1
|
Bernardini A, Mantovani R. Q-rich activation domains: flexible 'rulers' for transcription start site selection? Trends Genet 2025; 41:275-285. [PMID: 39648061 DOI: 10.1016/j.tig.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/31/2024] [Accepted: 11/14/2024] [Indexed: 12/10/2024]
Abstract
Recent findings broadened the function of RNA polymerase II (Pol II) proximal promoter motifs from quantitative regulators of transcription to important determinants of transcription start site (TSS) position. These motifs are recognized by transcription factors (TFs) that we propose to term 'ruler' TFs (rTFs), such as NRF1, NF-Y, YY1, ZNF143, BANP, and members of the SP, ETS, and CRE families, sharing as a common feature a glutamine-rich (Q-rich) effector domain also enriched in valine, isoleucine, and threonine (QVIT-rich). We propose that rTFs guide TSS location by constraining the position of the pre-initiation complex (PIC) during its promoter recognition phase through a specialized, and still enigmatic, class of activation domains.
Collapse
Affiliation(s)
- Andrea Bernardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.
| |
Collapse
|
2
|
Dong J, Sathyan K, Scott T, Mukherjee R, Guertin M. ZNF143 binds DNA and stimulates transcription initiation to activate and repress direct target genes. Nucleic Acids Res 2025; 53:gkae1182. [PMID: 39676670 PMCID: PMC11754675 DOI: 10.1093/nar/gkae1182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/30/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
Transcription factors bind to sequence motifs and act as activators or repressors. Transcription factors interface with a constellation of accessory cofactors to regulate distinct mechanistic steps to regulate transcription. We rapidly degraded the essential and pervasively expressed transcription factor ZNF143 to determine its function in the transcription cycle. ZNF143 facilitates RNA polymerase initiation and activates gene expression. ZNF143 binds the promoter of nearly all its activated target genes. ZNF143 also binds near the site of genic transcription initiation to directly repress a subset of genes. Although ZNF143 stimulates initiation at ZNF143-repressed genes (i.e. those that increase transcription upon ZNF143 depletion), the molecular context of binding leads to cis repression. ZNF143 competes with other more efficient activators for promoter access, physically occludes transcription initiation sites and promoter-proximal sequence elements, and acts as a molecular roadblock to RNA polymerases during early elongation. The term context specific is often invoked to describe transcription factors that have both activation and repression functions. We define the context and molecular mechanisms of ZNF143-mediated cis activation and repression.
Collapse
Affiliation(s)
- Jinhong Dong
- Center for Cell Analysis and Modeling, University of Connecticut, 400 Farmington Ave, Farmington, Connecticut 06030, USA
| | - Kizhakke Mattada Sathyan
- Center for Cell Analysis and Modeling, University of Connecticut, 400 Farmington Ave, Farmington, Connecticut 06030, USA
| | - Thomas G Scott
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Ave, Charlottesville, Virginia 22903, USA
| | - Rudradeep Mukherjee
- Center for Cell Analysis and Modeling, University of Connecticut, 400 Farmington Ave, Farmington, Connecticut 06030, USA
| | - Michael J Guertin
- Center for Cell Analysis and Modeling, University of Connecticut, 400 Farmington Ave, Farmington, Connecticut 06030, USA
- Department of Genetics and Genome Sciences, University of Connecticut, 400 Farmington Ave, Farmington, Connecticut 06030, USA
| |
Collapse
|
3
|
Dong J, Scott TG, Mukherjee R, Guertin MJ. ZNF143 binds DNA and stimulates transcripstion initiation to activate and repress direct target genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.594008. [PMID: 38798607 PMCID: PMC11118474 DOI: 10.1101/2024.05.13.594008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Transcription factors bind to sequence motifs and act as activators or repressors. Transcription factors interface with a constellation of accessory cofactors to regulate distinct mechanistic steps to regulate transcription. We rapidly degraded the essential and ubiquitously expressed transcription factor ZNF143 to determine its function in the transcription cycle. ZNF143 facilitates RNA Polymerase initiation and activates gene expression. ZNF143 binds the promoter of nearly all its activated target genes. ZNF143 also binds near the site of genic transcription initiation to directly repress a subset of genes. Although ZNF143 stimulates initiation at ZNF143-repressed genes (i.e. those that increase expression upon ZNF143 depletion), the molecular context of binding leads to cis repression. ZNF143 competes with other more efficient activators for promoter access, physically occludes transcription initiation sites and promoter-proximal sequence elements, and acts as a molecular roadblock to RNA Polymerases during early elongation. The term context specific is often invoked to describe transcription factors that have both activation and repression functions. We define the context and molecular mechanisms of ZNF143-mediated cis activation and repression.
Collapse
Affiliation(s)
- Jinhong Dong
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
| | - Thomas G Scott
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Rudradeep Mukherjee
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
| | - Michael J Guertin
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, Connecticut, United States of America
| |
Collapse
|
4
|
Hepkema J, Lee NK, Stewart BJ, Ruangroengkulrith S, Charoensawan V, Clatworthy MR, Hemberg M. Predicting the impact of sequence motifs on gene regulation using single-cell data. Genome Biol 2023; 24:189. [PMID: 37582793 PMCID: PMC10426127 DOI: 10.1186/s13059-023-03021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/21/2023] [Indexed: 08/17/2023] Open
Abstract
The binding of transcription factors at proximal promoters and distal enhancers is central to gene regulation. Identifying regulatory motifs and quantifying their impact on expression remains challenging. Using a convolutional neural network trained on single-cell data, we infer putative regulatory motifs and cell type-specific importance. Our model, scover, explains 29% of the variance in gene expression in multiple mouse tissues. Applying scover to distal enhancers identified using scATAC-seq from the developing human brain, we identify cell type-specific motif activities in distal enhancers. Scover can identify regulatory motifs and their importance from single-cell data where all parameters and outputs are easily interpretable.
Collapse
Affiliation(s)
- Jacob Hepkema
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Nicholas Keone Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Benjamin J Stewart
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Siwat Ruangroengkulrith
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, 7310, Thailand
- Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Menna R Clatworthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK
| | - Martin Hemberg
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Mao F, Shi YG. Targeting the LSD1/KDM1 Family of Lysine Demethylases in Cancer and Other Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:15-49. [PMID: 37751134 DOI: 10.1007/978-3-031-38176-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) was the first histone demethylase discovered and the founding member of the flavin-dependent lysine demethylase family (KDM1). The human KDM1 family includes KDM1A and KDM1B, which primarily catalyze demethylation of histone H3K4me1/2. The KDM1 family is involved in epigenetic gene regulation and plays important roles in various biological and disease pathogenesis processes, including cell differentiation, embryonic development, hormone signaling, and carcinogenesis. Malfunction of many epigenetic regulators results in complex human diseases, including cancers. Regulators such as KDM1 have become potential therapeutic targets because of the reversibility of epigenetic control of genome function. Indeed, several classes of KDM1-selective small molecule inhibitors have been developed, some of which are currently in clinical trials to treat various cancers. In this chapter, we review the discovery, biochemical, and molecular mechanisms, atomic structure, genetics, biology, and pathology of the KDM1 family of lysine demethylases. Focusing on cancer, we also provide a comprehensive summary of recently developed KDM1 inhibitors and related preclinical and clinical studies to provide a better understanding of the mechanisms of action and applications of these KDM1-specific inhibitors in therapeutic treatment.
Collapse
Affiliation(s)
- Fei Mao
- Longevity and Aging Institute (LAI), IBS and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yujiang Geno Shi
- Longevity and Aging Institute (LAI), IBS and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Santana JF, Collins GS, Parida M, Luse DS, Price D. Differential dependencies of human RNA polymerase II promoters on TBP, TAF1, TFIIB and XPB. Nucleic Acids Res 2022; 50:9127-9148. [PMID: 35947745 PMCID: PMC9458433 DOI: 10.1093/nar/gkac678] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/08/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
The effects of rapid acute depletion of components of RNA polymerase II (Pol II) general transcription factors (GTFs) that are thought to be critical for formation of preinitiation complexes (PICs) and initiation in vitro were quantified in HAP1 cells using precision nuclear run-on sequencing (PRO-Seq). The average dependencies for each factor across >70 000 promoters varied widely even though levels of depletions were similar. Some of the effects could be attributed to the presence or absence of core promoter elements such as the upstream TBP-specificity motif or downstream G-rich sequences, but some dependencies anti-correlated with such sequences. While depletion of TBP had a large effect on most Pol III promoters only a small fraction of Pol II promoters were similarly affected. TFIIB depletion had the largest general effect on Pol II and also correlated with apparent termination defects downstream of genes. Our results demonstrate that promoter activity is combinatorially influenced by recruitment of TFIID and sequence-specific transcription factors. They also suggest that interaction of the preinitiation complex (PIC) with nucleosomes can affect activity and that recruitment of TFIID containing TBP only plays a positive role at a subset of promoters.
Collapse
Affiliation(s)
- Juan F Santana
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Geoffrey S Collins
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Mrutyunjaya Parida
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Donal S Luse
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | |
Collapse
|
7
|
Albeltagy RS, Mumtaz F, Abdel Moneim AE, El-Habit OH. N-Acetylcysteine Reduces miR-146a and NF-κB p65 Inflammatory Signaling Following Cadmium Hepatotoxicity in Rats. Biol Trace Elem Res 2021; 199:4657-4665. [PMID: 33454892 DOI: 10.1007/s12011-021-02591-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
We performed a thorough screening and analysis of the impact of cadmium chloride (CdCl2) and N-acetylcysteine (NAC) on the miR146a/NF-κB p65 inflammatory pathway and mitochondrial biogenesis dysfunction in male albino rats. A total of 24 male albino rats were divided into three groups: a control group, a CdCl2-treated group (3 mg/kg, orally), and a CdCl2 + NAC-treated group (200 mg/kg of NAC, 1 h after CdCl2 treatment), for 60 consecutive days. Real-time quantitative PCR was used to analyze the expression of miR146a, Irak1, Traf6, Nrf1, Nfe2l2, Pparg, Prkaa, Stat3, Tfam, Tnfa, and Il1b, whereas tumor necrosis factor-α, interleukin-1β, and cyclooxygenase-2 protein levels were assessed using ELISA, and NF-κB p65 was detected using western blotting. A significant restoration of homeostatic inflammatory processes as well as mitochondrial biogenesis was observed after NAC and CdCl2 treatment. Decreased miR146a and NF-κB p65 were also found after treatment with NAC and CdCl2 compared with CdCl2 treatment alone. Collectively, our findings demonstrate that CdCl2 caused mtDNA release because of Tfam loss, leading to NF-κB p65 activation. Co-treatment with NAC could alleviate Cd-induced genotoxicity in liver tissue. We concluded that adding NAC to CdCl2 resulted in a decreased signaling of the NF-κB p65 signaling pathway.
Collapse
Affiliation(s)
- Rasha S Albeltagy
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Farah Mumtaz
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Ola H El-Habit
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
8
|
Oliveira TT, Fontes-Dantas FL, de Medeiros Oliveira RK, Pinheiro DML, Coutinho LG, da Silva VL, de Souza SJ, Agnez-Lima LF. Chemical Inhibition of Apurinic-Apyrimidinic Endonuclease 1 Redox and DNA Repair Functions Affects the Inflammatory Response via Different but Overlapping Mechanisms. Front Cell Dev Biol 2021; 9:731588. [PMID: 34616737 PMCID: PMC8488223 DOI: 10.3389/fcell.2021.731588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/27/2021] [Indexed: 01/21/2023] Open
Abstract
The presence of oxidized DNA lesions, such as 7,8-dihydro-8-oxoguanine (8-oxoG) and apurinic/apyrimidinic sites (AP sites), has been described as epigenetic signals that are involved in gene expression control. In mammals, Apurinic-apyrimidinic endonuclease 1/Redox factor-1 (APE1/Ref-1) is the main AP endonuclease of the base excision repair (BER) pathway and is involved in active demethylation processes. In addition, APE1/Ref-1, through its redox function, regulates several transcriptional factors. However, the transcriptional control targets of each APE1 function are not completely known. In this study, a transcriptomic approach was used to investigate the effects of chemical inhibition of APE1/Ref-1 redox or DNA repair functions by E3330 or methoxyamine (MX) in an inflammatory cellular model. Under lipopolysaccharide (LPS) stimulation, both E3330 and MX reduced the expression of some cytokines and chemokines. Interestingly, E3330 treatment reduced cell viability after 48 h of the treatment. Genes related to inflammatory response and mitochondrial processes were downregulated in both treatments. In the E3330 treatment, RNA processing and ribosome biogenesis genes were downregulated, while they were upregulated in the MX treatment. Furthermore, in the E3330 treatment, the cellular stress response was the main upregulated process, while the cellular macromolecule metabolic process was observed in MX-upregulated genes. Nuclear respiratory factor 1 (NRF1) was predicted to be a master regulator of the downregulated genes in both treatments, while the ETS transcription factor ELK1 (ELK1) was predicted to be a master regulator only for E3330 treatment. Decreased expression of ELK1 and its target genes and a reduced 28S/18S ratio were observed, suggesting impaired rRNA processing. In addition, both redox and repair functions can affect the expression of NRF1 and GABPA target genes. The master regulators predicted for upregulated genes were YY1 and FLI1 for the E3330 and MX treatments, respectively. In summary, the chemical inhibition of APE1/Ref-1 affects gene expression regulated mainly by transcriptional factors of the ETS family, showing partial overlap of APE1 redox and DNA repair functions, suggesting that these activities are not entirely independent. This work provides a new perspective on the interaction between APE1 redox and DNA repair activity in inflammatory response modulation and transcription.
Collapse
Affiliation(s)
- Thais Teixeira Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil
| | - Fabrícia Lima Fontes-Dantas
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil
| | | | | | - Leonam Gomes Coutinho
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil.,Instituto Federal de Educação Tecnológica do Rio Grande do Norte, IFRN, São Paulo do Potengi, Brazil
| | - Vandeclecio Lira da Silva
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, Brazil.,Bioinformatics Multidisciplinary Environment (BioME), IMD, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Sandro José de Souza
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, Brazil.,Bioinformatics Multidisciplinary Environment (BioME), IMD, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
9
|
Del Olmo B, Merkurjev D, Yao L, Pinsach-Abuin ML, Garcia-Bassets I, Almenar-Queralt A. Analysis of Clonal Composition in Human iPSC and ESC and Derived 2D and 3D Differentiated Cultures. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2454:31-47. [PMID: 34505265 DOI: 10.1007/7651_2021_414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Human induced pluripotent and embryonic stem cell cultures (hiPSC/hESC) are phenotypically heterogeneous and prone to clonal deviations during subculturing and differentiation. Clonal deviations often emerge unnoticed, but they can change the biology of the cell culture with a negative impact on experimental reproducibility. Here, we describe a computational workflow to profile the bulk clonal composition in a hiPSC/hESC culture that can also be used to infer clonal deviations. This workflow processes data obtained with two versions of the same method. The two versions-epigenetic and transcriptomic-rely on a mechanism of stochastic H3K4me3 deposition during hiPSC/hESC derivation. This mechanism generates a signature of ten or more H3K4me3-enriched clustered protocadherin (PCDH) promoters distinct in every single cell. The aggregate of single-cell signatures provides an identificatory feature in every hiPSC/hESC line. This feature is stably transmitted to the cell progeny of the culture even after differentiation unless there is a clonal deviation event that changes the internal balance of single-cell signatures. H3K4me3 signatures can be profiled by chromatin immunoprecipitation and next-generation sequencing (ChIP-seq). Alternatively, an equivalent PCDH-expression version can be profiled by RNA-seq in PCDH-expressing hiPSC/hESC-derived cells (such as neurons, astrocytes, and cardiomyocytes; and, in long-term cultures, such as cerebral organoids). Notably, our workflow can also distinguish genetically identical hiPSC/hESC lines derived from the same patient or generated in the same editing process. Together, we propose a method to improve data sharing and reproducibility in the hiPSC and hESC fields.
Collapse
Affiliation(s)
- Bernat Del Olmo
- Visiting Scholar Program, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Daria Merkurjev
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Statistics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Likun Yao
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mel Lina Pinsach-Abuin
- Visiting Scholar Program, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ivan Garcia-Bassets
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Angels Almenar-Queralt
- Department of Cellular and Molecular Medicine, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
INTACT vs. FANS for Cell-Type-Specific Nuclei Sorting: A Comprehensive Qualitative and Quantitative Comparison. Int J Mol Sci 2021; 22:ijms22105335. [PMID: 34069481 PMCID: PMC8159132 DOI: 10.3390/ijms22105335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
Increasing numbers of studies seek to characterize the different cellular sub-populations present in mammalian tissues. The techniques “Isolation of Nuclei Tagged in Specific Cell Types” (INTACT) or “Fluorescence-Activated Nuclei Sorting” (FANS) are frequently used for isolating nuclei of specific cellular subtypes. These nuclei are then used for molecular characterization of the cellular sub-populations. Despite the increasing popularity of both techniques, little is known about their isolation efficiency, advantages, and disadvantages or downstream molecular effects. In our study, we compared the physical and molecular attributes of sfGFP+ nuclei isolated by the two methods—INTACT and FANS—from the neocortices of Arc-CreERT2 × CAG-Sun1/sfGFP animals. We identified differences in efficiency of sfGFP+ nuclei isolation, nuclear size as well as transcriptional (RNA-seq) and chromatin accessibility (ATAC-seq) states. Therefore, our study presents a comprehensive comparison between the two widely used nuclei sorting techniques, identifying the advantages and disadvantages for both INTACT and FANS. Our conclusions are summarized in a table to guide researchers in selecting the most suitable methodology for their individual experimental design.
Collapse
|
11
|
Ma Q, Yang F, Mackintosh C, Jayani RS, Oh S, Jin C, Nair SJ, Merkurjev D, Ma W, Allen S, Wang D, Almenar-Queralt A, Garcia-Bassets I. Super-Enhancer Redistribution as a Mechanism of Broad Gene Dysregulation in Repeatedly Drug-Treated Cancer Cells. Cell Rep 2021; 31:107532. [PMID: 32320655 DOI: 10.1016/j.celrep.2020.107532] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/07/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Cisplatin is an antineoplastic drug administered at suboptimal and intermittent doses to avoid life-threatening effects. Although this regimen shortly improves symptoms in the short term, it also leads to more malignant disease in the long term. We describe a multilayered analysis ranging from chromatin to translation-integrating chromatin immunoprecipitation sequencing (ChIP-seq), global run-on sequencing (GRO-seq), RNA sequencing (RNA-seq), and ribosome profiling-to understand how cisplatin confers (pre)malignant features by using a well-established ovarian cancer model of cisplatin exposure. This approach allows us to segregate the human transcriptome into gene modules representing distinct regulatory principles and to characterize that the most cisplatin-disrupted modules are associated with underlying events of super-enhancer plasticity. These events arise when cancer cells initiate without ultimately ending the program of drug-stimulated death. Using a PageRank-based algorithm, we predict super-enhancer regulator ISL1 as a driver of this plasticity and validate this prediction by using CRISPR/dCas9-KRAB inhibition (CRISPRi) and CRISPR/dCas9-VP64 activation (CRISPRa) tools. Together, we propose that cisplatin reprograms cancer cells when inducing them to undergo near-to-death experiences.
Collapse
Affiliation(s)
- Qi Ma
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Feng Yang
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Carlos Mackintosh
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ranveer Singh Jayani
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Soohwan Oh
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chunyu Jin
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sreejith Janardhanan Nair
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daria Merkurjev
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wubin Ma
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephanie Allen
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dong Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Angels Almenar-Queralt
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ivan Garcia-Bassets
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
12
|
Pinsach-Abuin ML, Del Olmo B, Pérez-Agustin A, Mates J, Allegue C, Iglesias A, Ma Q, Merkurjev D, Konovalov S, Zhang J, Sheikh F, Telenti A, Brugada J, Brugada R, Gymrek M, di Iulio J, Garcia-Bassets I, Pagans S. Analysis of Brugada syndrome loci reveals that fine-mapping clustered GWAS hits enhances the annotation of disease-relevant variants. Cell Rep Med 2021; 2:100250. [PMID: 33948580 PMCID: PMC8080235 DOI: 10.1016/j.xcrm.2021.100250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/07/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022]
Abstract
Genome-wide association studies (GWASs) are instrumental in identifying loci harboring common single-nucleotide variants (SNVs) that affect human traits and diseases. GWAS hits emerge in clusters, but the focus is often on the most significant hit in each trait- or disease-associated locus. The remaining hits represent SNVs in linkage disequilibrium (LD) and are considered redundant and thus frequently marginally reported or exploited. Here, we interrogate the value of integrating the full set of GWAS hits in a locus repeatedly associated with cardiac conduction traits and arrhythmia, SCN5A-SCN10A. Our analysis reveals 5 common 7-SNV haplotypes (Hap1-5) with 2 combinations associated with life-threatening arrhythmia-Brugada syndrome (the risk Hap1/1 and protective Hap2/3 genotypes). Hap1 and Hap2 share 3 SNVs; thus, this analysis suggests that assuming redundancy among clustered GWAS hits can lead to confounding disease-risk associations and supports the need to deconstruct GWAS data in the context of haplotype composition.
Collapse
Affiliation(s)
- Mel Lina Pinsach-Abuin
- Department of Medical Sciences, School of Medicine, Universitat de Girona, Girona, Spain
- Visiting Scholar Program, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Institut d'Investigació Biomèdica de Girona, Salt, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Bernat Del Olmo
- Department of Medical Sciences, School of Medicine, Universitat de Girona, Girona, Spain
- Visiting Scholar Program, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Institut d'Investigació Biomèdica de Girona, Salt, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Adrian Pérez-Agustin
- Department of Medical Sciences, School of Medicine, Universitat de Girona, Girona, Spain
- Institut d'Investigació Biomèdica de Girona, Salt, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Jesus Mates
- Department of Medical Sciences, School of Medicine, Universitat de Girona, Girona, Spain
- Institut d'Investigació Biomèdica de Girona, Salt, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Catarina Allegue
- Department of Medical Sciences, School of Medicine, Universitat de Girona, Girona, Spain
- Visiting Scholar Program, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Institut d'Investigació Biomèdica de Girona, Salt, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Anna Iglesias
- Department of Medical Sciences, School of Medicine, Universitat de Girona, Girona, Spain
- Institut d'Investigació Biomèdica de Girona, Salt, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Qi Ma
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Daria Merkurjev
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Statistics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sergiy Konovalov
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jing Zhang
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Farah Sheikh
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Amalio Telenti
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Josep Brugada
- Arrhythmia Unit, Hospital Clinic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Ramon Brugada
- Department of Medical Sciences, School of Medicine, Universitat de Girona, Girona, Spain
- Institut d'Investigació Biomèdica de Girona, Salt, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
- Cardiology Service, Hospital Universitari Dr. Josep Trueta, Girona, Spain
| | - Melissa Gymrek
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Julia di Iulio
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ivan Garcia-Bassets
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sara Pagans
- Department of Medical Sciences, School of Medicine, Universitat de Girona, Girona, Spain
- Institut d'Investigació Biomèdica de Girona, Salt, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|
13
|
Collins JM, Huo Z, Wang D. ESR1 ChIP-Seq Identifies Distinct Ligand-Free ESR1 Genomic Binding Sites in Human Hepatocytes and Liver Tissue. Int J Mol Sci 2021; 22:1461. [PMID: 33540646 PMCID: PMC7867289 DOI: 10.3390/ijms22031461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 01/11/2023] Open
Abstract
The estrogen receptor alpha (ESR1) is an important gene transcriptional regulator, known to mediate the effects of estrogen. Canonically, ESR1 is activated by its ligand estrogen. However, the role of unliganded ESR1 in transcriptional regulation has been gaining attention. We have recently shown that ligand-free ESR1 is a key regulator of several cytochrome P450 (CYP) genes in the liver, however ligand-free ESR1 has not been characterized genome-wide in the human liver. To address this, ESR1 ChIP-Seq was conducted in human liver samples and in hepatocytes with or without 17beta-estradiol (E2) treatment. We identified both ligand-dependent and ligand-independent binding sites throughout the genome. These two ESR1 binding categories showed different genomic localization, pathway enrichment, and cofactor colocalization, indicating different ESR1 regulatory function depending on ligand availability. By analyzing existing ESR1 data from additional human cell lines, we uncovered a potential ligand-independent ESR1 activity, namely its co-enrichment with the zinc finger protein 143 (ZNF143). Furthermore, we identified ESR1 binding sites near many gene loci related to drug therapy, including the CYPs. Overall, this study shows distinct ligand-free and ligand-bound ESR1 chromatin binding profiles in the liver and suggests the potential broad influence of ESR1 in drug metabolism and drug therapy.
Collapse
Affiliation(s)
- Joseph M. Collins
- Center for Pharmacogenomics, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA;
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health & Health Professions, University of Florida, Gainesville, FL 32610, USA;
| | - Danxin Wang
- Center for Pharmacogenomics, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
14
|
Zheng A, Lamkin M, Zhao H, Wu C, Su H, Gymrek M. Deep neural networks identify sequence context features predictive of transcription factor binding. NAT MACH INTELL 2021; 3:172-180. [PMID: 33796819 PMCID: PMC8009085 DOI: 10.1038/s42256-020-00282-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
Transcription factors (TFs) bind DNA by recognizing specific sequence motifs, typically of length 6-12bp. A motif can occur many thousands of times in the human genome, but only a subset of those sites are actually bound. Here we present a machine learning framework leveraging existing convolutional neural network architectures and model interpretation techniques to identify and interpret sequence context features most important for predicting whether a particular motif instance will be bound. We apply our framework to predict binding at motifs for 38 TFs in a lymphoblastoid cell line, score the importance of context sequences at base-pair resolution, and characterize context features most predictive of binding. We find that the choice of training data heavily influences classification accuracy and the relative importance of features such as open chromatin. Overall, our framework enables novel insights into features predictive of TF binding and is likely to inform future deep learning applications to interpret non-coding genetic variants.
Collapse
Affiliation(s)
- An Zheng
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA USA
| | - Michael Lamkin
- Department of Bioengineering, University of California San Diego, La Jolla, CA USA
| | - Hanqing Zhao
- Department of Biology, University of California San Diego, La Jolla, CA, USA
| | - Cynthia Wu
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA USA
| | - Hao Su
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA USA
| | - Melissa Gymrek
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA USA
- Department of Medicine, University of California San Diego, La Jolla, CA USA
| |
Collapse
|
15
|
Gacita AM, Dellefave-Castillo L, Page PGT, Barefield DY, Wasserstrom JA, Puckelwartz MJ, Nobrega MA, McNally EM. Altered Enhancer and Promoter Usage Leads to Differential Gene Expression in the Normal and Failed Human Heart. Circ Heart Fail 2020; 13:e006926. [PMID: 32993371 PMCID: PMC7577963 DOI: 10.1161/circheartfailure.120.006926] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The failing heart is characterized by changes in gene expression. However, the regulatory regions of the genome that drive these gene expression changes have not been well defined in human hearts. METHODS To define genome-wide enhancer and promoter use in heart failure, cap analysis of gene expression sequencing was applied to 3 healthy and 4 failed human hearts to identify promoter and enhancer regions used in left ventricles. Healthy hearts were derived from donors unused for transplantation and failed hearts were obtained as discarded tissue after transplantation. RESULTS Cap analysis of gene expression sequencing identified a combined potential for ≈23 000 promoters and ≈5000 enhancers active in human left ventricles. Of these, 17 000 promoters and 1800 enhancers had additional support for their regulatory function. Comparing promoter usage between healthy and failed hearts highlighted promoter shifts which altered aminoterminal protein sequences. Enhancer usage between healthy and failed hearts identified a majority of differentially used heart failure enhancers were intronic and primarily localized within the first intron, revealing this position as a common feature associated with tissue-specific gene expression changes in the heart. CONCLUSIONS This data set defines the dynamic genomic regulatory landscape underlying heart failure and serves as an important resource for understanding genetic contributions to cardiac dysfunction. Additionally, regulatory changes contributing to heart failure are attractive therapeutic targets for controlling ventricular remodeling and clinical progression.
Collapse
Affiliation(s)
- Anthony M Gacita
- Center for Genetic Medicine (A.M.G., L.D.-C., P.G.T.P., D.Y.B., M.J.P., E.M.M.), Northwestern University Feinberg School of Medicine, Chicago IL
| | - Lisa Dellefave-Castillo
- Center for Genetic Medicine (A.M.G., L.D.-C., P.G.T.P., D.Y.B., M.J.P., E.M.M.), Northwestern University Feinberg School of Medicine, Chicago IL
| | - Patrick G T Page
- Center for Genetic Medicine (A.M.G., L.D.-C., P.G.T.P., D.Y.B., M.J.P., E.M.M.), Northwestern University Feinberg School of Medicine, Chicago IL
| | - David Y Barefield
- Center for Genetic Medicine (A.M.G., L.D.-C., P.G.T.P., D.Y.B., M.J.P., E.M.M.), Northwestern University Feinberg School of Medicine, Chicago IL
| | - J Andrew Wasserstrom
- Department of Medicine (Cardiology) (J.A.W.), Northwestern University Feinberg School of Medicine, Chicago IL
| | - Megan J Puckelwartz
- Center for Genetic Medicine (A.M.G., L.D.-C., P.G.T.P., D.Y.B., M.J.P., E.M.M.), Northwestern University Feinberg School of Medicine, Chicago IL
| | | | - Elizabeth M McNally
- Center for Genetic Medicine (A.M.G., L.D.-C., P.G.T.P., D.Y.B., M.J.P., E.M.M.), Northwestern University Feinberg School of Medicine, Chicago IL
| |
Collapse
|
16
|
Takemura K, Nishi H, Inagi R. Mitochondrial Dysfunction in Kidney Disease and Uremic Sarcopenia. Front Physiol 2020; 11:565023. [PMID: 33013483 PMCID: PMC7500155 DOI: 10.3389/fphys.2020.565023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Recently, there has been an increased focus on the influences of mitochondrial dysfunction on various pathologies. Mitochondria are major intracellular organelles with a variety of critical roles, such as adenosine triphosphate production, metabolic modulation, generation of reactive oxygen species, maintenance of intracellular calcium homeostasis, and the regulation of apoptosis. Moreover, mitochondria are attracting attention as a therapeutic target in several diseases. Additionally, a lot of existing agents have been found to have pharmacological effects on mitochondria. This review provides an overview of the mitochondrial change in the kidney and skeletal muscle, which is often complicated with sarcopenia and chronic kidney disease (CKD). Furthermore, the pharmacological effects of therapeutics for CKD on mitochondria are explored.
Collapse
Affiliation(s)
- Koji Takemura
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Nishi
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Reiko Inagi
- Division of CKD Pathophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Chromatin establishes an immature version of neuronal protocadherin selection during the naive-to-primed conversion of pluripotent stem cells. Nat Genet 2019; 51:1691-1701. [PMID: 31740836 PMCID: PMC7061033 DOI: 10.1038/s41588-019-0526-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/30/2019] [Indexed: 01/09/2023]
Abstract
In the mammalian genome, the clustered protocadherin (cPcdh) locus is a paradigm of stochastic gene expression with the potential to generate a unique cPcdh combination in every neuron. Here, we report a chromatin-based mechanism emerging during the transition from the naive to the primed states of cell pluripotency that reduces by orders of magnitude the combinatorial potential in the human cPcdh locus. This mechanism selectively increases the frequency of stochastic selection of a small subset of cPcdh genes after neuronal differentiation in monolayers, months-old organoids, and engrafted cells in the rat spinal cord. Signs of these frequent selections can be observed in the brain throughout fetal development and disappear after birth, unless there is a condition of delayed maturation such as Down Syndrome. We therefore propose that a pattern of limited cPcdh diversity is maintained while human neurons still retain fetal-like levels of maturation. Short and long-term cultures of human stem cell-derived neurons reveal that a pattern of restricted selection of clustered protocadherin isoforms, pre-established in pluripotent cells, distinguishes immature from mature neurons.
Collapse
|
18
|
LSD1 suppresses invasion, migration and metastasis of luminal breast cancer cells via activation of GATA3 and repression of TRIM37 expression. Oncogene 2019; 38:7017-7034. [PMID: 31409898 PMCID: PMC6823153 DOI: 10.1038/s41388-019-0923-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/28/2019] [Accepted: 07/06/2019] [Indexed: 12/15/2022]
Abstract
LSD1 (KDM1A) is a histone demethylase that plays both oncogenic and tumor suppressor roles in breast cancer. However, the exact contexts under which it plays these opposite functions remain largely elusive. By characterizing its role in luminal breast epithelial cells, here we show that inhibition of LSD1 by both genetic and pharmacological approaches increases their invasion and migration, whereas its inhibition by genetic approach, but not by pharmacological approach, impairs their proliferation/survival. Induced loss of LSD1 in luminal cells in a mouse model of luminal breast cancer, MMTV-PyMT, leads to a profound increase in lung metastasis. Mechanistically, LSD1 interacts with GATA3, a key luminal-specific transcription factor (TF), and their common target genes are highly related to breast cancer. LSD1 positively regulates GATA3 expression. It also represses expression of TRIM37, a breast epithelial oncogene encoding a histone H2A ubiquitin ligase, and ELF5, a key TF gene for luminal progenitors and alveolar luminal cells. LSD1-loss also leads to reduced expression of several cell-cell adhesion genes (e.g., CDH1, VCL, CTNNA1), possibly via TRIM37-upregulation and subsequently TRIM37-mediated repression. Collectively, our data suggest LSD1 largely plays a tumor suppressor role in luminal breast cancer and the oncogenic program associated with LSD1-inhibition may be suppressed via TRIM37-inhibition.
Collapse
|
19
|
Chen R, Jiang J, Hu Z, Ye W, Yuan Q, Li M, Wen J, Deng Y. Coordinated Transcriptional Regulation of Cytochrome P450 3As by Nuclear Transcription Factor Y and Specificity Protein 1. Mol Pharmacol 2019; 95:507-518. [PMID: 30782853 DOI: 10.1124/mol.118.114439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/03/2019] [Indexed: 01/17/2023] Open
Abstract
The cytochrome P450 3A subfamily plays vital roles in the metabolism of endogenous chemicals and xenobiotics. Understanding the basal expression of CYP3A in humans and pigs is crucial for drug evaluation. In this study, we demonstrated that the basal transcriptional regulation of CYP3A genes in hepatocytes is evolutionarily conserved between humans and pigs. The basal expression of CYP3A genes is transactivated by two cis-acting elements, the CCAAT and GC boxes, located a constant distance apart in the proximal promoter region of six CYP3A genes. Mutation analysis of these two cis-acting elements suggested that they play important roles in mediating basal expression, but to different extents because of the nucleotide variations in the elements. Two transcription factors, nuclear transcription factor Y (NF-Y) and specificity protein 1 (Sp1), directly bind to these cis-acting elements in CYP3A proximal promoters in HepG2 cells and porcine hepatocytes. Furthermore, changing the distance between the NF-Y and Sp1 binding sites resulted in decreases in the promoter activity of CYP3A genes. Conclusively, our results show that human and porcine CYP3A genes are regulated by NF-Y and Sp1 in a coordinated manner, and that the distance between these two cis-acting elements is crucial for constitutive CYP3A expression.
Collapse
Affiliation(s)
- Ruohong Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, and Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Tianhe District, Guangzhou, Guangdong, People's Republic of China
| | - Jun Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, and Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Tianhe District, Guangzhou, Guangdong, People's Republic of China
| | - Zhangsheng Hu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, and Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Tianhe District, Guangzhou, Guangdong, People's Republic of China
| | - Wenchu Ye
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, and Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Tianhe District, Guangzhou, Guangdong, People's Republic of China
| | - Qianqian Yuan
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, and Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Tianhe District, Guangzhou, Guangdong, People's Republic of China
| | - Mengyuan Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, and Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Tianhe District, Guangzhou, Guangdong, People's Republic of China
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, and Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Tianhe District, Guangzhou, Guangdong, People's Republic of China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, and Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Tianhe District, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
20
|
Chen JL, Zhang ZH, Li BX, Cai Z, Zhou QH. Bioinformatic and functional analysis of promoter region of human SLC25A13 gene. Gene 2019; 693:69-75. [PMID: 30708027 DOI: 10.1016/j.gene.2019.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/26/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
Abstract
The human SLC25A13 gene encodes the liver type aspartate/glutamate carrier isoform 2 (AGC2, commonly named as citrin), which plays a key role in the main NADH-shuttle of human hepatocyte. Biallelic SLC25A13 mutations result in Citrin deficiency (CD). In order to identify the important regulatory region of SLC25A13 gene and elucidate the way how potential promoter mutations affect the citrin expression, we performed promoter deletion analysis and established the reporter constructs of luciferase gene-carrying SLC25A13 promoter containing several mutations located in putative transcription factor-binding sites. The luciferase activities of all promoter constructs were measured using a Dual-Luciferase Reporter Assay System. Bioinformatic analysis showed that the promoter of SLC25A13 gene lacks TATA box and obviously typical initiator element, but contains a CCAAT box and two GC box. Promoter deletion analysis confirmed the region from -221 to -1 upstream ATG was essential for SLC25A13 to maintain the promoter activity. We utilized dual-luciferase reporter system as function analytical model to tentatively assess the effect of artificially constructed promoter mutations on citrin expression, and our analysis revealed that mutated putative CCAAT box and GC box could significantly affect the citrin expression. Our study confirmed the important SLC25A13 promoter regions that influenced citrin expression in HL7702 cells, and constructed a function analytical model. This work may be useful to further identify the pathogenic mutations leading to CD in the promoter region.
Collapse
Affiliation(s)
- Jun-Lin Chen
- First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Zhan-Hui Zhang
- Clinical Medicine Research Institute, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China.
| | - Bing-Xiao Li
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, China
| | - Zhen Cai
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
| | - Qing-Hua Zhou
- First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| |
Collapse
|
21
|
Identification of factors associated with duplicate rate in ChIP-seq data. PLoS One 2019; 14:e0214723. [PMID: 30943272 PMCID: PMC6447195 DOI: 10.1371/journal.pone.0214723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 03/19/2019] [Indexed: 12/20/2022] Open
Abstract
Chromatin immunoprecipitation and sequencing (ChIP-seq) has been widely used to map DNA-binding proteins, histone proteins and their modifications. ChIP-seq data contains redundant reads termed duplicates, referring to those mapping to the same genomic location and strand. There are two main sources of duplicates: polymerase chain reaction (PCR) duplicates and natural duplicates. Unlike natural duplicates that represent true signals from sequencing of independent DNA templates, PCR duplicates are artifacts originating from sequencing of identical copies amplified from the same DNA template. In analysis, duplicates are removed from peak calling and signal quantification. Nevertheless, a significant portion of the duplicates is believed to represent true signals. Obviously, removing all duplicates will underestimate the signal level in peaks and impact the identification of signal changes across samples. Therefore, an in-depth evaluation of the impact from duplicate removal is needed. Using eight public ChIP-seq datasets from three narrow-peak and two broad-peak marks, we tried to understand the distribution of duplicates in the genome, the extent by which duplicate removal impacts peak calling and signal estimation, and the factors associated with duplicate level in peaks. The three PCR-free histone H3 lysine 4 trimethylation (H3K4me3) ChIP-seq data had about 40% duplicates and 97% of them were within peaks. For the other datasets generated with PCR amplification of ChIP DNA, as expected, the narrow-peak marks have a much higher proportion of duplicates than the broad-peak marks. We found that duplicates are enriched in peaks and largely represent true signals, more conspicuous in those with high confidence. Furthermore, duplicate level in peaks is strongly correlated with the target enrichment level estimated using nonredundant reads, which provides the basis to properly allocate duplicates between noise and signal. Our analysis supports the feasibility of retaining the portion of signal duplicates into downstream analysis, thus alleviating the limitation of complete deduplication.
Collapse
|
22
|
Nuclear Respiratory Factor 1 Acting as an Oncoprotein Drives Estrogen-Induced Breast Carcinogenesis. Cells 2018; 7:cells7120234. [PMID: 30486409 PMCID: PMC6316306 DOI: 10.3390/cells7120234] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/07/2018] [Accepted: 11/18/2018] [Indexed: 12/25/2022] Open
Abstract
We have previously shown nuclear respiratory factor 1 (NRF1)-mediated transcriptional programming of mitobiogenesis contributes to estrogen-induced breast cancer through modulating cell cycle progression. In this study, we report a new role of NRF1 that goes beyond that of programming mitobiogenesis. Specifically, we report a novel oncogenic function of NRF1 supporting its causative role in breast cancer development and progression. The gain of NRF1 and/or treatment with 17β-estradiol (E2) produced heterogeneous breast cancer stem cell (BCSC)-like subsets composed of more than 10 distinct cell sub-populations. Flow sorting combined with confocal imaging of markers for pluripotency, epithelial mesenchymal transition (EMT), and BCSCs phenotypically confirmed that the BCSC-like subset arise from cell re-programming. Thus, we determined the molecular actions of NRF1 on its target gene CXCR4 because of its known role in the acquisition of the BCSC-like subset through EMT. CXCR4 was activated by NRF1 in a redox-dependent manner during malignant transformation. An NRF1-induced BCSC-like subset was able to form xenograft tumors in vivo, while inhibiting transcription of CXCR4 prevented xenograft tumor growth. Consistent with our observation of NRF1-driven breast tumorigenesis in the experimental model, higher protein levels of NRF1 were also found in human breast cancer tissue specimens. This highly novel role of NRF1 in the stochastic acquisition of BCSC-like subsets and their progression to a malignant phenotype may open an entirely new research direction targeting NRF1 signaling in invasive breast cancer. Our discovery of targeting transcriptional activation of CXCR4 to inhibit NRF1-induced oncogenic transformation provides a mechanistic explanation for estrogen-dependent breast carcinogenesis and opens new avenues in strategic therapeutics to fight breast cancer.
Collapse
|
23
|
NRF1 motif sequence-enriched genes involved in ER/PR −ve HER2 +ve breast cancer signaling pathways. Breast Cancer Res Treat 2018; 172:469-485. [DOI: 10.1007/s10549-018-4905-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/29/2018] [Indexed: 12/17/2022]
|
24
|
Bhawe K, Roy D. Interplay between NRF1, E2F4 and MYC transcription factors regulating common target genes contributes to cancer development and progression. Cell Oncol (Dordr) 2018; 41:465-484. [DOI: 10.1007/s13402-018-0395-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2018] [Indexed: 12/12/2022] Open
|
25
|
Zhang L, Carnesecchi J, Cerutti C, Tribollet V, Périan S, Forcet C, Wong J, Vanacker JM. LSD1-ERRα complex requires NRF1 to positively regulate transcription and cell invasion. Sci Rep 2018; 8:10041. [PMID: 29968728 PMCID: PMC6030097 DOI: 10.1038/s41598-018-27676-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/05/2018] [Indexed: 12/20/2022] Open
Abstract
Lysine-specific demethylase 1 (LSD1) exerts dual effects on histone H3, promoting transcriptional repression via Lys4 (H3K4) demethylation or transcriptional activation through Lys9 (H3K9) demethylation. These activities are often exerted at transcriptional start sites (TSSs) and depend on the type of enhancer-bound transcription factor (TFs) with which LSD1 interacts. In particular, the Estrogen-Receptor Related α (ERRα) TF interacts with LSD1 and switches its activities toward H3K9 demethylation, resulting in transcriptional activation of a set of common target genes. However, how are the LSD1-TF and, in particular LSD1-ERRα, complexes determined to act at TSSs is not understood. Here we show that promoter-bound nuclear respiratory factor 1 (NRF1), but not ERRα, is essential to LSD1 recruitment at the TSSs of positive LSD1-ERRα targets. In contrast to ERRα, NRF1 does not impact on the nature of LSD1 enzymatic activity. We propose a three factor model, in which the LSD1 histone modifier requires a TSS tethering factor (NRF1) as well as an activity inducer (ERRα) to transcriptionally activate common targets. The relevance of this common network is illustrated by functional data, showing that all three factors are required for cell invasion in an MMP1 (Matrix MetalloProtease 1)-dependent manner, the expression of which is regulated by NRF1/LSD1/ERRα-mediated H3K9me2 demethylation.
Collapse
Affiliation(s)
- Ling Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 32-34 Avenue Tony Garnier, F-69007, Lyon, France
| | - Julie Carnesecchi
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 32-34 Avenue Tony Garnier, F-69007, Lyon, France
- Department of Developmental Biology, Centre for Organismal Studies (COS), Heidelberg, University of Heidelberg, D-69120, Heidelberg, Germany
| | - Catherine Cerutti
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 32-34 Avenue Tony Garnier, F-69007, Lyon, France
| | - Violaine Tribollet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 32-34 Avenue Tony Garnier, F-69007, Lyon, France
| | - Séverine Périan
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 32-34 Avenue Tony Garnier, F-69007, Lyon, France
| | - Christelle Forcet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 32-34 Avenue Tony Garnier, F-69007, Lyon, France
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 32-34 Avenue Tony Garnier, F-69007, Lyon, France.
| |
Collapse
|
26
|
Chen S, Hu Z, He H, Liu X. Fatty acid elongase7 is regulated via SP1 and is involved in lipid accumulation in bovine mammary epithelial cells. J Cell Physiol 2018; 233:4715-4725. [DOI: 10.1002/jcp.26255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/05/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Si Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture; College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi P.R. China
| | - Zhigang Hu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture; College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi P.R. China
| | - Hua He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture; College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi P.R. China
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi P.R. China
| | - Xiaolin Liu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture; College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi P.R. China
| |
Collapse
|
27
|
Gao W, Wu M, Wang N, Zhang Y, Hua J, Tang G, Wang Y. Increased expression of mitochondrial transcription factor A and nuclear respiratory factor-1 predicts a poor clinical outcome of breast cancer. Oncol Lett 2017; 15:1449-1458. [PMID: 29434836 PMCID: PMC5774493 DOI: 10.3892/ol.2017.7487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/11/2017] [Indexed: 01/19/2023] Open
Abstract
Nuclear respiratory factor-1 (Nrf1) and mitochondrial transcription factor A (TFAM) are involved in the regulation of a variety of mitochondrial functional genes, which are associated with decreased sensitivity of tumor cells to chemotherapy. However, the expression status of Nrf1 and TFAM, as well as their clinical significance in breast cancer, is unknown. In the present study, tumor tissues and corresponding adjacent normal tissues were collected from 336 patients with breast cancer, and Nrf1 and TFAM expression was analyzed by immunohistochemistry using a tissue microarray. Expression of Nrf1 and TFAM was significantly increased in breast cancer tissue compared with adjacent normal tissues. In addition, patients positive for Nrf1 or TFAM had a poorer clinical prognosis than patients who were negative, and those positive for Nrf1 and TFAM had the shortest survival time. These results suggest that Nrf1 and TFAM are potential biomarkers for the determination of individualized therapy and the prognosis of breast cancer, and molecular targeting of Nrf1 and TFAM is a promising strategy for the sensitization of breast cancer cells to chemotherapeutics.
Collapse
Affiliation(s)
- Wei Gao
- Department of Radiation Oncology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200433, P.R. China.,Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Meihong Wu
- Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Ning Wang
- Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Yingyi Zhang
- Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Jing Hua
- Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Gusheng Tang
- Department of Hematology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Yajie Wang
- Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
28
|
Takiuchi Y, Kobayashi M, Tada K, Iwai F, Sakurada M, Hirabayashi S, Nagata K, Shirakawa K, Shindo K, Yasunaga JI, Murakawa Y, Rajapakse V, Pommier Y, Matsuoka M, Takaori-Kondo A. HTLV-1 bZIP factor suppresses TDP1 expression through inhibition of NRF-1 in adult T-cell leukemia. Sci Rep 2017; 7:12849. [PMID: 28993637 PMCID: PMC5634466 DOI: 10.1038/s41598-017-12924-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/20/2017] [Indexed: 11/09/2022] Open
Abstract
Adult T-cell leukemia (ATL) is an aggressive T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1). We recently reported that abacavir, an anti-HIV-1 drug, potently and selectively kills ATL cells. This effect was attributed to the reduced expression of tyrosyl-DNA-phosphodiesterase 1 (TDP1), a DNA repair enzyme, in ATL cells. However, the molecular mechanism underlying the downregulation of TDP1 in ATL cells remains elusive. Here we identified the core promoter of the TDP1 gene, which contains a conserved nuclear respiratory factor 1 (NRF-1) binding site. Overexpression of NRF-1 increased TDP1-promoter activity, whereas the introduction of dominant-negative NRF-1 repressed such activity. Overexpression of NRF-1 also upregulated endogenous TDP-1 expression, while introduction of shNRF-1 suppressed TDP1 in Jurkat T cells, making them susceptible to abacavir. These results indicate that NRF-1 is a positive transcriptional regulator of TDP1-gene expression. Importantly, we revealed that HTLV-1 bZIP factor (HBZ) protein which is expressed in all ATL cases physically interacts with NRF-1 and inhibits the DNA-binding ability of NRF-1. Taken together, HBZ suppresses TDP1 expression by inhibiting NRF-1 function in ATL cells. The HBZ/NRF-1/TDP1 axis provides new therapeutic targets against ATL and might explain genomic instability leading to the pathogenesis of ATL.
Collapse
Affiliation(s)
- Yoko Takiuchi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawaracho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masayuki Kobayashi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawaracho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Kohei Tada
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawaracho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Fumie Iwai
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawaracho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Maki Sakurada
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawaracho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shigeki Hirabayashi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawaracho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kayoko Nagata
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawaracho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kotaro Shirakawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawaracho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Keisuke Shindo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawaracho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Jun-Ichirou Yasunaga
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-kawaracho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yasuhiro Murakawa
- RIKEN Preventive Medicine and Diagnosis Innovation Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Vinodh Rajapakse
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 5068, Bethesda, MD, 20892-4255, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 5068, Bethesda, MD, 20892-4255, USA
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Disease, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawaracho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
29
|
Ilsley MD, Gillinder KR, Magor GW, Huang S, Bailey TL, Crossley M, Perkins AC. Krüppel-like factors compete for promoters and enhancers to fine-tune transcription. Nucleic Acids Res 2017; 45:6572-6588. [PMID: 28541545 PMCID: PMC5499887 DOI: 10.1093/nar/gkx441] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/22/2017] [Indexed: 12/16/2022] Open
Abstract
Krüppel-like factors (KLFs) are a family of 17 transcription factors characterized by a conserved DNA-binding domain of three zinc fingers and a variable N-terminal domain responsible for recruiting cofactors. KLFs have diverse functions in stem cell biology, embryo patterning, and tissue homoeostasis. KLF1 and related family members function as transcriptional activators via recruitment of co-activators such as EP300, whereas KLF3 and related members act as transcriptional repressors via recruitment of C-terminal Binding Proteins. KLF1 directly activates the Klf3 gene via an erythroid-specific promoter. Herein, we show KLF1 and KLF3 bind common as well as unique sites within the erythroid cell genome by ChIP-seq. We show KLF3 can displace KLF1 from key erythroid gene promoters and enhancers in vivo. Using 4sU RNA labelling and RNA-seq, we show this competition results in reciprocal transcriptional outputs for >50 important genes. Furthermore, Klf3-/- mice displayed exaggerated recovery from anemic stress and persistent cell cycling consistent with a role for KLF3 in dampening KLF1-driven proliferation. We suggest this study provides a paradigm for how KLFs work in incoherent feed-forward loops or networks to fine-tune transcription and thereby control diverse biological processes such as cell proliferation.
Collapse
Affiliation(s)
- Melissa D. Ilsley
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane 4102, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia
| | - Kevin R. Gillinder
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane 4102, Australia
| | - Graham W. Magor
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane 4102, Australia
| | - Stephen Huang
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane 4102, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia
| | | | | | - Andrew C. Perkins
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane 4102, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia
- The Princess Alexandra Hospital, Brisbane 4102, Australia
| |
Collapse
|
30
|
Suske G. NF-Y and SP transcription factors — New insights in a long-standing liaison. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:590-597. [DOI: 10.1016/j.bbagrm.2016.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022]
|
31
|
Carnesecchi J, Forcet C, Zhang L, Tribollet V, Barenton B, Boudra R, Cerutti C, Billas IML, Sérandour AA, Carroll JS, Beaudoin C, Vanacker JM. ERRα induces H3K9 demethylation by LSD1 to promote cell invasion. Proc Natl Acad Sci U S A 2017; 114:3909-3914. [PMID: 28348226 PMCID: PMC5393192 DOI: 10.1073/pnas.1614664114] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lysine Specific Demethylase 1 (LSD1) removes mono- and dimethyl groups from lysine 4 of histone H3 (H3K4) or H3K9, resulting in repressive or activating (respectively) transcriptional histone marks. The mechanisms that control the balance between these two antagonist activities are not understood. We here show that LSD1 and the orphan nuclear receptor estrogen-related receptor α (ERRα) display commonly activated genes. Transcriptional activation by LSD1 and ERRα involves H3K9 demethylation at the transcriptional start site (TSS). Strikingly, ERRα is sufficient to induce LSD1 to demethylate H3K9 in vitro. The relevance of this mechanism is highlighted by functional data. LSD1 and ERRα coregulate several target genes involved in cell migration, including the MMP1 matrix metallo-protease, also activated through H3K9 demethylation at the TSS. Depletion of LSD1 or ERRα reduces the cellular capacity to invade the extracellular matrix, a phenomenon that is rescued by MMP1 reexpression. Altogether our results identify a regulatory network involving a direct switch in the biochemical activities of a histone demethylase, leading to increased cell invasion.
Collapse
Affiliation(s)
- Julie Carnesecchi
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Christelle Forcet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Ling Zhang
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Violaine Tribollet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Bruno Barenton
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Rafik Boudra
- Genetics, Reproduction and Development, Université Blaise Pascal Clermont-Ferrand, CNRS UMR 6293, Inserm U1103, Centre de Recherche en Nutrition Humaine, F-63171 Aubière, France
| | - Catherine Cerutti
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Isabelle M L Billas
- Department of Integrative Structural Biology, Institute of Genetics and Molecular and Cellular Biology, CNRS UMR7104, Inserm U964, Université de Strasbourg, F-67404 Illkirch, France
| | - Aurélien A Sérandour
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Claude Beaudoin
- Genetics, Reproduction and Development, Université Blaise Pascal Clermont-Ferrand, CNRS UMR 6293, Inserm U1103, Centre de Recherche en Nutrition Humaine, F-63171 Aubière, France
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, F-69007 Lyon, France;
| |
Collapse
|
32
|
Nishi-Tatsumi M, Yahagi N, Takeuchi Y, Toya N, Takarada A, Murayama Y, Aita Y, Sawada Y, Piao X, Oya Y, Shikama A, Masuda Y, Kubota M, Izumida Y, Matsuzaka T, Nakagawa Y, Sekiya M, Iizuka Y, Kawakami Y, Kadowaki T, Yamada N, Shimano H. A key role of nuclear factor Y in the refeeding response of fatty acid synthase in adipocytes. FEBS Lett 2017; 591:965-978. [PMID: 28281280 DOI: 10.1002/1873-3468.12620] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 11/10/2022]
Abstract
Fatty acid synthase (Fasn) is a key component of energy metabolism that is dynamically induced by food intake. Although extensive studies have revealed a number of transcription factors involved in the fasting/refeeding transition of Fasn expression in hepatocytes, much less evidence is available for adipocytes. Using the in vivo Ad-luc analytical system, we identified the inverted CCAAT element (ICE) around -100 nucleotides in the Fasn promoter as a critical cis-element for the refeeding response in adipocytes. Electrophoretic mobility shift assays and chromatin immunoprecipitation show that nuclear factor Y (NF-Y) binds to ICE specifically in refeeding states. Notably, the NF-Y binding to ICE is differently regulated between adipocytes and hepatocytes. These findings provide insights into the specific mechanisms controlling energy metabolism in adipocytes.
Collapse
Affiliation(s)
- Makiko Nishi-Tatsumi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Naoya Yahagi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshinori Takeuchi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Naoki Toya
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Ayako Takarada
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuki Murayama
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuichi Aita
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshikazu Sawada
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Xiaoying Piao
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yukari Oya
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Akito Shikama
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yukari Masuda
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Midori Kubota
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshihiko Izumida
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshimi Nakagawa
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Motohiro Sekiya
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoko Iizuka
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Japan
| | - Yasushi Kawakami
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takashi Kadowaki
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Japan
| | - Nobuhiro Yamada
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
33
|
Dolfini D, Zambelli F, Pedrazzoli M, Mantovani R, Pavesi G. A high definition look at the NF-Y regulome reveals genome-wide associations with selected transcription factors. Nucleic Acids Res 2016; 44:4684-702. [PMID: 26896797 PMCID: PMC4889920 DOI: 10.1093/nar/gkw096] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/09/2016] [Indexed: 12/11/2022] Open
Abstract
NF-Y is a trimeric transcription factor (TF), binding the CCAAT box element, for which several results suggest a pioneering role in activation of transcription. In this work, we integrated 380 ENCODE ChIP-Seq experiments for 154 TFs and cofactors with sequence analysis, protein–protein interactions and RNA profiling data, in order to identify genome-wide regulatory modules resulting from the co-association of NF-Y with other TFs. We identified three main degrees of co-association with NF-Y for sequence-specific TFs. In the most relevant one, we found TFs having a significant overlap with NF-Y in their DNA binding loci, some with a precise spacing of binding sites with respect to the CCAAT box, others (FOS, Sp1/2, RFX5, IRF3, PBX3) mostly lacking their canonical binding site and bound to arrays of well spaced CCAAT boxes. As expected, NF-Y binding also correlates with RNA Pol II General TFs and with subunits of complexes involved in the control of H3K4 methylations. Co-association patterns are confirmed by protein–protein interactions, and correspond to specific functional categorizations and expression level changes of target genes following NF-Y inactivation. These data define genome-wide rules for the organization of NF-Y-centered regulatory modules, supporting a model of distinct categorization and synergy with well defined sets of TFs.
Collapse
Affiliation(s)
- Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy
| | - Federico Zambelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy Istituto di Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari, Via Amendola 165/A, 70126, Italy
| | - Maurizio Pedrazzoli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy
| | - Giulio Pavesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy
| |
Collapse
|
34
|
Popova EY, Pinzon-Guzman C, Salzberg AC, Zhang SSM, Barnstable CJ. LSD1-Mediated Demethylation of H3K4me2 Is Required for the Transition from Late Progenitor to Differentiated Mouse Rod Photoreceptor. Mol Neurobiol 2015; 53:4563-81. [PMID: 26298666 DOI: 10.1007/s12035-015-9395-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/11/2015] [Indexed: 12/31/2022]
Abstract
Epigenetic modifiers can work in concert with transcription factors to control the transition of cells from proliferating progenitors into quiescent terminally differentiated cells. This transition involves changes in histone methylation and one of the key regulators of this is the H3K4me2/1 histone demethylase LSD1. Here, we show that the highest expression of LSD1 occurs in postmitotic retinal cells during the peak period of rod photoreceptor differentiation. Pharmacological inhibition of LSD1 in retinal explants cultured from PN1 to PN8 had three major effects. It prevented the normal decrease in expression of genes associated with progenitor function, it blocked rod photoreceptor development, and it increased expression of genes associated with other retinal cell types. The maintained expression of progenitor genes was associated with a maintained level of H3K4me2 over the gene and its promoter. Among the genes whose expression was maintained was Hes1, a repressor known to block rod photoreceptor development. The inhibition of rod photoreceptor gene expression occurred in spite of the normal expression of transcription factors CRX and NRL, and the normal accumulation of H3K4me2 marks over the promoter and gene body. We suggest that LSD1 acts in concert with a series of nuclear receptors to modify chromatin structure and repress progenitor genes as well as to inhibit ectopic patterns of gene expression in the differentiating postmitotic retinal cells.
Collapse
Affiliation(s)
- Evgenya Y Popova
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Carolina Pinzon-Guzman
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Anna C Salzberg
- Bioinformatics Core, Penn State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Samuel Shao-Min Zhang
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA. .,Henan Eye Institute, 7 Weiwu Road, Zhengzhou, Henan, 450007, China.
| | - Colin J Barnstable
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
35
|
Genome-wide identification of hypoxia-inducible factor-1 and -2 binding sites in hypoxic human macrophages alternatively activated by IL-10. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:10-22. [PMID: 25450522 DOI: 10.1016/j.bbagrm.2014.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/21/2014] [Accepted: 10/29/2014] [Indexed: 12/14/2022]
Abstract
Macrophages (MΦ) often accumulate in hypoxic areas, where they significantly influence disease progression. Anti-inflammatory cytokines, such as IL-10, generate alternatively activated macrophages that support tumor growth. To understand how alternative activation affects the transcriptional profile of hypoxic macrophages, we globally mapped binding sites of hypoxia-inducible factor (HIF)-1α and HIF-2α in primary human monocyte-derived macrophages prestimulated with IL-10. 713 HIF-1 and 795 HIF-2 binding sites were identified under hypoxia. Pretreatment with IL-10 altered the binding pattern, with 120 new HIF-1 and 188 new HIF-2 binding sites emerging. HIF-1 binding was most prominent in promoters, while HIF-2 binding was more abundant in enhancer regions. Comparison of ChIP-seq data obtained in other cells revealed a highly cell type specific binding of HIF. In MΦ HIF binding occurred preferentially in already active enhancers or promoters. To assess the roles of HIF on gene expression, primary human macrophages were treated with siRNA against HIF-1α or HIF-2α, followed by genome-wide gene expression analysis. Comparing mRNA expression to the HIF binding profile revealed a significant enrichment of hypoxia-inducible genes previously identified by ChIP-seq. Analysis of gene expression under hypoxia alone and hypoxia/IL-10 showed the enhanced induction of a set of genes including PLOD2 and SLC2A3, while another group including KDM3A and ADM remained unaffected or was reduced by IL-10. Taken together IL-10 influences the DNA binding pattern of HIF and the level of gene induction.
Collapse
|
36
|
LSD1 promotes oxidative metabolism of white adipose tissue. Nat Commun 2014; 5:4093. [PMID: 24912735 PMCID: PMC4112219 DOI: 10.1038/ncomms5093] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/12/2014] [Indexed: 01/25/2023] Open
Abstract
Exposure to environmental cues such as cold or nutritional imbalance requires white adipose tissue (WAT) to adapt its metabolism to ensure survival. Metabolic plasticity is prominently exemplified by the enhancement of mitochondrial biogenesis in WAT in response to cold exposure or β3-adrenergic stimulation. Here we show that these stimuli increase the levels of lysine-specific demethylase 1 (LSD1) in WAT of mice and that elevated LSD1 levels induce mitochondrial activity. Genome-wide binding and transcriptome analyses demonstrate that LSD1 directly stimulates the expression of genes involved in oxidative phosphorylation (OXPHOS) in cooperation with nuclear respiratory factor 1 (Nrf1). In transgenic (Tg) mice, increased levels of LSD1 promote in a cell-autonomous manner the formation of islets of metabolically active brown-like adipocytes in WAT. Notably, Tg mice show limited weight gain when fed a high-fat diet. Taken together, our data establish LSD1 as a key regulator of OXPHOS and metabolic adaptation in WAT.
Collapse
|