1
|
Lim ZH, Zheng P, Quek C, Nowrousian M, Aachmann FL, Jedd G. Diatom heterotrophy on brown algal polysaccharides emerged through horizontal gene transfer, gene duplication, and neofunctionalization. PLoS Biol 2025; 23:e3003038. [PMID: 40168346 PMCID: PMC11960938 DOI: 10.1371/journal.pbio.3003038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/27/2025] [Indexed: 04/03/2025] Open
Abstract
A major goal of evolutionary biology is to identify the genetic basis for the emergence of complex adaptive traits. Diatoms are ancestrally photosynthetic microalgae. However, in the genus Nitzschia, loss of photosynthesis led to a group of free-living secondary heterotrophs whose manner of acquiring chemical energy is unclear. Here, we sequence the genome of the non-photosynthetic diatom Nitzschia sing1 and identify the genetic basis for its catabolism of the brown algal cell wall polysaccharide alginate. N. sing1 obtained an endolytic alginate lyase enzyme by horizontal gene transfer (HGT) from a marine bacterium. Subsequent gene duplication through unequal crossing over and transposition led to 91 genes in three distinct gene families. One family retains the ancestral endolytic enzyme function. By contrast, the two others underwent domain duplication, gain, loss, rearrangement, and mutation to encode novel functions that can account for oligosaccharide import through the endomembrane system and the exolytic production of alginate monosaccharides. Together, our results show how a single HGT event followed by substantial gene duplication and neofunctionalization led to alginate catabolism and access to a new ecological niche.
Collapse
Affiliation(s)
- Zeng Hao Lim
- Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Peng Zheng
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | | | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, Bochum, Germany
| | - Finn L. Aachmann
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Gregory Jedd
- Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Hill R, Grey M, Fedi MO, Smith D, Canning G, Ward SJ, Irish N, Smith J, McMillan VE, Hammond J, Osborne SJ, Reynolds G, Smith E, Chancellor T, Swarbreck D, Hall N, Palma-Guerrero J, Hammond-Kosack KE, McMullan M. Evolutionary genomics reveals variation in structure and genetic content implicated in virulence and lifestyle in the genus Gaeumannomyces. BMC Genomics 2025; 26:239. [PMID: 40075289 PMCID: PMC11905480 DOI: 10.1186/s12864-025-11432-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Gaeumannomyces tritici is responsible for take-all disease, one of the most important wheat root threats worldwide. High-quality annotated genome resources are sorely lacking for this pathogen, as well as for the closely related antagonist and potential wheat take-all biocontrol agent, G. hyphopodioides. As such, we know very little about the genetic basis of the interactions in this host-pathogen-antagonist system. Using PacBio HiFi sequencing technology we have generated nine near-complete assemblies, including two different virulence lineages for G. tritici and the first assemblies for G. hyphopodioides and G. avenae (oat take-all). Genomic signatures support the presence of two distinct virulence lineages in G. tritici (types A and B), with A strains potentially employing a mechanism to prevent gene copy-number expansions. The CAZyme repertoire was highly conserved across Gaeumannomyces, while candidate secreted effector proteins and biosynthetic gene clusters showed more variability and may distinguish pathogenic and non-pathogenic lineages. A transition from self-sterility (heterothallism) to self-fertility (homothallism) may also be a key innovation implicated in lifestyle. We did not find evidence for transposable element and effector gene compartmentalisation in the genus, however the presence of Starship giant transposable elements may contribute to genomic plasticity in the genus. Our results depict Gaeumannomyces as an ideal system to explore interactions within the rhizosphere, the nuances of intraspecific virulence, interspecific antagonism, and fungal lifestyle evolution. The foundational genomic resources provided here will enable the development of diagnostics and surveillance of understudied but agriculturally important fungal pathogens.
Collapse
Affiliation(s)
- Rowena Hill
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.
| | - Michelle Grey
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | | | - Daniel Smith
- Rothamsted Research, Harpenden, AL5 2JQ, UK
- John Innes Centre, Norwich, Norfolk, NR4 7UH, UK
| | | | - Sabrina J Ward
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Naomi Irish
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Jade Smith
- Rothamsted Research, Harpenden, AL5 2JQ, UK
| | | | | | - Sarah-Jane Osborne
- Rothamsted Research, Harpenden, AL5 2JQ, UK
- AHDB, Siskin Parkway East, Middlemarch Business Park, Coventry, CV3 4PE, UK
| | | | - Ellie Smith
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Tania Chancellor
- Rothamsted Research, Harpenden, AL5 2JQ, UK
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Javier Palma-Guerrero
- Rothamsted Research, Harpenden, AL5 2JQ, UK
- Research Institute of Organic Agriculture Fibl, Frick, 5070, Switzerland
| | | | - Mark McMullan
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.
| |
Collapse
|
3
|
Liu W, Shi X, Cai Y, Sun W, He P, Perez-Moreno J, Liu D, Yu F. Two near-chromosomal-level genomes of globally-distributed Macroascomycete based on single-molecule fluorescence and Hi-C methods. Sci Data 2024; 11:964. [PMID: 39231989 PMCID: PMC11375150 DOI: 10.1038/s41597-024-03794-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024] Open
Abstract
Discinaceae holds significant importance within the Pezizales, representing a prominent group of macroascomycetes distributed globally. However, there is a dearth of genomic studies focusing on this family, resulting in gaps in our understanding of its evolution, development, and ecology. Here we utilized state-of-the-art genome assembly methodologies, incorporating third-generation single-molecule fluorescence and Hi-C-assisted methods, to elucidate the genomic landscapes of Gyromitra esculenta and Paragyromitra xinjiangensis. The genome sizes of two species were determined to be 47.10 Mb and 48.20 Mb, with 23 and 22 scaffolds, respectively. 10,438 and 11,469 coding proteins were identified, with functional annotations encompassing over 96.47% and 94.40%, respectively. Assessment of completeness using BUSCO revealed that 98.71% and 98.89% of the conserved proteins were identified. The application of comparative genomic technology has helped in identifying traits associated with of heterothallic life cycle traits and elucidating unique patterns of chromosomal evolution. Additionally, we identified potential saprotrophic nutritional modes and systematic phylogenetic relationships between the two species. Therefore, this study provides crucial genomic insights into the evolution, nutritional type, and ecological roles of species within the Pezizales.
Collapse
Affiliation(s)
- Wei Liu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yingli Cai
- Institute of Agro-products Processing, Yunnan Academy of Agricultural Sciences, Kunming, 650221, China
| | - Wenhua Sun
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Peixin He
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Jesus Perez-Moreno
- Edafología, Campus Montecillo, Colegio de Postgraduados, Texcoco, 56230, Mexico
| | - Dong Liu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
4
|
Breuer J, Busche T, Kalinowski J, Nowrousian M. Histone binding of ASF1 is required for fruiting body development but not for genome stability in the filamentous fungus Sordaria macrospora. mBio 2024; 15:e0289623. [PMID: 38112417 PMCID: PMC10790691 DOI: 10.1128/mbio.02896-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Histone chaperones are proteins that are involved in nucleosome assembly and disassembly and can therefore influence all DNA-dependent processes including transcription, DNA replication, and repair. ASF1 is a histone chaperone that is conserved throughout eukaryotes. In contrast to most other multicellular organisms, a deletion mutant of asf1 in the fungus Sordaria macrospora is viable; however, the mutant is sterile. In this study, we could show that the histone-binding ability of ASF1 is required for fertility in S. macrospora, whereas the function of ASF1 in maintenance of genome stability does not require histone binding. We also showed that the histone modifications H3K27me3 and H3K56ac are misregulated in the Δasf1 mutant. Furthermore, we identified a large duplication on chromosome 2 of the mutant strain that is genetically linked to the Δasf1 allele present on chromosome 6, suggesting that viability of the mutant might depend on the presence of the duplicated region.
Collapse
Affiliation(s)
- Jan Breuer
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Bochum, Germany
| | - Tobias Busche
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
- Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Nsele NN, Padayachee T, Nelson DR, Syed K. Pezizomycetes Genomes Reveal Diverse P450 Complements Characteristic of Saprotrophic and Ectomycorrhizal Lifestyles. J Fungi (Basel) 2023; 9:830. [PMID: 37623601 PMCID: PMC10455484 DOI: 10.3390/jof9080830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Cytochrome P450 monooxygenases (CYPs/P450s) are heme proteins that play a role in organisms' primary and secondary metabolism. P450s play an important role in organism adaptation since lifestyle influences P450 composition in their genome. This phenomenon is well-documented in bacteria but less so in fungi. This study observed this phenomenon where diverse P450 complements were identified in saprophytic and ectomycorrhizal Pezizomycetes. Genome-wide data mining, annotation, and phylogenetic analysis of P450s in 19 Pezizomycetes revealed 668 P450s that can be grouped into 153 P450 families and 245 P450 subfamilies. Only four P450 families, namely, CYP51, CYP61, CYP5093, and CYP6001, are conserved across 19 Pezizomycetes, indicating their important role in these species. A total of 5 saprophyte Pezizomycetes have 103 P450 families, whereas 14 ectomycorrhizal Pezizomycetes have 89 P450 families. Only 39 P450 families were common, and 50 and 64 P450 families, respectively, were unique to ectomycorrhizal and saprophytic Pezizomycetes. These findings suggest that the switch from a saprophytic to an ectomycorrhizal lifestyle led to both the development of diverse P450 families as well as the loss of P450s, which led to the lowest P450 family diversity, despite the emergence of novel P450 families in ectomycorrhizal Pezizomycetes.
Collapse
Affiliation(s)
- Nomfundo Ntombizinhle Nsele
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.N.N.); (T.P.)
| | - Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.N.N.); (T.P.)
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.N.N.); (T.P.)
| |
Collapse
|
6
|
Nowrousian M. The Role of Chromatin and Transcriptional Control in the Formation of Sexual Fruiting Bodies in Fungi. Microbiol Mol Biol Rev 2022; 86:e0010422. [PMID: 36409109 PMCID: PMC9769939 DOI: 10.1128/mmbr.00104-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fungal fruiting bodies are complex, three-dimensional structures that arise from a less complex vegetative mycelium. Their formation requires the coordinated action of many genes and their gene products, and fruiting body formation is accompanied by major changes in the transcriptome. In recent years, numerous transcription factor genes as well as chromatin modifier genes that play a role in fruiting body morphogenesis were identified, and through research on several model organisms, the underlying regulatory networks that integrate chromatin structure, gene expression, and cell differentiation are becoming clearer. This review gives a summary of the current state of research on the role of transcriptional control and chromatin structure in fruiting body development. In the first part, insights from transcriptomics analyses are described, with a focus on comparative transcriptomics. In the second part, examples of more detailed functional characterizations of the role of chromatin modifiers and/or transcription factors in several model organisms (Neurospora crassa, Aspergillus nidulans, Sordaria macrospora, Coprinopsis cinerea, and Schizophyllum commune) that have led to a better understanding of regulatory networks at the level of chromatin structure and transcription are discussed.
Collapse
Affiliation(s)
- Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
7
|
Steindorff AS, Seong K, Carver A, Calhoun S, Fischer MS, Stillman K, Liu H, Drula E, Henrissat B, Simpson HJ, Schilling JS, Lipzen A, He G, Yan M, Andreopoulos B, Pangilinan J, LaButti K, Ng V, Traxler M, Bruns TD, Grigoriev IV. Diversity of genomic adaptations to the post-fire environment in Pezizales fungi points to crosstalk between charcoal tolerance and sexual development. THE NEW PHYTOLOGIST 2022; 236:1154-1167. [PMID: 35898177 DOI: 10.1111/nph.18407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Wildfires drastically impact the soil environment, altering the soil organic matter, forming pyrolyzed compounds, and markedly reducing the diversity of microorganisms. Pyrophilous fungi, especially the species from the orders Pezizales and Agaricales, are fire-responsive fungal colonizers of post-fire soil that have historically been found fruiting on burned soil and thus may encode mechanisms of processing these compounds in their genomes. Pyrophilous fungi are diverse. In this work, we explored this diversity and sequenced six new genomes of pyrophilous Pezizales fungi isolated after the 2013 Rim Fire near Yosemite Park in California, USA: Pyronema domesticum, Pyronema omphalodes, Tricharina praecox, Geopyxis carbonaria, Morchella snyderi, and Peziza echinospora. A comparative genomics analysis revealed the enrichment of gene families involved in responses to stress and the degradation of pyrolyzed organic matter. In addition, we found that both protein sequence lengths and G + C content in the third base of codons (GC3) in pyrophilous fungi fall between those in mesophilic/nonpyrophilous and thermophilic fungi. A comparative transcriptome analysis of P. domesticum under two conditions - growing on charcoal, and during sexual development - identified modules of genes that are co-expressed in the charcoal and light-induced sexual development conditions. In addition, environmental sensors such as transcription factors STE12, LreA, LreB, VosA, and EsdC were upregulated in the charcoal condition. Taken together, these results highlight genomic adaptations of pyrophilous fungi and indicate a potential connection between charcoal tolerance and fruiting body formation in P. domesticum.
Collapse
Affiliation(s)
- Andrei S Steindorff
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kyungyong Seong
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Plant and Microbial Biology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Akiko Carver
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Plant and Microbial Biology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Sara Calhoun
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Monika S Fischer
- Plant and Microbial Biology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Kyra Stillman
- Plant and Microbial Biology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Haowen Liu
- Plant and Microbial Biology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, 163 avenue de Luminy, 13288 Aix Marseille Université, Marseille, France
- INRAE, UMR 1163, Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
| | - Bernard Henrissat
- Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- DTU Bioengineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Hunter J Simpson
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN, 55108, USA
| | - Jonathan S Schilling
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| | - Anna Lipzen
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Guifen He
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mi Yan
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Bill Andreopoulos
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jasmyn Pangilinan
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kurt LaButti
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vivian Ng
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Matthew Traxler
- Plant and Microbial Biology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Thomas D Bruns
- Plant and Microbial Biology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- US DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Plant and Microbial Biology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
8
|
Mattupalli C, Cuenca FP, Shiller JB, Watkins T, Hansen K, Garzon CD, Marek SM, Young CA. Genetic Diversity of Phymatotrichopsis omnivora Based on Mating Type and Microsatellite Markers Reveals Heterothallic Mating System. PLANT DISEASE 2022; 106:2105-2116. [PMID: 35156845 DOI: 10.1094/pdis-01-22-0013-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phymatotrichopsis omnivora is a member of Pezizomycetes and causes root rot disease on a broad range of dicotyledonous plants. Using recently generated draft genome sequence data from four P. omnivora isolates, we developed simple sequence repeat (SSR) markers and identified both mating type genes (MAT1-1-1 and MAT1-2-1) in this fungus. To understand the genetic diversity of P. omnivora isolates (n = 43) and spore mats (n = 29) collected from four locations (Oklahoma, Texas, Arizona, and Mexico) and four host crops (cotton, alfalfa, peach, and soybean), we applied 24 SSR markers and showed that of the 72 P. omnivora isolates and spore mats tested, 41 were distinct genotypes. Furthermore, the developed SSR markers did not show cross-transferability to other close relatives of P. omnivora in the class Pezizomycetes. A multiplex PCR detecting both mating type idiomorphs and a reference gene (TUB2) was developed to screen P. omnivora isolates. Based on the dataset we tested, P. omnivora is a heterothallic fungus with both mating types present in the United States in a ratio close to 1:1. We tested P. omnivora spore mats obtained from spatially distinct disease rings that developed in a center-pivot alfalfa field and showed that both mating types can be present not only in the same field but also within a single spore mat. This study shows that P. omnivora has the genetic toolkit for generating sexually diverse progeny, providing impetus for future studies that focus on identifying sexual morphs in nature.
Collapse
Affiliation(s)
- Chakradhar Mattupalli
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- Department of Plant Pathology, Washington State University, Mount Vernon NWREC, Mount Vernon, WA 98273, U.S.A
| | - Fernanda Proaño Cuenca
- Institute for Biosecurity and Microbial Forensics, Oklahoma State University, Stillwater, OK 74078, U.S.A
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | - Jason B Shiller
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- Scion, Rotorua 3046, New Zealand
| | - Tara Watkins
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- Department of Plant, Soil and Microbial Science, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Karen Hansen
- Department of Botany, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden
| | - Carla D Garzon
- Department of Plant Science and Landscape Architecture, Delaware Valley University, Doylestown, PA 18901, U.S.A
| | - Stephen M Marek
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | - Carolyn A Young
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
| |
Collapse
|
9
|
Fox S, Sikes BA, Brown SP, Cripps CL, Glassman SI, Hughes K, Semenova-Nelsen T, Jumpponen A. Fire as a driver of fungal diversity - A synthesis of current knowledge. Mycologia 2022; 114:215-241. [PMID: 35344467 DOI: 10.1080/00275514.2021.2024422] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Fires occur in most terrestrial ecosystems where they drive changes in the traits, composition, and diversity of fungal communities. Fires range from rare, stand-replacing wildfires to frequent, prescribed fires used to mimic natural fire regimes. Fire regime factors, including burn severity, fire intensity, and timing, vary widely and likely determine how fungi respond to fires. Despite the importance of fungi to post-fire plant communities and ecosystem functioning, attempts to identify common fungal responses and their major drivers are lacking. This synthesis addresses this knowledge gap and ranges from fire adaptations of specific fungi to succession and assembly fungal communities as they respond to spatially heterogenous burning within the landscape. Fires impact fungi directly and indirectly through their effects on fungal survival, substrate and habitat modifications, changes in environmental conditions, and/or physiological responses of the hosts with which fungi interact. Some specific pyrophilous, or "fire-loving," fungi often appear after fire. Our synthesis explores whether such taxa can be considered cosmopolitan, and whether they are truly fire-adapted or simply opportunists adapted to rapidly occupy substrates and habitats made available by fires. We also discuss the possible inoculum sources of post-fire fungi and explore existing conceptual models and ecological frameworks that may be useful in generalizing fungal fire responses. We conclude with identifying research gaps and areas that may best transform the current knowledge and understanding of fungal responses to fire.
Collapse
Affiliation(s)
- Sam Fox
- Division of Biology, Kansas State University, Manhattan, Kansas 66506.,Department of Natural Resources and Society, University of Idaho, Moscow, Idaho 83844
| | - Benjamin A Sikes
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045
| | - Shawn P Brown
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee 38152
| | - Cathy L Cripps
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana 59717
| | - Sydney I Glassman
- Department of Microbiology & Plant Pathology, University of California at Riverside, Riverside, California 92521
| | - Karen Hughes
- Department of Ecology and Evolutionary Biology, University of Tennessee at Knoxville, Knoxville, Tennessee 37996
| | - Tatiana Semenova-Nelsen
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, Kansas 66506
| |
Collapse
|
10
|
Qi S, Gao B, Zhu S. A Fungal Defensin Inhibiting Bacterial Cell-Wall Biosynthesis with Non-Hemolysis and Serum Stability. J Fungi (Basel) 2022; 8:jof8020174. [PMID: 35205928 PMCID: PMC8877149 DOI: 10.3390/jof8020174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Defensins are a class of cationic disulfide-bridged antimicrobial peptides (AMPs) present in many eukaryotic organisms and even in bacteria. They primarily include two distinct but evolutionarily related superfamilies (cis and trans). Defensins in fungi belong to the members of the cis-superfamily with the cysteine-stabilized α-helical and β-sheet fold. To date, many fungal defensin-like peptides (fDLPs) have been found through gene mining of the genome resource, but only a few have been experimentally characterized. Here, we report the structural and functional characterization of Pyronesin4 (abbreviated as Py4), a fDLP previously identified by genomic sequencing of the basal filamentous ascomycete Pyronema confluens. Chemically, synthetic Py4 adopts a native-like structure and exhibits activity on an array of Gram-positive bacteria including some clinical isolates of Staphylococcus and Staphylococcus warneri, a conditioned pathogen inhabiting in human skin. Py4 markedly altered the bacterial morphology and caused cytoplasmic accumulation of the cell-wall synthesis precursor through binding to the membrane-bound Lipid II, indicating that it works as an inhibitor of cell-wall biosynthesis. Py4 showed no hemolysis and high mammalian serum stability. This work identified a new fungal defensin with properties relevant to drug exploration. Intramolecular epistasis between mutational sites of fDLPs is also discussed.
Collapse
Affiliation(s)
- Sudong Qi
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; (S.Q.); (B.G.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; (S.Q.); (B.G.)
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China; (S.Q.); (B.G.)
- Correspondence: ; Tel.: +86-010-6480-7112
| |
Collapse
|
11
|
Evolutionary Morphogenesis of Sexual Fruiting Bodies in Basidiomycota: Toward a New Evo-Devo Synthesis. Microbiol Mol Biol Rev 2021; 86:e0001921. [PMID: 34817241 DOI: 10.1128/mmbr.00019-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The development of sexual fruiting bodies is one of the most complex morphogenetic processes in fungi. Mycologists have long been fascinated by the morphological and developmental diversity of fruiting bodies; however, evolutionary developmental biology of fungi still lags significantly behind that of animals or plants. Here, we summarize the current state of knowledge on fruiting bodies of mushroom-forming Basidiomycota, focusing on phylogenetic and developmental biology. Phylogenetic approaches have revealed a complex history of morphological transformations and convergence in fruiting body morphologies. Frequent transformations and convergence is characteristic of fruiting bodies in contrast to animals or plants, where main body plans are highly conserved. At the same time, insights into the genetic bases of fruiting body development have been achieved using forward and reverse genetic approaches in selected model systems. Phylogenetic and developmental studies of fruiting bodies have each yielded major advances, but they have produced largely disjunct bodies of knowledge. An integrative approach, combining phylogenetic, developmental, and functional biology, is needed to achieve a true fungal evolutionary developmental biology (evo-devo) synthesis for fungal fruiting bodies.
Collapse
|
12
|
Lütkenhaus R, Breuer J, Nowrousian M. Functional characterization of the developmental genes asm2, asm3, and spt3 required for fruiting body formation in the filamentous ascomycete Sordaria macrospora. Genetics 2021; 219:iyab103. [PMID: 34849873 PMCID: PMC8633134 DOI: 10.1093/genetics/iyab103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/30/2021] [Indexed: 01/10/2023] Open
Abstract
The formation of fruiting bodies is one of the most complex developmental processes in filamentous ascomycetes. It requires the development of sexual structures that give rise to meiosporangia (asci) and meiotic spores (ascospores) as well as surrounding structures for protection and dispersal of the spores. Previous studies have shown that these developmental processes are accompanied by significant changes of the transcriptome, and comparative transcriptomics of different fungi as well as the analysis of transcriptome changes in developmental mutants have aided in the identification of differentially regulated genes that are themselves involved in regulating fruiting body development. In previous analyses, we used transcriptomics to identify the genes asm2 and spt3, which result in developmental phenotypes when deleted in Sordaria macrospora. In this study, we identified another gene, asm3, required for fruiting body formation, and performed transcriptomics analyses of Δasm2, Δasm3, and Δspt3. Deletion of spt3, which encodes a subunit of the SAGA complex, results in a block at an early stage of development and drastic changes in the transcriptome. Deletion mutants of asm2 and asm3 are able to form fruiting bodies, but have defects in ascospore maturation. Transcriptomics analysis of fruiting bodies revealed a large overlap in differentially regulated genes in Δasm2 and Δasm3 compared to the wild type. Analysis of nuclear distribution during ascus development showed that both mutants undergo meiosis and postmeiotic divisions, suggesting that the transcriptomic and morphological changes might be related to defects in the morphogenesis of structural features of the developing asci and ascospores.
Collapse
Affiliation(s)
- Ramona Lütkenhaus
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Bochum 44801, Germany
| | - Jan Breuer
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Bochum 44801, Germany
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Bochum 44801, Germany
| |
Collapse
|
13
|
Harting R, Starke J, Kusch H, Pöggeler S, Maurus I, Schlüter R, Landesfeind M, Bulla I, Nowrousian M, de Jonge R, Stahlhut G, Hoff KJ, Aßhauer KP, Thürmer A, Stanke M, Daniel R, Morgenstern B, Thomma BPHJ, Kronstad JW, Braus‐Stromeyer SA, Braus GH. A 20-kb lineage-specific genomic region tames virulence in pathogenic amphidiploid Verticillium longisporum. MOLECULAR PLANT PATHOLOGY 2021; 22:939-953. [PMID: 33955130 PMCID: PMC8295516 DOI: 10.1111/mpp.13071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/30/2021] [Indexed: 05/04/2023]
Abstract
Amphidiploid fungal Verticillium longisporum strains Vl43 and Vl32 colonize the plant host Brassica napus but differ in their ability to cause disease symptoms. These strains represent two V. longisporum lineages derived from different hybridization events of haploid parental Verticillium strains. Vl32 and Vl43 carry same-sex mating-type genes derived from both parental lineages. Vl32 and Vl43 similarly colonize and penetrate plant roots, but asymptomatic Vl32 proliferation in planta is lower than virulent Vl43. The highly conserved Vl43 and Vl32 genomes include less than 1% unique genes, and the karyotypes of 15 or 16 chromosomes display changed genetic synteny due to substantial genomic reshuffling. A 20 kb Vl43 lineage-specific (LS) region apparently originating from the Verticillium dahliae-related ancestor is specific for symptomatic Vl43 and encodes seven genes, including two putative transcription factors. Either partial or complete deletion of this LS region in Vl43 did not reduce virulence but led to induction of even more severe disease symptoms in rapeseed. This suggests that the LS insertion in the genome of symptomatic V. longisporum Vl43 mediates virulence-reducing functions, limits damage on the host plant, and therefore tames Vl43 from being even more virulent.
Collapse
Affiliation(s)
- Rebekka Harting
- Department of Molecular Microbiology and GeneticsInstitute of Microbiology and Genetics and Göttingen Center for Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | - Jessica Starke
- Department of Molecular Microbiology and GeneticsInstitute of Microbiology and Genetics and Göttingen Center for Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | - Harald Kusch
- Department of Molecular Microbiology and GeneticsInstitute of Microbiology and Genetics and Göttingen Center for Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | - Stefanie Pöggeler
- Department of Genetics of Eukaryotic MicroorganismsInstitute of Microbiology and Genetics and Göttingen Center for Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | - Isabel Maurus
- Department of Molecular Microbiology and GeneticsInstitute of Microbiology and Genetics and Göttingen Center for Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | - Rabea Schlüter
- Imaging Center of the Department of BiologyUniversity of GreifswaldGreifswaldGermany
| | - Manuel Landesfeind
- Department of BioinformaticsInstitute of Microbiology and Genetics and Göttingen Center for Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | - Ingo Bulla
- Institute for Mathematics and Computer ScienceUniversity of GreifswaldGreifswaldGermany
| | - Minou Nowrousian
- Department of Molecular and Cellular BotanyRuhr‐Universität BochumBochumGermany
| | - Ronnie de Jonge
- Plant–Microbe Interactions, Department of Biology, Science4LifeUtrecht UniversityUtrechtNetherlands
- Laboratory of PhytopathologyWageningen UniversityWageningenNetherlands
| | - Gertrud Stahlhut
- Department of Genetics of Eukaryotic MicroorganismsInstitute of Microbiology and Genetics and Göttingen Center for Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | - Katharina J. Hoff
- Institute for Mathematics and Computer ScienceUniversity of GreifswaldGreifswaldGermany
- Center for Functional Genomics of MicrobesUniversity of GreifswaldGreifswaldGermany
| | - Kathrin P. Aßhauer
- Department of BioinformaticsInstitute of Microbiology and Genetics and Göttingen Center for Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | - Andrea Thürmer
- Department of Genomic and Applied MicrobiologyInstitute of Microbiology and Genetics and Göttingen Center for Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | - Mario Stanke
- Institute for Mathematics and Computer ScienceUniversity of GreifswaldGreifswaldGermany
- Center for Functional Genomics of MicrobesUniversity of GreifswaldGreifswaldGermany
| | - Rolf Daniel
- Department of Genomic and Applied MicrobiologyInstitute of Microbiology and Genetics and Göttingen Center for Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | - Burkhard Morgenstern
- Department of BioinformaticsInstitute of Microbiology and Genetics and Göttingen Center for Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | | | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCCanada
| | - Susanna A. Braus‐Stromeyer
- Department of Molecular Microbiology and GeneticsInstitute of Microbiology and Genetics and Göttingen Center for Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and GeneticsInstitute of Microbiology and Genetics and Göttingen Center for Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| |
Collapse
|
14
|
Lü BB, Wu GG, Sun Y, Zhang LS, Wu X, Jiang W, Li P, Huang YN, Wang JB, Zhao YC, Liu H, Song LL, Mo Q, Pan AH, Yang Y, Long XQ, Cui WD, Zhang C, Wang X, Tang XM. Comparative Transcriptome and Endophytic Bacterial Community Analysis of Morchella conica SH. Front Microbiol 2021; 12:682356. [PMID: 34354681 PMCID: PMC8329594 DOI: 10.3389/fmicb.2021.682356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
The precious rare edible fungus Morchella conica is popular worldwide for its rich nutrition, savory flavor, and varieties of bioactive components. Due to its high commercial, nutritional, and medicinal value, it has always been a hot spot. However, the molecular mechanism and endophytic bacterial communities in M. conica were poorly understood. In this study, we sequenced, assembled, and analyzed the genome of M. conica SH. Transcriptome analysis reveals significant differences between the mycelia and fruiting body. As shown in this study, 1,329 and 2,796 genes were specifically expressed in the mycelia and fruiting body, respectively. The Gene Ontology (GO) enrichment showed that RNA polymerase II transcription activity-related genes were enriched in the mycelium-specific gene cluster, and nucleotide binding-related genes were enriched in the fruiting body-specific gene cluster. Further analysis of differentially expressed genes in different development stages resulted in finding two groups with distinct expression patterns. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment displays that glycan degradation and ABC transporters were enriched in the group 1 with low expressed level in the mycelia, while taurine and hypotaurine metabolismand tyrosine metabolism-related genes were significantly enriched in the group 2 with high expressed level in mycelia. Moreover, a dynamic shift of bacterial communities in the developing fruiting body was detected by 16S rRNA sequencing, and co-expression analysis suggested that bacterial communities might play an important role in regulating gene expression. Taken together, our study provided a better understanding of the molecular biology of M. conica SH and direction for future research on artificial cultivation.
Collapse
Affiliation(s)
- Bei B Lü
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Guo G Wu
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yu Sun
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Liang S Zhang
- Institute of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiao Wu
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wei Jiang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Peng Li
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yan N Huang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jin B Wang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yong C Zhao
- Institute of Edible Fungi, Yunnan Academy of Agricultural Sciences, Yunnan, China
| | - Hua Liu
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Li L Song
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qin Mo
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ai H Pan
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xuan Q Long
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Wei D Cui
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xu Wang
- Department of Pathobiology, Auburn University, Auburn, AL, United States.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Xue M Tang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
15
|
Ramšak B, Markau J, Pazen T, Dahlmann TA, Krappmann S, Kück U. The master regulator MAT1-1-1 of fungal mating binds to its targets via a conserved motif in the human pathogen Aspergillus fumigatus. G3-GENES GENOMES GENETICS 2021; 11:6026963. [PMID: 33598704 PMCID: PMC8022922 DOI: 10.1093/g3journal/jkaa012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022]
Abstract
Mating-type transcription factors are master regulators of sexually related signal transduction pathways in fungi; however, their recognition of specific DNA sequences from target genes is widely undetermined. Here, we identified and characterized the DNA-binding sequence of the MAT1-1-1 alpha-box domain transcription factor from the human pathogen Aspergillus fumigatus. In order to explore MAT1-1-1 DNA-binding targets, we used the previously reported MAT1-1-1 binding motif from Penicillium chrysogenum, in a bioinformatics approach. We identified 18 A. fumigatus genes carrying the MAT1.1 sequence in their upstream region, among them genes for the α-pheromone precursor (PpgA), G-protein-coupled pheromone receptor (PreA), and for TomA, an unidentified protein. To validate our prediction further, quantification of transcript levels showed a decrease in expression of ppgA, tomA, and others in a MAT1-1 deletion strain. For a functional analysis of the binding sites, truncated variants of the A. fumigatus MAT1-1-1 gene were introduced into Escherichia coli for heterologous expression. The yield of recombinant protein was further optimized for the AfMAT1-1-178-235 variant that harbors an extended alpha-box domain. AfMAT1-1-178-235 bound to a subset of the most strongly upregulated genes: ppgA, preA, and tomA. The DNA-binding specificity was confirmed by testing mutated binding sequences, as well as performing competition experiments with specific and non-specific sequences. Finally, equilibrium dissociation constants of 1.83 ± 0.1 and 1.45 ± 0.26 µM were determined for AfMAT1-1-178-235 and fusion protein GST-AfMAT1-1-178-235. Collectively, these findings provide further insights into AfMAT1-1-1-mediated gene expression and imply that alpha-box domain regulators from other members of Eurotiales control fungal development in a conserved manner.
Collapse
Affiliation(s)
- Barbara Ramšak
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Jessica Markau
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Tobias Pazen
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Tim A Dahlmann
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Sven Krappmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Ulrich Kück
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
16
|
Hage H, Rosso MN, Tarrago L. Distribution of methionine sulfoxide reductases in fungi and conservation of the free-methionine-R-sulfoxide reductase in multicellular eukaryotes. Free Radic Biol Med 2021; 169:187-215. [PMID: 33865960 DOI: 10.1016/j.freeradbiomed.2021.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Methionine, either as a free amino acid or included in proteins, can be oxidized into methionine sulfoxide (MetO), which exists as R and S diastereomers. Almost all characterized organisms possess thiol-oxidoreductases named methionine sulfoxide reductase (Msr) enzymes to reduce MetO back to Met. MsrA and MsrB reduce the S and R diastereomers of MetO, respectively, with strict stereospecificity and are found in almost all organisms. Another type of thiol-oxidoreductase, the free-methionine-R-sulfoxide reductase (fRMsr), identified so far in prokaryotes and a few unicellular eukaryotes, reduces the R MetO diastereomer of the free amino acid. Moreover, some bacteria possess molybdenum-containing enzymes that reduce MetO, either in the free or protein-bound forms. All these Msrs play important roles in the protection of organisms against oxidative stress. Fungi are heterotrophic eukaryotes that colonize all niches on Earth and play fundamental functions, in organic matter recycling, as symbionts, or as pathogens of numerous organisms. However, our knowledge on fungal Msrs is still limited. Here, we performed a survey of msr genes in almost 700 genomes across the fungal kingdom. We show that most fungi possess one gene coding for each type of methionine sulfoxide reductase: MsrA, MsrB, and fRMsr. However, several fungi living in anaerobic environments or as obligate intracellular parasites were devoid of msr genes. Sequence inspection and phylogenetic analyses allowed us to identify non-canonical sequences with potentially novel enzymatic properties. Finaly, we identified several ocurences of msr horizontal gene transfer from bacteria to fungi.
Collapse
Affiliation(s)
- Hayat Hage
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Marie-Noëlle Rosso
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Lionel Tarrago
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France.
| |
Collapse
|
17
|
Nagy LG, Varga T, Csernetics Á, Virágh M. Fungi took a unique evolutionary route to multicellularity: Seven key challenges for fungal multicellular life. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2020.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Merényi Z, Prasanna AN, Wang Z, Kovács K, Hegedüs B, Bálint B, Papp B, Townsend JP, Nagy LG. Unmatched Level of Molecular Convergence among Deeply Divergent Complex Multicellular Fungi. Mol Biol Evol 2020; 37:2228-2240. [PMID: 32191325 PMCID: PMC7403615 DOI: 10.1093/molbev/msaa077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Convergent evolution is pervasive in nature, but it is poorly understood how various constraints and natural selection limit the diversity of evolvable phenotypes. Here, we analyze the transcriptome across fruiting body development to understand the independent evolution of complex multicellularity in the two largest clades of fungi-the Agarico- and Pezizomycotina. Despite >650 My of divergence between these clades, we find that very similar sets of genes have convergently been co-opted for complex multicellularity, followed by expansions of their gene families by duplications. Over 82% of shared multicellularity-related gene families were expanding in both clades, indicating a high prevalence of convergence also at the gene family level. This convergence is coupled with a rich inferred repertoire of multicellularity-related genes in the most recent common ancestor of the Agarico- and Pezizomycotina, consistent with the hypothesis that the coding capacity of ancestral fungal genomes might have promoted the repeated evolution of complex multicellularity. We interpret this repertoire as an indication of evolutionary predisposition of fungal ancestors for evolving complex multicellular fruiting bodies. Our work suggests that evolutionary convergence may happen not only when organisms are closely related or are under similar selection pressures, but also when ancestral genomic repertoires render certain evolutionary trajectories more likely than others, even across large phylogenetic distances.
Collapse
Affiliation(s)
- Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Arun N Prasanna
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Zheng Wang
- Department of Biostatistics, Yale University, New Haven, CT
| | - Károly Kovács
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine, Metabolic Systems Biology Lab, Szeged, Hungary
| | - Botond Hegedüs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine, Metabolic Systems Biology Lab, Szeged, Hungary
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale University, New Haven, CT
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| |
Collapse
|
19
|
Kölle M, Horta MAC, Nowrousian M, Ohm RA, Benz JP, Pilgård A. Degradative Capacity of Two Strains of Rhodonia placenta: From Phenotype to Genotype. Front Microbiol 2020; 11:1338. [PMID: 32625194 PMCID: PMC7314958 DOI: 10.3389/fmicb.2020.01338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/25/2020] [Indexed: 01/23/2023] Open
Abstract
Brown rot fungi, such as Rhodonia placenta (previously Postia placenta), occur naturally in northern coniferous forest ecosystems and are known to be the most destructive group of decay fungi, degrading wood faster and more effectively than other wood-degrading organisms. It has been shown that brown rot fungi not only rely on enzymatic degradation of lignocellulose, but also use low molecular weight oxidative agents in a non-enzymatic degradation step prior to the enzymatic degradation. R. placenta is used in standardized decay tests in both Europe and North America. However, two different strains are employed (FPRL280 and MAD-698, respectively) for which differences in colonization-rate, mass loss, as well as in gene expression have been observed, limiting the comparability of results. To elucidate the divergence between both strains, we investigated the phenotypes in more detail and compared their genomes. Significant phenotypic differences were found between the two strains, and no fusion was possible. MAD-698 degraded scots pine more aggressively, had a more constant growth rate and produced mycelia faster than FPRL280. After sequencing the genome of FPRL280 and comparing it with the published MAD-698 genome we found 660,566 SNPs, resulting in 98.4% genome identity. Specific analysis of the carbohydrate-active enzymes, encoded by the genome (CAZome) identified differences in many families related to plant biomass degradation, including SNPs, indels, gaps or insertions within structural domains. Four genes belonging to the AA3_2 family could not be found in or amplified from FPRL280 gDNA, suggesting the absence of these genes. Differences in other CAZy encoding genes that could potentially affect the lignocellulolytic activity of the strains were also predicted by comparison of genome assemblies (e.g., GH2, GH3, GH5, GH10, GH16, GH78, GT2, GT15, and CBM13). Overall, these mutations help to explain the phenotypic differences observed between both strains as they could interfere with the enzymatic activities, substrate binding ability or protein folding. The investigation of the molecular reasons that make these two strains distinct contributes to the understanding of the development of this important brown rot reference species and will help to put the data obtained from standardized decay tests across the globe into a better biological context.
Collapse
Affiliation(s)
- Martina Kölle
- Chair of Wood Science, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Maria Augusta Crivelente Horta
- Professorship for Wood Bioprocesses, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Bochum, Germany
| | - Robin A Ohm
- Department of Biology, Microbiology, Utrecht University, Utrecht, Netherlands
| | - J Philipp Benz
- Professorship for Wood Bioprocesses, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.,Institute of Advanced Study, Technical University of Munich, Garching, Germany
| | - Annica Pilgård
- Chair of Wood Science, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.,Biobased Materials, Bioeconomy, RISE Research Institutes of Sweden, Borås, Sweden
| |
Collapse
|
20
|
Teichert I, Pöggeler S, Nowrousian M. Sordaria macrospora: 25 years as a model organism for studying the molecular mechanisms of fruiting body development. Appl Microbiol Biotechnol 2020; 104:3691-3704. [PMID: 32162092 PMCID: PMC7162830 DOI: 10.1007/s00253-020-10504-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
Abstract Fruiting bodies are among the most complex multicellular structures formed by fungi, and the molecular mechanisms that regulate their development are far from understood. However, studies with a number of fungal model organisms have started to shed light on this developmental process. One of these model organisms is Sordaria macrospora, a filamentous ascomycete from the order Sordariales. This fungus has been a genetic model organism since the 1950s, but its career as a model organism for molecular genetics really took off in the 1990s, when the establishment of a transformation protocol, a mutant collection, and an indexed cosmid library provided the methods and resources to start revealing the molecular mechanisms of fruiting body development. In the 2000s, “omics” methods were added to the S. macrospora tool box, and by 2020, 58 developmental genes have been identified in this fungus. This review gives a brief overview of major method developments for S. macrospora, and then focuses on recent results characterizing different processes involved in regulating development including several regulatory protein complexes, autophagy, transcriptional and chromatin regulation, and RNA editing. Key points •Sordaria macrospora is a model system for analyzing fungal fruiting body development. •More than 100 developmental mutants are available for S. macrospora. •More than 50 developmental genes have been characterized in S. macrospora.
Collapse
Affiliation(s)
- Ines Teichert
- General and Molecular Botany, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Stefanie Pöggeler
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Göttingen, Germany
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr-University Bochum, ND 7/176 Universitätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
21
|
Bruns TD, Chung JA, Carver AA, Glassman SI. A simple pyrocosm for studying soil microbial response to fire reveals a rapid, massive response by Pyronema species. PLoS One 2020; 15:e0222691. [PMID: 32130222 PMCID: PMC7055920 DOI: 10.1371/journal.pone.0222691] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/14/2020] [Indexed: 01/06/2023] Open
Abstract
We have designed a pyrocosm to enable fine-scale dissection of post-fire soil microbial communities. Using it we show that the peak soil temperature achieved at a given depth occurs hours after the fire is out, lingers near this peak for a significant time, and is accurately predicted by soil depth and the mass of charcoal burned. Flash fuels that produce no large coals were found to have a negligible soil heating effect. Coupling this system with Illumina MiSeq sequencing of the control and post-fire soil we show that we can stimulate a rapid, massive response by Pyronema, a well-known genus of pyrophilous fungus, within two weeks of a test fire. This specific stimulation occurs in a background of many other fungal taxa that do not change noticeably with the fire, although there is an overall reduction in richness and evenness. We introduce a thermo-chemical gradient model to summarize the way that heat, soil depth and altered soil chemistry interact to create a predictable, depth-structured habitat for microbes in post-fire soils. Coupling this model with the temperature relationships found in the pyrocosms, we predict that the width of a survivable “goldilocks zone”, which achieves temperatures that select for postfire-adapted microbes, will stay relatively constant across a range of fuel loads. In addition we predict that a larger necromass zone, containing labile carbon and nutrients from recently heat-killed organisms, will increase in size rapidly with addition of fuel and then remain nearly constant in size over a broad range of fuel loads. The simplicity of this experimental system, coupled with the availability of a set of sequenced, assembled and annotated genomes of pyrophilous fungi, offers a powerful tool for dissecting the ecology of post-fire microbial communities.
Collapse
Affiliation(s)
- Thomas D. Bruns
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- * E-mail:
| | - Judy A. Chung
- Department of Microbiology and Plant Pathology, University of California—Riverside, Riverside, California, United States of America
| | - Akiko A. Carver
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Sydney I. Glassman
- Department of Microbiology and Plant Pathology, University of California—Riverside, Riverside, California, United States of America
| |
Collapse
|
22
|
Costantini C, Renga G, Sellitto F, Borghi M, Stincardini C, Pariano M, Zelante T, Chiarotti F, Bartoli A, Mosci P, Romani L, Brancorsini S, Bellet MM. Microbes in the Era of Circadian Medicine. Front Cell Infect Microbiol 2020; 10:30. [PMID: 32117804 PMCID: PMC7013081 DOI: 10.3389/fcimb.2020.00030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/15/2020] [Indexed: 12/29/2022] Open
Abstract
The organisms of most domains of life have adapted to circadian changes of the environment and regulate their behavior and physiology accordingly. A particular case of such paradigm is represented by some types of host-pathogen interaction during infection. Indeed, not only some hosts and pathogens are each endowed with their own circadian clock, but they are also influenced by the circadian changes of the other with profound consequences on the outcome of the infection. It comes that daily fluctuations in the availability of resources and the nature of the immune response, coupled with circadian changes of the pathogen, may influence microbial virulence, level of colonization and damage to the host, and alter the equilibrium between commensal and invading microorganisms. In the present review, we discuss the potential relevance of circadian rhythms in human bacterial and fungal pathogens, and the consequences of circadian changes of the host immune system and microbiome on the onset and development of infection. By looking from the perspective of the interplay between host and microbes circadian rhythms, these concepts are expected to change the way we approach human infections, not only by predicting the outcome of the host-pathogen interaction, but also by indicating the best time for intervention to potentiate the anti-microbial activities of the immune system and to weaken the pathogen when its susceptibility is higher.
Collapse
Affiliation(s)
- Claudio Costantini
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giorgia Renga
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Federica Sellitto
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Monica Borghi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Marilena Pariano
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Teresa Zelante
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Flavia Chiarotti
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Bartoli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Paolo Mosci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | | |
Collapse
|
23
|
Draft Genome Sequence of the Ectomycorrhizal Ascomycete Sphaerosporella brunnea. Microbiol Resour Announc 2019; 8:8/50/e00857-19. [PMID: 31831604 PMCID: PMC6908789 DOI: 10.1128/mra.00857-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphaerosporella brunnea is a pioneer ectomycorrhizal fungus with facultative saprophytic capacities. Here, we sequenced the genome of S. brunnea strain Sb_GMNB300, which is estimated at 51.6 Mb in size with 872 assembled contigs accounting for 12,597 predicted coding genes. This genome will be useful for comparative studies of Pezizales ectomycorrhizal symbioses.
Collapse
|
24
|
Lütkenhaus R, Traeger S, Breuer J, Carreté L, Kuo A, Lipzen A, Pangilinan J, Dilworth D, Sandor L, Pöggeler S, Gabaldón T, Barry K, Grigoriev IV, Nowrousian M. Comparative Genomics and Transcriptomics To Analyze Fruiting Body Development in Filamentous Ascomycetes. Genetics 2019; 213:1545-1563. [PMID: 31604798 PMCID: PMC6893386 DOI: 10.1534/genetics.119.302749] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023] Open
Abstract
Many filamentous ascomycetes develop three-dimensional fruiting bodies for production and dispersal of sexual spores. Fruiting bodies are among the most complex structures differentiated by ascomycetes; however, the molecular mechanisms underlying this process are insufficiently understood. Previous comparative transcriptomics analyses of fruiting body development in different ascomycetes suggested that there might be a core set of genes that are transcriptionally regulated in a similar manner across species. Conserved patterns of gene expression can be indicative of functional relevance, and therefore such a set of genes might constitute promising candidates for functional analyses. In this study, we have sequenced the genome of the Pezizomycete Ascodesmis nigricans, and performed comparative transcriptomics of developing fruiting bodies of this fungus, the Pezizomycete Pyronema confluens, and the Sordariomycete Sordaria macrospora With only 27 Mb, the A. nigricans genome is the smallest Pezizomycete genome sequenced to date. Comparative transcriptomics indicated that gene expression patterns in developing fruiting bodies of the three species are more similar to each other than to nonsexual hyphae of the same species. An analysis of 83 genes that are upregulated only during fruiting body development in all three species revealed 23 genes encoding proteins with predicted roles in vesicle transport, the endomembrane system, or transport across membranes, and 13 genes encoding proteins with predicted roles in chromatin organization or the regulation of gene expression. Among four genes chosen for functional analysis by deletion in S. macrospora, three were shown to be involved in fruiting body formation, including two predicted chromatin modifier genes.
Collapse
Affiliation(s)
- Ramona Lütkenhaus
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Stefanie Traeger
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Jan Breuer
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Laia Carreté
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - David Dilworth
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Laura Sandor
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Stefanie Pöggeler
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Göttingen, 37077 Göttingen, Germany
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08002 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Kerrie Barry
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
- Department of Plant and Microbial Biology, University of California Berkeley, California 94720
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
25
|
Combination of Proteogenomics with Peptide De Novo Sequencing Identifies New Genes and Hidden Posttranscriptional Modifications. mBio 2019; 10:mBio.02367-19. [PMID: 31615963 PMCID: PMC6794485 DOI: 10.1128/mbio.02367-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Next-generation sequencing techniques have considerably increased the number of completely sequenced eukaryotic genomes. These genomes are mostly automatically annotated, and ab initio gene prediction is commonly combined with homology-based search approaches and often supported by transcriptomic data. The latter in particular improve the prediction of intron splice sites and untranslated regions. However, correct prediction of translation initiation sites (TIS), alternative splice junctions, and protein-coding potential remains challenging. Here, we present an advanced proteogenomics approach, namely, the combination of proteogenomics and de novo peptide sequencing analysis, in conjunction with Blast2GO and phylostratigraphy. Using the model fungus Sordaria macrospora as an example, we provide a comprehensive view of the proteome that not only increases the functional understanding of this multicellular organism at different developmental stages but also immensely enhances the genome annotation quality. Proteogenomics combines proteomics, genomics, and transcriptomics and has considerably improved genome annotation in poorly investigated phylogenetic groups for which homology information is lacking. Furthermore, it can be advantageous when reinvestigating well-annotated genomes. Here, we applied an advanced proteogenomics approach, combining standard proteogenomics with peptide de novo sequencing, to refine annotation of the well-studied model fungus Sordaria macrospora. We investigated samples from different developmental and physiological conditions, resulting in the detection of 104 so-far hidden proteins and annotation changes in 575 genes, including 389 splice site refinements. Significantly, our approach provides peptide-level evidence for 113 single-amino-acid variations and 15 C-terminal protein elongations originating from A-to-I RNA editing, a phenomenon recently detected in fungi. Coexpression and phylostratigraphic analysis of the refined proteome suggest that new functions in evolutionarily young genes correlate with distinct developmental stages. In conclusion, our advanced proteogenomics approach supports and promotes functional studies of fungal model systems.
Collapse
|
26
|
Sun S, Coelho MA, Heitman J, Nowrousian M. Convergent evolution of linked mating-type loci in basidiomycete fungi. PLoS Genet 2019; 15:e1008365. [PMID: 31490920 PMCID: PMC6730849 DOI: 10.1371/journal.pgen.1008365] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
Sexual development is a key evolutionary innovation of eukaryotes. In many species, mating involves interaction between compatible mating partners that can undergo cell and nuclear fusion and subsequent steps of development including meiosis. Mating compatibility in fungi is governed by the mating type (MAT) loci. In basidiomycetes, the ancestral state is hypothesized to be tetrapolar, with two genetically unlinked MAT loci containing homeodomain transcription factor genes (HD locus) and pheromone and pheromone receptor genes (P/R locus), respectively. Alleles at both loci must differ between mating partners for completion of sexual development. However, there are also basidiomycetes with bipolar mating systems, which can arise through genomic linkage of the HD and P/R loci. In the order Tremellales, bipolarity is found only in the pathogenic Cryptococcus species. Here, we describe the analysis of MAT loci from 24 species of the Trichosporonales, a sister order to the Tremellales. In all of the species analyzed, the MAT loci are fused and a single HD gene is present in each mating type, similar to the organization in the pathogenic Cryptococci. However, the HD and P/R allele combinations in the Trichosporonales are different from those in the pathogenic Cryptococci. This and the existence of tetrapolar species in the Tremellales suggest that fusion of the HD and P/R loci occurred independently in the Trichosporonales and pathogenic Cryptococci, supporting the hypothesis of convergent evolution towards fused MAT regions, similar to previous findings in other fungal groups. Unlike the fused MAT loci in several other basidiomycete lineages though, the gene content and gene order within the fused MAT loci are highly conserved in the Trichosporonales, and there is no apparent suppression of recombination extending from the MAT loci to adjacent chromosomal regions, suggesting different mechanisms for the evolution of physically linked MAT loci in these groups.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
27
|
Yi X, Gao Q, Zhang L, Wang X, He Y, Hu F, Zhang J, Zou G, Yang S, Zhou Z, Bao J. Heterozygous diploid structure of Amorphotheca resinae ZN1 contributes efficient biodetoxification on solid pretreated corn stover. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:126. [PMID: 31139256 PMCID: PMC6528196 DOI: 10.1186/s13068-019-1466-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/10/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND Fast, complete, and ultimate removal of inhibitory compounds derived from lignocellulose pretreatment is the prerequisite for efficient production of cellulosic ethanol and biochemicals. Biodetoxification is the most promising method for inhibitor removal by its unique advantages. The biodetoxification mechanisms of a unique diploid fungus responsible for highly efficient biodetoxification in solid-state culture was extensively investigated in the aspects of cellular structure, genome sequencing, transcriptome analysis, and practical biodetoxification. RESULTS The inborn heterozygous diploid structure of A. resinae ZN1 uniquely contributed to the enhancement of inhibitor tolerance and conversion. The co-expression of gene pairs contributed to the enhancement of the degradation of lignocellulose-derived model inhibitors. The ultimate inhibitors degradation pathways and sugar conservation were elucidated by microbial degradation experimentation as well as the genomic and transcriptomic sequencing analysis. CONCLUSIONS The finding of the heterozygous diploid structure in A. resinae ZN1 on biodetoxification took the first insight into the global overview of biodetoxification mechanism of lignocellulose-derived inhibitors. This study provided a unique and practical biodetoxification biocatalyst of inhibitor compounds for lignocellulose biorefinery processing, as well as the synthetic biology tools on biodetoxification of biorefinery fermenting strains.
Collapse
Affiliation(s)
- Xia Yi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 China
- Jiangxi Provincial Laboratory of Systems Biomedicine, Jiujiang University, 17 Lufeng Road, Jiujiang, 332000 China
| | - Qiuqiang Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Lei Zhang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Xia Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 China
- Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Yanqing He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Fengxian Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Jian Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Gen Zou
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Shihui Yang
- Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Zhihua Zhou
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 China
| |
Collapse
|
28
|
Liu W, Cai Y, He P, Chen L, Bian Y. Comparative transcriptomics reveals potential genes involved in the vegetative growth of Morchella importuna. 3 Biotech 2019; 9:81. [PMID: 30800592 PMCID: PMC6374242 DOI: 10.1007/s13205-019-1614-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/02/2019] [Indexed: 12/16/2022] Open
Abstract
True morels (Morchella spp.) are edible, medicinal mushrooms which have recently been artificially cultivated in China but stable production remains a problem. Here, we describe complete and comprehensive transcriptome of Morchella importuna at the stages of vegetative mycelium (VM), initial sclerotium (IS) and mature sclerotium (MS) by deep transcriptional sequencing and de novo assembly for the first time and which will potentially provide useful information for improving its cultivation. A total of 26,496 genes were identified with a contig N50 length of 1763 bp and an average length of over 1064 bp. Additionally, 11,957 open reading frames (ORFs) were predicted and 9676 of them (80.9%) were annotated. The 2605 differentially expressed genes (DEGs) identified by gene expression clustering were mainly involved with energy metabolism and could be divided into three broad clusters, of which genes in cluster_1 and cluster_2 were involved in the metabolic process of carbohydrate, polysaccharide, hydrolase, caprolactam, beta-galactosidase, and disaccharide, respectively. Genes in cluster_3 were the largest category, mainly identified with the catalytic activity and transporter activity. Overall, the enzymes involved in the carbohydrate metabolism were highly expressed, and the CAZyme (carbohydrate-active enzyme) genes were significantly expressed within cluster_3. For expression verification, 16 CAZYme genes were selected for qRT-PCR, and the results suggested that the catabolism of carbohydrates occurs mainly in the vegetative mycelium stage, and the anabolism of the energy-rich substances is the main event of mycelial growth and sclerotial morphogenesis of M. importuna.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Wuhan, China
- Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, Hubei China
| | - Yingli Cai
- Institute of Vegetable, Wuhan Academy of Agricultural Sciences, 430070 Wuhan, China
| | - Peixin He
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, 450001 Zhengzhou, China
| | - Lianfu Chen
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Wuhan, China
- Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, Hubei China
| | - Yinbing Bian
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Wuhan, China
- Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, Hubei China
| |
Collapse
|
29
|
Schumacher DI, Lütkenhaus R, Altegoer F, Teichert I, Kück U, Nowrousian M. The transcription factor PRO44 and the histone chaperone ASF1 regulate distinct aspects of multicellular development in the filamentous fungus Sordaria macrospora. BMC Genet 2018; 19:112. [PMID: 30545291 PMCID: PMC6293562 DOI: 10.1186/s12863-018-0702-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
Background Fungal fruiting bodies are complex three-dimensional structures that are formed to protect and disperse the sexual spores. Their morphogenesis requires the concerted action of numerous genes; however, at the molecular level, the spatio-temporal sequence of events leading to the mature fruiting body is largely unknown. In previous studies, the transcription factor gene pro44 and the histone chaperone gene asf1 were shown to be essential for fruiting body formation in the ascomycete Sordaria macrospora. Both PRO44 and ASF1 are predicted to act on the regulation of gene expression in the nucleus, and mutants in both genes are blocked at the same stage of development. Thus, we hypothesized that PRO44 and ASF1 might be involved in similar aspects of transcriptional regulation. In this study, we characterized their roles in fruiting body development in more detail. Results The PRO44 protein forms homodimers, localizes to the nucleus, and is strongly expressed in the outer layers of the developing young fruiting body. Analysis of single and double mutants of asf1 and three other chromatin modifier genes, cac2, crc1, and rtt106, showed that only asf1 is essential for fruiting body formation whereas cac2 and rtt106 might have redundant functions in this process. RNA-seq analysis revealed distinct roles for asf1 and pro44 in sexual development, with asf1 acting as a suppressor of weakly expressed genes during morphogenesis. This is most likely not due to global mislocalization of nucleosomes as micrococcal nuclease-sequencing did not reveal differences in nucleosome spacing and positioning around transcriptional start sites between Δasf1 and the wild type. However, bisulfite sequencing revealed a decrease in DNA methylation in Δasf1, which might be a reason for the observed changes in gene expression. Transcriptome analysis of gene expression in young fruiting bodies showed that pro44 is required for correct expression of genes involved in extracellular metabolism. Deletion of the putative transcription factor gene asm2, which is downregulated in young fruiting bodies of Δpro44, results in defects during ascospore maturation. Conclusions In summary, the results indicate distinct roles for the transcription factor PRO44 and the histone chaperone ASF1 in the regulation of sexual development in fungi. Electronic supplementary material The online version of this article (10.1186/s12863-018-0702-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Ramona Lütkenhaus
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Florian Altegoer
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany.,LOEWE-Zentrum für Synthetische Mikrobiologie & Department of Chemistry, Philipps University of Marburg, Marburg, Germany
| | - Ines Teichert
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany.
| |
Collapse
|
30
|
Murat C, Payen T, Noel B, Kuo A, Morin E, Chen J, Kohler A, Krizsán K, Balestrini R, Da Silva C, Montanini B, Hainaut M, Levati E, Barry KW, Belfiori B, Cichocki N, Clum A, Dockter RB, Fauchery L, Guy J, Iotti M, Le Tacon F, Lindquist EA, Lipzen A, Malagnac F, Mello A, Molinier V, Miyauchi S, Poulain J, Riccioni C, Rubini A, Sitrit Y, Splivallo R, Traeger S, Wang M, Žifčáková L, Wipf D, Zambonelli A, Paolocci F, Nowrousian M, Ottonello S, Baldrian P, Spatafora JW, Henrissat B, Nagy LG, Aury JM, Wincker P, Grigoriev IV, Bonfante P, Martin FM. Pezizomycetes genomes reveal the molecular basis of ectomycorrhizal truffle lifestyle. Nat Ecol Evol 2018; 2:1956-1965. [DOI: 10.1038/s41559-018-0710-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/04/2018] [Indexed: 11/09/2022]
|
31
|
Nowrousian M. Genomics and transcriptomics to study fruiting body development: An update. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2018.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
|
33
|
Liu W, Chen L, Cai Y, Zhang Q, Bian Y. Opposite Polarity Monospore Genome De Novo Sequencing and Comparative Analysis Reveal the Possible Heterothallic Life Cycle of Morchella importuna. Int J Mol Sci 2018; 19:E2525. [PMID: 30149649 PMCID: PMC6164635 DOI: 10.3390/ijms19092525] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/18/2018] [Accepted: 08/21/2018] [Indexed: 02/04/2023] Open
Abstract
Morchella is a popular edible fungus worldwide due to its rich nutrition and unique flavor. Many research efforts were made on the domestication and cultivation of Morchella all over the world. In recent years, the cultivation of Morchella was successfully commercialized in China. However, the biology is not well understood, which restricts the further development of the morel fungus cultivation industry. In this paper, we performed de novo sequencing and assembly of the genomes of two monospores with a different mating type (M04M24 and M04M26) isolated from the commercially cultivated strain M04. Gene annotation and comparative genome analysis were performed to study differences in CAZyme (Carbohydrate-active enzyme) enzyme content, transcription factors, duplicated sequences, structure of mating type sites, and differences at the gene and functional levels between the two monospore strains of M. importuna. Results showed that the de novo assembled haploid M04M24 and M04M26 genomes were 48.98 and 51.07 Mb, respectively. A complete fine physical map of M. importuna was obtained from genome coverage and gene completeness evaluation. A total of 10,852 and 10,902 common genes and 667 and 868 endemic genes were identified from the two monospore strains, respectively. The Gene Ontology (GO) and KAAS (KEGG Automatic Annotation Serve) enrichment analyses showed that the endemic genes performed different functions. The two monospore strains had 99.22% collinearity with each other, accompanied with certain position and rearrangement events. Analysis of complete mating-type loci revealed that the two monospore M. importuna strains contained an independent mating-type structure and remained conserved in sequence and location. The phylogenetic and divergence time of M. importuna was analyzed at the whole-genome level for the first time. The bifurcation time of morel and tuber was estimated to be 201.14 million years ago (Mya); the two monospore strains with a different mating type represented the evolution of different nuclei, and the single copy homologous genes between them were also different due to a genetic differentiation distance about 0.65 Mya. Compared with truffles, M. importuna had an extension of 28 clusters of orthologous genes (COGs) and a contraction of two COGs. The two different polar nuclei with different degrees of contraction and expansion suggested that they might have undergone different evolutionary processes. The different mating-type structures, together with the functional clustering and enrichment analysis results of the endemic genes of the two different polar nuclei, imply that M. importuna might be a heterothallic fungus and the interaction between the endemic genes may be necessary for its complete life history. Studies on the genome of M. importuna facilitate a better understanding of morel biology and evolution.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - LianFu Chen
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - YingLi Cai
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - QianQian Zhang
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - YinBing Bian
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
34
|
Draft Genome Sequence of Tuber borchii Vittad., a Whitish Edible Truffle. GENOME ANNOUNCEMENTS 2018; 6:6/25/e00537-18. [PMID: 29930051 PMCID: PMC6013607 DOI: 10.1128/genomea.00537-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ascomycete Tuber borchii (Pezizomycetes) is a whitish edible truffle that establishes ectomycorrhizal symbiosis with trees and shrubs. This fungus is ubiquitous in Europe and is also cultivated outside Europe. Here, we present the draft genome sequence of T. borchii strain Tbo3840 (97.18 Mb in 969 scaffolds, with 12,346 predicted protein-coding genes).
Collapse
|
35
|
Riquelme M, Aguirre J, Bartnicki-García S, Braus GH, Feldbrügge M, Fleig U, Hansberg W, Herrera-Estrella A, Kämper J, Kück U, Mouriño-Pérez RR, Takeshita N, Fischer R. Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures. Microbiol Mol Biol Rev 2018; 82:e00068-17. [PMID: 29643171 PMCID: PMC5968459 DOI: 10.1128/mmbr.00068-17] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Filamentous fungi constitute a large group of eukaryotic microorganisms that grow by forming simple tube-like hyphae that are capable of differentiating into more-complex morphological structures and distinct cell types. Hyphae form filamentous networks by extending at their tips while branching in subapical regions. Rapid tip elongation requires massive membrane insertion and extension of the rigid chitin-containing cell wall. This process is sustained by a continuous flow of secretory vesicles that depends on the coordinated action of the microtubule and actin cytoskeletons and the corresponding motors and associated proteins. Vesicles transport cell wall-synthesizing enzymes and accumulate in a special structure, the Spitzenkörper, before traveling further and fusing with the tip membrane. The place of vesicle fusion and growth direction are enabled and defined by the position of the Spitzenkörper, the so-called cell end markers, and other proteins involved in the exocytic process. Also important for tip extension is membrane recycling by endocytosis via early endosomes, which function as multipurpose transport vehicles for mRNA, septins, ribosomes, and peroxisomes. Cell integrity, hyphal branching, and morphogenesis are all processes that are largely dependent on vesicle and cytoskeleton dynamics. When hyphae differentiate structures for asexual or sexual reproduction or to mediate interspecies interactions, the hyphal basic cellular machinery may be reprogrammed through the synthesis of new proteins and/or the modification of protein activity. Although some transcriptional networks involved in such reprogramming of hyphae are well studied in several model filamentous fungi, clear connections between these networks and known determinants of hyphal morphogenesis are yet to be established.
Collapse
Affiliation(s)
- Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Jesús Aguirre
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Salomon Bartnicki-García
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Ursula Fleig
- Institute for Functional Genomics of Microorganisms, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Wilhelm Hansberg
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Jörg Kämper
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Ulrich Kück
- Ruhr University Bochum, Lehrstuhl für Allgemeine und Molekulare Botanik, Bochum, Germany
| | - Rosa R Mouriño-Pérez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Norio Takeshita
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Japan
| | - Reinhard Fischer
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| |
Collapse
|
36
|
Nagy LG, Kovács GM, Krizsán K. Complex multicellularity in fungi: evolutionary convergence, single origin, or both? Biol Rev Camb Philos Soc 2018; 93:1778-1794. [DOI: 10.1111/brv.12418] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 12/22/2022]
Affiliation(s)
- László G. Nagy
- Synthetic and Systems Biology Unit; Institute of Biochemistry, BRC-HAS, 62 Temesvári krt; 6726 Szeged Hungary
| | - Gábor M. Kovács
- Department of Plant Anatomy; Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C; H-1117 Budapest Hungary
- Plant Protection Institute, Centre for Agricultural Research; Hungarian Academy of Sciences (MTA-ATK); PO Box 102, H-1525 Budapest Hungary
| | - Krisztina Krizsán
- Synthetic and Systems Biology Unit; Institute of Biochemistry, BRC-HAS, 62 Temesvári krt; 6726 Szeged Hungary
| |
Collapse
|
37
|
Rodenburg SYA, Terhem RB, Veloso J, Stassen JHM, van Kan JAL. Functional Analysis of Mating Type Genes and Transcriptome Analysis during Fruiting Body Development of Botrytis cinerea. mBio 2018; 9:e01939-17. [PMID: 29440571 PMCID: PMC5821092 DOI: 10.1128/mbio.01939-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/17/2018] [Indexed: 02/07/2023] Open
Abstract
Botrytis cinerea is a plant-pathogenic fungus producing apothecia as sexual fruiting bodies. To study the function of mating type (MAT) genes, single-gene deletion mutants were generated in both genes of the MAT1-1 locus and both genes of the MAT1-2 locus. Deletion mutants in two MAT genes were entirely sterile, while mutants in the other two MAT genes were able to develop stipes but never formed an apothecial disk. Little was known about the reprogramming of gene expression during apothecium development. We analyzed transcriptomes of sclerotia, three stages of apothecium development (primordia, stipes, and apothecial disks), and ascospores by RNA sequencing. Ten secondary metabolite gene clusters were upregulated at the onset of sexual development and downregulated in ascospores released from apothecia. Notably, more than 3,900 genes were differentially expressed in ascospores compared to mature apothecial disks. Among the genes that were upregulated in ascospores were numerous genes encoding virulence factors, which reveals that ascospores are transcriptionally primed for infection prior to their arrival on a host plant. Strikingly, the massive transcriptional changes at the initiation and completion of the sexual cycle often affected clusters of genes, rather than randomly dispersed genes. Thirty-five clusters of genes were jointly upregulated during the onset of sexual reproduction, while 99 clusters of genes (comprising >900 genes) were jointly downregulated in ascospores. These transcriptional changes coincided with changes in expression of genes encoding enzymes participating in chromatin organization, hinting at the occurrence of massive epigenetic regulation of gene expression during sexual reproduction.IMPORTANCE Fungal fruiting bodies are formed by sexual reproduction. We studied the development of fruiting bodies ("apothecia") of the ubiquitous plant-pathogenic ascomycete Botrytis cinerea The role of mating type genes in apothecium development was investigated by targeted mutation. Two genes are essential for the initiation of sexual development; mutants in these genes are sterile. Two other genes were not essential for development of stipes; however, they were essential for stipes to develop a disk and produce sexual ascospores. We examined gene expression profiles during apothecium development, as well as in ascospores sampled from apothecia. We provide the first study ever of the transcriptome of pure ascospores in a filamentous fungus. The expression of numerous genes involved in plant infection was induced in the ascospores, implying that ascospores are developmentally primed for infection before their release from apothecia.
Collapse
Affiliation(s)
- Sander Y A Rodenburg
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Wageningen University, Bioinformatics Group, Wageningen, The Netherlands
| | - Razak B Terhem
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Javier Veloso
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Department of Plant Physiology, Faculty of Sciences, University of A Coruña, A Coruña, Spain
| | - Joost H M Stassen
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
38
|
Larrondo LF, Canessa P. The Clock Keeps on Ticking: Emerging Roles for Circadian Regulation in the Control of Fungal Physiology and Pathogenesis. Curr Top Microbiol Immunol 2018; 422:121-156. [PMID: 30255278 DOI: 10.1007/82_2018_143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tic-tac, tic-tac, the sound of time is familiar to us, yet, it also silently shapes daily biological processes conferring 24-hour rhythms in, among others, cellular and systemic signaling, gene expression, and metabolism. Indeed, circadian clocks are molecular machines that permit temporal control of a variety of processes in individuals, with a close to 24-hour period, optimizing cellular dynamics in synchrony with daily environmental cycles. For over three decades, the molecular bases of these clocks have been extensively described in the filamentous fungus Neurospora crassa, yet, there have been few molecular studies in fungi other than Neurospora, despite evidence of rhythmic phenomena in many fungal species, including pathogenic ones. This chapter will revise the mechanisms underlying clock regulation in the model fungus N. crassa, as well as recent findings obtained in several fungi. In particular, this chapter will review the effect of circadian regulation of virulence and organismal interactions, focusing on the phytopathogen Botrytis cinerea, as well as several entomopathogenic fungi, including the behavior-manipulating species Ophiocordyceps kimflemingiae and Entomophthora muscae. Finally, this review will comment current efforts in the study of mammalian pathogenic fungi, while highlighting recent circadian lessons from parasites such as Trypanosoma and Plasmodium. The clock keeps on ticking, whether we can hear it or not.
Collapse
Affiliation(s)
- Luis F Larrondo
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile. .,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Paulo Canessa
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Facultad de Ciencias de la Vida, Centro de Biotecnologia Vegetal, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
39
|
|
40
|
Dornburg A, Townsend JP, Wang Z. Maximizing Power in Phylogenetics and Phylogenomics: A Perspective Illuminated by Fungal Big Data. ADVANCES IN GENETICS 2017; 100:1-47. [PMID: 29153398 DOI: 10.1016/bs.adgen.2017.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since its original inception over 150 years ago by Darwin, we have made tremendous progress toward the reconstruction of the Tree of Life. In particular, the transition from analyzing datasets comprised of small numbers of loci to those comprised of hundreds of loci, if not entire genomes, has aided in resolving some of the most vexing of evolutionary problems while giving us a new perspective on biodiversity. Correspondingly, phylogenetic trees have taken a central role in fields that span ecology, conservation, and medicine. However, the rise of big data has also presented phylogenomicists with a new set of challenges to experimental design, quantitative analyses, and computation. The sequencing of a number of very first genomes presented significant challenges to phylogenetic inference, leading fungal phylogenomicists to begin addressing pitfalls and postulating solutions to the issues that arise from genome-scale analyses relevant to any lineage across the Tree of Life. Here we highlight insights from fungal phylogenomics for topics including systematics and species delimitation, ecological and phenotypic diversification, and biogeography while providing an overview of progress made on the reconstruction of the fungal Tree of Life. Finally, we provide a review of considerations to phylogenomic experimental design for robust tree inference. We hope that this special issue of Advances in Genetics not only excites the continued progress of fungal evolutionary biology but also motivates the interdisciplinary development of new theory and methods designed to maximize the power of genomic scale data in phylogenetic analyses.
Collapse
Affiliation(s)
- Alex Dornburg
- North Carolina Museum of Natural Sciences, Raleigh, NC, United States
| | | | - Zheng Wang
- Yale University, New Haven, CT, United States.
| |
Collapse
|
41
|
Seppälä S, Wilken SE, Knop D, Solomon KV, O’Malley MA. The importance of sourcing enzymes from non-conventional fungi for metabolic engineering and biomass breakdown. Metab Eng 2017; 44:45-59. [DOI: 10.1016/j.ymben.2017.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/16/2017] [Accepted: 09/16/2017] [Indexed: 10/18/2022]
|
42
|
Bazafkan H, Beier S, Stappler E, Böhmdorfer S, Oberlerchner JT, Sulyok M, Schmoll M. SUB1 has photoreceptor dependent and independent functions in sexual development and secondary metabolism in Trichoderma reesei. Mol Microbiol 2017; 106:742-759. [PMID: 28925526 DOI: 10.1111/mmi.13842] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2017] [Indexed: 12/17/2022]
Abstract
Light dependent processes are involved in the regulation of growth, development and enzyme production in Trichoderma reesei. The photoreceptors BLR1, BLR2 and ENV1 exert crucial functions in these processes. We analyzed the involvement of the transcription factor SUB1 in sexual development as well as secondary metabolism and its position in the light signaling cascade. SUB1 influences growth and in contrast to its homologue in N. crassa, SUB1 is not essential for fruiting body formation and male fertility in T. reesei, but required for female fertility. Accordingly, SUB1 is involved in the regulation of the pheromone system of T. reesei. Female sterility of mutants lacking env1 is rescued in triple mutants of blr1, blr2 and env1, but not in double mutants of these genes. Confrontation of strains lacking sub1 results in growth arrest prior to contact of the potential mating partners. This effect is at least in part due to altered secondary metabolite production. Additionally, together with BLR1 and BLR2, SUB1 is essential for spore pigmentation and transcription of pks4, and secondary metabolism is regulated by SUB1 in a light- and nutrient dependent manner. Our results hence indicate rewiring of several pathways targeted by SUB1 in T. reesei.
Collapse
Affiliation(s)
- Hoda Bazafkan
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz Strasse 24, 3430 Tulln, Austria
| | - Sabrina Beier
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz Strasse 24, 3430 Tulln, Austria
| | - Eva Stappler
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz Strasse 24, 3430 Tulln, Austria
| | - Stefan Böhmdorfer
- Department of Chemistry, Division of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Josua T Oberlerchner
- Department of Chemistry, Division of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Michael Sulyok
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Monika Schmoll
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz Strasse 24, 3430 Tulln, Austria
| |
Collapse
|
43
|
|
44
|
Nagy LG, Tóth R, Kiss E, Slot J, Gácser A, Kovács GM. Six Key Traits of Fungi: Their Evolutionary Origins and Genetic Bases. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0036-2016. [PMID: 28820115 PMCID: PMC11687519 DOI: 10.1128/microbiolspec.funk-0036-2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Indexed: 01/13/2023] Open
Abstract
The fungal lineage is one of the three large eukaryotic lineages that dominate terrestrial ecosystems. They share a common ancestor with animals in the eukaryotic supergroup Opisthokonta and have a deeper common ancestry with plants, yet several phenotypes, such as morphological, physiological, or nutritional traits, make them unique among all living organisms. This article provides an overview of some of the most important fungal traits, how they evolve, and what major genes and gene families contribute to their development. The traits highlighted here represent just a sample of the characteristics that have evolved in fungi, including polarized multicellular growth, fruiting body development, dimorphism, secondary metabolism, wood decay, and mycorrhizae. However, a great number of other important traits also underlie the evolution of the taxonomically and phenotypically hyperdiverse fungal kingdom, which could fill up a volume on its own. After reviewing the evolution of these six well-studied traits in fungi, we discuss how the recurrent evolution of phenotypic similarity, that is, convergent evolution in the broad sense, has shaped their phylogenetic distribution in extant species.
Collapse
Affiliation(s)
- László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HAS, Szeged, Hungary
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Enikő Kiss
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HAS, Szeged, Hungary
| | - Jason Slot
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Gábor M Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Plant Protection Institute, Center for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
45
|
Teichert I, Dahlmann TA, Kück U, Nowrousian M. RNA Editing During Sexual Development Occurs in Distantly Related Filamentous Ascomycetes. Genome Biol Evol 2017; 9:855-868. [PMID: 28338982 PMCID: PMC5381528 DOI: 10.1093/gbe/evx052] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2017] [Indexed: 12/16/2022] Open
Abstract
RNA editing is a post-transcriptional process that modifies RNA molecules leading to transcript sequences that differ from their template DNA. A-to-I editing was found to be widely distributed in nuclear transcripts of metazoa, but was detected in fungi only recently in a study of the filamentous ascomycete Fusarium graminearum that revealed extensive A-to-I editing of mRNAs in sexual structures (fruiting bodies). Here, we searched for putative RNA editing events in RNA-seq data from Sordaria macrospora and Pyronema confluens, two distantly related filamentous ascomycetes, and in data from the Taphrinomycete Schizosaccharomyces pombe. Like F. graminearum, S. macrospora is a member of the Sordariomycetes, whereas P. confluens belongs to the early-diverging group of Pezizomycetes. We found extensive A-to-I editing in RNA-seq data from sexual mycelium from both filamentous ascomycetes, but not in vegetative structures. A-to-I editing was not detected in different stages of meiosis of S. pombe. A comparison of A-to-I editing in S. macrospora with F. graminearum and P. confluens, respectively, revealed little conservation of individual editing sites. An analysis of RNA-seq data from two sterile developmental mutants of S. macrospora showed that A-to-I editing is strongly reduced in these strains. Sequencing of cDNA fragments containing more than one editing site from P. confluens showed that at the beginning of sexual development, transcripts were incompletely edited or unedited, whereas in later stages transcripts were more extensively edited. Taken together, these data suggest that A-to-I RNA editing is an evolutionary conserved feature during fruiting body development in filamentous ascomycetes.
Collapse
Affiliation(s)
- Ines Teichert
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Germany
| | - Tim A Dahlmann
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Germany
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Germany
| |
Collapse
|
46
|
Hevia MA, Canessa P, Larrondo LF. Circadian clocks and the regulation of virulence in fungi: Getting up to speed. Semin Cell Dev Biol 2016; 57:147-155. [DOI: 10.1016/j.semcdb.2016.03.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 11/24/2022]
|
47
|
Draft Genome Sequence of Fonsecaea monophora Strain CBS 269.37, an Agent of Human Chromoblastomycosis. GENOME ANNOUNCEMENTS 2016; 4:4/4/e00731-16. [PMID: 27469960 PMCID: PMC4966464 DOI: 10.1128/genomea.00731-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The black yeast Fonsecaea monophora is one of the main etiologic agents of chromoblastomycosis in humans. Its pathogenicity profile is more invasive than that of related Fonsecaea species, causing brain infection in addition to (sub)cutaneous infections.
Collapse
|
48
|
Complete Mitochondrial Genome Sequence of the Pezizomycete Pyronema confluens. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00355-16. [PMID: 27174271 PMCID: PMC4866847 DOI: 10.1128/genomea.00355-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The complete mitochondrial genome of the ascomycete Pyronema confluens has been sequenced. The circular genome has a size of 191 kb and contains 48 protein-coding genes, 26 tRNA genes, and two rRNA genes. Of the protein-coding genes, 14 encode conserved mitochondrial proteins, and 31 encode predicted homing endonuclease genes.
Collapse
|
49
|
Xu H, Navarro-Ródenas A, Cooke JEK, Zwiazek JJ. Transcript profiling of aquaporins during basidiocarp development in Laccaria bicolor ectomycorrhizal with Picea glauca. MYCORRHIZA 2016; 26:19-31. [PMID: 25957233 DOI: 10.1007/s00572-015-0643-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
Sporocarp formation is part of the reproductive stage in the life cycle of many mycorrhizal macrofungi. Sporocarp formation is accompanied by a transcriptomic switch and profound changes in regulation of the gene families that play crucial roles in the sporocarp initiation and maturation. Since sporocarp growth requires efficient water delivery, in the present study, we investigated changes in transcript abundance of six fungal aquaporin genes that could be cloned from the ectomycorrhizal fungus Laccaria bicolor strain UAMH8232, during the initiation and development of its basidiocarp. Aquaporins are intrinsic membrane proteins facilitating the transmembrane transport of water and other small neutral molecules. In controlled-environment experiments, we induced basidiocarp formation in L. bicolor, which formed ectomycorrhizal associations with white spruce (Picea glauca) seedlings. We profiled transcript abundance corresponding to six fungal aquaporin genes at six different developmental stages of basidiocarp growth and development. We also compared physiological parameters of non-inoculated to mycorrhizal seedlings with and without the presence of basidiocarps. Two L. bicolor aquaporins--JQ585592, a functional channel for CO2, NO and H2O2, and JQ585595, a functional water channel--showed the greatest degree of upregulation during development of the basidiocarp. Our findings point to the importance of aquaporin-mediated transmembrane water and CO2 transport during distinct stages of basidiocarp development.
Collapse
Affiliation(s)
- Hao Xu
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada, T6G 2E3
| | | | - Janice E K Cooke
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9
| | - Janusz J Zwiazek
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada, T6G 2E3.
| |
Collapse
|
50
|
Murat C, Martin F. Truffle Genomics: Investigating an Early Diverging Lineage of Pezizomycotina. SOIL BIOLOGY 2016. [DOI: 10.1007/978-3-319-31436-5_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|