fatalities during heatwaves. Exertional heatstroke sporadically affects predominantly young and healthy individuals. Under intensive care, mortality reaches 26.5% and 63.2% in exertional and classic heatstroke, respectively. Pathological studies disclose endothelial cell injury, inflammation, widespread thrombosis and bleeding in most organs. Survivors of heatstroke may experience long-term neurological and cardiovascular complications with a persistent risk of death. No specific therapy other than rapid cooling is available. Physiological and morphological factors contribute to the susceptibility to heatstroke. Future research should identify genetic factors that further describe individual heat illness risk and form the basis of precision-based public health response. Prioritizing research towards fundamental mechanism and diagnostic biomarker discovery is crucial for the design of specific management approaches.
Collapse
Affiliation(s)
- Abderrezak Bouchama
- King Abdullah International Medical Research Center, Experimental Medicine Department, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia.
| | - Bisher Abuyassin
- King Abdullah International Medical Research Center, Experimental Medicine Department, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| | - Cynthia Lehe
- King Abdullah International Medical Research Center, Experimental Medicine Department, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| | - Orlando Laitano
- Department of Nutrition & Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, USA
| | - Ollie Jay
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Francis G O'Connor
- Military and Emergency Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Lisa R Leon
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| |
Collapse
|
21
|
Kmiecik SW, Mayer MP. Molecular mechanisms of heat shock factor 1 regulation. Trends Biochem Sci 2021; 47:218-234. [PMID: 34810080 DOI: 10.1016/j.tibs.2021.10.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/08/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023]
Abstract
To thrive and to fulfill their functions, cells need to maintain proteome homeostasis even in the face of adverse environmental conditions or radical restructuring of the proteome during differentiation. At the center of the regulation of proteome homeostasis is an ancient transcriptional mechanism, the so-called heat shock response (HSR), orchestrated in all eukaryotic cells by heat shock transcription factor 1 (Hsf1). As Hsf1 is implicated in aging and several pathologies like cancer and neurodegenerative disorders, understanding the regulation of Hsf1 could open novel therapeutic opportunities. In this review, we discuss the regulation of Hsf1's transcriptional activity by multiple layers of control circuits involving Hsf1 synthesis and degradation, conformational rearrangements and post-translational modifications (PTMs), and molecular chaperones in negative feedback loops.
Collapse
Affiliation(s)
- Szymon W Kmiecik
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany.
| |
Collapse
|
22
|
Structures of heat shock factor trimers bound to DNA. iScience 2021; 24:102951. [PMID: 34458700 PMCID: PMC8379338 DOI: 10.1016/j.isci.2021.102951] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/15/2021] [Accepted: 08/02/2021] [Indexed: 12/14/2022] Open
Abstract
Heat shock factor 1 (HSF1) and 2 (HSF2) play distinct but overlapping regulatory roles in maintaining cellular proteostasis or mediating cell differentiation and development. Upon activation, both HSFs trimerize and bind to heat shock elements (HSEs) present in the promoter region of target genes. Despite structural insights gained from recent studies, structures reflecting the physiological architecture of this transcriptional machinery remains to be determined. Here, we present co-crystal structures of human HSF1 and HSF2 trimers bound to DNA, which reveal a triangular arrangement of the three DNA-binding domains (DBDs) with protein-protein interactions largely mediated by the wing domain. Two structural properties, different flexibility of the wing domain and local DNA conformational changes induced by HSF binding, seem likely to contribute to the subtle differential specificity between HSF1 and HSF2. Besides, two more structures showing DBDs bound to "two-site" head-to-head HSEs were determined as additions to the published tail-to-tail dimer-binding structures.
Collapse
|
23
|
Vertti-Quintero N, Berger S, Casadevall I Solvas X, Statzer C, Annis J, Ruppen P, Stavrakis S, Ewald CY, Gunawan R, deMello AJ. Stochastic and Age-Dependent Proteostasis Decline Underlies Heterogeneity in Heat-Shock Response Dynamics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102145. [PMID: 34196492 DOI: 10.1002/smll.202102145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Significant non-genetic stochastic factors affect aging, causing lifespan differences among individuals, even those sharing the same genetic and environmental background. In Caenorhabditis elegans, differences in heat-shock response (HSR) are predictive of lifespan. However, factors contributing to the heterogeneity of HSR are still not fully elucidated. Here, the authors characterized HSR dynamics in isogenic C. elegans expressing GFP reporter for hsp-16.2 for identifying the key contributors of HSR heterogeneity. Specifically, microfluidic devices that enable cross-sectional and longitudinal measurements of HSR dynamics in C. elegans at different scales are developed: in populations, within individuals, and in embryos. The authors adapted a mathematical model of HSR to single C. elegans and identified model parameters associated with proteostasis-maintenance of protein homeostasis-more specifically, protein turnover, as the major drivers of heterogeneity in HSR dynamics. It is verified that individuals with enhanced proteostasis fidelity in early adulthood live longer. The model-based comparative analysis of protein turnover in day-1 and day-2 adult C. elegans revealed a stochastic-onset of age-related proteostasis decline that increases the heterogeneity of HSR capacity. Finally, the analysis of C. elegans embryos showed higher HSR and proteostasis capacity than young adults and established transgenerational contribution to HSR heterogeneity that depends on maternal age.
Collapse
Affiliation(s)
| | - Simon Berger
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Xavier Casadevall I Solvas
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
- Department of Biosystems, KU Leuven, Leuven, B-3001, Belgium
| | - Cyril Statzer
- Institute of Translational Medicine, ETH Zurich, Schwerzenbach, 8603, Switzerland
| | - Jillian Annis
- Department of Chemical and Biological Engineering, University at Buffalo - SUNY, Buffalo, NY, 14260, USA
| | - Peter Ruppen
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Stavros Stavrakis
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Collin Y Ewald
- Institute of Translational Medicine, ETH Zurich, Schwerzenbach, 8603, Switzerland
| | - Rudiyanto Gunawan
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
- Department of Chemical and Biological Engineering, University at Buffalo - SUNY, Buffalo, NY, 14260, USA
| | - Andrew J deMello
- Institute of Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
24
|
Ghosh B, Karmakar S, Prasad M, Mandal AK. Praja1 ubiquitin ligase facilitates degradation of polyglutamine proteins and suppresses polyglutamine-mediated toxicity. Mol Biol Cell 2021; 32:1579-1593. [PMID: 34161122 PMCID: PMC8351749 DOI: 10.1091/mbc.e20-11-0747] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A network of chaperones and ubiquitin ligases sustain intracellular proteostasis and is integral in preventing aggregation of misfolded proteins associated with various neurodegenerative diseases. Using cell-based studies of polyglutamine (polyQ) diseases, spinocerebellar ataxia type 3 (SCA3) and Huntington's disease (HD), we aimed to identify crucial ubiquitin ligases that protect against polyQ aggregation. We report here that Praja1 (PJA1), a Ring-H2 ubiquitin ligase abundantly expressed in the brain, is diminished when polyQ repeat proteins (ataxin-3/huntingtin) are expressed in cells. PJA1 interacts with polyQ proteins and enhances their degradation, resulting in reduced aggregate formation. Down-regulation of PJA1 in neuronal cells increases polyQ protein levels vis-a-vis their aggregates, rendering the cells vulnerable to cytotoxic stress. Finally, PJA1 suppresses polyQ toxicity in yeast and rescues eye degeneration in a transgenic Drosophila model of SCA3. Thus, our findings establish PJA1 as a robust ubiquitin ligase of polyQ proteins and induction of which might serve as an alternative therapeutic strategy in handling cytotoxic polyQ aggregates.
Collapse
Affiliation(s)
- Baijayanti Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - Susnata Karmakar
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Mohit Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Atin K Mandal
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| |
Collapse
|
25
|
Lang BJ, Guerrero ME, Prince TL, Okusha Y, Bonorino C, Calderwood SK. The functions and regulation of heat shock proteins; key orchestrators of proteostasis and the heat shock response. Arch Toxicol 2021; 95:1943-1970. [PMID: 34003342 DOI: 10.1007/s00204-021-03070-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Cells respond to protein-damaging (proteotoxic) stress by activation of the Heat Shock Response (HSR). The HSR provides cells with an enhanced ability to endure proteotoxic insults and plays a crucial role in determining subsequent cell death or survival. The HSR is, therefore, a critical factor that influences the toxicity of protein stress. While named for its vital role in the cellular response to heat stress, various components of the HSR system and the molecular chaperone network execute essential physiological functions as well as responses to other diverse toxic insults. The effector molecules of the HSR, the Heat Shock Factors (HSFs) and Heat Shock Proteins (HSPs), are also important regulatory targets in the progression of neurodegenerative diseases and cancers. Modulation of the HSR and/or its extended network have, therefore, become attractive treatment strategies for these diseases. Development of effective therapies will, however, require a detailed understanding of the HSR, important features of which continue to be uncovered and are yet to be completely understood. We review recently described and hallmark mechanistic principles of the HSR, the regulation and functions of HSPs, and contexts in which the HSR is activated and influences cell fate in response to various toxic conditions.
Collapse
Affiliation(s)
- Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Martin E Guerrero
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), 5500, Mendoza, Argentina
| | - Thomas L Prince
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Yuka Okusha
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Cristina Bonorino
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil.,Department of Surgery, School of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
26
|
Walker AC, Bhargava R, Vaziriyan-Sani AS, Pourciau C, Donahue ET, Dove AS, Gebhardt MJ, Ellward GL, Romeo T, Czyż DM. Colonization of the Caenorhabditis elegans gut with human enteric bacterial pathogens leads to proteostasis disruption that is rescued by butyrate. PLoS Pathog 2021; 17:e1009510. [PMID: 33956916 PMCID: PMC8101752 DOI: 10.1371/journal.ppat.1009510] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Protein conformational diseases are characterized by misfolding and toxic aggregation of metastable proteins, often culminating in neurodegeneration. Enteric bacteria influence the pathogenesis of neurodegenerative diseases; however, the complexity of the human microbiome hinders our understanding of how individual microbes influence these diseases. Disruption of host protein homeostasis, or proteostasis, affects the onset and progression of these diseases. To investigate the effect of bacteria on host proteostasis, we used Caenorhabditis elegans expressing tissue-specific polyglutamine reporters that detect changes in the protein folding environment. We found that colonization of the C. elegans gut with enteric bacterial pathogens disrupted proteostasis in the intestine, muscle, neurons, and the gonad, while the presence of bacteria that conditionally synthesize butyrate, a molecule previously shown to be beneficial in neurodegenerative disease models, suppressed aggregation and the associated proteotoxicity. Co-colonization with this butyrogenic strain suppressed bacteria-induced protein aggregation, emphasizing the importance of microbial interaction and its impact on host proteostasis. Further experiments demonstrated that the beneficial effect of butyrate depended on the bacteria that colonized the gut and that this protective effect required SKN-1/Nrf2 and DAF-16/FOXO transcription factors. We also found that bacteria-derived protein aggregates contribute to the observed disruption of host proteostasis. Together, these results reveal the significance of enteric infection and gut dysbiosis on the pathogenesis of protein conformational diseases and demonstrate the potential of using butyrate-producing microbes as a preventative and treatment strategy for neurodegenerative disease.
Collapse
Affiliation(s)
- Alyssa C. Walker
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Rohan Bhargava
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Alfonso S. Vaziriyan-Sani
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Christine Pourciau
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Emily T. Donahue
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Autumn S. Dove
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Michael J. Gebhardt
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Garrett L. Ellward
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Tony Romeo
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Daniel M. Czyż
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
27
|
Shemesh N, Jubran J, Dror S, Simonovsky E, Basha O, Argov C, Hekselman I, Abu-Qarn M, Vinogradov E, Mauer O, Tiago T, Carra S, Ben-Zvi A, Yeger-Lotem E. The landscape of molecular chaperones across human tissues reveals a layered architecture of core and variable chaperones. Nat Commun 2021; 12:2180. [PMID: 33846299 PMCID: PMC8042005 DOI: 10.1038/s41467-021-22369-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The sensitivity of the protein-folding environment to chaperone disruption can be highly tissue-specific. Yet, the organization of the chaperone system across physiological human tissues has received little attention. Through computational analyses of large-scale tissue transcriptomes, we unveil that the chaperone system is composed of core elements that are uniformly expressed across tissues, and variable elements that are differentially expressed to fit with tissue-specific requirements. We demonstrate via a proteomic analysis that the muscle-specific signature is functional and conserved. Core chaperones are significantly more abundant across tissues and more important for cell survival than variable chaperones. Together with variable chaperones, they form tissue-specific functional networks. Analysis of human organ development and aging brain transcriptomes reveals that these functional networks are established in development and decline with age. In this work, we expand the known functional organization of de novo versus stress-inducible eukaryotic chaperones into a layered core-variable architecture in multi-cellular organisms.
Collapse
Affiliation(s)
- Netta Shemesh
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Juman Jubran
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Shiran Dror
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Eyal Simonovsky
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Omer Basha
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Chanan Argov
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Idan Hekselman
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Mehtap Abu-Qarn
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ekaterina Vinogradov
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Omry Mauer
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tatiana Tiago
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Serena Carra
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anat Ben-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
28
|
Gualtieri CT. Genomic Variation, Evolvability, and the Paradox of Mental Illness. Front Psychiatry 2021; 11:593233. [PMID: 33551865 PMCID: PMC7859268 DOI: 10.3389/fpsyt.2020.593233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022] Open
Abstract
Twentieth-century genetics was hard put to explain the irregular behavior of neuropsychiatric disorders. Autism and schizophrenia defy a principle of natural selection; they are highly heritable but associated with low reproductive success. Nevertheless, they persist. The genetic origins of such conditions are confounded by the problem of variable expression, that is, when a given genetic aberration can lead to any one of several distinct disorders. Also, autism and schizophrenia occur on a spectrum of severity, from mild and subclinical cases to the overt and disabling. Such irregularities reflect the problem of missing heritability; although hundreds of genes may be associated with autism or schizophrenia, together they account for only a small proportion of cases. Techniques for higher resolution, genomewide analysis have begun to illuminate the irregular and unpredictable behavior of the human genome. Thus, the origins of neuropsychiatric disorders in particular and complex disease in general have been illuminated. The human genome is characterized by a high degree of structural and behavioral variability: DNA content variation, epistasis, stochasticity in gene expression, and epigenetic changes. These elements have grown more complex as evolution scaled the phylogenetic tree. They are especially pertinent to brain development and function. Genomic variability is a window on the origins of complex disease, neuropsychiatric disorders, and neurodevelopmental disorders in particular. Genomic variability, as it happens, is also the fuel of evolvability. The genomic events that presided over the evolution of the primate and hominid lineages are over-represented in patients with autism and schizophrenia, as well as intellectual disability and epilepsy. That the special qualities of the human genome that drove evolution might, in some way, contribute to neuropsychiatric disorders is a matter of no little interest.
Collapse
|
29
|
Kim Guisbert KS, Mossiah I, Guisbert E. Titration of SF3B1 Activity Reveals Distinct Effects on the Transcriptome and Cell Physiology. Int J Mol Sci 2020; 21:ijms21249641. [PMID: 33348896 PMCID: PMC7766730 DOI: 10.3390/ijms21249641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022] Open
Abstract
SF3B1 is a core component of the U2 spliceosome that is frequently mutated in cancer. We have previously shown that titrating the activity of SF3B1, using the inhibitor pladienolide B (PB), affects distinct steps of the heat shock response (HSR). Here, we identify other genes that are sensitive to different levels of SF3B1 (5 vs. 100 nM PB) using RNA sequencing. Significant changes to mRNA splicing were identified at both low PB and high PB concentrations. Changes in expression were also identified in the absence of alternative splicing, suggesting that SF3B1 influences other gene expression pathways. Surprisingly, gene expression changes identified in low PB are not predictive of changes in high PB. Specific pathways were identified with differential sensitivity to PB concentration, including nonsense-mediated decay and protein-folding homeostasis, both of which were validated using independent reporter constructs. Strikingly, cells exposed to low PB displayed enhanced protein-folding capacity relative to untreated cells. These data reveal that the transcriptome is exquisitely sensitive to SF3B1 and suggests that the activity of SF3B1 is finely regulated to coordinate mRNA splicing, gene expression and cellular physiology.
Collapse
|
30
|
Shih SR, Huntsman EM, Flores ME, Snow JW. Reproductive potential does not cause loss of heat shock response performance in honey bees. Sci Rep 2020; 10:19610. [PMID: 33184302 PMCID: PMC7661715 DOI: 10.1038/s41598-020-74456-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022] Open
Abstract
In other species characterized to date, aging, as a function of reproductive potential, results in the breakdown of proteaostasis and a decreased capacity to mount responses by the heat shock response (HSR) and other proteostatic network pathways. Our understanding of the maintenance of stress pathways, such as the HSR, in honey bees, and in the reproductive queen in particular, is incomplete. Based on the findings in other species showing an inverse relationship between reproductive potential and HSR function, one might predict that that HSR function would be lost in the reproductive queens. However, as queens possess an atypical uncoupling of the reproduction-maintenance trade-off typically found in solitary organisms, HSR maintenance might also be expected. Here we demonstrate that reproductive potential does not cause loss of HSR performance in honey bees as queens induce target gene expression to levels comparable to those induced in attendant worker bees. Maintenance of HSR function with advent of reproductive potential is unique among invertebrates studied to date and provides a potential model for examining the molecular mechanisms regulating the uncoupling of the reproduction-maintenance trade-off in queen bees, with important consequences for understanding how stresses impact different types of individuals in honey bee colonies.
Collapse
Affiliation(s)
- S R Shih
- Biology Department, Barnard College, New York, NY, 10027, USA
| | - E M Huntsman
- Biology Department, Barnard College, New York, NY, 10027, USA
| | - M E Flores
- Biology Department, Barnard College, New York, NY, 10027, USA
| | - J W Snow
- Biology Department, Barnard College, New York, NY, 10027, USA.
| |
Collapse
|
31
|
Bowen L, von Biela VR, McCormick SD, Regish AM, Waters SC, Durbin-Johnson B, Britton M, Settles ML, Donnelly DS, Laske SM, Carey MP, Brown RJ, Zimmerman CE. Transcriptomic response to elevated water temperatures in adult migrating Yukon River Chinook salmon ( Oncorhynchus tshawytscha). CONSERVATION PHYSIOLOGY 2020; 8:coaa084. [PMID: 34512988 PMCID: PMC7486460 DOI: 10.1093/conphys/coaa084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/01/2020] [Accepted: 08/25/2020] [Indexed: 06/01/2023]
Abstract
Chinook salmon (Oncorhynchus tshawytscha) declines are widespread and may be attributed, at least in part, to warming river temperatures. Water temperatures in the Yukon River and tributaries often exceed 18°C, a threshold commonly associated with heat stress and elevated mortality in Pacific salmon. Untangling the complex web of direct and indirect physiological effects of heat stress on salmon is difficult in a natural setting with innumerable system challenges but is necessary to increase our understanding of both lethal and sublethal impacts of heat stress on populations. The goal of this study was to characterize the cellular stress response in multiple Chinook salmon tissues after acute elevated temperature challenges. We conducted a controlled 4-hour temperature exposure (control, 18°C and 21°C) experiment on the bank of the Yukon River followed by gene expression (GE) profiling using a 3'-Tag-RNA-Seq protocol. The full transcriptome was analysed for 22 Chinook salmon in muscle, gill and liver tissue. Both the 21°C and 18°C treatments induced greater activity in genes associated with protein folding (e.g. HSP70, HSP90 mRNA) processes in all tissues. Global GE patterns indicate that transcriptomic responses to heat stress were highly tissue-specific, underscoring the importance of analyzing multiple tissues for determination of physiological effect. Primary superclusters (i.e. groupings of loosely related terms) of altered biological processes were identified in each tissue type, including regulation of DNA damage response (gill), regulation by host of viral transcription (liver) and regulation of the force of heart contraction (muscle) in the 21°C treatment. This study provides insight into mechanisms potentially affecting adult Chinook salmon as they encounter warm water during their spawning migration in the Yukon River and suggests that both basic and more specialized cellular functions may be disrupted.
Collapse
Affiliation(s)
- Lizabeth Bowen
- U.S. Geological Survey, Western Ecological Research Center, One Shields Avenue, Davis, CA, 95616, USA
| | - Vanessa R von Biela
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK, 99508, USA
| | - Stephen D McCormick
- U.S. Geological Survey, Leetown Science Center, Conte Anadromous Fish Research Laboratory, 1 Migratory Way, Turner Falls, Massachusetts, 01376, USA
- Department of Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Amy M Regish
- U.S. Geological Survey, Leetown Science Center, Conte Anadromous Fish Research Laboratory, 1 Migratory Way, Turner Falls, Massachusetts, 01376, USA
| | - Shannon C Waters
- U.S. Geological Survey, Western Ecological Research Center, One Shields Avenue, Davis, CA, 95616, USA
| | - Blythe Durbin-Johnson
- University of California, Genome Center and Bioinformatics Core Facility, One Shields Avenue, Davis, CA, 95616, USA
| | - Monica Britton
- University of California, Genome Center and Bioinformatics Core Facility, One Shields Avenue, Davis, CA, 95616, USA
| | - Matthew L Settles
- University of California, Genome Center and Bioinformatics Core Facility, One Shields Avenue, Davis, CA, 95616, USA
| | - Daniel S Donnelly
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK, 99508, USA
| | - Sarah M Laske
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK, 99508, USA
| | - Michael P Carey
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK, 99508, USA
| | - Randy J Brown
- U.S. Fish and Wildlife Service, 101 12 Avenue, Room 110, Fairbanks, AK, 99701, USA
| | - Christian E Zimmerman
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK, 99508, USA
| |
Collapse
|
32
|
Ray J, Kruse A, Ozer A, Kajitani T, Johnson R, MacCoss M, Heck M, Lis JT. RNA aptamer capture of macromolecular complexes for mass spectrometry analysis. Nucleic Acids Res 2020; 48:e90. [PMID: 32609809 PMCID: PMC7470977 DOI: 10.1093/nar/gkaa542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/03/2020] [Accepted: 06/27/2020] [Indexed: 12/25/2022] Open
Abstract
Specific genomic functions are dictated by macromolecular complexes (MCs) containing multiple proteins. Affinity purification of these complexes, often using antibodies, followed by mass spectrometry (MS) has revolutionized our ability to identify the composition of MCs. However, conventional immunoprecipitations suffer from contaminating antibody/serum-derived peptides that limit the sensitivity of detection for low-abundant interacting partners using MS. Here, we present AptA-MS (aptamer affinity-mass spectrometry), a robust strategy primarily using a specific, high-affinity RNA aptamer against Green Fluorescent Protein (GFP) to identify interactors of a GFP-tagged protein of interest by high-resolution MS. Utilizing this approach, we have identified the known molecular chaperones that interact with human Heat Shock Factor 1 (HSF1), and observed an increased association with several proteins upon heat shock, including translation elongation factors and histones. HSF1 is known to be regulated by multiple post-translational modifications (PTMs), and we observe both known and new sites of modifications on HSF1. We show that AptA-MS provides a dramatic target enrichment and detection sensitivity in evolutionarily diverse organisms and allows identification of PTMs without the need for modification-specific enrichments. In combination with the expanding libraries of GFP-tagged cell lines, this strategy offers a general, inexpensive, and high-resolution alternative to conventional approaches for studying MCs.
Collapse
Affiliation(s)
- Judhajeet Ray
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Angela Kruse
- Department of Plant Pathology and Plant-microbe Biology, Cornell University, Ithaca, NY, USA
- Boyce Thompson Institute, Ithaca, NY, USA
| | - Abdullah Ozer
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Takuya Kajitani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Richard Johnson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Michael MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Michelle Heck
- Department of Plant Pathology and Plant-microbe Biology, Cornell University, Ithaca, NY, USA
- Boyce Thompson Institute, Ithaca, NY, USA
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, United States Department of Agriculture Agricultural Research Service (USDA ARS), Ithaca, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
33
|
Lottes EN, Cox DN. Homeostatic Roles of the Proteostasis Network in Dendrites. Front Cell Neurosci 2020; 14:264. [PMID: 33013325 PMCID: PMC7461941 DOI: 10.3389/fncel.2020.00264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular protein homeostasis, or proteostasis, is indispensable to the survival and function of all cells. Distinct from other cell types, neurons are long-lived, exhibiting architecturally complex and diverse multipolar projection morphologies that can span great distances. These properties present unique demands on proteostatic machinery to dynamically regulate the neuronal proteome in both space and time. Proteostasis is regulated by a distributed network of cellular processes, the proteostasis network (PN), which ensures precise control of protein synthesis, native conformational folding and maintenance, and protein turnover and degradation, collectively safeguarding proteome integrity both under homeostatic conditions and in the contexts of cellular stress, aging, and disease. Dendrites are equipped with distributed cellular machinery for protein synthesis and turnover, including dendritically trafficked ribosomes, chaperones, and autophagosomes. The PN can be subdivided into an adaptive network of three major functional pathways that synergistically govern protein quality control through the action of (1) protein synthesis machinery; (2) maintenance mechanisms including molecular chaperones involved in protein folding; and (3) degradative pathways (e.g., Ubiquitin-Proteasome System (UPS), endolysosomal pathway, and autophagy. Perturbations in any of the three arms of proteostasis can have dramatic effects on neurons, especially on their dendrites, which require tightly controlled homeostasis for proper development and maintenance. Moreover, the critical importance of the PN as a cell surveillance system against protein dyshomeostasis has been highlighted by extensive work demonstrating that the aggregation and/or failure to clear aggregated proteins figures centrally in many neurological disorders. While these studies demonstrate the relevance of derangements in proteostasis to human neurological disease, here we mainly review recent literature on homeostatic developmental roles the PN machinery plays in the establishment, maintenance, and plasticity of stable and dynamic dendritic arbors. Beyond basic housekeeping functions, we consider roles of PN machinery in protein quality control mechanisms linked to dendritic plasticity (e.g., dendritic spine remodeling during LTP); cell-type specificity; dendritic morphogenesis; and dendritic pruning.
Collapse
Affiliation(s)
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
34
|
Madhu D, Khadir A, Hammad M, Kavalakatt S, Dehbi M, Al-Mulla F, Abubaker J, Tiss A. The GLP-1 analog exendin-4 modulates HSP72 expression and ERK1/2 activity in BTC6 mouse pancreatic cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140426. [DOI: 10.1016/j.bbapap.2020.140426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/09/2020] [Accepted: 04/02/2020] [Indexed: 12/25/2022]
|
35
|
Bar-Ziv R, Frakes AE, Higuchi-Sanabria R, Bolas T, Frankino PA, Gildea HK, Metcalf MG, Dillin A. Measurements of Physiological Stress Responses in C. Elegans. J Vis Exp 2020. [PMID: 32510480 DOI: 10.3791/61001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Organisms are often exposed to fluctuating environments and changes in intracellular homeostasis, which can have detrimental effects on their proteome and physiology. Thus, organisms have evolved targeted and specific stress responses dedicated to repair damage and maintain homeostasis. These mechanisms include the unfolded protein response of the endoplasmic reticulum (UPRER), the unfolded protein response of the mitochondria (UPRMT), the heat shock response (HSR), and the oxidative stress response (OxSR). The protocols presented here describe methods to detect and characterize the activation of these pathways and their physiological consequences in the nematode, C. elegans. First, the use of pathway-specific fluorescent transcriptional reporters is described for rapid cellular characterization, drug screening, or large-scale genetic screening (e.g., RNAi or mutant libraries). In addition, complementary, robust physiological assays are described, which can be used to directly assess sensitivity of animals to specific stressors, serving as functional validation of the transcriptional reporters. Together, these methods allow for rapid characterization of the cellular and physiological effects of internal and external proteotoxic perturbations.
Collapse
Affiliation(s)
- Raz Bar-Ziv
- Department of Molecular and Cell Biology, University of California, Berkeley
| | - Ashley E Frakes
- Department of Molecular and Cell Biology, University of California, Berkeley
| | | | - Theodore Bolas
- Department of Molecular and Cell Biology, University of California, Berkeley
| | - Phillip A Frankino
- Department of Molecular and Cell Biology, University of California, Berkeley
| | - Holly K Gildea
- Department of Molecular and Cell Biology, University of California, Berkeley
| | - Melissa G Metcalf
- Department of Molecular and Cell Biology, University of California, Berkeley
| | - Andrew Dillin
- Department of Molecular and Cell Biology, University of California, Berkeley;
| |
Collapse
|
36
|
Puustinen MC, Sistonen L. Molecular Mechanisms of Heat Shock Factors in Cancer. Cells 2020; 9:cells9051202. [PMID: 32408596 PMCID: PMC7290425 DOI: 10.3390/cells9051202] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
Malignant transformation is accompanied by alterations in the key cellular pathways that regulate development, metabolism, proliferation and motility as well as stress resilience. The members of the transcription factor family, called heat shock factors (HSFs), have been shown to play important roles in all of these biological processes, and in the past decade it has become evident that their activities are rewired during tumorigenesis. This review focuses on the expression patterns and functions of HSF1, HSF2, and HSF4 in specific cancer types, highlighting the mechanisms by which the regulatory functions of these transcription factors are modulated. Recently developed therapeutic approaches that target HSFs are also discussed.
Collapse
Affiliation(s)
- Mikael Christer Puustinen
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland;
- Turku Bioscience, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Lea Sistonen
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland;
- Turku Bioscience, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
- Correspondence: ; Tel.: +358-2215-3311
| |
Collapse
|
37
|
Goetting DL, Mansfield R, Soto R, Buskirk CV. Cellular damage, including wounding, drives C. elegans stress-induced sleep. J Neurogenet 2020; 34:430-439. [PMID: 32362197 DOI: 10.1080/01677063.2020.1752203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Across animal phyla, sleep is associated with increased cellular repair, suggesting that cellular damage may be a core component of sleep pressure. In support of this notion, sleep in the nematode Caenorhabditis elegans can be triggered by damaging conditions, including noxious heat, high salt, and ultraviolet light exposure. It is not clear, however, whether this stress-induced sleep (SIS) is a direct consequence of cellular damage, or of a resulting energy deficit, or whether it is triggered simply by the sensation of noxious conditions. Here, we show that thermosensation is dispensable for heat-induced sleep, that osmosensation is dispensable for salt-induced sleep, and that wounding is also a sleep trigger, together indicating that SIS is not triggered by sensation of noxious environments. We present evidence that genetic variation in cellular repair pathways impacts sleep amount, and that SIS involves systemic monitoring of cellular damage. We show that the low-energy sensor AMP-activated protein kinase (AMPK) is not required for SIS, suggesting that energy deficit is not the primary sleep trigger. Instead, AMPK-deficient animals display enhanced SIS responses, and pharmacological activation of AMPK reduces SIS, suggesting that ATP-dependent repair of cellular damage mitigates sleep pressure.
Collapse
Affiliation(s)
- Desiree L Goetting
- Department of Biology, California State University Northridge, Los Angeles, CA, USA
| | - Richard Mansfield
- Department of Biology, California State University Northridge, Los Angeles, CA, USA
| | - Rony Soto
- Department of Biology, California State University Northridge, Los Angeles, CA, USA
| | - Cheryl Van Buskirk
- Department of Biology, California State University Northridge, Los Angeles, CA, USA
| |
Collapse
|
38
|
Abstract
The functional health of the proteome is determined by properties of the proteostasis network (PN) that regulates protein synthesis, folding, macromolecular assembly, translocation, and degradation. In eukaryotes, the PN also integrates protein biogenesis across compartments within the cell and between tissues of metazoans for organismal health and longevity. Additionally, in metazoans, proteome stability and the functional health of proteins is optimized for development and yet declines throughout aging, accelerating the risk for misfolding, aggregation, and cellular dysfunction. Here, I describe the cell-nonautonomous regulation of organismal PN by tissue communication and cell stress-response pathways. These systems are robust from development through reproductive maturity and are genetically programmed to decline abruptly in early adulthood by repression of the heat shock response and other cell-protective stress responses, thus compromising the ability of cells and tissues to properly buffer against the cumulative stress of protein damage during aging. While the failure of multiple protein quality control processes during aging challenges cellular function and tissue health, genetic studies, and the identification of small-molecule proteostasis regulators suggests strategies that can be employed to reset the PN with potential benefit on cellular health and organismal longevity.
Collapse
Affiliation(s)
- Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
39
|
Güttsches AK, Jacobsen F, Schreiner A, Mertens-Rill J, Tegenthoff M, Marcus K, Vorgerd M, Kley RA. Chaperones in sporadic inclusion body myositis-Validation of proteomic data. Muscle Nerve 2019; 61:116-121. [PMID: 31644823 DOI: 10.1002/mus.26742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Sporadic inclusion body myositis (sIBM) is characterized by myopathological features including rimmed vacuoles (RVs) and proteins associated with protein aggregation, autophagy, and inflammation. Previous proteomic studies of RV areas revealed an overrepresentation of several chaperones and subunits of the T-complex protein 1 (TCP-1), which is involved in prevention of protein aggregation. METHODS To validate our proteomic findings, immunofluorescence analyses of selected chaperones and quantitative Western blot analysis of TCP-1 proteins were performed in five sIBM patients and five healthy controls. RESULTS Immunofluorescence studies confirmed increased immunoreactivity for VCP, UNC45B, GRP-75, αB-crystallin, LAMP-2, Rab-7a, and TCP-1α and TCP-θ in RVs. Quantitative Western blot analysis revealed a significantly higher level of TCP-1 in sIBM muscle tissue when compared with healthy controls. DISCUSSION Our study findings validate new insights in protein quality control and degradation processes that seem to be relevant in sIBM. These data provide an important basis for future functional and therapeutic studies.
Collapse
Affiliation(s)
- Anne-Katrin Güttsches
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Frank Jacobsen
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Anja Schreiner
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Janine Mertens-Rill
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Katrin Marcus
- Medizinisches Proteom Center, Ruhr University Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Rudolf A Kley
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany.,Department of Neurology and Clinical Neurophysiology, St Marien Hospital Borken, Borken, Germany
| |
Collapse
|
40
|
MDT-15/MED15 permits longevity at low temperature via enhancing lipidostasis and proteostasis. PLoS Biol 2019; 17:e3000415. [PMID: 31408455 PMCID: PMC6692015 DOI: 10.1371/journal.pbio.3000415] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/16/2019] [Indexed: 11/30/2022] Open
Abstract
Low temperatures delay aging and promote longevity in many organisms. However, the metabolic and homeostatic aspects of low-temperature–induced longevity remain poorly understood. Here, we show that lipid homeostasis regulated by Caenorhabditis elegans Mediator 15 (MDT-15 or MED15), a transcriptional coregulator, is essential for low-temperature–induced longevity and proteostasis. We find that inhibition of mdt-15 prevents animals from living long at low temperatures. We show that MDT-15 up-regulates fat-7, a fatty acid desaturase that converts saturated fatty acids (SFAs) to unsaturated fatty acids (UFAs), at low temperatures. We then demonstrate that maintaining a high UFA/SFA ratio is essential for proteostasis at low temperatures. We show that dietary supplementation with a monounsaturated fatty acid, oleic acid (OA), substantially mitigates the short life span and proteotoxicity in mdt-15(-) animals at low temperatures. Thus, lipidostasis regulated by MDT-15 appears to be a limiting factor for proteostasis and longevity at low temperatures. Our findings highlight the crucial roles of lipid regulation in maintaining normal organismal physiology under different environmental conditions. Low temperatures delay aging and promote longevity in many organisms. This study shows that at low ambient temperatures, Mediator 15, a transcriptional coregulator, allows the nematode Caenorhabditis elegans to live longer by increasing the levels of unsaturated lipids, helping to maintain protein homeostasis.
Collapse
|
41
|
Wu CW, Wimberly K, Pietras A, Dodd W, Atlas MB, Choe KP. RNA processing errors triggered by cadmium and integrator complex disruption are signals for environmental stress. BMC Biol 2019; 17:56. [PMID: 31311534 PMCID: PMC6631800 DOI: 10.1186/s12915-019-0675-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 06/24/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Adaptive responses to stress are essential for cell and organismal survival. In metazoans, little is known about the impact of environmental stress on RNA homeostasis. RESULTS By studying the regulation of a cadmium-induced gene named numr-1 in Caenorhabditis elegans, we discovered that disruption of RNA processing acts as a signal for environmental stress. We find that NUMR-1 contains motifs common to RNA splicing factors and influences RNA splicing in vivo. A genome-wide screen reveals that numr-1 is strongly and specifically induced by silencing of genes that function in basal RNA metabolism including subunits of the metazoan integrator complex. Human integrator processes snRNAs for functioning with splicing factors, and we find that silencing of C. elegans integrator subunits disrupts snRNA processing, causes aberrant pre-mRNA splicing, and induces the heat shock response. Cadmium, which also strongly induces numr-1, has similar effects on RNA and the heat shock response. Lastly, we find that heat shock factor-1 is required for full numr-1 induction by cadmium. CONCLUSION Our results are consistent with a model in which disruption of integrator processing of RNA acts as a molecular damage signal initiating an adaptive stress response mediated by heat shock factor-1. When numr-1 is induced via this pathway in C. elegans, its function in RNA metabolism may allow it to mitigate further damage and thereby promote tolerance to cadmium.
Collapse
Affiliation(s)
- Cheng-Wei Wu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA.
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada.
| | - Keon Wimberly
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Adele Pietras
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - William Dodd
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - M Blake Atlas
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Keith P Choe
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
42
|
Miles J, Scherz-Shouval R, van Oosten-Hawle P. Expanding the Organismal Proteostasis Network: Linking Systemic Stress Signaling with the Innate Immune Response. Trends Biochem Sci 2019; 44:927-942. [PMID: 31303384 DOI: 10.1016/j.tibs.2019.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/31/2022]
Abstract
Stress response pathways regulate proteostasis and mitigate macromolecular damage to promote long-term cellular health. Intercellular signaling is an essential layer of systemic proteostasis in an organism and is facilitated via transcellular signaling molecules that orchestrate the activation of stress responses across tissues and organs. Accumulating evidence indicates that components of the immune response act as signaling factors that regulate the cell-non-autonomous proteostasis network. Here, we review emergent advances in our understanding of cell-non-autonomous regulators of proteostasis networks in multicellular settings, from the model organism, Caenorhabditis elegans, to humans. We further discuss how innate immune responses can be players of the organismal proteostasis network and discuss how both are linked in cancer.
Collapse
Affiliation(s)
- Jay Miles
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Patricija van Oosten-Hawle
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
43
|
Pasteurized Orange Juice Rich in Carotenoids Protects Caenorhabditis elegans against Oxidative Stress and β-Amyloid Toxicity through Direct and Indirect Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5046280. [PMID: 31178963 PMCID: PMC6501168 DOI: 10.1155/2019/5046280] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/28/2018] [Accepted: 01/17/2019] [Indexed: 12/23/2022]
Abstract
‘Cara Cara' is a red orange (Citrus sinensis (L.) Osbeck) variety originally from Venezuela characterized by a significantly higher and diversified carotenoid content including higher-concentration lycopene, all-E-β-carotene, phytoene, and other carotenoids when compared with the carotenoid profile of its isogenic blond counterpart ‘Bahia', also known as Washington navel. The exceptionally high carotenoid content of ‘Cara Cara' is of special interest due to its neuroprotective potential. Here, we used the nematode Caenorhabditis elegans to analyze the antioxidant effect and the protection against β-amyloid-induced toxicity of pasteurized orange juice (POJ) obtained from ‘Cara Cara' and compare to that from ‘Bahia'. POJ treatment reduced the endogenous ROS levels and increased the worm's survival rate under normal and oxidative stress conditions. POJ treatment also upregulated the expression of antioxidant (gcs-1, gst-4, and sod-3) and chaperonin (hsp-16.2) genes. Remarkably, ROS reduction, gene expression activation, oxidative stress resistance, and longevity extension were significantly increased in the animals treated with ‘Cara Cara' orange juice compared to animals treated with ‘Bahia' orange juice. Furthermore, the body paralysis induced by β-amyloid peptide was delayed by both POJs but the mean paralysis time for the worms treated with ‘Cara Cara' orange juice was significantly higher compared to ‘Bahia' orange juice. Our mechanistic studies indicated that POJ-reduced ROS levels are primarily a result of the direct scavenging action of natural compounds available in the orange juice. Moreover, POJ-induced gst-4::GFP expression and –increased stress resistance was dependent of the SKN-1/Nrf2 transcription factor. Finally, the transcription factors SKN-1, DAF-16, and HSF-1 were required for the POJ-mediated protective effect against Aβ toxicity. Collectively, these results suggest that orange juice from ‘Cara Cara' induced a stronger response against oxidative stress and β-amyloid toxicity compared to orange juice from ‘Bahia' possibly due to its higher carotenoid content.
Collapse
|
44
|
Higuchi-Sanabria R, Frankino PA, Paul JW, Tronnes SU, Dillin A. A Futile Battle? Protein Quality Control and the Stress of Aging. Dev Cell 2018; 44:139-163. [PMID: 29401418 PMCID: PMC5896312 DOI: 10.1016/j.devcel.2017.12.020] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/30/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022]
Abstract
There exists a phenomenon in aging research whereby early life stress can have positive impacts on longevity. The mechanisms underlying these observations suggest a robust, long-lasting induction of cellular defense mechanisms. These include the various unfolded protein responses of the endoplasmic reticulum (ER), cytosol, and mitochondria. Indeed, ectopic induction of these pathways, in the absence of stress, is sufficient to increase lifespan in organisms as diverse as yeast, worms, and flies. Here, we provide an overview of the protein quality control mechanisms that operate in the cytosol, mitochondria, and ER and discuss how they affect cellular health and viability during stress and aging.
Collapse
Affiliation(s)
- Ryo Higuchi-Sanabria
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Phillip Andrew Frankino
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joseph West Paul
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sarah Uhlein Tronnes
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
45
|
Kirstein J, Arnsburg K, Scior A, Szlachcic A, Guilbride DL, Morimoto RI, Bukau B, Nillegoda NB. In vivo properties of the disaggregase function of J-proteins and Hsc70 in Caenorhabditis elegans stress and aging. Aging Cell 2017; 16:1414-1424. [PMID: 29024389 PMCID: PMC5676055 DOI: 10.1111/acel.12686] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2017] [Indexed: 02/06/2023] Open
Abstract
Protein aggregation is enhanced upon exposure to various stress conditions and aging, which suggests that the quality control machinery regulating protein homeostasis could exhibit varied capacities in different stages of organismal lifespan. Recently, an efficient metazoan disaggregase activity was identified in vitro, which requires the Hsp70 chaperone and Hsp110 nucleotide exchange factor, together with single or cooperating J-protein co-chaperones of classes A and B. Here, we describe how the orthologous Hsp70s and J-protein of Caenorhabditis elegans work together to resolve protein aggregates both in vivo and in vitro to benefit organismal health. Using an RNAi knockdown approach, we show that class A and B J-proteins cooperate to form an interactive flexible network that relocalizes to protein aggregates upon heat shock and preferentially recruits constitutive Hsc70 to disaggregate heat-induced protein aggregates and polyQ aggregates that form in an age-dependent manner. Cooperation between class A and B J-proteins is also required for organismal health and promotes thermotolerance, maintenance of fecundity, and extended viability after heat stress. This disaggregase function of J-proteins and Hsc70 therefore constitutes a powerful regulatory network that is key to Hsc70-based protein quality control mechanisms in metazoa with a central role in the clearance of aggregates, stress recovery, and organismal fitness in aging.
Collapse
Affiliation(s)
- Janine Kirstein
- Leibniz‐Institute for Molecular Pharmacology (FMP)13125BerlinGermany
| | - Kristin Arnsburg
- Leibniz‐Institute for Molecular Pharmacology (FMP)13125BerlinGermany
| | - Annika Scior
- Leibniz‐Institute for Molecular Pharmacology (FMP)13125BerlinGermany
| | - Anna Szlachcic
- Center for Molecular Biology (ZMBH)Heidelberg University69120HeidelbergGermany
| | - D. Lys Guilbride
- Center for Molecular Biology (ZMBH)Heidelberg University69120HeidelbergGermany
| | - Richard I. Morimoto
- Department of Molecular BiosciencesRice Institute for Biomedical ResearchNorthwestern UniversityEvanstonIL60208USA
| | - Bernd Bukau
- Center for Molecular Biology (ZMBH)Heidelberg University69120HeidelbergGermany
- German Cancer Research Center (DKFZ)69120HeidelbergGermany
| | - Nadinath B. Nillegoda
- Center for Molecular Biology (ZMBH)Heidelberg University69120HeidelbergGermany
- German Cancer Research Center (DKFZ)69120HeidelbergGermany
| |
Collapse
|
46
|
Klaips CL, Jayaraj GG, Hartl FU. Pathways of cellular proteostasis in aging and disease. J Cell Biol 2017; 217:51-63. [PMID: 29127110 PMCID: PMC5748993 DOI: 10.1083/jcb.201709072] [Citation(s) in RCA: 534] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/19/2022] Open
Abstract
Ensuring cellular protein homeostasis, or proteostasis, requires precise control of protein synthesis, folding, conformational maintenance, and degradation. A complex and adaptive proteostasis network coordinates these processes with molecular chaperones of different classes and their regulators functioning as major players. This network serves to ensure that cells have the proteins they need while minimizing misfolding or aggregation events that are hallmarks of age-associated proteinopathies, including neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. It is now clear that the capacity of cells to maintain proteostasis undergoes a decline during aging, rendering the organism susceptible to these pathologies. Here we discuss the major proteostasis pathways in light of recent research suggesting that their age-dependent failure can both contribute to and result from disease. We consider different strategies to modulate proteostasis capacity, which may help develop urgently needed therapies for neurodegeneration and other age-dependent pathologies.
Collapse
Affiliation(s)
- Courtney L Klaips
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
47
|
Kopp Y, Lang WH, Schuster TB, Martínez-Limón A, Hofbauer HF, Ernst R, Calloni G, Vabulas RM. CHIP as a membrane-shuttling proteostasis sensor. eLife 2017; 6:e29388. [PMID: 29091030 PMCID: PMC5665643 DOI: 10.7554/elife.29388] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/22/2017] [Indexed: 12/12/2022] Open
Abstract
Cells respond to protein misfolding and aggregation in the cytosol by adjusting gene transcription and a number of post-transcriptional processes. In parallel to functional reactions, cellular structure changes as well; however, the mechanisms underlying the early adaptation of cellular compartments to cytosolic protein misfolding are less clear. Here we show that the mammalian ubiquitin ligase C-terminal Hsp70-interacting protein (CHIP), if freed from chaperones during acute stress, can dock on cellular membranes thus performing a proteostasis sensor function. We reconstituted this process in vitro and found that mainly phosphatidic acid and phosphatidylinositol-4-phosphate enhance association of chaperone-free CHIP with liposomes. HSP70 and membranes compete for mutually exclusive binding to the tetratricopeptide repeat domain of CHIP. At new cellular locations, access to compartment-specific substrates would enable CHIP to participate in the reorganization of the respective organelles, as exemplified by the fragmentation of the Golgi apparatus (effector function).
Collapse
Affiliation(s)
- Yannick Kopp
- Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtFrankfurt am MainGermany
- Institute of Biophysical ChemistryGoethe University FrankfurtFrankfurt am MainGermany
| | - Wei-Han Lang
- Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtFrankfurt am MainGermany
- Institute of Biophysical ChemistryGoethe University FrankfurtFrankfurt am MainGermany
| | - Tobias B Schuster
- Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtFrankfurt am MainGermany
- Institute of Biophysical ChemistryGoethe University FrankfurtFrankfurt am MainGermany
| | - Adrián Martínez-Limón
- Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtFrankfurt am MainGermany
- Institute of Biophysical ChemistryGoethe University FrankfurtFrankfurt am MainGermany
| | - Harald F Hofbauer
- Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtFrankfurt am MainGermany
- Institute of BiochemistryGoethe University FrankfurtFrankfurt am MainGermany
| | - Robert Ernst
- Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtFrankfurt am MainGermany
- Institute of BiochemistryGoethe University FrankfurtFrankfurt am MainGermany
| | - Giulia Calloni
- Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtFrankfurt am MainGermany
- Institute of Biophysical ChemistryGoethe University FrankfurtFrankfurt am MainGermany
| | - R Martin Vabulas
- Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtFrankfurt am MainGermany
- Institute of Biophysical ChemistryGoethe University FrankfurtFrankfurt am MainGermany
| |
Collapse
|
48
|
Hsp90-downregulation influences the heat-shock response, innate immune response and onset of oocyte development in nematodes. PLoS One 2017; 12:e0186386. [PMID: 29078207 PMCID: PMC5659845 DOI: 10.1371/journal.pone.0186386] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 09/30/2017] [Indexed: 01/21/2023] Open
Abstract
Hsp90 is a molecular chaperone involved in the regulation and maturation of kinases and transcription factors. In Caenorhabditis elegans, it contributes to the development of fertility, maintenance of muscle structure, the regulation of heat-shock response and dauer state. To understand the consequences of Hsp90-depletion, we studied Hsp90 RNAi-treated nematodes by DNA microarrays and mass spectrometry. We find that upon development of phenotypes the levels of chaperones and Hsp90 cofactors are increased, while specific proteins related to the innate immune response are depleted. In microarrays, we further find many differentially expressed genes related to gonad and larval development. These genes form an expression cluster that is regulated independently from the immune response implying separate pathways of Hsp90-involvement. Using fluorescent reporter strains for the differentially expressed immune response genes skr-5, dod-24 and clec-60 we observe that their activity in intestinal tissues is influenced by Hsp90-depletion. Instead, effects on the development are evident in both gonad arms. After Hsp90-depletion, changes can be observed in early embryos and adults containing fluorescence-tagged versions of SEPA-1, CAV-1 or PUD-1, all of which are downregulated after Hsp90-depletion. Our observations identify molecular events for Hsp90-RNAi induced phenotypes during development and immune responses, which may help to separately investigate independent Hsp90-influenced processes that are relevant during the nematode’s life and development.
Collapse
|
49
|
Li J, Labbadia J, Morimoto RI. Rethinking HSF1 in Stress, Development, and Organismal Health. Trends Cell Biol 2017; 27:895-905. [PMID: 28890254 DOI: 10.1016/j.tcb.2017.08.002] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 11/29/2022]
Abstract
The heat shock response (HSR) was originally discovered as a transcriptional response to elevated temperature shock and led to the identification of heat shock proteins and heat shock factor 1 (HSF1). Since then HSF1 has been shown to be important for combating other forms of environmental perturbations as well as genetic variations that cause proteotoxic stress. The HSR has long been thought to be an absolute response to conditions of cell stress and the primary mechanism by which HSF1 promotes organismal health by preventing protein aggregation and subsequent proteome imbalance. Accumulating evidence now shows that HSF1, the central player in the HSR, is regulated according to specific cellular requirements through cell-autonomous and non-autonomous signals, and directs transcriptional programs distinct from the HSR during development and in carcinogenesis. We discuss here these 'non-canonical' roles of HSF1, its regulation in diverse conditions of development, reproduction, metabolism, and aging, and posit that HSF1 serves to integrate diverse biological and pathological responses.
Collapse
Affiliation(s)
- Jian Li
- Department of Molecular Biosciences, Rice Institute for Biomedical Research Northwestern University, Evanston, IL 60208, USA; Present address: Functional and Chemical Genomics Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Johnathan Labbadia
- Department of Molecular Biosciences, Rice Institute for Biomedical Research Northwestern University, Evanston, IL 60208, USA; Present address: Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, WC1E 6BT, UK
| | - Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
50
|
McKinstry M, Chung C, Truong H, Johnston BA, Snow JW. The heat shock response and humoral immune response are mutually antagonistic in honey bees. Sci Rep 2017; 7:8850. [PMID: 28821863 PMCID: PMC5562734 DOI: 10.1038/s41598-017-09159-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/21/2017] [Indexed: 11/24/2022] Open
Abstract
The honey bee is of paramount importance to humans in both agricultural and ecological settings. Honey bee colonies have suffered from increased attrition in recent years, stemming from complex interacting stresses. Defining common cellular stress responses elicited by these stressors represents a key step in understanding potential synergies. The proteostasis network is a highly conserved network of cellular stress responses involved in maintaining the homeostasis of protein production and function. Here, we have characterized the Heat Shock Response (HSR), one branch of this network, and found that its core components are conserved. In addition, exposing bees to elevated temperatures normally encountered by honey bees during typical activities results in robust HSR induction with increased expression of specific heat shock proteins that was variable across tissues. Surprisingly, we found that heat shock represses multiple immune genes in the abdomen and additionally showed that wounding the cuticle of the abdomen results in decreased expression of multiple HSR genes in proximal and distal tissues. This mutually antagonistic relationship between the HSR and immune activation is unique among invertebrates studied to date and may promote understanding of potential synergistic effects of disparate stresses in this critical pollinator and social insects more broadly.
Collapse
Affiliation(s)
- Mia McKinstry
- Biology Department, Barnard College, New York, NY, 10027, USA
| | - Charlie Chung
- Natural Sciences Department, LaGuardia Community College-CUNY, Long Island City, NY, 11101, USA
| | - Henry Truong
- Biology Department, Barnard College, New York, NY, 10027, USA
| | - Brittany A Johnston
- Biology Department, The City College of New York-CUNY, New York, NY, 10031, USA
| | - Jonathan W Snow
- Biology Department, Barnard College, New York, NY, 10027, USA.
| |
Collapse
|