1
|
Uemura K, Sato T, Yamamoto S, Ogasawara N, Toyting J, Aoki K, Takasawa A, Koyama M, Saito A, Wada T, Okada K, Yoshida Y, Kuronuma K, Nakajima C, Suzuki Y, Horiuchi M, Takano K, Takahashi S, Chiba H, Yokota SI. Rapid and Integrated Bacterial Evolution Analysis unveils gene mutations and clinical risk of Klebsiella pneumoniae. Nat Commun 2025; 16:2917. [PMID: 40133255 PMCID: PMC11937256 DOI: 10.1038/s41467-025-58049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Bacteria continually evolve. Previous studies have evaluated bacterial evolution in retrospect, but this approach is based on only speculation. Cohort studies are reliable but require a long duration. Additionally, identifying which genetic mutations that have emerged during bacterial evolution possess functions of interest to researchers is an exceptionally challenging task. Here, we establish a Rapid and Integrated Bacterial Evolution Analysis (RIBEA) based on serial passaging experiments using hypermutable strains, whole-genome and transposon-directed sequencing, and in vivo evaluations to monitor bacterial evolution in a cohort for one month. RIBEA reveals bacterial factors contributing to serum and antimicrobial resistance by identifying gene mutations that occurred during evolution in the major respiratory pathogen Klebsiella pneumoniae. RIBEA also enables the evaluation of the risk for the progression and the development of invasive ability from the lung to blood and antimicrobial resistance. Our results demonstrate that RIBEA enables the observation of bacterial evolution and the prediction and identification of clinically relevant high-risk bacterial strains, clarifying the associated pathogenicity and the development of antimicrobial resistance at genetic mutation level.
Collapse
Affiliation(s)
- Kojiro Uemura
- Department of Microbiology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
- Department of Respiratory Medicine, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Toyotaka Sato
- Department of Microbiology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan.
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Kita-Ku, Sapporo, Japan.
- Graduate School of Infectious Diseases, Hokkaido University, Kita-Ku, Sapporo, Japan.
- One Health Research Center, Hokkaido University, Kita-Ku, Sapporo, Japan.
- Veterinary Research Unit, International Institute for Zoonosis Control, Sapporo, University, Kita-Ku, Sapporo, Japan.
| | - Soh Yamamoto
- Department of Microbiology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Noriko Ogasawara
- Department of Microbiology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Jirachaya Toyting
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Kita-Ku, Sapporo, Japan
| | - Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, Japan
| | - Akira Takasawa
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Masayuki Koyama
- Department of Public Health, Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Atsushi Saito
- Department of Respiratory Medicine, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Takayuki Wada
- Graduate School of Human Life and Ecology, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, 1-2-7-601, Asahimachi, Abeno-ku, Osaka, Japan
| | - Kaho Okada
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Kita-Ku, Sapporo, Japan
| | - Yurie Yoshida
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Koji Kuronuma
- Department of Respiratory Medicine, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, N20, Kita-Ku, Sapporo, Japan
- International Collaboration Unit, Hokkaido University, International Institute for Zoonosis Control, Kita-Ku, Sapporo, Japan
- Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Kita-Ku, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, N20, Kita-Ku, Sapporo, Japan
- International Collaboration Unit, Hokkaido University, International Institute for Zoonosis Control, Kita-Ku, Sapporo, Japan
- Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Kita-Ku, Sapporo, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Kita-Ku, Sapporo, Japan
- Graduate School of Infectious Diseases, Hokkaido University, Kita-Ku, Sapporo, Japan
- One Health Research Center, Hokkaido University, Kita-Ku, Sapporo, Japan
| | - Kenichi Takano
- Veterinary Research Unit, International Institute for Zoonosis Control, Sapporo, University, Kita-Ku, Sapporo, Japan
| | - Satoshi Takahashi
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
- Division of Laboratory Medicine, Sapporo Medical University Hospital, Chuo-Ku, Sapporo, Japan
| | - Hirofumi Chiba
- Department of Respiratory Medicine, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| | - Shin-Ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo, Japan
| |
Collapse
|
2
|
Flores-Vega VR, Partida-Sanchez S, Ares MA, Ortiz-Navarrete V, Rosales-Reyes R. High-risk Pseudomonas aeruginosa clones harboring β-lactamases: 2024 update. Heliyon 2025; 11:e41540. [PMID: 39850428 PMCID: PMC11754179 DOI: 10.1016/j.heliyon.2024.e41540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/25/2025] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa is defined by the World Health Organization as a "high priority" in developing new antimicrobials. Indeed, the emergence and spread of multidrug-resistant (MDR) or extensively drug-resistant (XDR) bacteria increase the morbidity and mortality risk of infected patients. Genomic variants of P. aeruginosa that display phenotypes of MDR/XDR have been defined as high-risk global clones. In this mini-review, we describe some international high-risk clones that carry β-lactamase genes that can produce chronic colonization and increase infected patients' morbidity and mortality rates.
Collapse
Affiliation(s)
- Verónica Roxana Flores-Vega
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Miguel A. Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Vianney Ortiz-Navarrete
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Roberto Rosales-Reyes
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Tobares RA, Martino RA, Colque CA, Castillo Moro GL, Moyano AJ, Albarracín Orio AG, Smania AM. Hypermutability bypasses genetic constraints in SCV phenotypic switching in Pseudomonas aeruginosa biofilms. NPJ Biofilms Microbiomes 2025; 11:14. [PMID: 39805827 PMCID: PMC11730322 DOI: 10.1038/s41522-024-00644-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025] Open
Abstract
Biofilms are critical in the persistence of Pseudomonas aeruginosa infections, particularly in cystic fibrosis patients. This study explores the adaptive mechanisms behind the phenotypic switching between Small Colony Variants (SCVs) and revertant states in P. aeruginosa biofilms, emphasizing hypermutability due to Mismatch Repair System (MRS) deficiencies. Through experimental evolution and whole-genome sequencing, we show that both wild-type and mutator strains undergo parallel evolution by accumulating compensatory mutations in factors regulating intracellular c-di-GMP levels, particularly in the Wsp and Yfi systems. While wild-type strains face genetic constraints, mutator strains bypass these by accessing alternative genetic pathways regulating c-di-GMP and biofilm formation. This increased genetic accessibility, driven by higher mutation rates and specific mutational biases, supports sustained cycles of SCV conversion and reversion. Our findings underscore the crucial role of hypermutability in P. aeruginosa adaptation, with significant implications for managing persistent infections in clinical settings.
Collapse
Affiliation(s)
- Romina A Tobares
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica "Ranwel Caputto", Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Román A Martino
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica "Ranwel Caputto", Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Claudia A Colque
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica "Ranwel Caputto", Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Gaston L Castillo Moro
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica "Ranwel Caputto", Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Alejandro J Moyano
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica "Ranwel Caputto", Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Andrea G Albarracín Orio
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica "Ranwel Caputto", Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
- IRNASUS, Universidad Católica de Córdoba, CONICET, Facultad de Ciencias Agropecuarias, Córdoba, Argentina
| | - Andrea M Smania
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica "Ranwel Caputto", Córdoba, Argentina.
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina.
| |
Collapse
|
4
|
Hall KM, Williams LG, Smith RD, Kuang EA, Ernst RK, Bojanowski CM, Wimley WC, Morici LA, Pursell ZF. Mutational signature analysis predicts bacterial hypermutation and multidrug resistance. Nat Commun 2025; 16:19. [PMID: 39746975 PMCID: PMC11695600 DOI: 10.1038/s41467-024-55206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Bacteria of clinical importance, such as Pseudomonas aeruginosa, can become hypermutators upon loss of DNA mismatch repair (MMR) and are clinically correlated with high rates of multidrug resistance (MDR). Here, we demonstrate that hypermutated MMR-deficient P. aeruginosa has a unique mutational signature and rapidly acquires MDR upon repeated exposure to first-line or last-resort antibiotics. MDR acquisition was irrespective of drug class and instead arose through common resistance mechanisms shared between the initial and secondary drugs. Rational combinations of drugs having distinct resistance mechanisms prevented MDR acquisition in hypermutated MMR-deficient P. aeruginosa. Mutational signature analysis of P. aeruginosa across different human disease contexts identified appreciable quantities of MMR-deficient clinical isolates that were already MDR or prone to future MDR acquisition. Mutational signature analysis of patient samples is a promising diagnostic tool that may predict MDR and guide precision-based medical care.
Collapse
Affiliation(s)
- Kalen M Hall
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA, USA
- Informuta, Inc., San Diego, CA, USA
| | - Leonard G Williams
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA, USA
- Informuta, Inc., San Diego, CA, USA
- Bioinnovation Program, Tulane University, New Orleans, LA, USA
| | - Richard D Smith
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Erin A Kuang
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | | | - William C Wimley
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Lisa A Morici
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA, USA.
- Tulane Cancer Center, School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
5
|
Fuglsang-Madsen A, Haagensen JAJ, De Rudder C, Simões FB, Molin S, Johansen HK. Establishment of a 3D-Printed Tissue-on-a-Chip Model for Live Imaging of Bacterial Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1476:69-85. [PMID: 39825043 DOI: 10.1007/5584_2024_829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Despite advances in healthcare, bacterial pathogens remain a severe global health threat, exacerbated by rising antibiotic resistance. Lower respiratory tract infections, with their high death toll, are of particular concern. Accurately replicating host-pathogen interactions in laboratory models is crucial for understanding these diseases and evaluating new therapies. In this communication, we briefly present existing in vivo models for cystic fibrosis and their limitations in replicating human respiratory infections. We then present a novel, 3D-printed, cytocompatible microfluidic lung-on-a-chip device, designed to simulate the human lung environment, and with possible use in recapitulating general infectious diseases.Our device enables the colonisation of fully differentiated lung epithelia at an air-liquid interface with Pseudomonas aeruginosa, a key pathogen in many severe infections. By incorporating dynamic flow, we replicate the clearance of bacterial toxins and planktonic cells, simulating both acute and chronic infections. This platform supports real-time monitoring of therapeutic interventions, mimics repeated drug administrations as in clinical settings, and facilitates the analysis of colony-forming units and cytokine secretion over time. Our findings indicate that this lung-on-a-chip device has significant potential for advancing infectious disease research, in optimizing treatment strategies against infections and in developing novel treatments.
Collapse
Affiliation(s)
- Albert Fuglsang-Madsen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Janus Anders Juul Haagensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Charlotte De Rudder
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
- Present Address: University of Luxembourg, Centre for Systems Biomedicine, Luxembourg, Belgium
| | - Filipa Bica Simões
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Søren Molin
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Ledger EL, Smith DJ, Teh JJ, Wood ME, Whibley PE, Morrison M, Goldberg JB, Reid DW, Wells TJ. Impact of CFTR Modulation on Pseudomonas aeruginosa Infection in People With Cystic Fibrosis. J Infect Dis 2024; 230:e536-e547. [PMID: 38442240 PMCID: PMC11420785 DOI: 10.1093/infdis/jiae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is a multidrug-resistant pathogen causing recalcitrant pulmonary infections in people with cystic fibrosis (pwCF). Cystic fibrosis transmembrane conductance regulator (CFTR) modulators have been developed that partially correct the defective chloride channel driving disease. Despite the many clinical benefits, studies in adults have demonstrated that while P. aeruginosa sputum load decreases, chronic infection persists. Here, we investigate how P. aeruginosa in pwCF may change in the altered lung environment after CFTR modulation. METHODS P. aeruginosa strains (n = 105) were isolated from the sputum of 11 chronically colonized pwCF at baseline and up to 21 months posttreatment with elexacaftor-tezacaftor-ivacaftor or tezacaftor-ivacaftor. Phenotypic characterization and comparative genomics were performed. RESULTS Clonal lineages of P. aeruginosa persisted after therapy, with no evidence of displacement by alternative strains. We identified commonly mutated genes among patient isolates that may be positively selected for in the CFTR-modulated lung. However, classic chronic P. aeruginosa phenotypes such as mucoid morphology were sustained, and isolates remained just as resistant to clinically relevant antibiotics. CONCLUSIONS Despite the clinical benefits of CFTR modulators, clonal lineages of P. aeruginosa persist that may prove just as difficult to manage in the future, especially in pwCF with advanced lung disease.
Collapse
Affiliation(s)
- Emma L Ledger
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Daniel J Smith
- Northside Clinical Unit, The University of Queensland, Brisbane, Australia
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Brisbane, Australia
| | - Jing Jie Teh
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Michelle E Wood
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Brisbane, Australia
| | - Page E Whibley
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Brisbane, Australia
| | - Mark Morrison
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, Brisbane, Australia
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David W Reid
- Northside Clinical Unit, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, Brisbane, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Timothy J Wells
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, Brisbane, Australia
| |
Collapse
|
7
|
Glen KA, Lamont IL. Penicillin-binding protein 3 sequence variations reduce susceptibility of Pseudomonas aeruginosa to β-lactams but inhibit cell division. J Antimicrob Chemother 2024; 79:2170-2178. [PMID: 39001778 PMCID: PMC11368433 DOI: 10.1093/jac/dkae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/03/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND β-lactam antibiotics, which inhibit penicillin-binding protein 3 (PBP3) that is required for cell division, play a key role in treating P. aeruginosa infections. Some sequence variations in PBP3 have been associated with β-lactam resistance but the effects of variations on antibiotic susceptibility and on cell division have not been quantified. Antibiotic efflux can also reduce susceptibility. OBJECTIVES To quantify the effects of PBP3 variations on β-lactam susceptibility and cell morphology in P. aeruginosa. METHODS Nineteen PBP3 variants were expressed from a plasmid in the reference strain P. aeruginosa PAO1 and genome engineering was used to construct five mutants expressing PBP3 variants from the chromosome. The effects of the variations on β-lactam minimum inhibitory concentration (MIC) and cell morphology were measured. RESULTS Some PBP3 variations reduced susceptibility to a variety of β-lactam antibiotics including meropenem, ceftazidime, cefepime and ticarcillin with different variations affecting different antibiotics. None of the tested variations reduced susceptibility to imipenem or piperacillin. Antibiotic susceptibility was further reduced when PBP3 variants were expressed in mutant bacteria overexpressing the MexAB-OprM efflux pump, with some variations conferring clinical levels of resistance. Some PBP3 variations, and sub-MIC levels of β-lactams, reduced bacterial growth rates and inhibited cell division, causing elongated cells. CONCLUSIONS PBP3 variations in P. aeruginosa can increase the MIC of multiple β-lactam antibiotics, although not imipenem or piperacillin. PBP3 variations, or the presence of sub-lethal levels of β-lactams, result in elongated cells indicating that variations reduce the activity of PBP3 and may reduce bacterial fitness.
Collapse
Affiliation(s)
- Karl A Glen
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
8
|
Thiriet-Rupert S, Josse J, Perez-Pascual D, Tasse J, Andre C, Abad L, Lebeaux D, Ghigo JM, Laurent F, Beloin C. Analysis of In-Patient Evolution of Escherichia coli Reveals Potential Links to Relapse of Bone and Joint Infections. J Infect Dis 2024; 229:1546-1556. [PMID: 38041851 DOI: 10.1093/infdis/jiad528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/03/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023] Open
Abstract
Bone and joint infections (BJIs) are difficult to treat and affect a growing number of patients, in which relapses are observed in 10-20% of case. These relapses, which call for prolonged antibiotic treatment and increase resistance emergence risk, may originate from ill-understood adaptation of the pathogen to the host. Here, we investigated 3 pairs of Escherichia coli strains from BJI cases and their relapses to unravel adaptations within patients. Whole-genome comparison presented evidence for positive selection and phenotypic characterization showed that biofilm formation remained unchanged, contrary to what is usually described in such cases. Although virulence was not modified, we identified the loss of 2 virulence factors contributing to immune system evasion in one of the studied strains. Other strategies, including global growth optimization and colicin production, likely allowed the strains to outcompete competitors. This work highlights the variety of strategies allowing in-patient adaptation in BJIs.
Collapse
Affiliation(s)
| | - Jérôme Josse
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - David Perez-Pascual
- Genetics of Biofilms Laboratory, Institut Pasteur, Université de Paris-Cité, Paris, France
| | - Jason Tasse
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Camille Andre
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Lélia Abad
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - David Lebeaux
- Genetics of Biofilms Laboratory, Institut Pasteur, Université de Paris-Cité, Paris, France
- Département de Maladies Infectieuses et Tropicales, AP-HP, Hôpital Saint-Louis, Lariboisière, Paris, France
- FHU PROTHEE (Prosthetic joint infections: innovative strategies to overcome a medico-surgical challenge) Group
| | - Jean-Marc Ghigo
- Genetics of Biofilms Laboratory, Institut Pasteur, Université de Paris-Cité, Paris, France
| | - Frédéric Laurent
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Christophe Beloin
- Genetics of Biofilms Laboratory, Institut Pasteur, Université de Paris-Cité, Paris, France
| |
Collapse
|
9
|
Vanderwoude J, Azimi S, Read TD, Diggle SP. The role of hypermutation and collateral sensitivity in antimicrobial resistance diversity of Pseudomonas aeruginosa populations in cystic fibrosis lung infection. mBio 2024; 15:e0310923. [PMID: 38171021 PMCID: PMC10865868 DOI: 10.1128/mbio.03109-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen which causes chronic, drug-resistant lung infections in cystic fibrosis (CF) patients. In this study, we explore the role of genomic diversification and evolutionary trade-offs in antimicrobial resistance (AMR) diversity within P. aeruginosa populations sourced from CF lung infections. We analyzed 300 clinical isolates from four CF patients (75 per patient) and found that genomic diversity is not a consistent indicator of phenotypic AMR diversity. Remarkably, some genetically less diverse populations showed AMR diversity comparable to those with significantly more genetic variation. We also observed that hypermutator strains frequently exhibited increased sensitivity to antimicrobials, contradicting expectations from their treatment histories. Investigating potential evolutionary trade-offs, we found no substantial evidence of collateral sensitivity among aminoglycoside, beta-lactam, or fluoroquinolone antibiotics, nor did we observe trade-offs between AMR and growth in conditions mimicking CF sputum. Our findings suggest that (i) genomic diversity is not a prerequisite for phenotypic AMR diversity, (ii) hypermutator populations may develop increased antimicrobial sensitivity under selection pressure, (iii) collateral sensitivity is not a prominent feature in CF strains, and (iv) resistance to a single antibiotic does not necessarily lead to significant fitness costs. These insights challenge prevailing assumptions about AMR evolution in chronic infections, emphasizing the complexity of bacterial adaptation during infection.IMPORTANCEUpon infection in the cystic fibrosis (CF) lung, Pseudomonas aeruginosa rapidly acquires genetic mutations, especially in genes involved in antimicrobial resistance (AMR), often resulting in diverse, treatment-resistant populations. However, the role of bacterial population diversity within the context of chronic infection is still poorly understood. In this study, we found that hypermutator strains of P. aeruginosa in the CF lung undergoing treatment with tobramycin evolved increased sensitivity to tobramycin relative to non-hypermutators within the same population. This finding suggests that antimicrobial treatment may only exert weak selection pressure on P. aeruginosa populations in the CF lung. We further found no evidence for collateral sensitivity in these clinical populations, suggesting that collateral sensitivity may not be a robust, naturally occurring phenomenon for this microbe.
Collapse
Affiliation(s)
- Jelly Vanderwoude
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sheyda Azimi
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Timothy D. Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stephen P. Diggle
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Carson J, Keeling M, Wyllie D, Ribeca P, Didelot X. Inference of Infectious Disease Transmission through a Relaxed Bottleneck Using Multiple Genomes Per Host. Mol Biol Evol 2024; 41:msad288. [PMID: 38168711 PMCID: PMC10798190 DOI: 10.1093/molbev/msad288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
In recent times, pathogen genome sequencing has become increasingly used to investigate infectious disease outbreaks. When genomic data is sampled densely enough amongst infected individuals, it can help resolve who infected whom. However, transmission analysis cannot rely solely on a phylogeny of the genomes but must account for the within-host evolution of the pathogen, which blurs the relationship between phylogenetic and transmission trees. When only a single genome is sampled for each host, the uncertainty about who infected whom can be quite high. Consequently, transmission analysis based on multiple genomes of the same pathogen per host has a clear potential for delivering more precise results, even though it is more laborious to achieve. Here, we present a new methodology that can use any number of genomes sampled from a set of individuals to reconstruct their transmission network. Furthermore, we remove the need for the assumption of a complete transmission bottleneck. We use simulated data to show that our method becomes more accurate as more genomes per host are provided, and that it can infer key infectious disease parameters such as the size of the transmission bottleneck, within-host growth rate, basic reproduction number, and sampling fraction. We demonstrate the usefulness of our method in applications to real datasets from an outbreak of Pseudomonas aeruginosa amongst cystic fibrosis patients and a nosocomial outbreak of Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Jake Carson
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry CV4 7AL, UK
| | - Matt Keeling
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry CV4 7AL, UK
| | | | | | - Xavier Didelot
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry CV4 7AL, UK
- Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
11
|
Bottery MJ, Johansen HK, Pitchford JW, Friman VP. Co-occurring microflora and mucin drive Pseudomonas aeruginosa diversification and pathoadaptation. ISME COMMUNICATIONS 2024; 4:ycae043. [PMID: 38707844 PMCID: PMC11067959 DOI: 10.1093/ismeco/ycae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 05/07/2024]
Abstract
While several environmental factors contribute to the evolutionary diversification of the pathogenic bacterium Pseudomonas aeruginosa during cystic fibrosis lung infections, relatively little is known about the impact of the surrounding microbiota. By using in vitro experimental evolution, we show that the presence of Stenotrophomonas maltophilia, Staphylococcus aureus, or them both, prevent the evolution of loss of virulence, which repeatedly occurs in the absence of these species due to mutations in regulators of the Pseudomonas Quinolone Signal quorum sensing system, vqsM and pqsR. Moreover, the strength of the effect of co-occurring species is attenuated through changes in the physical environment by the addition of mucin, resulting in selection for phenotypes resembling those evolved in the absence of the co-occurring species. Together, our findings show that variation in mucosal environment and the surrounding polymicrobial environment can determine the evolutionary trajectory of P. aeruginosa, partly explaining its diversification and pathoadaptation from acute to chronic phenotype during cystic fibrosis lung infections.
Collapse
Affiliation(s)
- Michael J Bottery
- Division of Evolution Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Helle Krogh Johansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen 9301, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jon W Pitchford
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
- Department of Mathematics, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Ville-Petri Friman
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
- Department of Microbiology, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
12
|
Vanderwoude J, Azimi S, Read TD, Diggle SP. The Role of Hypermutation and Collateral Sensitivity in Antimicrobial Resistance Diversity of Pseudomonas aeruginosa Populations in Cystic Fibrosis Lung Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544983. [PMID: 37398156 PMCID: PMC10312765 DOI: 10.1101/2023.06.14.544983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen which causes chronic, drug-resistant lung infections in cystic fibrosis (CF) patients. In this study, we explore the role of genomic diversification and evolutionary trade-offs in antimicrobial resistance (AMR) diversity within P. aeruginosa populations sourced from CF lung infections. We analyzed 300 clinical isolates from four CF patients (75 per patient), and found that genomic diversity is not a consistent indicator of phenotypic AMR diversity. Remarkably, some genetically less diverse populations showed AMR diversity comparable to those with significantly more genetic variation. We also observed that hypermutator strains frequently exhibited increased sensitivity to antimicrobials, contradicting expectations from their treatment histories. Investigating potential evolutionary trade-offs, we found no substantial evidence of collateral sensitivity among aminoglycoside, beta-lactam, or fluoroquinolone antibiotics, nor did we observe trade-offs between AMR and growth in conditions mimicking CF sputum. Our findings suggest that (i) genomic diversity is not a prerequisite for phenotypic AMR diversity; (ii) hypermutator populations may develop increased antimicrobial sensitivity under selection pressure; (iii) collateral sensitivity is not a prominent feature in CF strains, and (iv) resistance to a single antibiotic does not necessarily lead to significant fitness costs. These insights challenge prevailing assumptions about AMR evolution in chronic infections, emphasizing the complexity of bacterial adaptation during infection.
Collapse
Affiliation(s)
- Jelly Vanderwoude
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sheyda Azimi
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biology, Georgia State University, Atlanta, GA, USA
| | - Timothy D. Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Stephen P. Diggle
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
13
|
Kenna DTD, Payne Z, Lee DA, Keane AM, Turton J, Zamarreño DV, Schaefer U, Hopkins KL, Meunier D, Dhillon R, Duckers J, Speight L, Turton JF. Investigating Pseudomonas aeruginosa population structure and frequency of cross-infection in UK cystic fibrosis clinics - a reference laboratory perspective. J Cyst Fibros 2023; 22:894-900. [PMID: 37271666 DOI: 10.1016/j.jcf.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND We aimed to describe the UK Pseudomonas aeruginosa population structure amongst people with cystic fibrosis (PWCF), and to examine evidence for cross-infection. METHODS Variable Number Tandem Repeat (VNTR) typing was performed on 4640 isolates from 2619 PWCF received from 55 hospital laboratories between 2017 and 2019. A combination of whole genome sequence (WGS)-based analysis of four clusters from one hospital, and epidemiological analysis of shared strains in twelve hospitals evaluated cross-infection. RESULTS Of 2619 PWCF, 1324 (51%) harboured common clusters or known transmissible strains, while 1295 carried unique strains/those shared among small numbers of patients. Of the former, 9.5% (250 patients) harboured the Liverpool epidemic strain (LES), followed in prevalence by clone C (7.8%; 205 patients), cluster A (5%;130 patients), and cluster D (3.6%; 94 patients). WGS analysis of 10 LES isolates, 9 of cluster D and 6 isolates each of cluster A and clone C from one hospital revealed LES formed the tightest cluster (between 7 and 205 SNPs), and cluster D the loosest (between 53 and 1531 SNPs). Hospital-specific shared strains were found in some centres, although cross-infection was largely historical, with few new acquisitions. Fifty-nine PWCF (2.3%) harboured "high-risk" clones; one ST235 isolate carried a blaIMP-1 allele. CONCLUSION Of 2619 PWCF who had P. aeruginosa isolates submitted for VNTR, 51% harboured either common clusters or known transmissible strains, of which LES was the most common. Limited evidence of recent patient-to-patient strain transmission was found, suggesting cross-infection prevention measures and surveillance effectively reduce transmission.
Collapse
Affiliation(s)
- Dervla T D Kenna
- Antimicrobial Resistance and Healthcare Associated Infections Unit-Reference Services, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5EQ, UK.
| | - Zoë Payne
- Antimicrobial Resistance and Healthcare Associated Infections Unit-Reference Services, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5EQ, UK
| | - David A Lee
- Data and Analytics, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5EQ, UK
| | - Ann-Marie Keane
- Data and Analytics, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5EQ, UK
| | - Jack Turton
- HCAI, Fungal, AMR, AMU & Sepsis Division, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5EQ, UK
| | - Dania V Zamarreño
- Antimicrobial Resistance and Healthcare Associated Infections Unit-Reference Services, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5EQ, UK
| | - Ulf Schaefer
- Data and Analytics, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5EQ, UK
| | - Katie L Hopkins
- Antimicrobial Resistance and Healthcare Associated Infections Unit-Reference Services, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5EQ, UK; HCAI, Fungal, AMR, AMU & Sepsis Division, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5EQ, UK
| | - Danièle Meunier
- Antimicrobial Resistance and Healthcare Associated Infections Unit-Reference Services, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5EQ, UK; HCAI, Fungal, AMR, AMU & Sepsis Division, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5EQ, UK
| | - Rishi Dhillon
- Public Health Wales Microbiology Cardiff, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
| | - Jamie Duckers
- All Wales Adult CF Service, University Hospital Llandough, CF64 2XX, UK
| | - Lorraine Speight
- All Wales Adult CF Service, University Hospital Llandough, CF64 2XX, UK
| | - Jane F Turton
- Antimicrobial Resistance and Healthcare Associated Infections Unit-Reference Services, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5EQ, UK; HCAI, Fungal, AMR, AMU & Sepsis Division, UK Health Security Agency, 61 Colindale Avenue, London, NW9 5EQ, UK
| |
Collapse
|
14
|
Diorio-Toth L, Wallace MA, Farnsworth CW, Wang B, Gul D, Kwon JH, Andleeb S, Burnham CAD, Dantas G. Intensive care unit sinks are persistently colonized with multidrug resistant bacteria and mobilizable, resistance-conferring plasmids. mSystems 2023; 8:e0020623. [PMID: 37439570 PMCID: PMC10469867 DOI: 10.1128/msystems.00206-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/02/2023] [Indexed: 07/14/2023] Open
Abstract
Contamination of hospital sinks with microbial pathogens presents a serious potential threat to patients, but our understanding of sink colonization dynamics is largely based on infection outbreaks. Here, we investigate the colonization patterns of multidrug-resistant organisms (MDROs) in intensive care unit sinks and water from two hospitals in the USA and Pakistan collected over 27 months of prospective sampling. Using culture-based methods, we recovered 822 bacterial isolates representing 104 unique species and genomospecies. Genomic analyses revealed long-term colonization by Pseudomonas spp. and Serratia marcescens strains across multiple rooms. Nanopore sequencing uncovered examples of long-term persistence of resistance-conferring plasmids in unrelated hosts. These data indicate that antibiotic resistance (AR) in Pseudomonas spp. is maintained both by strain colonization and horizontal gene transfer (HGT), while HGT maintains AR within Acinetobacter spp. and Enterobacterales, independent of colonization. These results emphasize the importance of proactive, genomic-focused surveillance of built environments to mitigate MDRO spread. IMPORTANCE Hospital sinks are frequently linked to outbreaks of antibiotic-resistant bacteria. Here, we used whole-genome sequencing to track the long-term colonization patterns in intensive care unit (ICU) sinks and water from two hospitals in the USA and Pakistan collected over 27 months of prospective sampling. We analyzed 822 bacterial genomes, representing over 100 different species. We identified long-term contamination by opportunistic pathogens, as well as transient appearance of other common pathogens. We found that bacteria recovered from the ICU had more antibiotic resistance genes (ARGs) in their genomes compared to matched community spaces. We also found that many of these ARGs are harbored on mobilizable plasmids, which were found shared in the genomes of unrelated bacteria. Overall, this study provides an in-depth view of contamination patterns for common nosocomial pathogens and identifies specific targets for surveillance.
Collapse
Affiliation(s)
- Luke Diorio-Toth
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Meghan A. Wallace
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christopher W. Farnsworth
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bin Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Danish Gul
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Jennie H. Kwon
- Department of Medicine, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
| | - Saadia Andleeb
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Carey-Ann D. Burnham
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, Missouri, USA
| |
Collapse
|
15
|
Spottiswoode N, Hao S, Sanchez-Guerrero E, Detweiler AM, Mekonen H, Neff N, Macmillan H, Schwartz BS, Engel J, DeRisi JL, Miller SA, Langelier CR. In host evolution of beta lactam resistance during active treatment for Pseudomonas aeruginosa bacteremia. Front Cell Infect Microbiol 2023; 13:1241608. [PMID: 37712060 PMCID: PMC10499174 DOI: 10.3389/fcimb.2023.1241608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Multidrug-resistant (MDR) Pseudomonas aeruginosa has been declared a serious threat by the United States Centers for Disease Control and Prevention. Here, we used whole genome sequencing (WGS) to investigate recurrent P. aeruginosa bloodstream infections in a severely immunocompromised patient. The infections demonstrated unusual, progressive increases in resistance to beta lactam antibiotics in the setting of active treatment with appropriate, guideline-directed agents. WGS followed by comparative genomic analysis of isolates collected over 44 days demonstrated in host evolution of a single P. aeruginosa isolate characterized by stepwise acquisition of two de-novo genetic resistance mechanisms over the course of treatment. We found a novel deletion affecting the ampC repressor ampD and neighboring gene ampE, which associated with initial cefepime treatment failure. This was followed by acquisition of a porin nonsense mutation, OprD, associated with resistance to carbapenems. This study highlights the potential for in-host evolution of P. aeruginosa during bloodstream infections in severely immunocompromised patients despite appropriate antimicrobial therapy. In addition, it demonstrates the utility of WGS for understanding unusual resistance patterns in the clinical context.
Collapse
Affiliation(s)
- Natasha Spottiswoode
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Samantha Hao
- Johns Hopkins School of Medicine, Baltimore, Maryland, MD, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | | | | | - Honey Mekonen
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Henriette Macmillan
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Brian S. Schwartz
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Joanne Engel
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Joseph L. DeRisi
- Chan Zuckerberg Biohub, San Francisco, CA, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Steven A. Miller
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
- Delve Bio Inc., San Francisco, CA, United States
| | - Charles R. Langelier
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
16
|
Izydorczyk C, Waddell BJ, Thornton CS, Conly JM, Rabin HR, Somayaji R, Surette MG, Church DL, Parkins MD. Stenotrophomonas maltophilia natural history and evolution in the airways of adults with cystic fibrosis. Front Microbiol 2023; 14:1205389. [PMID: 37396351 PMCID: PMC10308010 DOI: 10.3389/fmicb.2023.1205389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction Stenotrophomonas maltophilia is an opportunistic pathogen infecting persons with cystic fibrosis (pwCF) and portends a worse prognosis. Studies of S. maltophilia infection dynamics have been limited by cohort size and follow-up. We investigated the natural history, transmission potential, and evolution of S. maltophilia in a large Canadian cohort of 321 pwCF over a 37-year period. Methods One-hundred sixty-two isolates from 74 pwCF (23%) were typed by pulsed-field gel electrophoresis, and shared pulsotypes underwent whole-genome sequencing. Results S. maltophilia was recovered at least once in 82 pwCF (25.5%). Sixty-four pwCF were infected by unique pulsotypes, but shared pulsotypes were observed between 10 pwCF. In chronic carriage, longer time periods between positive sputum cultures increased the likelihood that subsequent isolates were unrelated. Isolates from individual pwCF were largely clonal, with differences in gene content being the primary source of genetic diversity objectified by gene content differences. Disproportionate progression of CF lung disease was not observed amongst those infected with multiple strains over time (versus a single) or amongst those with shared clones (versus strains only infecting one patient). We did not observe evidence of patient-to-patient transmission despite relatedness between isolates. Twenty-four genes with ≥ 2 mutations accumulated over time were identified across 42 sequenced isolates from all 11 pwCF with ≥ 2 sequenced isolates, suggesting a potential role for these genes in adaptation of S. maltophilia to the CF lung. Discussion Genomic analyses suggested common, indirect sources as the origins of S. maltophilia infections in the clinic population. The information derived from a genomics-based understanding of the natural history of S. maltophilia infection within CF provides unique insight into its potential for in-host evolution.
Collapse
Affiliation(s)
- Conrad Izydorczyk
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Barbara J. Waddell
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christina S. Thornton
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
| | - John M. Conly
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
- Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, AB, Canada
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
| | - Harvey R. Rabin
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
| | - Ranjani Somayaji
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
- Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, AB, Canada
| | - Michael G. Surette
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Deirdre L. Church
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
- Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, AB, Canada
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
| | - Michael D. Parkins
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
- Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, AB, Canada
| |
Collapse
|
17
|
Cramer N, Klockgether J, Tümmler B. Microevolution of Pseudomonas aeruginosa in the airways of people with cystic fibrosis. Curr Opin Immunol 2023; 83:102328. [PMID: 37116385 DOI: 10.1016/j.coi.2023.102328] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/30/2023]
Abstract
The chronic infections of cystic fibrosis (CF) airways with Pseudomonas aeruginosa are a paradigm of how environmental bacteria can conquer, adapt, and persist in an atypical habitat and successfully evade defense mechanisms and chemotherapy in a susceptible host. The within-host evolution of intraclonal diversity has been examined by whole-genome sequencing, phenotyping, and competitive fitness experiments of serial P. aeruginosa isolates collected from CF airways since onset of colonization for a period of up to 40 years. The spectrum of de novo mutations and the adaptation of phenotype and fitness of the bacterial progeny were more influenced by the living conditions in the CF lung than by the clone type of their ancestor and its genetic repertoire.
Collapse
Affiliation(s)
- Nina Cramer
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, D-30625 Hannover, Germany
| | - Jens Klockgether
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, D-30625 Hannover, Germany
| | - Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, D-30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.
| |
Collapse
|
18
|
Saber MM, Donner J, Levade I, Acosta N, Parkins MD, Boyle B, Levesque RC, Nguyen D, Shapiro BJ. Single nucleotide variants in Pseudomonas aeruginosa populations from sputum correlate with baseline lung function and predict disease progression in individuals with cystic fibrosis. Microb Genom 2023; 9. [PMID: 37052589 DOI: 10.1099/mgen.0.000981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
The severity and progression of lung disease are highly variable across individuals with cystic fibrosis (CF) and are imperfectly predicted by mutations in the human gene CFTR, lung microbiome variation or other clinical factors. The opportunistic pathogen Pseudomonas aeruginosa (Pa) dominates airway infections in most CF adults. Here we hypothesized that within-host genetic variation of Pa populations would be associated with lung disease severity. To quantify Pa genetic variation within CF sputum samples, we used deep amplicon sequencing (AmpliSeq) of 209 Pa genes previously associated with pathogenesis or adaptation to the CF lung. We trained machine learning models using Pa single nucleotide variants (SNVs), microbiome diversity data and clinical factors to classify lung disease severity at the time of sputum sampling, and to predict lung function decline after 5 years in a cohort of 54 adult CF patients with chronic Pa infection. Models using Pa SNVs alone classified lung disease severity with good sensitivity and specificity (area under the receiver operating characteristic curve: AUROC=0.87). Models were less predictive of lung function decline after 5 years (AUROC=0.74) but still significantly better than random. The addition of clinical data, but not sputum microbiome diversity data, yielded only modest improvements in classifying baseline lung function (AUROC=0.92) and predicting lung function decline (AUROC=0.79), suggesting that Pa AmpliSeq data account for most of the predictive value. Our work provides a proof of principle that Pa genetic variation in sputum tracks lung disease severity, moderately predicts lung function decline and could serve as a disease biomarker among CF patients with chronic Pa infections.
Collapse
Affiliation(s)
- Morteza M Saber
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Jannik Donner
- Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Inès Levade
- Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Nicole Acosta
- Department of Microbiology, Immunology and Infectious Disease, University of Calgary, Calgary, AB, Canada
| | - Michael D Parkins
- Department of Microbiology, Immunology and Infectious Disease, University of Calgary, Calgary, AB, Canada
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Brian Boyle
- Integrative Systems Biology Institute, University of Laval, Québec, QC, Canada
| | - Roger C Levesque
- Integrative Systems Biology Institute, University of Laval, Québec, QC, Canada
| | - Dao Nguyen
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - B Jesse Shapiro
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill Genome Centre, Montreal, QC, Canada
| |
Collapse
|
19
|
Goltermann L, Andersen KL, Johansen HK, Molin S, La Rosa R. Macrolide therapy in Pseudomonas aeruginosa infections causes uL4 ribosomal protein mutations leading to high-level resistance. Clin Microbiol Infect 2022; 28:1594-1601. [PMID: 35988850 DOI: 10.1016/j.cmi.2022.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/05/2022] [Accepted: 08/06/2022] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Pseudomonas aeruginosa colonizes the cystic fibrosis (CF) airways causing chronic bacterial lung infections. CF patients are routinely treated with macrolides, however, P. aeruginosa is considered insusceptible as consequence of inadequate susceptibility testing leaving resistance mechanism completely overlooked. Here, we investigated a new mechanism of macrolide resistance caused by ribosomal protein mutations. METHODS Investigating a longitudinal collection of 529 isolates from CF patients and analysing 5758 protein sequences from different sources, mutations in P. aeruginosa's ribosomal proteins connected to macrolide resistance were identified. Using a modified susceptibility testing protocol, isolates harbouring a mutated uL4 ribosomal protein were tested for resistance against macrolide antibiotics and macrolide-induced quorum sensing modulation. Proteome and ribosome profiling were applied to assess the impact of the mutations on the bacterial physiology. RESULTS Five uL4 mutations were identified in isolates from different CF patients. Most mapped to the conserved loop region of uL4 and resulted in increased macrolide tolerance (>10-fold relative to wt strains). Greater concentrations (>10-fold) of macrolide antibiotic were needed to inhibit the growth, reduce swimming motility, and induce redox sensitivity of the uL4 mutants. 16 proteins involved in ribosome adaptation displayed altered expression possibly to compensate for the uL4 mutations, which changed the ribosome stoichiometry without negatively affecting bacterial physiology. CONCLUSIONS Macrolide antibiotics should, therefore, be considered as active antimicrobial agents against P. aeruginosa and resistance development should be contemplated when patients are treated with prolonged courses of macrolides. Importantly, improved macrolide susceptibility testing is necessary for the detection of resistant bacteria.
Collapse
Affiliation(s)
- Lise Goltermann
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | | | - Helle Krogh Johansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; Department of Clinical Microbiology 9301, Rigshospitalet, 2100, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Ruggero La Rosa
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
20
|
Witzany C, Regoes RR, Igler C. Assessing the relative importance of bacterial resistance, persistence and hyper-mutation for antibiotic treatment failure. Proc Biol Sci 2022; 289:20221300. [PMID: 36350213 PMCID: PMC9653239 DOI: 10.1098/rspb.2022.1300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/18/2022] [Indexed: 08/01/2023] Open
Abstract
To curb the rising threat of antimicrobial resistance, we need to understand the routes to antimicrobial treatment failure. Bacteria can survive treatment by using both genetic and phenotypic mechanisms to diminish the effect of antimicrobials. We assemble empirical data showing that, for example, Pseudomonas aeruginosa infections frequently contain persisters, transiently non-growing cells unaffected by antibiotics (AB) and hyper-mutators, mutants with elevated mutation rates, and thus higher probability of genetic resistance emergence. Resistance, persistence and hyper-mutation dynamics are difficult to disentangle experimentally. Hence, we use stochastic population modelling and deterministic fitness calculations to investigate the relative importance of genetic and phenotypic mechanisms for immediate treatment failure and establishment of prolonged, chronic infections. We find that persistence causes 'hidden' treatment failure with very low cell numbers if antimicrobial concentrations prevent growth of genetically resistant cells. Persister cells can regrow after treatment is discontinued and allow for resistance evolution in the absence of AB. This leads to different mutational routes during treatment and relapse of an infection. By contrast, hyper-mutation facilitates resistance evolution during treatment, but rarely contributes to treatment failure. Our findings highlight the time and concentration dependence of different bacterial mechanisms to escape AB killing, which should be considered when designing 'failure-proof' treatments.
Collapse
Affiliation(s)
| | - Roland R. Regoes
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Claudia Igler
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Dulanto Chiang A, Patil PP, Beka L, Youn JH, Launay A, Bonomo RA, Khil PP, Dekker JP. Hypermutator strains of Pseudomonas aeruginosa reveal novel pathways of resistance to combinations of cephalosporin antibiotics and beta-lactamase inhibitors. PLoS Biol 2022; 20:e3001878. [PMID: 36399436 PMCID: PMC9718400 DOI: 10.1371/journal.pbio.3001878] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 12/02/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022] Open
Abstract
Hypermutation due to DNA mismatch repair (MMR) deficiencies can accelerate the development of antibiotic resistance in Pseudomonas aeruginosa. Whether hypermutators generate resistance through predominantly similar molecular mechanisms to wild-type (WT) strains is not fully understood. Here, we show that MMR-deficient P. aeruginosa can evolve resistance to important broad-spectrum cephalosporin/beta-lactamase inhibitor combination antibiotics through novel mechanisms not commonly observed in WT lineages. Using whole-genome sequencing (WGS) and transcriptional profiling of isolates that underwent in vitro adaptation to ceftazidime/avibactam (CZA), we characterized the detailed sequence of mutational and transcriptional changes underlying the development of resistance. Surprisingly, MMR-deficient lineages rapidly developed high-level resistance (>256 μg/mL) largely without corresponding fixed mutations or transcriptional changes in well-established resistance genes. Further investigation revealed that these isolates had paradoxically generated an early inactivating mutation in the mexB gene of the MexAB-OprM efflux pump, a primary mediator of CZA resistance in P. aeruginosa, potentially driving an evolutionary search for alternative resistance mechanisms. In addition to alterations in a number of genes not known to be associated with resistance, 2 mutations were observed in the operon encoding the RND efflux pump MexVW. These mutations resulted in a 4- to 6-fold increase in resistance to ceftazidime, CZA, cefepime, and ceftolozane-tazobactam when engineered into a WT strain, demonstrating a potentially important and previously unappreciated mechanism of resistance to these antibiotics in P. aeruginosa. Our results suggest that MMR-deficient isolates may rapidly evolve novel resistance mechanisms, sometimes with complex dynamics that reflect gene inactivation that occurs with hypermutation. The apparent ease with which hypermutators may switch to alternative resistance mechanisms for which antibiotics have not been developed may carry important clinical implications.
Collapse
Affiliation(s)
- Augusto Dulanto Chiang
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Prashant P. Patil
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Lidia Beka
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Jung-Ho Youn
- Dept. Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, Maryland, United States of America
| | - Adrien Launay
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Robert A. Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
- Departments of Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES) Cleveland, Ohio, United States of America
| | - Pavel P. Khil
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
- Dept. Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, Maryland, United States of America
| | - John P. Dekker
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
- Dept. Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, Maryland, United States of America
| |
Collapse
|
22
|
Colque CA, albarracín Orio AG, Tomatis PE, Dotta G, Moreno DM, Hedemann LG, Hickman RA, Sommer LM, Feliziani S, Moyano AJ, Bonomo RA, K. Johansen H, Molin S, Vila AJ, Smania AM. Longitudinal Evolution of the Pseudomonas-Derived Cephalosporinase (PDC) Structure and Activity in a Cystic Fibrosis Patient Treated with β-Lactams. mBio 2022; 13:e0166322. [PMID: 36073814 PMCID: PMC9600753 DOI: 10.1128/mbio.01663-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Traditional studies on the evolution of antibiotic resistance development use approaches that can range from laboratory-based experimental studies, to epidemiological surveillance, to sequencing of clinical isolates. However, evolutionary trajectories also depend on the environment in which selection takes place, compelling the need to more deeply investigate the impact of environmental complexities and their dynamics over time. Herein, we explored the within-patient adaptive long-term evolution of a Pseudomonas aeruginosa hypermutator lineage in the airways of a cystic fibrosis (CF) patient by performing a chronological tracking of mutations that occurred in different subpopulations; our results demonstrated parallel evolution events in the chromosomally encoded class C β-lactamase (blaPDC). These multiple mutations within blaPDC shaped diverse coexisting alleles, whose frequency dynamics responded to the changing antibiotic selective pressures for more than 26 years of chronic infection. Importantly, the combination of the cumulative mutations in blaPDC provided structural and functional protein changes that resulted in a continuous enhancement of its catalytic efficiency and high level of cephalosporin resistance. This evolution was linked to the persistent treatment with ceftazidime, which we demonstrated selected for variants with robust catalytic activity against this expanded-spectrum cephalosporin. A "gain of function" of collateral resistance toward ceftolozane, a more recently introduced cephalosporin that was not prescribed to this patient, was also observed, and the biochemical basis of this cross-resistance phenomenon was elucidated. This work unveils the evolutionary trajectories paved by bacteria toward a multidrug-resistant phenotype, driven by decades of antibiotic treatment in the natural CF environmental setting. IMPORTANCE Antibiotics are becoming increasingly ineffective to treat bacterial infections. It has been consequently predicted that infectious diseases will become the biggest challenge to human health in the near future. Pseudomonas aeruginosa is considered a paradigm in antimicrobial resistance as it exploits intrinsic and acquired resistance mechanisms to resist virtually all antibiotics known. AmpC β-lactamase is the main mechanism driving resistance in this notorious pathogen to β-lactams, one of the most widely used classes of antibiotics for cystic fibrosis infections. Here, we focus on the β-lactamase gene as a model resistance determinant and unveil the trajectory P. aeruginosa undertakes on the path toward a multidrug-resistant phenotype during the course of two and a half decades of chronic infection in the airways of a cystic fibrosis patient. Integrating genetic and biochemical studies in the natural environment where evolution occurs, we provide a unique perspective on this challenging landscape, addressing fundamental molecular mechanisms of resistance.
Collapse
Affiliation(s)
- Claudia A. Colque
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Andrea G. albarracín Orio
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
- IRNASUS, Universidad Católica de Córdoba, CONICET, Facultad de Ciencias Agropecuarias, Córdoba, Argentina
| | - Pablo E. Tomatis
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Gina Dotta
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Diego M. Moreno
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- IQUIR, Instituto de Química de Rosario, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Laura G. Hedemann
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Rachel A. Hickman
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lea M. Sommer
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Sofía Feliziani
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Alejandro J. Moyano
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Robert A. Bonomo
- Departments of Molecular Biology and Microbiology, Medicine, Biochemistry, Pharmacology, and Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, USA
- Senior Clinical Scientist Investigator, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA
| | - Helle K. Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Søren Molin
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Andrea M. Smania
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| |
Collapse
|
23
|
Achromobacter spp. prevalence and adaptation in cystic fibrosis lung infection. Microbiol Res 2022; 263:127140. [DOI: 10.1016/j.micres.2022.127140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
|
24
|
Planet PJ. Adaptation and Evolution of Pathogens in the Cystic Fibrosis Lung. J Pediatric Infect Dis Soc 2022; 11:S23-S31. [PMID: 36069898 PMCID: PMC9451014 DOI: 10.1093/jpids/piac073] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023]
Abstract
As opposed to acute respiratory infections, the persistent bacterial infections of the lung that characterize cystic fibrosis (CF) provide ample time for bacteria to evolve and adapt. The process of adaptation is recorded in mutations that accumulate over time in the genomes of the infecting bacteria. Some of these mutations lead to obvious phenotypic differences such as antibiotic resistance or the well-known mucoid phenotype of Pseudomonas aeruginosa. Other mutations may be just as important but harder to detect such as increased mutation rates, cell surface changes, and shifts in metabolism and nutrient acquisition. Remarkably, many of the adaptations occur again and again in different patients, signaling that bacteria are adapting to solve specific challenges in the CF respiratory tract. This parallel evolution even extends across distinct bacterial species. This review addresses the bacterial systems that are known to change in long-term CF infections with a special emphasis on cross-species comparisons. Consideration is given to how adaptation may impact health in CF, and the possible evolutionary mechanisms that lead to the repeated parallel adaptations.
Collapse
Affiliation(s)
- Paul J Planet
- Corresponding Author: Paul J. Planet, MD, PhD, 3615 Civic Center Blvd, Philadelphia, PA 19104. E-mail:
| |
Collapse
|
25
|
Liu H, Yang L, Chen Q, Song H, Bo X, Guo J, Li P, Ni M. Time Series Genomics of Pseudomonas aeruginosa Reveals the Emergence of a Hypermutator Phenotype and Within-Host Evolution in Clinical Inpatients. Microbiol Spectr 2022; 10:e0005722. [PMID: 35861512 PMCID: PMC9430856 DOI: 10.1128/spectrum.00057-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa, a common opportunistic pathogen, is one of the leading etiological agents of nosocomial infections. Many previous studies have reported the nosocomial transmission and epidemiology of P. aeruginosa infections. However, longitudinal studies regarding the dynamics of P. aeruginosa colonization and infection in health care settings are limited. We obtained longitudinal samples from aged patients with prolonged intensive care unit (ICU) stays (~4 to 19 months). P. aeruginosa was isolated from 71 samples obtained from seven patients and characterized by whole-genome sequencing. The P. aeruginosa isolates were assigned to 10 clonal complexes, and turnover of main clones was observed in sequential sputum samples from two patients. By comparing intraclonal genomic diversities, we identified two clones that had significantly higher numbers of single nucleotide polymorphisms and variations in homopolymeric sequences than the other clones, indicating a hypermutator phenotype. These hypermutator clones were associated with mutations T147I/G521S and P27L in the MutL protein, and their mutation rates were estimated to be 3.20 × 10-5 and 6.59 × 10-5 per year per nucleotide, respectively. We also identified 24 recurrently mutated genes that exhibited intraclonal diversity in two or more clones. Notably, one recurrent mutation, S698F in FptA, was observed in four clones. These findings suggest that convergent microevolution and adaption of P. aeruginosa occur in long-term ICU patients. IMPORTANCE Pseudomonas aeruginosa is a predominant opportunistic pathogen that causes nosocomial infections. Inappropriate empirical therapy can lead to prolonged hospital stays and increased mortality. In our study of sequential P. aeruginosa isolates from inpatients, high intrahost diversity was observed, including switching of clones and the emergence of a hypermutator phenotype. Recurrently mutated genes also suggested that convergent microevolution and adaption of P. aeruginosa occur in inpatients, and genomic diversity is associated with differences in multiple-drug-resistance profiles. Taken together, our findings highlight the importance of longitudinal surveillance of nosocomial P. aeruginosa clones.
Collapse
Affiliation(s)
- Hongjie Liu
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Lang Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Qichao Chen
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hongbin Song
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xiaochen Bo
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Jingyu Guo
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
- The 316th Hospital of Chinese PLA, Beijing, China
| | - Peng Li
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Ming Ni
- Institute of Health Service and Transfusion Medicine, Beijing, China
| |
Collapse
|
26
|
Cramer N, Nawrot ML, Wege L, Dorda M, Sommer C, Danov O, Wronski S, Braun A, Jonigk D, Fischer S, Munder A, Tümmler B. Competitive fitness of Pseudomonas aeruginosa isolates in human and murine precision-cut lung slices. Front Cell Infect Microbiol 2022; 12:992214. [PMID: 36081773 PMCID: PMC9446154 DOI: 10.3389/fcimb.2022.992214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic respiratory infections with the gram-negative bacterium Pseudomonas aeruginosa are an important co-morbidity for the quality of life and prognosis of people with cystic fibrosis (CF). Such long-term colonization, sometimes lasting up to several decades, represents a unique opportunity to investigate pathogen adaptation processes to the host. Our studies aimed to resolve if and to what extent the bacterial adaptation to the CF airways influences the fitness of the pathogen to grow and to persist in the lungs. Marker-free competitive fitness experiments of serial P. aeruginosa isolates differentiated by strain-specific SNPs, were performed with murine and human precision cut lung slices (PCLS). Serial P. aeruginosa isolates were selected from six mild and six severe CF patient courses, respectively. MPCLS or hPCLS were inoculated with a mixture of equal numbers of the serial isolates of one course. The temporal change of the composition of the bacterial community during competitive growth was quantified by multi-marker amplicon sequencing. Both ex vivo models displayed a strong separation of fitness traits between mild and severe courses. Whereas the earlier isolates dominated the competition in the severe courses, intermediate and late isolates commonly won the competition in the mild courses. The status of the CF lung disease rather than the bacterial genotype drives the adaptation of P. aeruginosa during chronic CF lung infection. This implies that the disease status of the lung habitat governed the adaptation of P. aeruginosa more strongly than the underlying bacterial clone-type and its genetic repertoire.
Collapse
Affiliation(s)
- Nina Cramer
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- *Correspondence: Nina Cramer,
| | - Marie Luise Nawrot
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Lion Wege
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover Medical School, Hannover, Germany
| | - Marie Dorda
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Charline Sommer
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Olga Danov
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Sabine Wronski
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Armin Braun
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Danny Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Sebastian Fischer
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Antje Munder
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Clinical Research Group ‘Pseudomonas Genomics’, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
27
|
Hall KM, Pursell ZF, Morici LA. The role of the Pseudomonas aeruginosa hypermutator phenotype on the shift from acute to chronic virulence during respiratory infection. Front Cell Infect Microbiol 2022; 12:943346. [PMID: 35937684 PMCID: PMC9355025 DOI: 10.3389/fcimb.2022.943346] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic respiratory infection (CRI) with Pseudomonas aeruginosa (Pa) presents many unique challenges that complicate treatment. One notable challenge is the hypermutator phenotype which is present in up to 60% of sampled CRI patient isolates. Hypermutation can be caused by deactivating mutations in DNA mismatch repair (MMR) genes including mutS, mutL, and uvrD. In vitro and in vivo studies have demonstrated hypermutator strains to be less virulent than wild-type Pa. However, patients colonized with hypermutators display poorer lung function and a higher incidence of treatment failure. Hypermutation and MMR-deficiency create increased genetic diversity and population heterogeneity due to elevated mutation rates. MMR-deficient strains demonstrate higher rates of mucoidy, a hallmark virulence determinant of Pa during CRI in cystic fibrosis patients. The mucoid phenotype results from simple sequence repeat mutations in the mucA gene made in the absence of functional MMR. Mutations in Pa are further increased in the absence of MMR, leading to microcolony biofilm formation, further lineage diversification, and population heterogeneity which enhance bacterial persistence and host immune evasion. Hypermutation facilitates the adaptation to the lung microenvironment, enabling survival among nutritional complexity and microaerobic or anaerobic conditions. Mutations in key acute-to-chronic virulence “switch” genes, such as retS, bfmS, and ampR, are also catalyzed by hypermutation. Consequently, strong positive selection for many loss-of-function pathoadaptive mutations is seen in hypermutators and enriched in genes such as lasR. This results in the characteristic loss of Pa acute infection virulence factors, including quorum sensing, flagellar motility, and type III secretion. Further study of the role of hypermutation on Pa chronic infection is needed to better inform treatment regimens against CRI with hypermutator strains.
Collapse
Affiliation(s)
- Kalen M. Hall
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Zachary F. Pursell
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Lisa A. Morici
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
- *Correspondence: Lisa A. Morici,
| |
Collapse
|
28
|
Pseudomonas aeruginosa Alters Peptidoglycan Composition under Nutrient Conditions Resembling Cystic Fibrosis Lung Infections. mSystems 2022; 7:e0015622. [PMID: 35545925 PMCID: PMC9239049 DOI: 10.1128/msystems.00156-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epidemic strains of Pseudomonas aeruginosa are highly virulent opportunistic pathogens with increased transmissibility and enhanced antimicrobial resistance. Understanding the cellular mechanisms behind this heightened virulence and resistance is critical. Peptidoglycan (PG) is an integral component of P. aeruginosa cells that is essential to its survival and a target for antimicrobials. Here, we examined the global PG composition of two P. aeruginosa epidemic strains, LESB58 and LESlike1, and compared them to the common laboratory strains PAO1 and PA14. We also examined changes in PG composition when the strains were cultured under nutrient conditions that resembled cystic fibrosis lung infections. We identified 448 unique muropeptides and provide the first evidence for stem peptides modified with O-methylation, meso-diaminopimelic acid (mDAP) deamination, and novel substitutions of mDAP residues within P. aeruginosa PG. Our results also present the first evidence for both d,l- and l,d-endopeptidase activity on the PG sacculus of a Gram-negative organism. The PG composition of the epidemic strains varied significantly when grown under conditions resembling cystic fibrosis (CF) lung infections, showing increases in O-methylated stem peptides and decreases in l,d-endopeptidase activity as well as an increased abundance of de-N-acetylated sugars and l,d-transpeptidase activity, which are related to bacterial virulence and antibiotic resistance, respectively. We also identified strain-specific changes where LESlike1 increased the addition of unique amino acids to the terminus of the stem peptide and LESB58 increased amidase activity. Overall, this study demonstrates that P. aeruginosa PG composition is primarily influenced by nutrient conditions that mimic the CF lung; however, inherent strain-to-strain differences also exist. IMPORTANCE Using peptidoglycomics to examine the global composition of the peptidoglycan (PG) allows insights into the enzymatic activity that functions on this important biopolymer. Changes within the PG structure have implications for numerous physiological processes, including virulence and antimicrobial resistance. The identification of highly unique PG modifications illustrates the complexity of this biopolymer in Pseudomonas aeruginosa. Analyzing the PG composition of clinical P. aeruginosa epidemic strains provides insights into the increased virulence and antimicrobial resistance of these difficult-to-eradicate infections.
Collapse
|
29
|
Foster-Nyarko E, Pallen MJ. The microbial ecology of Escherichia coli in the vertebrate gut. FEMS Microbiol Rev 2022; 46:fuac008. [PMID: 35134909 PMCID: PMC9075585 DOI: 10.1093/femsre/fuac008] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli has a rich history as biology's 'rock star', driving advances across many fields. In the wild, E. coli resides innocuously in the gut of humans and animals but is also a versatile pathogen commonly associated with intestinal and extraintestinal infections and antimicrobial resistance-including large foodborne outbreaks such as the one that swept across Europe in 2011, killing 54 individuals and causing approximately 4000 infections and 900 cases of haemolytic uraemic syndrome. Given that most E. coli are harmless gut colonizers, an important ecological question plaguing microbiologists is what makes E. coli an occasionally devastating pathogen? To address this question requires an enhanced understanding of the ecology of the organism as a commensal. Here, we review how our knowledge of the ecology and within-host diversity of this organism in the vertebrate gut has progressed in the 137 years since E. coli was first described. We also review current approaches to the study of within-host bacterial diversity. In closing, we discuss some of the outstanding questions yet to be addressed and prospects for future research.
Collapse
Affiliation(s)
- Ebenezer Foster-Nyarko
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Mark J Pallen
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, United Kingdom
| |
Collapse
|
30
|
Katharios-Lanwermeyer S, O’Toole GA. Biofilm Maintenance as an Active Process: Evidence that Biofilms Work Hard to Stay Put. J Bacteriol 2022; 204:e0058721. [PMID: 35311557 PMCID: PMC9017327 DOI: 10.1128/jb.00587-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Biofilm formation represents a critical strategy whereby bacteria can tolerate otherwise damaging environmental stressors and antimicrobial insults. While the mechanisms bacteria use to establish a biofilm and disperse from these communities have been well-studied, we have only a limited understanding of the mechanisms required to maintain these multicellular communities. Indeed, until relatively recently, it was not clear that maintaining a mature biofilm could be considered an active, regulated process with dedicated machinery. Using Pseudomonas aeruginosa as a model system, we review evidence from recent studies that support the model that maintenance of these persistent, surface-attached communities is indeed an active process. Biofilm maintenance mechanisms include transcriptional regulation and second messenger signaling (including the production of extracellular polymeric substances). We also discuss energy-conserving pathways that play a key role in the maintenance of these communities. We hope to highlight the need for further investigation to uncover novel biofilm maintenance pathways and suggest the possibility that such pathways can serve as novel antibiofilm targets.
Collapse
Affiliation(s)
| | - G. A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
31
|
Balasubramanian D, López-Pérez M, Grant TA, Ogbunugafor CB, Almagro-Moreno S. Molecular mechanisms and drivers of pathogen emergence. Trends Microbiol 2022; 30:898-911. [DOI: 10.1016/j.tim.2022.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022]
|
32
|
Persistence and genetic adaptation of Pseudomonas aeruginosa in patients with chronic obstructive pulmonary disease. Clin Microbiol Infect 2022; 28:990-995. [DOI: 10.1016/j.cmi.2022.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/26/2022]
|
33
|
Fischer S, Klockgether J, Gonzalez Sorribes M, Dorda M, Wiehlmann L, Tümmler B. Sequence diversity of the Pseudomonas aeruginosa population in loci that undergo microevolution in cystic fibrosis airways. Access Microbiol 2022; 3:000286. [PMID: 35024551 PMCID: PMC8749138 DOI: 10.1099/acmi.0.000286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/04/2021] [Indexed: 12/23/2022] Open
Abstract
Five hundred and thirty-four unrelated Pseudomonas aeruginosa isolates from inanimate habitats, patients with cystic fibrosis (CF) and other human infections were sequenced in 19 genes that had been identified previously as the hot spots of genomic within-host evolution in serial isolates from 12 CF lungs. Amplicon sequencing confirmed a significantly higher sequence diversity of the 19 loci in P. aeruginosa isolates from CF patients compared to those from other habitats, but this overrepresentation was mainly due to the larger share of synonymous substitutions. Correspondingly, non-synonymous substitutions were either rare (gltT, lepA, ptsP) or benign (nuoL, fleR, pelF) in some loci. Other loci, however, showed an accumulation of non-neutral coding variants. Strains from the CF habitat were often mutated at evolutionarily conserved positions in the elements of stringent response (RelA, SpoT), LPS (PagL), polyamine transport (SpuE, SpuF) and alginate biosynthesis (AlgG, AlgU). The strongest skew towards the CF lung habitat was seen for amino acid sequence variants in AlgG that clustered in the carbohydrate-binding/sugar hydrolysis domain. The master regulators of quorum sensing lasR and rhlR were frequent targets for coding variants in isolates from chronic and acute human infections. Unique variants in lasR showed strong evidence of positive selection indicated by d N/d S values of ~4. The pelA gene that encodes a multidomain enzyme involved in both the formation and dispersion of Pel biofilms carried the highest number of single-nucleotide variants among the 19 genes and was the only gene with a higher frequency of missense mutations in P. aeruginosa strains from non-CF habitats than in isolates from CF airways. PelA protein variants are widely distributed in the P. aeruginosa population. In conclusion, coding variants in a subset of the examined loci are indeed characteristic for the adaptation of P. aeruginosa to the CF airways, but for other loci the elevated mutation rate is more indicative of infections in human habitats (lasR, rhlR) or global diversifying selection (pelA).
Collapse
Affiliation(s)
- Sebastian Fischer
- Clinical Research Group 'Molecular Pathology of Cystic Fibrosis', Department for Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Jens Klockgether
- Clinical Research Group 'Molecular Pathology of Cystic Fibrosis', Department for Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Marina Gonzalez Sorribes
- Clinical Research Group 'Molecular Pathology of Cystic Fibrosis', Department for Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Marie Dorda
- Clinical Research Group 'Molecular Pathology of Cystic Fibrosis', Department for Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Lutz Wiehlmann
- Clinical Research Group 'Molecular Pathology of Cystic Fibrosis', Department for Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Clinical Research Group 'Molecular Pathology of Cystic Fibrosis', Department for Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Germany
| |
Collapse
|
34
|
Adaptation to an amoeba host leads to Pseudomonas aeruginosa isolates with attenuated virulence. Appl Environ Microbiol 2022; 88:e0232221. [PMID: 35020451 PMCID: PMC8904051 DOI: 10.1128/aem.02322-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is ubiquitous in the environment, and in humans, it is capable of causing acute or chronic infections. In the natural environment, predation by bacterivorous protozoa represents a primary threat to bacteria. Here, we determined the impact of long-term exposure of P. aeruginosa to predation pressure. P. aeruginosa persisted when coincubated with the bacterivorous Acanthamoeba castellanii for extended periods and produced genetic and phenotypic variants. Sequencing of late-stage amoeba-adapted P. aeruginosa isolates demonstrated single nucleotide polymorphisms within genes that encode known virulence factors, and this correlated with a reduction in expression of virulence traits. Virulence for the nematode Caenorhabditis elegans was attenuated in late-stage amoeba-adapted P. aeruginosa compared to early-stage amoeba-adapted and nonadapted counterparts. Further, late-stage amoeba-adapted P. aeruginosa showed increased competitive fitness and enhanced survival in amoebae as well as in macrophage and neutrophils. Interestingly, our findings indicate that the selection imposed by amoebae resulted in P. aeruginosa isolates with reduced virulence and enhanced fitness, similar to those recovered from chronic cystic fibrosis infections. Thus, predation by protozoa and long-term colonization of the human host may represent similar environments that select for similar losses of gene function. IMPORTANCEPseudomonas aeruginosa is an opportunistic pathogen that causes both acute infections in plants and animals, including humans, and chronic infections in immunocompromised and cystic fibrosis patients. This bacterium is commonly found in soils and water, where bacteria are constantly under threat of being consumed by bacterial predators, e.g., protozoa. To escape being killed, bacteria have evolved a suite of mechanisms that protect them from being consumed or digested. Here, we examined the effect of long-term predation on the genotypes and phenotypes expressed by P. aeruginosa. We show that long-term coincubation with protozoa gave rise to mutations that resulted in P. aeruginosa becoming less pathogenic. This is particularly interesting as similar mutations arise in bacteria associated with chronic infections. Importantly, the genetic and phenotypic traits possessed by late-stage amoeba-adapted P. aeruginosa are similar to those observed in isolates obtained from chronic cystic fibrosis infections. This notable overlap in adaptation to different host types suggests similar selection pressures among host cell types as well as similar adaptation strategies.
Collapse
|
35
|
Mixed Populations and Co-Infection: Pseudomonas aeruginosa and Staphylococcus aureus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:397-424. [DOI: 10.1007/978-3-031-08491-1_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Tariq M, Jameel F, Ijaz U, Abdullah M, Rashid K. Biofertilizer microorganisms accompanying pathogenic attributes: a potential threat. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:77-90. [PMID: 35221573 PMCID: PMC8847475 DOI: 10.1007/s12298-022-01138-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/30/2021] [Accepted: 01/14/2022] [Indexed: 05/04/2023]
Abstract
Application of biofertilizers containing living or dormant plant growth promoting bacterial cells is considered to be an ecofriendly alternative of chemical fertilizers for improved crop production. Biofertilizers opened myriad doors towards sustainable agriculture as they effectively reduce heavy use of chemical fertilizers and pesticides by keeping soils profuse in micro and macronutrients, regulating plant hormones and restraining infections caused by the pests present in soil without inflicting environmental damage. Generally, pathogenicity and biosafety testing of potential plant growth promoting bacteria (PGPB) are not performed, and the bacteria are reported to be beneficial solely on testing plant growth promoting characteristics. Unfortunately, some rhizosphere and endophytic PGPB are reported to be involved in various diseases. Such PGPB can also spread virulence and multidrug resistance genes carried by them through horizontal gene transfer to other bacteria in the environment. Therefore, deployment of such microbial populations in open fields could lead to disastrous side effects on human health and environment. Careless declaration of bacteria as PGPB is more pronounced in research publications. Here, we present a comprehensive report of declared PGPB which are reported to be pathogenic in other studies. This review also suggests the employment of some additional safety assessment protocols before reporting a bacteria as beneficial and product development.
Collapse
Affiliation(s)
- Mohsin Tariq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farwah Jameel
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Usman Ijaz
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Abdullah
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Kamran Rashid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
37
|
Tümmler B. What Makes Pseudomonas aeruginosa a Pathogen? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:283-301. [DOI: 10.1007/978-3-031-08491-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
β-lactam Resistance in Pseudomonas aeruginosa: Current Status, Future Prospects. Pathogens 2021; 10:pathogens10121638. [PMID: 34959593 PMCID: PMC8706265 DOI: 10.3390/pathogens10121638] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is a major opportunistic pathogen, causing a wide range of acute and chronic infections. β-lactam antibiotics including penicillins, carbapenems, monobactams, and cephalosporins play a key role in the treatment of P. aeruginosa infections. However, a significant number of isolates of these bacteria are resistant to β-lactams, complicating treatment of infections and leading to worse outcomes for patients. In this review, we summarize studies demonstrating the health and economic impacts associated with β-lactam-resistant P. aeruginosa. We then describe how β-lactams bind to and inhibit P. aeruginosa penicillin-binding proteins that are required for synthesis and remodelling of peptidoglycan. Resistance to β-lactams is multifactorial and can involve changes to a key target protein, penicillin-binding protein 3, that is essential for cell division; reduced uptake or increased efflux of β-lactams; degradation of β-lactam antibiotics by increased expression or altered substrate specificity of an AmpC β-lactamase, or by the acquisition of β-lactamases through horizontal gene transfer; and changes to biofilm formation and metabolism. The current understanding of these mechanisms is discussed. Lastly, important knowledge gaps are identified, and possible strategies for enhancing the effectiveness of β-lactam antibiotics in treating P. aeruginosa infections are considered.
Collapse
|
39
|
Wardell SJT, Gauthier J, Martin LW, Potvin M, Brockway B, Levesque RC, Lamont IL. Genome evolution drives transcriptomic and phenotypic adaptation in Pseudomonas aeruginosa during 20 years of infection. Microb Genom 2021; 7. [PMID: 34826267 PMCID: PMC8743555 DOI: 10.1099/mgen.0.000681] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa chronically infects the lungs of patients with cystic fibrosis (CF). During infection the bacteria evolve and adapt to the lung environment. Here we use genomic, transcriptomic and phenotypic approaches to compare multiple isolates of P. aeruginosa collected more than 20 years apart during a chronic infection in a CF patient. Complete genome sequencing of the isolates, using short- and long-read technologies, showed that a genetic bottleneck occurred during infection and was followed by diversification of the bacteria. A 125 kb deletion, an 0.9 Mb inversion and hundreds of smaller mutations occurred during evolution of the bacteria in the lung, with an average rate of 17 mutations per year. Many of the mutated genes are associated with infection or antibiotic resistance. RNA sequencing was used to compare the transcriptomes of an earlier and a later isolate. Substantial reprogramming of the transcriptional network had occurred, affecting multiple genes that contribute to continuing infection. Changes included greatly reduced expression of flagellar machinery and increased expression of genes for nutrient acquisition and biofilm formation, as well as altered expression of a large number of genes of unknown function. Phenotypic studies showed that most later isolates had increased cell adherence and antibiotic resistance, reduced motility, and reduced production of pyoverdine (an iron-scavenging siderophore), consistent with genomic and transcriptomic data. The approach of integrating genomic, transcriptomic and phenotypic analyses reveals, and helps to explain, the plethora of changes that P. aeruginosa undergoes to enable it to adapt to the environment of the CF lung during a chronic infection.
Collapse
Affiliation(s)
| | - Jeff Gauthier
- Institut de biologie intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Lois W Martin
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Marianne Potvin
- Institut de biologie intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Ben Brockway
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Roger C Levesque
- Institut de biologie intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
40
|
Armbruster CR, Marshall CW, Garber AI, Melvin JA, Zemke AC, Moore J, Zamora PF, Li K, Fritz IL, Manko CD, Weaver ML, Gaston JR, Morris A, Methé B, DePas WH, Lee SE, Cooper VS, Bomberger JM. Adaptation and genomic erosion in fragmented Pseudomonas aeruginosa populations in the sinuses of people with cystic fibrosis. Cell Rep 2021; 37:109829. [PMID: 34686349 PMCID: PMC8667756 DOI: 10.1016/j.celrep.2021.109829] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022] Open
Abstract
Pseudomonas aeruginosa notoriously adapts to the airways of people with cystic fibrosis (CF), yet how infection-site biogeography and associated evolutionary processes vary as lifelong infections progress remains unclear. Here we test the hypothesis that early adaptations promoting aggregation influence evolutionary-genetic trajectories by examining longitudinal P. aeruginosa from the sinuses of six adults with CF. Highly host-adapted lineages harbored mutator genotypes displaying signatures of early genome degradation associated with recent host restriction. Using an advanced imaging technique (MiPACT-HCR [microbial identification after passive clarity technique]), we find population structure tracks with genome degradation, with the most host-adapted, genome-degraded P. aeruginosa (the mutators) residing in small, sparse aggregates. We propose that following initial adaptive evolution in larger populations under strong selection for aggregation, P. aeruginosa persists in small, fragmented populations that experience stronger effects of genetic drift. These conditions enrich for mutators and promote degenerative genome evolution. Our findings underscore the importance of infection-site biogeography to pathogen evolution.
Collapse
Affiliation(s)
- Catherine R Armbruster
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | | | - Arkadiy I Garber
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jeffrey A Melvin
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Anna C Zemke
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - John Moore
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Paula F Zamora
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Kelvin Li
- Center for Medicine and the Microbiome, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Ian L Fritz
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Christopher D Manko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Madison L Weaver
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Jordan R Gaston
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Alison Morris
- Center for Medicine and the Microbiome, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Barbara Methé
- Center for Medicine and the Microbiome, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - William H DePas
- Department of Pediatrics, Children's Hospital of Pittsburgh and University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Stella E Lee
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA.
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Center for Medicine and the Microbiome, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA; Pittsburgh Center for Evolutionary Biology & Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | - Jennifer M Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
41
|
Petitjean M, Juarez P, Meunier A, Daguindau E, Puja H, Bertrand X, Valot B, Hocquet D. The rise and the fall of a Pseudomonas aeruginosa endemic lineage in a hospital. Microb Genom 2021; 7. [PMID: 34473016 PMCID: PMC8715434 DOI: 10.1099/mgen.0.000629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The biological features that allow a pathogen to survive in the hospital environment are mostly unknown. The extinction of bacterial epidemics in hospitals is mostly attributed to changes in medical practice, including infection control, but the role of bacterial adaptation has never been documented. We analysed a collection of Pseudomonas aeruginosa isolates belonging to the Besançon Epidemic Strain (BES), responsible for a 12year nosocomial outbreak, using a genotype-to-phenotype approach. Bayesian analysis estimated the emergence of the clone in the hospital 5 years before its opening, during the creation of its water distribution network made of copper. BES survived better than the reference strains PAO1 and PA14 in a copper solution due to a genomic island containing 13 metal-resistance genes and was specifically able to proliferate in the ubiquitous amoeba Vermamoeba vermiformis. Mutations affecting amino-acid metabolism, antibiotic resistance, lipopolysaccharide biosynthesis, and regulation were enriched during the spread of BES. Seven distinct regulatory mutations attenuated the overexpression of the genes encoding the efflux pump MexAB-OprM over time. The fitness of BES decreased over time in correlation with its genome size. Overall, the resistance to inhibitors and predators presumably aided the proliferation and propagation of BES in the plumbing system of the hospital. The pathogen further spread among patients via multiple routes of contamination. The decreased prevalence of patients infected by BES mirrored the parallel and convergent genomic evolution and reduction that affected bacterial fitness. Along with infection control measures, this may have participated in the extinction of BES in the hospital setting.
Collapse
Affiliation(s)
- Marie Petitjean
- Hygiène Hospitalière, Centre Hospitalier Universitaire, 25030 Besançon, France.,UMR CNRS 6249, Université de Bourgogne Franche-Comté, 25030 Besançon, France
| | - Paulo Juarez
- UMR CNRS 6249, Université de Bourgogne Franche-Comté, 25030 Besançon, France
| | - Alexandre Meunier
- Hygiène Hospitalière, Centre Hospitalier Universitaire, 25030 Besançon, France
| | - Etienne Daguindau
- UMR INSERM 1098, Université de Bourgogne Franche-Comté, 25030 Besançon, France
| | - Hélène Puja
- UMR CNRS 6249, Université de Bourgogne Franche-Comté, 25030 Besançon, France
| | - Xavier Bertrand
- Hygiène Hospitalière, Centre Hospitalier Universitaire, 25030 Besançon, France.,UMR CNRS 6249, Université de Bourgogne Franche-Comté, 25030 Besançon, France
| | - Benoit Valot
- UMR CNRS 6249, Université de Bourgogne Franche-Comté, 25030 Besançon, France.,Bioinformatique et Big Data au Service de la Santé, UFR Science de la Santé, Université de Bourgogne Franche-Comté, 25030 Besançon, France
| | - Didier Hocquet
- Hygiène Hospitalière, Centre Hospitalier Universitaire, 25030 Besançon, France.,UMR CNRS 6249, Université de Bourgogne Franche-Comté, 25030 Besançon, France.,Bioinformatique et Big Data au Service de la Santé, UFR Science de la Santé, Université de Bourgogne Franche-Comté, 25030 Besançon, France.,Centre de Ressources Biologiques - Filière Microbiologique de Besançon, Centre Hospitalier Universitaire, 25030 Besançon, France
| |
Collapse
|
42
|
A Combination of Metagenomic and Cultivation Approaches Reveals Hypermutator Phenotypes within Vibrio cholerae-Infected Patients. mSystems 2021; 6:e0088921. [PMID: 34427503 PMCID: PMC8407408 DOI: 10.1128/msystems.00889-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae can cause a range of symptoms, from severe diarrhea to asymptomatic infection. Previous studies using whole-genome sequencing (WGS) of multiple bacterial isolates per patient showed that V. cholerae can evolve modest genetic diversity during symptomatic infection. To further explore the extent of V. cholerae within-host diversity, we applied culture-based WGS and metagenomics to a cohort of both symptomatic and asymptomatic cholera patients from Bangladesh. While metagenomics allowed us to detect more mutations in symptomatic patients, WGS of cultured isolates was necessary to detect V. cholerae diversity in asymptomatic carriers, likely due to their low V. cholerae load. Using both metagenomics and isolate WGS, we report three lines of evidence that V. cholerae hypermutators evolve within patients. First, we identified nonsynonymous mutations in V. cholerae DNA repair genes in 5 out of 11 patient metagenomes sequenced with sufficient coverage of the V. cholerae genome and in 1 of 3 patients with isolate genomes sequenced. Second, these mutations in DNA repair genes tended to be accompanied by an excess of intrahost single nucleotide variants (iSNVs). Third, these iSNVs were enriched in transversion mutations, a known hallmark of hypermutator phenotypes. While hypermutators appeared to generate mostly selectively neutral mutations, nonmutators showed signs of convergent mutation across multiple patients, suggesting V. cholerae adaptation within hosts. Our results highlight the power and limitations of metagenomics combined with isolate sequencing to characterize within-patient diversity in acute V. cholerae infections, while providing evidence for hypermutator phenotypes within cholera patients. IMPORTANCE Pathogen evolution within patients can impact phenotypes such as drug resistance and virulence, potentially affecting clinical outcomes. V. cholerae infection can result in life-threatening diarrheal disease or asymptomatic infection. Here, we describe whole-genome sequencing of V. cholerae isolates and culture-free metagenomic sequencing from stool of symptomatic cholera patients and asymptomatic carriers. Despite the typically short duration of cholera, we found evidence for adaptive mutations in the V. cholerae genome that occur independently and repeatedly within multiple symptomatic patients. We also identified V. cholerae hypermutator phenotypes within several patients, which appear to generate mainly neutral or deleterious mutations. Our work sets the stage for future studies of the role of hypermutators and within-patient evolution in explaining the variation from asymptomatic carriage to symptomatic cholera.
Collapse
|
43
|
Castro RAD, Borrell S, Gagneux S. The within-host evolution of antimicrobial resistance in Mycobacterium tuberculosis. FEMS Microbiol Rev 2021; 45:fuaa071. [PMID: 33320947 PMCID: PMC8371278 DOI: 10.1093/femsre/fuaa071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) has been responsible for the greatest number of human deaths due to an infectious disease in general, and due to antimicrobial resistance (AMR) in particular. The etiological agents of human TB are a closely-related group of human-adapted bacteria that belong to the Mycobacterium tuberculosis complex (MTBC). Understanding how MTBC populations evolve within-host may allow for improved TB treatment and control strategies. In this review, we highlight recent works that have shed light on how AMR evolves in MTBC populations within individual patients. We discuss the role of heteroresistance in AMR evolution, and review the bacterial, patient and environmental factors that likely modulate the magnitude of heteroresistance within-host. We further highlight recent works on the dynamics of MTBC genetic diversity within-host, and discuss how spatial substructures in patients' lungs, spatiotemporal heterogeneity in antimicrobial concentrations and phenotypic drug tolerance likely modulates the dynamics of MTBC genetic diversity in patients during treatment. We note the general characteristics that are shared between how the MTBC and other bacterial pathogens evolve in humans, and highlight the characteristics unique to the MTBC.
Collapse
Affiliation(s)
- Rhastin A D Castro
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| |
Collapse
|
44
|
Gabrielaite M, Nielsen FC, Johansen HK, Marvig RL. Achromobacter spp. genetic adaptation in cystic fibrosis. Microb Genom 2021; 7:000582. [PMID: 34232117 PMCID: PMC8477396 DOI: 10.1099/mgen.0.000582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/12/2021] [Indexed: 11/23/2022] Open
Abstract
Achromobacter spp. are emerging pathogens in patients with cystic fibrosis (CF) and Achromobacter spp. caused infections are associated with more severe disease outcomes and high intrinsic antibiotic resistance. While conventional CF pathogens are studied extensively, little is known about the genetic determinants leading to antibiotic resistance and the genetic adaptation in Achromobacter spp. infections. Here, we analysed 101 Achromobacter spp. genomes from 51 patients with CF isolated during the course of up to 20 years of infection to identify within-host adaptation, mutational signatures and genetic variation associated with increased antibiotic resistance. We found that the same regulatory and inorganic ion transport genes were frequently mutated in persisting clone types within and between Achromobacter species, indicating convergent genetic adaptation. Genome-wide association study of six antibiotic resistance phenotypes revealed the enrichment of associated genes involved in inorganic ion transport, transcription gene enrichment in β-lactams, and energy production and translation gene enrichment in the trimethoprim/sulfonamide group. Overall, we provide insights into the pathogenomics of Achromobacter spp. infections in patients with CF airways. Since emerging pathogens are increasingly recognized as an important healthcare issue, our findings on evolution of antibiotic resistance and genetic adaptation can facilitate better understanding of disease progression and how mutational changes have implications for patients with CF.
Collapse
Affiliation(s)
| | - Finn C. Nielsen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Helle K. Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus L. Marvig
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
45
|
Khademi SMH, Gabrielaite M, Paulsson M, Knulst M, Touriki E, Marvig RL, Påhlman LI. Genomic and Phenotypic Evolution of Achromobacter xylosoxidans during Chronic Airway Infections of Patients with Cystic Fibrosis. mSystems 2021; 6:e0052321. [PMID: 34184916 PMCID: PMC8269239 DOI: 10.1128/msystems.00523-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022] Open
Abstract
Bacterial pathogens evolve during chronic colonization of the human host by selection for pathoadaptive mutations. One of the emerging and understudied bacterial species causing chronic airway infections in patients with cystic fibrosis (CF) is Achromobacter xylosoxidans. It can establish chronic infections in patients with CF, but the genetic and phenotypic changes associated with adaptation during these infections are not completely understood. In this study, we analyzed the whole-genome sequences of 55 clinical A. xylosoxidans isolates longitudinally collected from the sputum of 6 patients with CF. Four genes encoding regulatory proteins and two intergenic regions showed convergent evolution, likely driven by positive selection for pathoadaptive mutations, across the different clones of A. xylosoxidans. Most of the evolved isolates had lower swimming motility and were resistant to multiple classes of antibiotics, while fewer of the evolved isolates had slower growth or higher biofilm production than the first isolates. Using a genome-wide association study method, we identified several putative genetic determinants of biofilm formation, motility and β-lactam resistance in this pathogen. With respect to antibiotic resistance, we discovered that a combination of mutations in pathoadaptive genes (phoQ and bigR) and two other genes encoding regulatory proteins (spoT and cpxA) were associated with increased resistance to meropenem and ceftazidime. Altogether, our results suggest that genetic changes within regulatory loci facilitate within-host adaptation of A. xylosoxidans and the emergence of adaptive phenotypes, such as antibiotic resistance or biofilm formation. IMPORTANCE A thorough understanding of bacterial pathogen adaptation is essential for the treatment of chronic bacterial infections. One unique challenge in the analysis and interpretation of genomics data is identifying the functional impact of mutations accumulated in the bacterial genome during colonization in the human host. Here, we investigated the genomic and phenotypic evolution of A. xylosoxidans in chronic airway infections of patients with CF and identified several mutations associated with the phenotypic evolution of this pathogen using genome-wide associations. Identification of phenotypes under positive selection and the associated mutations can enlighten the adaptive processes of this emerging pathogen in human infections and pave the way for novel therapeutic interventions.
Collapse
Affiliation(s)
- S. M. Hossein Khademi
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | | | - Magnus Paulsson
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
- Division of Infectious Diseases, Skåne University Hospital Lund, Lund, Sweden
| | - Mattis Knulst
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Eleni Touriki
- Clinical Microbiology, Labmedicin Skåne, Lund, Sweden
| | - Rasmus L. Marvig
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Lisa I. Påhlman
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
- Division of Infectious Diseases, Skåne University Hospital Lund, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
46
|
Compensatory evolution of Pseudomonas aeruginosa's slow growth phenotype suggests mechanisms of adaptation in cystic fibrosis. Nat Commun 2021; 12:3186. [PMID: 34045458 PMCID: PMC8160344 DOI: 10.1038/s41467-021-23451-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 04/27/2021] [Indexed: 02/04/2023] Open
Abstract
Long-term infection of the airways of cystic fibrosis patients with Pseudomonas aeruginosa is often accompanied by a reduction in bacterial growth rate. This reduction has been hypothesised to increase within-patient fitness and overall persistence of the pathogen. Here, we apply adaptive laboratory evolution to revert the slow growth phenotype of P. aeruginosa clinical strains back to a high growth rate. We identify several evolutionary trajectories and mechanisms leading to fast growth caused by transcriptional and mutational changes, which depend on the stage of adaptation of the strain. Return to high growth rate increases antibiotic susceptibility, which is only partially dependent on reversion of mutations or changes in the transcriptional profile of genes known to be linked to antibiotic resistance. We propose that similar mechanisms and evolutionary trajectories, in reverse direction, may be involved in pathogen adaptation and the establishment of chronic infections in the antibiotic-treated airways of cystic fibrosis patients.
Collapse
|
47
|
Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat Rev Microbiol 2021; 19:331-342. [PMID: 33214718 DOI: 10.1038/s41579-020-00477-5] [Citation(s) in RCA: 275] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 01/29/2023]
Abstract
Intense genome sequencing of Pseudomonas aeruginosa isolates from cystic fibrosis (CF) airways has shown inefficient eradication of the infecting bacteria, as well as previously undocumented patient-to-patient transmission of adapted clones. However, genome sequencing has limited potential as a predictor of chronic infection and of the adaptive state during infection, and thus there is increasing interest in linking phenotypic traits to the genome sequences. Phenotypic information ranges from genome-wide transcriptomic analysis of patient samples to determination of more specific traits associated with metabolic changes, stress responses, antibiotic resistance and tolerance, biofilm formation and slow growth. Environmental conditions in the CF lung shape both genetic and phenotypic changes of P. aeruginosa during infection. In this Review, we discuss the adaptive and evolutionary trajectories that lead to early diversification and late convergence, which enable P. aeruginosa to succeed in this niche, and we point out how knowledge of these biological features may be used to guide diagnosis and therapy.
Collapse
|
48
|
Cai YM, Zhang YD, Yang L. NO donors and NO delivery methods for controlling biofilms in chronic lung infections. Appl Microbiol Biotechnol 2021; 105:3931-3954. [PMID: 33937932 PMCID: PMC8140970 DOI: 10.1007/s00253-021-11274-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022]
Abstract
Nitric oxide (NO), the highly reactive radical gas, provides an attractive strategy in the control of microbial infections. NO not only exhibits bactericidal effect at high concentrations but also prevents bacterial attachment and disperses biofilms at low, nontoxic concentrations, rendering bacteria less tolerant to antibiotic treatment. The endogenously generated NO by airway epithelium in healthy populations significantly contributes to the eradication of invading pathogens. However, this pathway is often compromised in patients suffering from chronic lung infections where biofilms dominate. Thus, exogenous supplementation of NO is suggested to improve the therapeutic outcomes of these infectious diseases. Compared to previous reviews focusing on the mechanism of NO-mediated biofilm inhibition, this review explores the applications of NO for inhibiting biofilms in chronic lung infections. It discusses how abnormal levels of NO in the airways contribute to chronic infections in cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), and primary ciliary dyskinesia (PCD) patients and why exogenous NO can be a promising antibiofilm strategy in clinical settings, as well as current and potential in vivo NO delivery methods. KEY POINTS : • The relationship between abnormal NO levels and biofilm development in lungs • The antibiofilm property of NO and current applications in lungs • Potential NO delivery methods and research directions in the future.
Collapse
Affiliation(s)
- Yu-Ming Cai
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Ying-Dan Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518000, China.
| |
Collapse
|
49
|
Bartell JA, Sommer LM, Marvig RL, Skov M, Pressler T, Molin S, Johansen HK. Omics-based tracking of Pseudomonas aeruginosa persistence in "eradicated" cystic fibrosis patients. Eur Respir J 2021; 57:13993003.00512-2020. [PMID: 33093121 PMCID: PMC8029213 DOI: 10.1183/13993003.00512-2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 10/09/2020] [Indexed: 01/18/2023]
Abstract
Whenever Pseudomonas aeruginosa is cultured from cystic fibrosis (CF) patient airways, the primary goal is eradication by antibiotic therapy. Success is defined by ≥6 months of negative bacterial airway cultures. However, we suspect that P. aeruginosa persists in airways without clinical detection for long periods. Out of 298 P. aeruginosa-infected Copenhagen CF patients, we identified 80 with complete P. aeruginosa monitoring records and measured their maximum P. aeruginosa-free eradication periods (MEP). Isolates from 72 patients were whole-genome sequenced (n=567) and clone typed. Select isolate relatedness was examined through phylogenetic analysis and phenotypic multivariate modelling. 69 (86%) patients exhibited eradication in the monitoring period (2002–2018). Sequenced isolates bridged the MEP of 42 patients, and the same clone type persisted over the MEP in 18 (43%) patients. Patients with failed eradication were on average treated more intensively with antibiotics, but this may be linked to their more severe pre-MEP infection trajectories. Of the 42 patients, 26 also had sinus surgery; the majority (n=15) showed MEPs adjacent to surgery, and only five had persisting clone types. Importantly, combined phylogenetic–phenomic evaluation suggests that persisting clone types are a result of re-emergence of the same strain rather than re-infection from the environment, and similar relatedness is exhibited by paired lower and upper airway samples and in transmission cases. In conclusion, nearly half of CF patients with supposed eradication may not truly be cleared of their original bacteria according to omics-based monitoring. This distinct cohort that is persistently infected would probably benefit from tailored antibiotic therapy. For 80 cystic fibrosis patients, this study used omics and positive culture history of P. aeruginosa infections to show that strains routinely persist over lengthy Pseudomonas-free periods. The authors recommend using genomic data in “eradication” metrics.https://bit.ly/2H318Ca
Collapse
Affiliation(s)
- Jennifer A Bartell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lea M Sommer
- Dept of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Rasmus L Marvig
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Marianne Skov
- Dept of Pediatrics, Rigshospitalet, Copenhagen, Denmark
| | | | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Helle Krogh Johansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Dept of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
50
|
Abstract
Cystic fibrosis patients frequently suffer from recurring respiratory infections caused by colonizing pathogenic and commensal bacteria. Although modern therapies can sometimes alleviate respiratory symptoms by ameliorating residual function of the protein responsible for the disorder, management of chronic respiratory infections remains an issue. In cystic fibrosis, dynamic and complex communities of microbial pathogens and commensals can colonize the lung. Cultured isolates from lung sputum reveal high inter- and intraindividual variability in pathogen strains, sequence variants, and phenotypes; disease progression likely depends on the precise combination of infecting lineages. Routine clinical protocols, however, provide a limited overview of the colonizer populations. Therefore, a more comprehensive and precise identification and characterization of infecting lineages could assist in making corresponding decisions on treatment. Here, we describe longitudinal tracking for four cystic fibrosis patients who exhibited extreme clinical phenotypes and, thus, were selected from a pilot cohort of 11 patients with repeated sampling for more than a year. Following metagenomics sequencing of lung sputum, we find that the taxonomic identity of individual colonizer lineages can be easily established. Crucially, even superficially clonal pathogens can be subdivided into multiple sublineages at the sequence level. By tracking individual allelic differences over time, an assembly-free clustering approach allows us to reconstruct multiple lineage-specific genomes with clear structural differences. Our study showcases a culture-independent shotgun metagenomics approach for longitudinal tracking of sublineage pathogen dynamics, opening up the possibility of using such methods to assist in monitoring disease progression through providing high-resolution routine characterization of the cystic fibrosis lung microbiome.
Collapse
|