1
|
Bhaskar S, Gowda J, Hegde A, Thumu SCR, Banerjee S, M Bellchambers H, Ramanan N, Sala PM, Campbell K, Ware S, Prasanna J, Kumar A. Zic3 enables bimodal regulation of tyrosine hydroxylase expression in olfactory bulb and midbrain-derived neurons. Cell Death Discov 2025; 11:165. [PMID: 40216742 PMCID: PMC11992298 DOI: 10.1038/s41420-025-02448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Tyrosine hydroxylase (TH) is the rate-limiting enzyme involved in the biosynthesis of catecholamines such as dopamine, norepinephrine, and epinephrine expressed in various regions of the brain, including the olfactory bulb (OB) and midbrain (MB). Previous studies demonstrated Zinc Finger transcription factor of the Cerebellum 3 (ZIC3) to regulate forebrain development, and Zic1/Zic3 compound mutant mice displayed reduced OB size. However, the precise role of ZIC3 in TH regulation remains elusive. In this study, we attempted to understand the role of ZIC3 in TH regulation and its underlying mechanism. While loss of function of Zic3 in OB-derived neurons led to down-regulation of TH expression, it could be rescued by over-expression of shRNA-resistant Zic3. Immunohistochemistry of OB of Zic3 null mice showed a similar reduction in expression of TH. Promoter of TH lacks the consensus ZIC3 binding region, and mechanistic insights revealed ZIC3 to regulate TH expression by interacting with ER81, a known TH regulator. ZIC3 interaction with ER81 is indispensable for ER81 binding to the Th promoter, and it fine-tunes ER81-mediated Th regulation in OB. In MB, where TH levels are highest after birth, ZIC3 regulates TH expression both in vitro and in vivo. TH was significantly reduced in P0 Zic3 null mice, as well as in Zic3 shRNA stereotactically delivered in 7-month-old mice. Mechanistically, in the absence of ER81 in MB, ZIC3 chooses an alternative approach of binding to Pitx3 promoter-a Dopaminergic (DA) fate determinant. Under the ectopic expression of ER81 in MB derived neurons, the propensity of ZIC3 binding to Pitx3 promoter is compromised, and its occupancy on Th promoter encompassing ER81 binding site is established, finally culminating in desired TH expression. Together, these findings reveal a unique ZIC3-mediated bimodal regulation of TH in OB and MB derived neurons.
Collapse
Affiliation(s)
- Smitha Bhaskar
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, India
| | - Jeevan Gowda
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, India
| | - Akshay Hegde
- IFOM-inStem Joint Research Laboratory, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | | | - Shreetama Banerjee
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, India
| | - Helen M Bellchambers
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Paloma Merchan Sala
- Division of Developmental Biology and Neurosurgery, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kenneth Campbell
- Division of Developmental Biology and Neurosurgery, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stephanie Ware
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jyothi Prasanna
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, India
| | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, India.
| |
Collapse
|
2
|
Shi DL. Breaking Left-Right Symmetry by the Interplay of Planar Cell Polarity, Calcium Signaling and Cilia. Cells 2024; 13:2116. [PMID: 39768206 PMCID: PMC11727252 DOI: 10.3390/cells13242116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/07/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
The formation of the embryonic left-right axis is a fundamental process in animals, which subsequently conditions both the shape and the correct positioning of internal organs. During vertebrate early development, a transient structure, known as the left-right organizer, breaks the bilateral symmetry in a manner that is critically dependent on the activity of motile and immotile cilia or asymmetric cell migration. Extensive studies have partially elucidated the molecular pathways that initiate left-right asymmetric patterning and morphogenesis. Wnt/planar cell polarity signaling plays an important role in the biased orientation and rotational motion of motile cilia. The leftward fluid flow generated in the cavity of the left-right organizer is sensed by immotile cilia through complex mechanisms to trigger left-sided calcium signaling and lateralized gene expression pattern. Disrupted asymmetric positioning or impaired structure and function of cilia leads to randomized left-right axis determination, which is closely linked to laterality defects, particularly congenital heart disease. Despite of the formidable progress made in deciphering the critical contribution of cilia to establishing the left-right asymmetry, a strong challenge remains to understand how cilia generate and sense fluid flow to differentially activate gene expression across the left-right axis. This review analyzes mechanisms underlying the asymmetric morphogenesis and function of the left-right organizer in left-right axis formation. It also aims to identify important questions that are open for future investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Laboratoire de Biologie du Développement, LBD, CNRS UMR7622, INSERM U1156, Sorbonne Université, F-75005 Paris, France
| |
Collapse
|
3
|
Van Gils J, Karkar S, Barre A, Ley-Ngardigal S, Nothof S, Claverol S, Tokarski C, Trani JP, Chevalier R, Broucqsault N, El Yazidi C, Lacombe D, Fergelot P, Magdinier F. Transcriptome and acetylome profiling identify crucial steps of neuronal differentiation in Rubinstein-Taybi syndrome. Commun Biol 2024; 7:1331. [PMID: 39407026 PMCID: PMC11480426 DOI: 10.1038/s42003-024-06939-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Rubinstein-Taybi syndrome (RTS) is a rare and severe genetic developmental disorder characterized by multiple congenital anomalies and intellectual disability. CREBBP and EP300, the two genes known to cause RTS encode transcriptional coactivators with a catalytic lysine acetyltransferase (KAT) activity. Loss of CBP or p300 function results in a deficit in protein acetylation, in particular at histones. In RTS, nothing is known on the consequences of the loss of histone acetylation on the transcriptomic profiles during neuronal differentiation. To address this question, we differentiated induced pluripotent stem cells from RTS patients carrying a recurrent CREBBP mutation that inactivates the KAT domain into cortical and pyramidal neurons. By comparing their acetylome and their transcriptome at different neuronal differentiation time points, we identified 25 specific acetylated histone residues altered in RTS. We also identified the transition between neural progenitors and immature neurons as a critical step of the differentiation process, with a delayed neuronal maturation in RTS. Overall, this study opens new perspectives in the definition of epigenetic biomarkers for RTS, whose methodology could be extended to other chromatinopathies.
Collapse
Affiliation(s)
- Julien Van Gils
- Department of Medical Genetics, University Hospital of Bordeaux and INSERM U1211, University of Bordeaux, Bordeaux, France.
| | - Slim Karkar
- Bordeaux Bioinformatic Center CBiB, University of Bordeaux, Bordeaux, France
| | - Aurélien Barre
- Bordeaux Bioinformatic Center CBiB, University of Bordeaux, Bordeaux, France
| | - Seyta Ley-Ngardigal
- Department of Medical Genetics, University Hospital of Bordeaux and INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Sophie Nothof
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Stéphane Claverol
- Bordeaux Proteomic Platform, University of Bordeaux, Bordeaux, France
| | - Caroline Tokarski
- Bordeaux Proteomic Platform, University of Bordeaux, Bordeaux, France
| | | | - Raphael Chevalier
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | | | - Claire El Yazidi
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Didier Lacombe
- Department of Medical Genetics, University Hospital of Bordeaux and INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Patricia Fergelot
- Department of Medical Genetics, University Hospital of Bordeaux and INSERM U1211, University of Bordeaux, Bordeaux, France
| | | |
Collapse
|
4
|
Jędrychowska J, Vardanyan V, Wieczor M, Marciniak A, Czub J, Amini R, Jain R, Shen H, Choi H, Kuznicki J, Korzh V. Mutant analysis of Kcng4b reveals how the different functional states of the voltage-gated potassium channel regulate ear development. Dev Biol 2024; 513:50-62. [PMID: 38492873 DOI: 10.1016/j.ydbio.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
The voltage gated (Kv) slow-inactivating delayed rectifier channel regulates the development of hollow organs of the zebrafish. The functional channel consists of the tetramer of electrically active Kcnb1 (Kv2.1) subunits and Kcng4b (Kv6.4) modulatory or electrically silent subunits. The two mutations in zebrafish kcng4b gene - kcng4b-C1 and kcng4b-C2 (Gasanov et al., 2021) - have been studied during ear development using electrophysiology, developmental biology and in silico structural modelling. kcng4b-C1 mutation causes a C-terminal truncation characterized by mild Kcng4b loss-of-function (LOF) manifested by failure of kinocilia to extend and formation of ectopic otoliths. In contrast, the kcng4b-C2-/- mutation causes the C-terminal domain to elongate and the ectopic seventh transmembrane (TM) domain to form, converting the intracellular C-terminus to an extracellular one. Kcng4b-C2 acts as a Kcng4b gain-of-function (GOF) allele. Otoliths fail to develop and kinocilia are reduced in kcng4b-C2-/-. These results show that different mutations of the silent subunit Kcng4 can affect the activity of the Kv channel and cause a wide range of developmental defects.
Collapse
Affiliation(s)
- Justyna Jędrychowska
- International Institute of Molecular and Cell Biology in Warsaw, Poland; Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Vitya Vardanyan
- Institute of Molecular Biology, Armenian Academy of Sciences, Yerevan, Armenia
| | - Milosz Wieczor
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Antoni Marciniak
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Jacek Czub
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Razieh Amini
- International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Ruchi Jain
- International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Hongyuan Shen
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore
| | - Hyungwon Choi
- Cardiovascular Research Institute, National University Health Sciences, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jacek Kuznicki
- International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Poland.
| |
Collapse
|
5
|
Shi DL. Canonical and Non-Canonical Wnt Signaling Generates Molecular and Cellular Asymmetries to Establish Embryonic Axes. J Dev Biol 2024; 12:20. [PMID: 39189260 PMCID: PMC11348223 DOI: 10.3390/jdb12030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
The formation of embryonic axes is a critical step during animal development, which contributes to establishing the basic body plan in each particular organism. Wnt signaling pathways play pivotal roles in this fundamental process. Canonical Wnt signaling that is dependent on β-catenin regulates the patterning of dorsoventral, anteroposterior, and left-right axes. Non-canonical Wnt signaling that is independent of β-catenin modulates cytoskeletal organization to coordinate cell polarity changes and asymmetric cell movements. It is now well documented that components of these Wnt pathways biochemically and functionally interact to mediate cell-cell communications and instruct cellular polarization in breaking the embryonic symmetry. The dysfunction of Wnt signaling disrupts embryonic axis specification and proper tissue morphogenesis, and mutations of Wnt pathway genes are associated with birth defects in humans. This review discusses the regulatory roles of Wnt pathway components in embryonic axis formation by focusing on vertebrate models. It highlights current progress in decoding conserved mechanisms underlying the establishment of asymmetry along the three primary body axes. By providing an in-depth analysis of canonical and non-canonical pathways in regulating cell fates and cellular behaviors, this work offers insights into the intricate processes that contribute to setting up the basic body plan in vertebrate embryos.
Collapse
Affiliation(s)
- De-Li Shi
- Department of Medical Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China;
- Laboratory of Developmental Biology, Centre National de la Recherche Scientifique (CNRS), UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, 75005 Paris, France
| |
Collapse
|
6
|
Zizioli D, Quiros-Roldan E, Ferretti S, Mignani L, Tiecco G, Monti E, Castelli F, Zanella I. Dolutegravir and Folic Acid Interaction during Neural System Development in Zebrafish Embryos. Int J Mol Sci 2024; 25:4640. [PMID: 38731859 PMCID: PMC11083492 DOI: 10.3390/ijms25094640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Dolutegravir (DTG) is one of the most prescribed antiretroviral drugs for treating people with HIV infection, including women of child-bearing potential or pregnant. Nonetheless, neuropsychiatric symptoms are frequently reported. Early reports suggested that, probably in relation to folic acid (FA) shortage, DTG may induce neural tube defects in infants born to women taking the drug during pregnancy. Subsequent reports did not definitively confirm these findings. Recent studies in animal models have highlighted the association between DTG exposure in utero and congenital anomalies, and an increased risk of neurologic abnormalities in children exposed during in utero life has been reported. Underlying mechanisms for DTG-related neurologic symptoms and congenital anomalies are not fully understood. We aimed to deepen our knowledge on the neurodevelopmental effects of DTG exposure and further explore the protective role of FA by the use of zebrafish embryos. We treated embryos at 4 and up to 144 h post fertilization (hpf) with a subtherapeutic DTG concentration (1 μM) and observed the disruption of the anterior-posterior axis and several morphological malformations in the developing brain that were both prevented by pre-exposure (2 hpf) and rescued by post-exposure (10 hpf) with FA. By whole-mount in situ hybridization with riboprobes for genes that are crucial during the early phases of neurodevelopment (ntl, pax2a, ngn1, neurod1) and by in vivo visualization of the transgenic Tg(ngn1:EGFP) zebrafish line, we found that DTG induced severe neurodevelopmental defects over time in most regions of the nervous system (notochord, midbrain-hindbrain boundary, eye, forebrain, midbrain, hindbrain, spinal cord) that were mostly but not completely rescued by FA supplementation. Of note, we observed the disruption of ngn1 expression in the dopaminergic regions of the developing forebrain, spinal cord neurons and spinal motor neuron projections, with the depletion of the tyrosine hydroxylase (TH)+ dopaminergic neurons of the dorsal diencephalon and the strong reduction in larvae locomotion. Our study further supports previous evidence that DTG can interfere with FA pathways in the developing brain but also provides new insights regarding the mechanisms involved in the increased risk of DTG-associated fetal neurodevelopmental defects and adverse neurologic outcomes in in utero exposed children, suggesting the impairment of dopaminergic pathways.
Collapse
Affiliation(s)
- Daniela Zizioli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (D.Z.); (S.F.); (L.M.); (E.M.); (I.Z.)
| | - Eugenia Quiros-Roldan
- Unit of Infectious and Tropical Diseases, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (G.T.); (F.C.)
| | - Sara Ferretti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (D.Z.); (S.F.); (L.M.); (E.M.); (I.Z.)
| | - Luca Mignani
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (D.Z.); (S.F.); (L.M.); (E.M.); (I.Z.)
| | - Giorgio Tiecco
- Unit of Infectious and Tropical Diseases, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (G.T.); (F.C.)
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (D.Z.); (S.F.); (L.M.); (E.M.); (I.Z.)
| | - Francesco Castelli
- Unit of Infectious and Tropical Diseases, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (G.T.); (F.C.)
| | - Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (D.Z.); (S.F.); (L.M.); (E.M.); (I.Z.)
- Cytogenetics and Molecular Genetics Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
7
|
Abu Nahia K, Migdał M, Quinn TA, Poon KL, Łapiński M, Sulej A, Liu J, Mondal SS, Pawlak M, Bugajski Ł, Piwocka K, Brand T, Kohl P, Korzh V, Winata C. Genomic and physiological analyses of the zebrafish atrioventricular canal reveal molecular building blocks of the secondary pacemaker region. Cell Mol Life Sci 2021; 78:6669-6687. [PMID: 34557935 PMCID: PMC8558220 DOI: 10.1007/s00018-021-03939-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/06/2021] [Accepted: 09/10/2021] [Indexed: 01/06/2023]
Abstract
The atrioventricular canal (AVC) is the site where key structures responsible for functional division between heart regions are established, most importantly, the atrioventricular (AV) conduction system and cardiac valves. To elucidate the mechanism underlying AVC development and function, we utilized transgenic zebrafish line sqet31Et expressing EGFP in the AVC to isolate this cell population and profile its transcriptome at 48 and 72 hpf. The zebrafish AVC transcriptome exhibits hallmarks of mammalian AV node, including the expression of genes implicated in its development and those encoding connexins forming low conductance gap junctions. Transcriptome analysis uncovered protein-coding and noncoding transcripts enriched in AVC, which have not been previously associated with this structure, as well as dynamic expression of epithelial-to-mesenchymal transition markers and components of TGF-β, Notch, and Wnt signaling pathways likely reflecting ongoing AVC and valve development. Using transgenic line Tg(myl7:mermaid) encoding voltage-sensitive fluorescent protein, we show that abolishing the pacemaker-containing sinoatrial ring (SAR) through Isl1 loss of function resulted in spontaneous activation in the AVC region, suggesting that it possesses inherent automaticity although insufficient to replace the SAR. The SAR and AVC transcriptomes express partially overlapping species of ion channels and gap junction proteins, reflecting their distinct roles. Besides identifying conserved aspects between zebrafish and mammalian conduction systems, our results established molecular hallmarks of the developing AVC which underlies its role in structural and electrophysiological separation between heart chambers. This data constitutes a valuable resource for studying AVC development and function, and identification of novel candidate genes implicated in these processes.
Collapse
Affiliation(s)
- Karim Abu Nahia
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Maciej Migdał
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kar-Lai Poon
- Institute of Molecular and Cell Biology, 61 Biopolis Dr, Singapore , Singapore.,Developmental Dynamics, National Heart and Lung Institute, Imperial College London, London, UK
| | - Maciej Łapiński
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Agata Sulej
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Jiandong Liu
- McAllister Heart Institute, University of North Carolina, Chapel Hill, USA
| | - Shamba S Mondal
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Michał Pawlak
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | | | | | - Thomas Brand
- Developmental Dynamics, National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Centre, Faculty of Medicine, and Faculty of Engineering, University of Freiburg, Freiburg im Breisgau, Germany
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| | - Cecilia Winata
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| |
Collapse
|
8
|
Abstract
It has previously been reported that in ex vivo planar explants prepared from Xenopus laevis embryos, the intracellular pH (pHi) increases in cells of the dorsal ectoderm from stage 10.5 to 11.5 (i.e. 11-12.5 hpf). It was proposed that such increases (potentially due to H+ being extruded, sequestered, or buffered in some manner), play a role in regulating neural induction. Here, we used an extracellular ion-selective electrode to non-invasively measure H+ fluxes at eight locations around the equatorial circumference of intact X. laevis embryos between stages 9-12 (˜7-13.25 hpf). We showed that at stages 9-11, there was a small H+ efflux recorded from all the measuring positions. At stage 12 there was a small, but significant, increase in the efflux of H+ from most locations, but the efflux from the dorsal side of the embryo was significantly greater than from the other positions. Embryos were also treated from stages 9-12 with bafilomycin A1, to block the activity of the ATP-driven H+ pump. By stage 22 (24 hpf), these embryos displayed retarded development, arresting before the end of gastrulation and therefore did not display the usual anterior and neural structures, which were observed in the solvent-control embryos. In addition, expression of the early neural gene, Zic3, was absent in treated embryos compared with the solvent controls. Together, our new in vivo data corroborated and extended the earlier explant-derived report describing changes in pHi that were suggested to play a role during neural induction in X. laevis embryos.
Collapse
|
9
|
Pancholi A, Klingberg T, Zhang W, Prizak R, Mamontova I, Noa A, Sobucki M, Kobitski AY, Nienhaus GU, Zaburdaev V, Hilbert L. RNA polymerase II clusters form in line with surface condensation on regulatory chromatin. Mol Syst Biol 2021; 17:e10272. [PMID: 34569155 PMCID: PMC8474054 DOI: 10.15252/msb.202110272] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/26/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
It is essential for cells to control which genes are transcribed into RNA. In eukaryotes, two major control points are recruitment of RNA polymerase II (Pol II) into a paused state, and subsequent pause release toward transcription. Pol II recruitment and pause release occur in association with macromolecular clusters, which were proposed to be formed by a liquid-liquid phase separation mechanism. How such a phase separation mechanism relates to the interaction of Pol II with DNA during recruitment and transcription, however, remains poorly understood. Here, we use live and super-resolution microscopy in zebrafish embryos to reveal Pol II clusters with a large variety of shapes, which can be explained by a theoretical model in which regulatory chromatin regions provide surfaces for liquid-phase condensation at concentrations that are too low for canonical liquid-liquid phase separation. Model simulations and chemical perturbation experiments indicate that recruited Pol II contributes to the formation of these surface-associated condensates, whereas elongating Pol II is excluded from these condensates and thereby drives their unfolding.
Collapse
Affiliation(s)
- Agnieszka Pancholi
- Zoological InstituteDepartment of Systems Biology and BioinformaticsKarlsruhe Institute of TechnologyKarlsruheGermany
- Institute of Biological and Chemical Systems—Biological Information ProcessingKarlsruhe Institute of TechnologyEggenstein‐LeopoldshafenGermany
| | - Tim Klingberg
- Department of BiologyFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
- Max‐Planck‐Zentrum für Physik und MedizinErlangenGermany
| | - Weichun Zhang
- Institute of Applied PhysicsKarlsruhe Institute of TechnologyKarlsruheGermany
- Institute of NanotechnologyKarlsruhe Institute of TechnologyEggenstein‐LeopoldshafenGermany
| | - Roshan Prizak
- Institute of Biological and Chemical Systems—Biological Information ProcessingKarlsruhe Institute of TechnologyEggenstein‐LeopoldshafenGermany
| | - Irina Mamontova
- Institute of Biological and Chemical Systems—Biological Information ProcessingKarlsruhe Institute of TechnologyEggenstein‐LeopoldshafenGermany
| | - Amra Noa
- Institute of Biological and Chemical Systems—Biological Information ProcessingKarlsruhe Institute of TechnologyEggenstein‐LeopoldshafenGermany
| | - Marcel Sobucki
- Institute of Biological and Chemical Systems—Biological Information ProcessingKarlsruhe Institute of TechnologyEggenstein‐LeopoldshafenGermany
| | - Andrei Yu Kobitski
- Institute of Applied PhysicsKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Gerd Ulrich Nienhaus
- Institute of Biological and Chemical Systems—Biological Information ProcessingKarlsruhe Institute of TechnologyEggenstein‐LeopoldshafenGermany
- Institute of Applied PhysicsKarlsruhe Institute of TechnologyKarlsruheGermany
- Institute of NanotechnologyKarlsruhe Institute of TechnologyEggenstein‐LeopoldshafenGermany
- Department of PhysicsUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Vasily Zaburdaev
- Department of BiologyFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
- Max‐Planck‐Zentrum für Physik und MedizinErlangenGermany
| | - Lennart Hilbert
- Zoological InstituteDepartment of Systems Biology and BioinformaticsKarlsruhe Institute of TechnologyKarlsruheGermany
- Institute of Biological and Chemical Systems—Biological Information ProcessingKarlsruhe Institute of TechnologyEggenstein‐LeopoldshafenGermany
| |
Collapse
|
10
|
Bellchambers HM, Ware SM. Loss of Zic3 impairs planar cell polarity leading to abnormal left-right signaling, heart defects and neural tube defects. Hum Mol Genet 2021; 30:2402-2415. [PMID: 34274973 DOI: 10.1093/hmg/ddab195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
Loss of function of ZIC3 causes heterotaxy (OMIM #306955), a disorder characterized by organ laterality defects including complex heart defects. Studies using Zic3 mutant mice have demonstrated that loss of Zic3 causes heterotaxy due to defects in establishment of left-right (LR) signaling, but the mechanistic basis for these defects remains unknown. Here, we demonstrate Zic3 null mice undergo cilia positioning defects at the embryonic node consistent with impaired planar cell polarity (PCP). Cell-based assays demonstrate that ZIC3 must enter the nucleus to regulate PCP and identify multiple critical ZIC3 domains required for regulation of PCP signaling. Furthermore, we show that Zic3 displays a genetic interaction with the PCP membrane protein Vangl2 and the PCP effector genes Rac1 and Daam1 resulting in increased frequency and severity of neural tube and heart defects. Gene and protein expression analyses indicate that Zic3 null embryos display disrupted expression of PCP components and reduced phosphorylation of the core PCP protein DVL2 at the time of LR axis determination. These results demonstrate that ZIC3 interacts with PCP signaling during early development, identifying a novel role for this transcription factor, and adding additional evidence about the importance of PCP function for normal LR patterning and subsequent heart development.
Collapse
Affiliation(s)
| | - Stephanie M Ware
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics.,Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
11
|
Zygotic Genome Activation: Critical Prelude to the Most Important Time of Your Life. Methods Mol Biol 2021; 2218:319-329. [PMID: 33606242 DOI: 10.1007/978-1-0716-0970-5_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Activation of the embryonic genome during development represents a major developmental transition in all species. The history of its exploration began in the 1950s-1960s, when this idea was put forward and proven experimentally by Alexander Neyfakh. He observed the aberrant development of fish embryos upon X-ray irradiation and noted the different developmental outcomes depending on the stage when fertilized eggs were subjected to irradiation. Neyfakh also discriminated a regional difference of X-irradiation between the nucleus and the cytoplasm. By selecting the X-ray dose causing nuclear damage, he determined the beginning of zygotic transcription, which at that time became known as the morphogenetic function of nuclei. His team defined the link of zygotic transcription with the asynchronization of cell division and cell migration, the two other hallmarks, which along with the morphogenetic function (or the zygotic genome activation), are at the core of the mid-blastula transition during development. Within this framework, current studies using maternal mutants and application of modern methods of whole-embryo and single-cell transcriptomics begin to decipher the molecular mechanisms of the mid-blastula transition (or the maternal-zygotic transition).
Collapse
|
12
|
Reddy PC, Gungi A, Ubhe S, Galande S. Epigenomic landscape of enhancer elements during Hydra head organizer formation. Epigenetics Chromatin 2020; 13:43. [PMID: 33046126 PMCID: PMC7552563 DOI: 10.1186/s13072-020-00364-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Axis patterning during development is accompanied by large-scale gene expression changes. These are brought about by changes in the histone modifications leading to dynamic alterations in chromatin architecture. The cis regulatory DNA elements also play an important role towards modulating gene expression in a context-dependent manner. Hydra belongs to the phylum Cnidaria where the first asymmetry in the body plan was observed and the oral-aboral axis originated. Wnt signaling has been shown to determine the head organizer function in the basal metazoan Hydra. RESULTS To gain insights into the evolution of cis regulatory elements and associated chromatin signatures, we ectopically activated the Wnt signaling pathway in Hydra and monitored the genome-wide alterations in key histone modifications. Motif analysis of putative intergenic enhancer elements from Hydra revealed the conservation of bilaterian cis regulatory elements that play critical roles in development. Differentially regulated enhancer elements were identified upon ectopic activation of Wnt signaling and found to regulate many head organizer specific genes. Enhancer activity of many of the identified cis regulatory elements was confirmed by luciferase reporter assay. Quantitative chromatin immunoprecipitation analysis upon activation of Wnt signaling further confirmed the enrichment of H3K27ac on the enhancer elements of Hv_Wnt5a, Hv_Wnt11 and head organizer genes Hv_Bra1, CnGsc and Hv_Pitx1. Additionally, perturbation of the putative H3K27me3 eraser activity using a specific inhibitor affected the ectopic activation of Wnt signaling indicating the importance of the dynamic changes in the H3K27 modifications towards regulation of the genes involved in the head organizer activity. CONCLUSIONS The activation-associated histone marks H3K4me3, H3K27ac and H3K9ac mark chromatin in a similar manner as seen in bilaterians. We identified intergenic cis regulatory elements which harbor sites for key transcription factors involved in developmental processes. Differentially regulated enhancers exhibited motifs for many zinc-finger, T-box and ETS related TFs whose homologs have a head specific expression in Hydra and could be a part of the pioneer TF network in the patterning of the head. The ability to differentially modify the H3K27 residue is critical for the patterning of Hydra axis revealing a dynamic acetylation/methylation switch to regulate gene expression and chromatin architecture.
Collapse
Affiliation(s)
- Puli Chandramouli Reddy
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Akhila Gungi
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Suyog Ubhe
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India.
| |
Collapse
|
13
|
Minhas R, Paterek A, Łapiński M, Bazała M, Korzh V, Winata CL. A novel conserved enhancer at zebrafish zic3 and zic6 loci drives neural expression. Dev Dyn 2019; 248:837-849. [PMID: 31194899 PMCID: PMC6771876 DOI: 10.1002/dvdy.69] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/28/2019] [Accepted: 06/07/2019] [Indexed: 01/15/2023] Open
Abstract
Background Identifying enhancers and deciphering their putative roles represent a major step to better understand the mechanism of metazoan gene regulation, development, and the role of regulatory elements in disease. Comparative genomics and transgenic assays have been used with some success to identify critical regions that are involved in regulating the spatiotemporal expression of genes during embryogenesis. Results We identified two novel tetrapod‐teleost conserved noncoding elements within the vicinity of the zic3 and zic6 loci in the zebrafish genome and demonstrated their ability to drive tissue‐specific expression in a transgenic zebrafish assay. The syntenic analysis and robust green fluorescent expression in the developing habenula in the stable transgenic line were correlated with known sites of endogenous zic3 and zic6 expression. Conclusion This transgenic line that expresses green fluorescent protein in the habenula is a valuable resource for studying a specific population of cells in the zebrafish central nervous system. Our observations indicate that a genomic sequence that is conserved between humans and zebrafish acts as an enhancer that likely controls zic3 and zic6 expression. Identified a novel enhancer near zebrafish zic3/zic6 locus. The novel enhancer drives tissue‐specific expression in the habenula. Zebrafish transgenic line generated in this study can be a useful resource for studying development of habenula.
Collapse
Affiliation(s)
- Rashid Minhas
- International Institute of Molecular and Cell Biology, Warsaw, Poland.,Randall Centre of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Aleksandra Paterek
- International Institute of Molecular and Cell Biology, Warsaw, Poland.,Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Maciej Łapiński
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Michał Bazała
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Cecilia L Winata
- International Institute of Molecular and Cell Biology, Warsaw, Poland.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
14
|
Grinblat Y, Lipinski RJ. A forebrain undivided: Unleashing model organisms to solve the mysteries of holoprosencephaly. Dev Dyn 2019; 248:626-633. [PMID: 30993762 DOI: 10.1002/dvdy.41] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022] Open
Abstract
Evolutionary conservation and experimental tractability have made animal model systems invaluable tools in our quest to understand human embryogenesis, both normal and abnormal. Standard genetic approaches, particularly useful in understanding monogenic diseases, are no longer sufficient as research attention shifts toward multifactorial outcomes. Here, we examine this progression through the lens of holoprosencephaly (HPE), a common human malformation involving incomplete forebrain division, and a classic example of an etiologically complex outcome. We relate the basic underpinning of HPE pathogenesis to critical cell-cell interactions and signaling molecules discovered through embryological and genetic approaches in multiple model organisms, and discuss the role of the mouse model in functional examination of HPE-linked genes. We then outline the most critical remaining gaps to understanding human HPE, including the conundrum of incomplete penetrance/expressivity and the role of gene-environment interactions. To tackle these challenges, we outline a strategy that leverages new and emerging technologies in multiple model systems to solve the puzzle of HPE.
Collapse
Affiliation(s)
- Yevgenya Grinblat
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin.,Department of Neuroscience, University of Wisconsin, Madison, Wisconsin.,McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin.,Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
15
|
Banerjee S, Wei X, Xie H. Recursive Motif Analyses Identify Brain Epigenetic Transcription Regulatory Modules. Comput Struct Biotechnol J 2019; 17:507-515. [PMID: 31011409 PMCID: PMC6462766 DOI: 10.1016/j.csbj.2019.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/12/2019] [Accepted: 04/03/2019] [Indexed: 01/26/2023] Open
Abstract
DNA methylation is an epigenetic modification modulating the structure of DNA molecule and the interactions with its binding proteins. Accumulating large-scale methylation data motivates the development of analytic tools to facilitate methylome data mining. One critical phenomenon associated with dynamic DNA methylation is the altered DNA binding affinity of transcription factors, which plays key roles in gene expression regulation. In this study, we conceived an algorithm to predict epigenetic regulatory modules through recursive motif analyses on differentially methylated loci. A two-step procedure was implemented to first group differentially methylated loci into clusters according to their correlations in methylation profiles and then to repeatedly identify the transcription factor binding motifs significantly enriched in each cluster. We applied this tool on methylome datasets generated for mouse brains which have a lack of DNA demethylation enzymes TET1 or TET2. Compared with wild type control, the differentially methylated CpG sites identified in TET1 knockout mouse brains differed significantly from those determined for TET2 knockout. Transcription factors with zinc finger DNA binding domains including Egr1, Zic3, and Zeb1 were predicted to be associated with TET1 mediated brain methylome programming, while Lhx family members with Homeobox domains were predicted to be associated with TET2 function. Interestingly, genomic loci from a co-methylated cluster often host motifs for transcription factors sharing the same DNA binding domains. Altogether, our study provided a systematic approach for epigenetic regulatory module identification and will help throw light on the interplay of DNA methylation and transcription factors.
Collapse
Affiliation(s)
- Sharmi Banerjee
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA.,Biocomplexity Institute of Virginia Tech, Blacksburg, VA 24061, USA
| | - Xiaoran Wei
- Biocomplexity Institute of Virginia Tech, Blacksburg, VA 24061, USA.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
| | - Hehuang Xie
- Biocomplexity Institute of Virginia Tech, Blacksburg, VA 24061, USA.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA.,School of Neuroscience, Blacksburg, VA 24061, USA
| |
Collapse
|
16
|
Pawlak M, Kedzierska KZ, Migdal M, Karim AN, Ramilowski JA, Bugajski L, Hashimoto K, Marconi A, Piwocka K, Carninci P, Winata CL. Dynamics of cardiomyocyte transcriptome and chromatin landscape demarcates key events of heart development. Genome Res 2019; 29:506-519. [PMID: 30760547 PMCID: PMC6396412 DOI: 10.1101/gr.244491.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/09/2019] [Indexed: 12/19/2022]
Abstract
Organogenesis involves dynamic regulation of gene transcription and complex multipathway interactions. Despite our knowledge of key factors regulating various steps of heart morphogenesis, considerable challenges in understanding its mechanism still exist because little is known about their downstream targets and interactive regulatory network. To better understand transcriptional regulatory mechanism driving heart development and the consequences of its disruption in vivo, we performed time-series analyses of the transcriptome and genome-wide chromatin accessibility in isolated cardiomyocytes (CMs) from wild-type zebrafish embryos at developmental stages corresponding to heart tube morphogenesis, looping, and maturation. We identified genetic regulatory modules driving crucial events of heart development that contained key cardiac TFs and are associated with open chromatin regions enriched for DNA sequence motifs belonging to the family of the corresponding TFs. Loss of function of cardiac TFs Gata5, Tbx5a, and Hand2 affected the cardiac regulatory networks and caused global changes in chromatin accessibility profile, indicating their role in heart development. Among regions with differential chromatin accessibility in mutants were highly conserved noncoding elements that represent putative enhancers driving heart development. The most prominent gene expression changes, which correlated with chromatin accessibility modifications within their proximal promoter regions, occurred between heart tube morphogenesis and looping, and were associated with metabolic shift and hematopoietic/cardiac fate switch during CM maturation. Our results revealed the dynamic regulatory landscape throughout heart development and identified interactive molecular networks driving key events of heart morphogenesis.
Collapse
Affiliation(s)
- Michal Pawlak
- International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Zebrafish Developmental Genomics, 02-109 Warsaw, Poland
| | - Katarzyna Z Kedzierska
- International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Zebrafish Developmental Genomics, 02-109 Warsaw, Poland
| | - Maciej Migdal
- International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Zebrafish Developmental Genomics, 02-109 Warsaw, Poland
| | - Abu Nahia Karim
- International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Zebrafish Developmental Genomics, 02-109 Warsaw, Poland
| | | | - Lukasz Bugajski
- Nencki Institute of Experimental Biology, Laboratory of Cytometry, 02-093 Warsaw, Poland
| | - Kosuke Hashimoto
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
| | - Aleksandra Marconi
- International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Zebrafish Developmental Genomics, 02-109 Warsaw, Poland
| | - Katarzyna Piwocka
- Nencki Institute of Experimental Biology, Laboratory of Cytometry, 02-093 Warsaw, Poland
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
| | - Cecilia L Winata
- International Institute of Molecular and Cell Biology in Warsaw, Laboratory of Zebrafish Developmental Genomics, 02-109 Warsaw, Poland
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
17
|
Korzh V, Kondrychyn I, Winata C. The Zebrafish as a New Model System for Experimental Biology. CYTOL GENET+ 2018. [DOI: 10.3103/s009545271806004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
de Pater E, Trompouki E. Bloody Zebrafish: Novel Methods in Normal and Malignant Hematopoiesis. Front Cell Dev Biol 2018; 6:124. [PMID: 30374440 PMCID: PMC6196227 DOI: 10.3389/fcell.2018.00124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
Hematopoiesis is an optimal system for studying stem cell maintenance and lineage differentiation under physiological and pathological conditions. In vertebrate organisms, billions of differentiated hematopoietic cells need to be continuously produced to replenish the blood cell pool. Disruptions in this process have immediate consequences for oxygen transport, responses against pathogens, maintenance of hemostasis and vascular integrity. Zebrafish is a widely used and well-established model for studying the hematopoietic system. Several new hematopoietic regulators were identified in genetic and chemical screens using the zebrafish model. Moreover, zebrafish enables in vivo imaging of hematopoietic stem cell generation and differentiation during embryogenesis, and adulthood. Finally, zebrafish has been used to model hematopoietic diseases. Recent technological advances in single-cell transcriptome analysis, epigenetic regulation, proteomics, metabolomics, and processing of large data sets promise to transform the current understanding of normal, abnormal, and malignant hematopoiesis. In this perspective, we discuss how the zebrafish model has proven beneficial for studying physiological and pathological hematopoiesis and how these novel technologies are transforming the field.
Collapse
Affiliation(s)
- Emma de Pater
- Department of Hematology, Erasmus MC, Rotterdam, Netherlands
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| |
Collapse
|
19
|
Dang LT, Tondl M, Chiu MHH, Revote J, Paten B, Tano V, Tokolyi A, Besse F, Quaife-Ryan G, Cumming H, Drvodelic MJ, Eichenlaub MP, Hallab JC, Stolper JS, Rossello FJ, Bogoyevitch MA, Jans DA, Nim HT, Porrello ER, Hudson JE, Ramialison M. TrawlerWeb: an online de novo motif discovery tool for next-generation sequencing datasets. BMC Genomics 2018; 19:238. [PMID: 29621972 PMCID: PMC5887194 DOI: 10.1186/s12864-018-4630-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Background A strong focus of the post-genomic era is mining of the non-coding regulatory genome in order to unravel the function of regulatory elements that coordinate gene expression (Nat 489:57–74, 2012; Nat 507:462–70, 2014; Nat 507:455–61, 2014; Nat 518:317–30, 2015). Whole-genome approaches based on next-generation sequencing (NGS) have provided insight into the genomic location of regulatory elements throughout different cell types, organs and organisms. These technologies are now widespread and commonly used in laboratories from various fields of research. This highlights the need for fast and user-friendly software tools dedicated to extracting cis-regulatory information contained in these regulatory regions; for instance transcription factor binding site (TFBS) composition. Ideally, such tools should not require prior programming knowledge to ensure they are accessible for all users. Results We present TrawlerWeb, a web-based version of the Trawler_standalone tool (Nat Methods 4:563–5, 2007; Nat Protoc 5:323–34, 2010), to allow for the identification of enriched motifs in DNA sequences obtained from next-generation sequencing experiments in order to predict their TFBS composition. TrawlerWeb is designed for online queries with standard options common to web-based motif discovery tools. In addition, TrawlerWeb provides three unique new features: 1) TrawlerWeb allows the input of BED files directly generated from NGS experiments, 2) it automatically generates an input-matched biologically relevant background, and 3) it displays resulting conservation scores for each instance of the motif found in the input sequences, which assists the researcher in prioritising the motifs to validate experimentally. Finally, to date, this web-based version of Trawler_standalone remains the fastest online de novo motif discovery tool compared to other popular web-based software, while generating predictions with high accuracy. Conclusions TrawlerWeb provides users with a fast, simple and easy-to-use web interface for de novo motif discovery. This will assist in rapidly analysing NGS datasets that are now being routinely generated. TrawlerWeb is freely available and accessible at: http://trawler.erc.monash.edu.au. Electronic supplementary material The online version of this article (10.1186/s12864-018-4630-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Louis T Dang
- Australian Regenerative Medicine Institute, Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia
| | - Markus Tondl
- Australian Regenerative Medicine Institute, Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia
| | - Man Ho H Chiu
- Australian Regenerative Medicine Institute, Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia
| | - Jerico Revote
- eResearch, Monash University, Clayton, VIC, Australia
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Vincent Tano
- Department of Biochemistry and Molecular Biology, Bio21 Institute and Cell Signalling Research Laboratories, The University of Melbourne, Melbourne, VIC, Australia
| | - Alex Tokolyi
- Australian Regenerative Medicine Institute, Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia
| | - Florence Besse
- CNRS, Inserm, Institute of Biology Valrose, Université Côte d'Azur, Parc Valrose, Nice, France
| | - Greg Quaife-Ryan
- School of Biomedical Sciences, The University of Queensland, QLD, Brisbane, Australia
| | - Helen Cumming
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Mark J Drvodelic
- Australian Regenerative Medicine Institute, Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia
| | - Michael P Eichenlaub
- Australian Regenerative Medicine Institute, Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia
| | - Jeannette C Hallab
- Australian Regenerative Medicine Institute, Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia
| | - Julian S Stolper
- Australian Regenerative Medicine Institute, Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia
| | - Fernando J Rossello
- Australian Regenerative Medicine Institute, Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, Bio21 Institute and Cell Signalling Research Laboratories, The University of Melbourne, Melbourne, VIC, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Hieu T Nim
- Australian Regenerative Medicine Institute, Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia.,Faculty of Information Technology, Monash University, Clayton, VIC, Australia
| | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - James E Hudson
- School of Biomedical Sciences, The University of Queensland, QLD, Brisbane, Australia
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
20
|
Role of Zic Family Proteins in Transcriptional Regulation and Chromatin Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1046:353-380. [DOI: 10.1007/978-981-10-7311-3_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Winata CL, Łapiński M, Pryszcz L, Vaz C, Bin Ismail MH, Nama S, Hajan HS, Lee SGP, Korzh V, Sampath P, Tanavde V, Mathavan S. Cytoplasmic polyadenylation-mediated translational control of maternal mRNAs directs maternal-to-zygotic transition. Development 2018; 145:dev.159566. [PMID: 29229769 DOI: 10.1242/dev.159566] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/20/2017] [Indexed: 10/18/2022]
Abstract
In the earliest stages of animal development following fertilization, maternally deposited mRNAs direct biological processes to the point of zygotic genome activation (ZGA). These maternal mRNAs undergo cytoplasmic polyadenylation (CPA), suggesting translational control of their activation. To elucidate the biological role of CPA during embryogenesis, we performed genome-wide polysome profiling at several stages of zebrafish development. Our analysis revealed a correlation between CPA and polysome-association dynamics, demonstrating a coupling of translation to the CPA of maternal mRNAs. Pan-embryonic CPA inhibition disrupted the maternal-to-zygotic transition (MZT), causing a failure of developmental progression beyond the mid-blastula transition and changes in global gene expression that indicated a failure of ZGA and maternal mRNA clearance. Among the genes that were differentially expressed were those encoding chromatin modifiers and key transcription factors involved in ZGA, including nanog, pou5f3 and sox19b, which have distinct CPA dynamics. Our results establish the necessity of CPA for ensuring progression of the MZT. The RNA-seq data generated in this study represent a valuable zebrafish resource for the discovery of novel elements of the early embryonic transcriptome.
Collapse
Affiliation(s)
- Cecilia Lanny Winata
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland .,Max-Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Maciej Łapiński
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Leszek Pryszcz
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Candida Vaz
- Bioinformatics Institute, Agency for Science Technology and Research, 138671 Singapore
| | | | - Srikanth Nama
- Institute of Medical Biology, Agency of Science Technology and Research, 138648 Singapore
| | - Hajira Shreen Hajan
- Genome Institute of Singapore, Agency of Science Technology and Research, 138672 Singapore
| | - Serene Gek Ping Lee
- Genome Institute of Singapore, Agency of Science Technology and Research, 138672 Singapore
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland.,Institute of Molecular and Cell Biology, Agency of Science Technology and Research, 138673 Singapore
| | - Prabha Sampath
- Institute of Medical Biology, Agency of Science Technology and Research, 138648 Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, 117596 Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857 Singapore
| | - Vivek Tanavde
- Bioinformatics Institute, Agency for Science Technology and Research, 138671 Singapore.,Institute of Medical Biology, Agency of Science Technology and Research, 138648 Singapore
| | - Sinnakaruppan Mathavan
- Genome Institute of Singapore, Agency of Science Technology and Research, 138672 Singapore .,Vision Research Foundation, Sankara Nethralaya, 600 006 Chennai, India
| |
Collapse
|
22
|
Zebrafish Zic Genes Mediate Developmental Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1046:157-177. [PMID: 29442322 DOI: 10.1007/978-981-10-7311-3_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The introduction of genomics into the field of developmental biology led to a vast expansion of knowledge about developmental genes and signaling mechanisms they are involved in. Unlike mammals, the zebrafish features seven Zic genes. This provides an interesting insight into Zic gene evolution. In addition, an unprecedented bioimaging capability of semitransparent zebrafish embryos turns to be a crucial factor in medium- to large-scale analysis of the activity of potential regulatory elements. The Zic family of zinc finger proteins plays an important, relatively well-established, role in the regulation of stem cells and neural development and, in particular, during neural fate commitment and determination. At the same time, some Zic genes are expressed in mesodermal lineages, and their deficiency causes a number of developmental defects in axis formation, establishing body symmetry and cardiac morphogenesis. In stem cells, Zic genes are required to maintain pluripotency by binding to the proximal promoters of pluripotency genes (Oct4, Nanog, Sox2, etc.). During embryogenesis, the dynamic nature of Zic transcriptional regulation is manifested by the interaction of these factors with distal enhancers and other regulatory elements associated with the control of gene transcription and, in particular, with the Nodal and Wnt signaling pathways that play a role in establishing basic organization of the vertebrate body. Zic transcription factors may regulate development through acting alone as well as in combination with other transcription factors. This is achieved due to Zic binding to sites adjacent to the binding sites of other transcription factors, including Gli. This probably leads to the formation of multi-transcription factor complexes associated with enhancers.
Collapse
|
23
|
Hursh DA, Stultz BG. Odd-Paired: The Drosophila Zic Gene. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1046:41-58. [PMID: 29442316 DOI: 10.1007/978-981-10-7311-3_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Zinc finger in the cerebellum (Zic) proteins are a family of transcription factors with multiple roles during development, particularly in neural tissues. The founding member of the Zic family is the Drosophila odd-paired (opa) gene. The Opa protein has a DNA binding domain containing five Cys2His2-type zinc fingers and has been shown to act as a sequence-specific DNA binding protein. Opa has significant homology to mammalian Zic1, Zic2, and Zic3 within the zinc finger domain and in two other conserved regions outside that domain. opa was initially identified as a pair-rule gene, part of the hierarchy of genes that establish the segmental body plan of the early Drosophila embryo. However, its wide expression pattern during embryogenesis indicates it plays additional roles. Embryos deficient in opa die before hatching with aberrant segmentation but also with defects in larval midgut formation. Post-embryonically, opa plays important roles in adult head development and circadian rhythm. Based on extensive neural expression, opa is predicted to be involved in many aspects of neural development and behavior, like other proteins of the Zic family. Consensus DNA binding sites have been identified for Opa and have been shown to activate transcription in vivo. However, there is evidence Opa may serve as a transcriptional regulator in the absence of direct DNA binding, as has been seen for other Zic proteins.
Collapse
Affiliation(s)
- Deborah A Hursh
- Division of Cell and Gene Therapy, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| | - Brian G Stultz
- Division of Cell and Gene Therapy, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
24
|
Bellchambers HM, Ware SM. ZIC3 in Heterotaxy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1046:301-327. [PMID: 29442328 DOI: 10.1007/978-981-10-7311-3_15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mutation of ZIC3 causes X-linked heterotaxy, a syndrome in which the laterality of internal organs is disrupted. Analysis of model organisms and gene expression during early development suggests ZIC3-related heterotaxy occurs due to defects at the earliest stage of left-right axis formation. Although there are data to support abnormalities of the node and cilia as underlying causes, it is unclear at the molecular level why loss of ZIC3 function causes such these defects. ZIC3 has putative roles in a number of developmental signalling pathways that have distinct roles in establishing the left-right axis. This complicates the understanding of the mechanistic basis of Zic3 in early development and left-right patterning. Here we summarise our current understanding of ZIC3 function and describe the potential role ZIC3 plays in important signalling pathways and their links to heterotaxy.
Collapse
Affiliation(s)
- Helen M Bellchambers
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephanie M Ware
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA. .,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
25
|
Shen H, Shin EM, Lee S, Mathavan S, Koh H, Osato M, Choi H, Tergaonkar V, Korzh V. Ikk2 regulates cytokinesis during vertebrate development. Sci Rep 2017; 7:8094. [PMID: 28808254 PMCID: PMC5556003 DOI: 10.1038/s41598-017-06904-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/20/2017] [Indexed: 12/23/2022] Open
Abstract
NFκB signaling has a pivotal role in regulation of development, innate immunity, and inflammation. Ikk2 is one of the two critical kinases that regulate the NFκB signaling pathway. While the role of Ikk2 in immunity, inflammation and oncogenesis has received attention, an understanding of the role of Ikk2 in vertebrate development has been compounded by the embryonic lethality seen in mice lacking Ikk2. We find that despite abnormal angiogenesis in IKK2 zygotic mutants of zebrafish, the maternal activity of Ikk2 supports embryogenesis and maturation of fertile animals and allows to study the role of IKK2 in development. Maternal-zygotic ikk2 mutants represent the first vertebrates globally devoid of maternal and zygotic Ikk2 activity. They are defective in cell proliferation as evidenced by abnormal cytokinesis, nuclear enlargement and syncytialisation of a significant portion of blastoderm. We further document that reduced phosphorylation of Aurora A by Ikk2 could underlie the basis of these defects in cell division.
Collapse
Affiliation(s)
- Hongyuan Shen
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Eun Myoung Shin
- Institute of Molecular and Cell Biology, Singapore, Singapore.,Cancer Science Institute, NUS, Singapore, Singapore
| | - Serene Lee
- Genome Institute of Singapore, Singapore, Singapore
| | | | - Hiromi Koh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Motomi Osato
- Cancer Science Institute, NUS, Singapore, Singapore
| | - Hyungwon Choi
- Institute of Molecular and Cell Biology, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology, Singapore, Singapore. .,Department of Biochemistry, NUS, Singapore, Singapore. .,Center for Cancer Biology, Unisa, Adelaide, Australia.
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, Singapore, Singapore. .,International Institute of Molecular and Cell Biology, Warsaw, Poland.
| |
Collapse
|
26
|
Sedykh I, Yoon B, Roberson L, Moskvin O, Dewey CN, Grinblat Y. Zebrafish zic2 controls formation of periocular neural crest and choroid fissure morphogenesis. Dev Biol 2017; 429:92-104. [PMID: 28689736 DOI: 10.1016/j.ydbio.2017.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/30/2017] [Accepted: 07/06/2017] [Indexed: 12/31/2022]
Abstract
The vertebrate retina develops in close proximity to the forebrain and neural crest-derived cartilages of the face and jaw. Coloboma, a congenital eye malformation, is associated with aberrant forebrain development (holoprosencephaly) and with craniofacial defects (frontonasal dysplasia) in humans, suggesting a critical role for cross-lineage interactions during retinal morphogenesis. ZIC2, a zinc-finger transcription factor, is linked to human holoprosencephaly. We have previously used morpholino assays to show zebrafish zic2 functions in the developing forebrain, retina and craniofacial cartilage. We now report that zebrafish with genetic lesions in zebrafish zic2 orthologs, zic2a and zic2b, develop with retinal coloboma and craniofacial anomalies. We demonstrate a requirement for zic2 in restricting pax2a expression and show evidence that zic2 function limits Hh signaling. RNA-seq transcriptome analysis identified an early requirement for zic2 in periocular neural crest as an activator of alx1, a transcription factor with essential roles in craniofacial and ocular morphogenesis in human and zebrafish. Collectively, these data establish zic2 mutant zebrafish as a powerful new genetic model for in-depth dissection of cell interactions and genetic controls during craniofacial complex development.
Collapse
Affiliation(s)
- Irina Sedykh
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| | - Baul Yoon
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA; Genetics Ph. D. Training Program, University of Wisconsin, Madison, WI 53706, USA
| | - Laura Roberson
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| | - Oleg Moskvin
- Primate Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Colin N Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yevgenya Grinblat
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA; McPherson Eye Research Institute, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|
27
|
Pickering J, Cunliffe VT, Van Eeden F, Borycki AG. Hedgehog signalling acts upstream of Laminin alpha1 transcription in the zebrafish paraxial mesoderm. Matrix Biol 2016; 62:58-74. [PMID: 27856309 DOI: 10.1016/j.matbio.2016.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/01/2022]
Abstract
Laminin-111 (α1β1γ1) is a member of the Laminin family of extra-cellular matrix proteins that comprises 16 members, components of basement membranes. Laminin-111, one of the first Laminin proteins synthesised during embryogenesis, is required for basement membrane deposition and has essential roles in tissue morphogenesis and patterning. Yet, the mechanisms controlling Laminin-111 expression are poorly understood. We generated a zebrafish transgenic reporter line that reproduces faithfully the expression pattern of lama1, the gene encoding Laminin α1, and we used this reporter line to investigate lama1 transcriptional regulation. Our findings established that lama1 expression is controlled by intronic enhancers, including an enhancer directing expression in the paraxial mesoderm, anterior spinal cord and hindbrain, located in intron 1. We show that Hedgehog signalling is necessary and sufficient for lama1 transcription in the paraxial mesoderm and identify putative Gli/Zic binding sites that may mediate this control. These findings uncover a conserved role for Hedgehog signalling in the control of basement membrane assembly via its transcriptional regulation of lama1, and provide a mechanism to coordinate muscle cell fate specification in the zebrafish embryo.
Collapse
Affiliation(s)
- Joseph Pickering
- Bateson Centre, Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Vincent T Cunliffe
- Bateson Centre, Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Freek Van Eeden
- Bateson Centre, Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Anne-Gaëlle Borycki
- Bateson Centre, Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
28
|
Reutter H, Hilger AC, Hildebrandt F, Ludwig M. Underlying genetic factors of the VATER/VACTERL association with special emphasis on the "Renal" phenotype. Pediatr Nephrol 2016; 31:2025-33. [PMID: 26857713 PMCID: PMC5207487 DOI: 10.1007/s00467-016-3335-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 12/18/2022]
Abstract
The acronym VATER/VACTERL association (OMIM #192350) refers to the rare non-random co-occurrence of the following component features (CFs): vertebral defects (V), anorectal malformations (A), cardiac defects (C), tracheoesophageal fistula with or without esophageal atresia (TE), renal malformations (R), and limb defects (L). According to epidemiological studies, the majority of patients with VATER/VACTERL association present with a "Renal" phenotype comprising a large spectrum of congenital renal anomalies. This finding is supported by evidence linking all of the human disease genes for the VATER/VACTERL association identified to date, namely, FGF8, FOXF1, HOXD13, LPP, TRAP1, and ZIC3, with renal malformations. Here we review these genotype-phenotype correlations and suggest that the elucidation of the genetic causes of the VATER/VACTERL association will ultimately provide insights into the genetic causes of the complete spectrum of congenital renal anomalies per se.
Collapse
Affiliation(s)
- Heiko Reutter
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany. .,Department of Neonatology and Pediatric Intensive Care, Children's Hospital-University of Bonn, Bonn, Germany.
| | - Alina C Hilger
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital-Harvard Medical School, Boston, MA, USA
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| |
Collapse
|
29
|
Tan H, Onichtchouk D, Winata C. DANIO-CODE: Toward an Encyclopedia of DNA Elements in Zebrafish. Zebrafish 2015; 13:54-60. [PMID: 26671609 PMCID: PMC4742988 DOI: 10.1089/zeb.2015.1179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The zebrafish has emerged as a model organism for genomics studies. The symposium “Toward an encyclopedia of DNA elements in zebrafish” held in London in December 2014, was coorganized by Ferenc Müller and Fiona Wardle. This meeting is a follow-up of a similar previous workshop held 2 years earlier and represents a push toward the formalization of a community effort to annotate functional elements in the zebrafish genome. The meeting brought together zebrafish researchers, bioinformaticians, as well as members of established consortia, to exchange scientific findings and experience, as well as to discuss the initial steps toward the formation of a DANIO-CODE consortium. In this study, we provide the latest updates on the current progress of the consortium's efforts, opening up a broad invitation to researchers to join in and contribute to DANIO-CODE.
Collapse
Affiliation(s)
- Haihan Tan
- 1 Randall Division of Cell and Molecular Biophysics, King's College London , London, United Kingdom
| | - Daria Onichtchouk
- 2 Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg , Freiburg, Germany
| | - Cecilia Winata
- 3 International Institute of Molecular and Cell Biology , Warsaw, Poland .,4 Max Planck Institute for Heart and Lung Research , Bad Nauheim, Germany
| |
Collapse
|
30
|
Sun L, Chen F, Peng G. Conserved Noncoding Sequences Regulate lhx5 Expression in the Zebrafish Forebrain. PLoS One 2015; 10:e0132525. [PMID: 26147098 PMCID: PMC4492605 DOI: 10.1371/journal.pone.0132525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 06/15/2015] [Indexed: 01/23/2023] Open
Abstract
The LIM homeobox family protein Lhx5 plays important roles in forebrain development in the vertebrates. The lhx5 gene exhibits complex temporal and spatial expression patterns during early development but its transcriptional regulation mechanisms are not well understood. Here, we have used transgenesis in zebrafish in order to define regulatory elements that drive lhx5 expression in the forebrain. Through comparative genomic analysis we identified 10 non-coding sequences conserved in five teleost species. We next examined the enhancer activities of these conserved non-coding sequences with Tol2 transposon mediated transgenesis. We found a proximately located enhancer gave rise to robust reporter EGFP expression in the forebrain regions. In addition, we identified an enhancer located at approximately 50 kb upstream of lhx5 coding region that is responsible for reporter gene expression in the hypothalamus. We also identify an enhancer located approximately 40 kb upstream of the lhx5 coding region that is required for expression in the prethalamus (ventral thalamus). Together our results suggest discrete enhancer elements control lhx5 expression in different regions of the forebrain.
Collapse
Affiliation(s)
- Liu Sun
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Fengjiao Chen
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Gang Peng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
31
|
Winata CL, Kondrychyn I, Korzh V. Changing Faces of Transcriptional Regulation Reflected by Zic3. Curr Genomics 2015; 16:117-27. [PMID: 26085810 PMCID: PMC4467302 DOI: 10.2174/1389202916666150205124519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 02/07/2023] Open
Abstract
The advent of genomics in the study of developmental mechanisms has brought a trove of information
on gene datasets and regulation during development, where the Zic family of zinc-finger proteins
plays an important role. Genomic analysis of the modes of action of Zic3 in pluripotent cells demonstrated its
requirement for maintenance of stem cells pluripotency upon binding to the proximal regulatory regions
(promoters) of genes associated with cell pluripotency (Nanog, Sox2, Oct4, etc.) as well as cell cycle, proliferation, oncogenesis
and early embryogenesis. In contrast, during gastrulation and neurulation Zic3 acts by binding the distal regulatory
regions (enhancers, etc) associated with control of gene transcription in the Nodal and Wnt signaling pathways, including
genes that act to break body symmetry. This illustrates a general role of Zic3 as a transcriptional regulator that
acts not only alone, but in many instances in conjunction with other transcription factors. The latter is done by binding to
adjacent sites in the context of multi-transcription factor complexes associated with regulatory elements.
Collapse
Affiliation(s)
- Cecilia Lanny Winata
- International Institute of Molecular and Cell Biology, Warsaw, Poland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Vladimir Korzh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore; Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
32
|
Tian J, He G, Mai K, Liu C. Effects of postprandial starvation on mRNA expression of endocrine-, amino acid and peptide transporter-, and metabolic enzyme-related genes in zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:773-787. [PMID: 25805459 DOI: 10.1007/s10695-015-0045-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
The goal of this study was to systematically evaluate the molecular activities of endocrine-, amino acid and peptide transporters-, and metabolic enzyme-related genes in 35-day-old mixed-sex zebrafish (Danio rerio) after feeding . Zebrafish with initial body weights ranging from 9 to 11 mg were fasted for 384 h in a controlled indoor environment. Fish were sampled at 0, 3, 6, 12, 24, 48, 96, 192, and 384 h after fed. Overall, the present study results show that the regulatory mechanism that insulin-like growth factor I negative feedback regulated growth hormone is conserved in zebrafish, as it is in mammals, but that regulation of growth hormone receptors is highly intricate. Leptin and cholecystokinin are time-dependent negative feedback signals, and neuropeptide Y may be an important positive neuropeptide for food intake in zebrafish. The amino acid/carnitine transporters B(0,+) (ATB(0,+)) and broad neutral (0) amino acid transporter 1(B(0)AT1) mRNA levels measured in our study suggest that protein may be utilized during 24-96 h of fasting in zebrafish. Glutamine synthetase mRNA levels were downregulated, and glutamate dehydrogenase, alanine aminotransferase, aspartate transaminase, and trypsin mRNA levels were upregulated after longtime fasting in this study. The mRNA expression levels of fatty acid synthetase decreased significantly (P < 0.05), whereas those of lipoprotein lipase rapidly increased after 96 h of fasting. Fasting activated the expression of glucose synthesis genes when fasting for short periods of time; when fasting is prolonged, the mRNA levels of glucose breakdown enzymes and pentose phosphate shunt genes decreased.
Collapse
Affiliation(s)
- Juan Tian
- Key Laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, No. 5 Yushan Rd., Qingdao, 266003, People's Republic of China,
| | | | | | | |
Collapse
|
33
|
Paranjpe SS, Veenstra GJC. Establishing pluripotency in early development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:626-36. [PMID: 25857441 DOI: 10.1016/j.bbagrm.2015.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 01/23/2023]
Abstract
The earliest steps of embryonic development involve important changes in chromatin and transcription factor networks, which are orchestrated to establish pluripotent cells that will form the embryo. DNA methylation, histone modifications, the pluripotency regulatory network of transcription factors, maternal factors and newly translated proteins all contribute to these transitions in dynamic ways. Moreover, these dynamics are linked to the onset of zygotic transcription. We will review recent progress in our understanding of chromatin state and regulation of gene expression in the context of embryonic development in vertebrates, in particular mouse, Xenopus and zebrafish. We include work on mouse embryonic stem cells and highlight work that illustrates how early embryonic dynamics establish gene regulatory networks and the state of pluripotency.
Collapse
Affiliation(s)
- Sarita S Paranjpe
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Gert Jan C Veenstra
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.
| |
Collapse
|
34
|
Bill BR, Korzh V. Choroid plexus in developmental and evolutionary perspective. Front Neurosci 2014; 8:363. [PMID: 25452709 PMCID: PMC4231874 DOI: 10.3389/fnins.2014.00363] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/22/2014] [Indexed: 01/17/2023] Open
Abstract
The blood-cerebrospinal fluid boundary is present at the level of epithelial cells of the choroid plexus. As one of the sources of the cerebrospinal fluid (CSF), the choroid plexus (CP) plays an important role during brain development and function. Its formation has been studied largely in mammalian species. Lately, progress in other model animals, in particular the zebrafish, has brought a deeper understanding of CP formation, due in part to the ability to observe CP development in vivo. At the same time, advances in comparative genomics began providing information, which opens a possibility to understand further the molecular mechanisms involved in evolution of the CP and the blood-cerebrospinal fluid boundary formation. Hence this review focuses on analysis of the CP from developmental and evolutionary perspectives.
Collapse
Affiliation(s)
- Brent Roy Bill
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles Los Angeles, CA, USA
| | - Vladimir Korzh
- Agency for Science, Technology and Research of Singapore, Institute of Molecular and Cell Biology Singapore, Singapore ; National University of Singapore, Department of Biological Sciences Singapore, Singapore
| |
Collapse
|
35
|
Korzh V. Stretching cell morphogenesis during late neurulation and mild neural tube defects. Dev Growth Differ 2014; 56:425-33. [DOI: 10.1111/dgd.12143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Vladimir Korzh
- Institute of Molecular and Cell Biology; Singapore
- Department of Biological Sciences; National University of Singapore; Singapore
| |
Collapse
|