1
|
Mignogna KM, Tatom Z, Macleod L, Sergi Z, Nguyen A, Michenkova M, Smith ML, Miles MF. Identification of novel genetic loci and candidate genes for progressive ethanol consumption in diversity outbred mice. Neuropsychopharmacology 2024; 49:1892-1904. [PMID: 38951586 PMCID: PMC11473901 DOI: 10.1038/s41386-024-01902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024]
Abstract
Mouse behavioral genetic mapping studies can identify genomic intervals modulating complex traits under well-controlled environmental conditions and have been used to study ethanol behaviors to aid in understanding genetic risk and the neurobiology of alcohol use disorder (AUD). However, historically such studies have produced large confidence intervals, thus complicating identification of potential causal candidate genes. Diversity Outbred (DO) mice offer the ability to perform high-resolution quantitative trait loci (QTL) mapping on a very genetically diverse background, thus facilitating identification of candidate genes. Here, we studied a population of 636 male DO mice with four weeks of intermittent ethanol access via a three-bottle choice procedure, producing a progressive ethanol consumption phenotype. QTL analysis identified 3 significant (Chrs 3, 4, and 12) and 13 suggestive loci for ethanol-drinking behaviors with narrow confidence intervals (1-4 Mbp for significant QTLs). Results suggested that genetic influences on initial versus progressive ethanol consumption were localized to different genomic intervals. A defined set of positional candidate genes were prioritized using haplotype analysis, identified coding polymorphisms, prefrontal cortex transcriptomics data, human GWAS data and prior rodent gene set data for ethanol or other misused substances. These candidates included Car8, the lone gene with a significant cis-eQTL within a Chr 4 QTL for week four ethanol consumption. These results represent the highest-resolution genetic mapping of ethanol consumption behaviors in mice to date, providing identification of novel loci and candidate genes for study in relation to the neurobiology of AUD.
Collapse
Affiliation(s)
- Kristin M Mignogna
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary Tatom
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Lorna Macleod
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary Sergi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Angel Nguyen
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Marie Michenkova
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Maren L Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael F Miles
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA.
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
2
|
Chen H, Yin J, Xiang Y, Zhang N, Huang Z, Zhang Y, Tang D, Wang Z, Baimayangji, Chen L, Jiang X, Xiao X, Zhao X. Alcohol consumption and accelerated biological ageing in middle-aged and older people: A longitudinal study from two cohorts. Addiction 2024; 119:1387-1399. [PMID: 38679855 DOI: 10.1111/add.16501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/13/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND AND AIMS The relationship between alcohol consumption and age-related diseases is inconsistent. Biological age (BA) serves as both a precursor and a predictor of age-related diseases; however, longitudinal associations between alcohol consumption and BA in middle-aged and older people remain unclear. We measured whether there was a longitudinal association between drinking frequency and pure alcohol intake with BA among middle-aged and older people. DESIGN AND SETTING AND PARTICIPANTS This study involved two prospective cohort studies, set in Southwestern China and the United Kingdom. A total of 8046 participants from the China Multi-Ethnic Cohort study (CMEC) and 5412 participants from the UK Biobank (UKB), aged 30-79 years, took part, with complete data from two waves of clinical biomarkers. MEASUREMENTS BA was calculated by the Klemera Doubal's method. Accelerated BA equalled BA minus chronological age. Drinking frequency and pure alcohol intake were obtained through self-reported questionnaires. Drinking frequency in the past year was classified as current non-drinking, occasional (monthly drinking) and regular (weekly drinking). FINDINGS Compared with consistent current non-drinkers, more frequent drinkers [CMEC: β = 0.46, 95% confidence interval (CI) = 0.13-0.80; UKB: β = 0.65, 95% CI = 0.01-1.29)], less frequent drinkers (CMEC: β = 0.62, 95% CI = 0.37-0.87; UKB: β = 0.54, 95% CI = -0.01-1.09), consistent occasional drinkers (CMEC: β = 0.51, 95% CI = 0.23-0.79; UKB: β = 0.63, 95% CI = 0.13-1.13) and consistent regular drinkers (CMEC: β = 0.56, 95% CI = 0.17-0.95; UKB: β = 0.46, 95% CI = 0.00-0.91) exhibited increased accelerated BA. A non-linear relationship between pure alcohol intake and accelerated BA was observed among consistent regular drinkers. CONCLUSIONS In middle-aged and older people, any change in drinking frequency and any amount of pure alcohol intake seem to be positively associated with acceleration of biological ageing, compared with maintaining abstinence.
Collapse
Affiliation(s)
- Hongxiang Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jianzhong Yin
- School of Public Health, Kunming Medical University, Kunming, China
- Baoshan College of Traditional Chinese Medicine, Baoshan, China
| | - Yi Xiang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ning Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zitong Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuan Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Dan Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ziyun Wang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Baimayangji
- School of Medicine, Tibet University, Lhasa, China
| | - Liling Chen
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Institute of Chronic Non-Communicable Disease Control and Prevention, Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Xiaoman Jiang
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Xiong Xiao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Lange AP, Wolf FW. Alcohol sensitivity and tolerance encoding in sleep regulatory circadian neurons in Drosophila. Addict Biol 2023; 28:e13304. [PMID: 37500483 PMCID: PMC10911855 DOI: 10.1111/adb.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/17/2023] [Accepted: 05/30/2023] [Indexed: 07/29/2023]
Abstract
Alcohol tolerance is a simple form of behavioural and neural plasticity that occurs with the first drink. Neural plasticity in tolerance is likely a substrate for longer term adaptations that can lead to alcohol use disorder. Drosophila develop tolerance with characteristics similar to vertebrates, and it is a useful model for determining the molecular and circuit encoding mechanisms in detail. Rapid tolerance, measured after the first alcohol exposure is completely metabolized, is localized to specific brain regions that are not interconnected in an obvious way. We used a forward neuroanatomical screen to identify three new neural sites for rapid tolerance encoding. One of these was composed of two groups of neurons, the DN1a and DN1p glutamatergic neurons, that are part of the Drosophila circadian clock. We localized rapid tolerance to the two DN1a neurons that regulate arousal by light at night, temperature-dependent sleep timing, and night-time sleep. Two clock neurons that regulate evening activity, LNd6 and the 5th LNv, are postsynaptic to the DN1as, and they promote rapid tolerance via the metabotropic glutamate receptor. Thus, rapid tolerance to alcohol overlaps with sleep regulatory neural circuitry, suggesting a mechanistic link.
Collapse
Affiliation(s)
- Anthony P. Lange
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, USA
| | - Fred W. Wolf
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, USA
- Department of Molecular and Cell Biology, University of California, Merced, California, USA
| |
Collapse
|
4
|
Larnerd C, Adhikari P, Valdez A, Del Toro A, Wolf FW. Rapid and Chronic Ethanol Tolerance Are Composed of Distinct Memory-Like States in Drosophila. J Neurosci 2023; 43:2210-2220. [PMID: 36750369 PMCID: PMC10039739 DOI: 10.1523/jneurosci.1348-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
Ethanol tolerance is the first type of behavioral plasticity and neural plasticity that is induced by ethanol intake, and yet its molecular and circuit bases remain largely unexplored. Here, we characterize the following three distinct forms of ethanol tolerance in male Drosophila: rapid, chronic, and repeated. Rapid tolerance is composed of two short-lived memory-like states, one that is labile and one that is consolidated. Chronic tolerance, induced by continuous exposure, lasts for 2 d, induces ethanol preference, and hinders the development of rapid tolerance through the activity of histone deacetylases (HDACs). Unlike rapid tolerance, chronic tolerance is independent of the immediate early gene Hr38/Nr4a Chronic tolerance is suppressed by the sirtuin HDAC Sirt1, whereas rapid tolerance is enhanced by Sirt1 Moreover, rapid and chronic tolerance map to anatomically distinct regions of the mushroom body learning and memory centers. Chronic tolerance, like long-term memory, is dependent on new protein synthesis and it induces the kayak/c-fos immediate early gene, but it depends on CREB signaling outside the mushroom bodies, and it does not require the Radish GTPase. Thus, chronic ethanol exposure creates an ethanol-specific memory-like state that is molecularly and anatomically different from other forms of ethanol tolerance.SIGNIFICANCE STATEMENT The pattern and concentration of initial ethanol exposure causes operationally distinct types of ethanol tolerance to form. We identify separate molecular and neural circuit mechanisms for two forms of ethanol tolerance, rapid and chronic. We also discover that chronic tolerance forms an ethanol-specific long-term memory-like state that localizes to learning and memory circuits, but it is different from appetitive and aversive long-term memories. By contrast, rapid tolerance is composed of labile and consolidated short-term memory-like states. The multiple forms of ethanol memory-like states are genetically tractable for understanding how initial forms of ethanol-induced neural plasticity form a substrate for the longer-term brain changes associated with alcohol use disorder.
Collapse
Affiliation(s)
- Caleb Larnerd
- Quantitative and Systems Biology, University of California, Merced, California 95343
| | - Pratik Adhikari
- Quantitative and Systems Biology, University of California, Merced, California 95343
| | - Ashley Valdez
- Biological Sciences, University of California, Merced, California 95343
| | | | - Fred W Wolf
- Quantitative and Systems Biology, University of California, Merced, California 95343
- Molecular and Cell Biology, University of California, Merced, California 95343
| |
Collapse
|
5
|
Lange AP, Wolf FW. Alcohol tolerance encoding in sleep regulatory circadian neurons in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526363. [PMID: 36778487 PMCID: PMC9915517 DOI: 10.1101/2023.01.30.526363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alcohol tolerance is a simple form of behavioral and neural plasticity that occurs with the first drink. Neural plasticity in tolerance is likely a substrate for longer term adaptations that can lead to alcohol use disorder. Drosophila develop tolerance with characteristics similar to vertebrates, and it is useful model for determining the molecular and circuit encoding mechanisms in detail. Rapid tolerance, measured after the first alcohol exposure is completely metabolized, is localized to specific brain regions that are not interconnected in an obvious way. We used a forward neuroanatomical screen to identify three new neural sites for rapid tolerance encoding. One of these was comprised of two groups of neurons, the DN1a and DN1p glutamatergic neurons, that are part of the Drosophila circadian clock. We localized rapid tolerance to the two DN1a neurons that regulate arousal by light at night, temperature-dependent sleep timing, and night-time sleep. Two clock neurons that regulate evening activity, LNd6 and the 5th LNv, are postsynaptic to the DN1as and they promote rapid tolerance via the metabotropic glutamate receptor. Thus, rapid tolerance to alcohol overlaps with sleep regulatory neural circuitry, suggesting a mechanistic link.
Collapse
Affiliation(s)
- Anthony P. Lange
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343
| | - Fred W. Wolf
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343
| |
Collapse
|
6
|
Guo X, Cheng Y, Huang Y. Study on the drunkenness of Chinese Baijiu with representative flavor based on behavioral characteristics. Front Nutr 2022; 9:1014813. [PMID: 36245514 PMCID: PMC9561937 DOI: 10.3389/fnut.2022.1014813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
The essential role of drunkenness on the healthy development of Chinese Baijiu was studied in this research. This study revealed the effects of Baijiu on the behaviors of mice and evaluated the degree of drunkenness of soy sauce-, strong-, light-, and light and soy sauce-flavored Baijiu. The parameters obtained from the open field test were transformed into the behavioral drunkenness index by mathematical statistical analysis and the drunkenness-associated key compounds of Baijiu were analyzed. The results showed that strong- and light-flavored Baijiu presented higher levels of drunkenness and sobriety than soy sauce-flavored Baijiu. Interestingly, light and soy sauce-flavored Baijiu showed low drunkenness but a high sobriety degree. Specifically, the degree of drunkenness was positively correlated with fusel alcohol and aldehydes but negatively correlated with esters and acids. This study will enrich references for Baijiu behavior studies and lay a foundation for the research and development of healthy Baijiu.
Collapse
Affiliation(s)
- Xuefeng Guo
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Yuxin Cheng
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Yongguang Huang
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, China
| |
Collapse
|
7
|
Proteomic analysis of alcohol-associated hepatitis reveals glycoprotein NMB (GPNMB) as a novel hepatic and serum biomarker. Alcohol 2022; 99:35-48. [PMID: 34923085 PMCID: PMC8919678 DOI: 10.1016/j.alcohol.2021.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022]
Abstract
Alcohol consumption remains a leading cause of liver disease worldwide, resulting in a complex array of hepatic pathologies, including steatosis, steatohepatitis, and cirrhosis. Individuals who progress to a rarer form of alcohol-associated liver disease (ALD), alcohol-associated hepatitis (AH), require immediate life-saving intervention in the form of liver transplantation. Rapid onset of AH is poorly understood and the metabolic mechanisms contributing to the progression to liver failure remain undetermined. While multiple mechanisms have been identified that contribute to ALD, no cures exist and mortality from AH remains high. To identify novel pathways associated with AH, our group utilized proteomics to investigate AH-specific biomarkers in liver explant tissues. The goal of the present study was to determine changes in the proteome as well as epigenetic changes occurring in AH. Protein abundance and acetylomic analyses were performed utilizing nHPLC-MS/MS, revealing significant changes to proteins associated with metabolic and inflammatory fibrosis pathways. Here, we describe a novel hepatic and serum biomarker of AH, glycoprotein NMB (GPNMB). The anti-inflammatory protein GPNMB was significantly increased in AH explant liver and serum compared to healthy donors by 50-fold and 6.5-fold, respectively. Further, bioinformatics analyses identified an AH-dependent decrease in protein abundance across fatty acid degradation, biosynthesis of amino acids, and carbon metabolism. The greatest increases in protein abundance were observed in pathways for focal adhesion, lysosome, phagosome, and actin cytoskeleton. In contrast with the hyperacetylation observed in murine models of ALD, protein acetylation was decreased in AH compared to normal liver across fatty acid degradation, biosynthesis of amino acids, and carbon metabolism. Interestingly, immunoblot analysis found epigenetic marks were significantly increased in AH explants, including Histone H3K9 and H2BK5 acetylation. The increased acetylation of histones likely plays a role in the altered proteomic profile observed, including increases in GPNMB. Indeed, our results reveal that the AH proteome is dramatically impacted through unanticipated and unknown mechanisms. Understanding the origin and consequences of these changes will yield new mechanistic insight for ALD as well as identify novel hepatic and serum biomarkers, such as GPNMB.
Collapse
|
8
|
Anqueira-González A, Acevedo-Gonzalez JP, Montes-Mercado A, Irizarry-Hernández C, Fuenzalida-Uribe NL, Ghezzi A. Transcriptional Correlates of Chronic Alcohol Neuroadaptation in Drosophila Larvae. Front Behav Neurosci 2021; 15:768694. [PMID: 34803626 PMCID: PMC8599819 DOI: 10.3389/fnbeh.2021.768694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022] Open
Abstract
When presented with the choice, Drosophila melanogaster females will often prefer to lay eggs on food containing a significant amount of alcohol. While, in some cases, this behavioral decision can provide a survival advantage to the developing larvae, it can also lead to developmental and cognitive problems. Alcohol consumption can affect executive functions, episodic memory, and other brain function capacities. However, in the fruit fly, the initial cognitive effects of alcohol consumption have been shown to reverse upon persistent exposure to alcohol. Using an olfactory conditioning assay where an odorant is implemented as a conditioned stimulus and paired with a heat shock as an unconditioned stimulus, a previous study has shown that when exposed to a short acute dose of alcohol, Drosophila larvae can no longer learn this association. Interestingly, upon prolonged chronic alcohol exposure, larvae seem to successfully avoid the conditioned stimulus just as well as control alcohol-naive larvae, suggestive of alcohol-induced neuroadaptations. However, the mechanisms by which Drosophila adapt to the presence of alcohol remains unknown. In this study, we explore the transcriptional correlates of neuroadaptation in Drosophila larvae exposed to chronic alcohol to understand the genetic and cellular components responsible for this adaptation. For this, we employed RNA sequencing technology to evaluate differences in gene expression in the brain of larvae chronically exposed to alcohol. Our results suggest that alcohol-induced neuroadaptations are modulated by a diverse array of synaptic genes within the larval brain through a series of epigenetic modulators.
Collapse
Affiliation(s)
- Amanda Anqueira-González
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan, PR, United States
| | - Jenny P Acevedo-Gonzalez
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan, PR, United States
| | - Airined Montes-Mercado
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan, PR, United States
| | | | | | - Alfredo Ghezzi
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan, PR, United States
| |
Collapse
|
9
|
Sprengelmeyer QD, Pool JE. Ethanol resistance in Drosophila melanogaster has increased in parallel cold-adapted populations and shows a variable genetic architecture within and between populations. Ecol Evol 2021; 11:15364-15376. [PMID: 34765183 PMCID: PMC8571616 DOI: 10.1002/ece3.8228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/24/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the genetic properties of adaptive trait evolution is a fundamental crux of biological inquiry that links molecular processes to biological diversity. Important uncertainties persist regarding the genetic predictability of adaptive trait change, the role of standing variation, and whether adaptation tends to result in the fixation of favored variants. Here, we use the recurrent evolution of enhanced ethanol resistance in Drosophila melanogaster during this species' worldwide expansion as a promising system to add to our understanding of the genetics of adaptation. We find that elevated ethanol resistance has evolved at least three times in different cooler regions of the species' modern range-not only at high latitude but also in two African high-altitude regions. Applying a bulk segregant mapping framework, we find that the genetic architecture of ethanol resistance evolution differs substantially not only between our three resistant populations, but also between two crosses involving the same European population. We then apply population genetic scans for local adaptation within our quantitative trait locus regions, and we find potential contributions of genes with annotated roles in spindle localization, membrane composition, sterol and alcohol metabolism, and other processes. We also apply simulation-based analyses that confirm the variable genetic basis of ethanol resistance and hint at a moderately polygenic architecture. However, these simulations indicate that larger-scale studies will be needed to more clearly quantify the genetic architecture of adaptive evolution and to firmly connect trait evolution to specific causative loci.
Collapse
Affiliation(s)
| | - John E. Pool
- Laboratory of GeneticsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
10
|
Oepen AS, Catalano JL, Azanchi R, Kaun KR. The foraging gene affects alcohol sensitivity, metabolism and memory in Drosophila. J Neurogenet 2021; 35:236-248. [PMID: 34092172 PMCID: PMC9215342 DOI: 10.1080/01677063.2021.1931178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
The genetic basis of alcohol use disorder (AUD) is complex. Understanding how natural genetic variation contributes to alcohol phenotypes can help us identify and understand the genetic basis of AUD. Recently, a single nucleotide polymorphism in the human foraging (for) gene ortholog, Protein Kinase cGMP-Dependent 1 (PRKG1), was found to be associated with stress-induced risk for alcohol abuse. However, the mechanistic role that PRKG1 plays in AUD is not well understood. We use natural variation in the Drosophila for gene to describe how variation of cGMP-dependent protein kinase (PKG) activity modifies ethanol-induced phenotypes. We found that variation in for affects ethanol-induced increases in locomotion and memory of the appetitive properties of ethanol intoxication. Further, these differences may stem from the ability to metabolize ethanol. Together, this data suggests that natural variation in PKG modulates cue reactivity for alcohol, and thus could influence alcohol cravings by differentially modulating metabolic and behavioral sensitivities to alcohol.
Collapse
Affiliation(s)
- Anne S. Oepen
- Department of Neuroscience, Brown University, Providence,
RI, USA
- Masters Program in Developmental, Neuronal and Behavioral
Biology, Georg-August-University, Göttingen, Germany
| | - Jamie L. Catalano
- Department of Neuroscience, Brown University, Providence,
RI, USA
- Molecular Pharmacology and Physiology Graduate Program,
Brown University, Providence, RI, USA
| | - Reza Azanchi
- Department of Neuroscience, Brown University, Providence,
RI, USA
| | - Karla R. Kaun
- Department of Neuroscience, Brown University, Providence,
RI, USA
| |
Collapse
|
11
|
Park A, Tran T, Gutierrez L, Stojanik CJ, Plyler J, Thompson GA, Bohm RA, Scheuerman EA, Smith DP, Atkinson NS. Alcohol-induced aggression in Drosophila. Addict Biol 2021; 26:e13045. [PMID: 34044470 DOI: 10.1111/adb.13045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/16/2021] [Accepted: 03/31/2021] [Indexed: 11/28/2022]
Abstract
Alcohol-induced aggression is a destructive and widespread phenomenon associated with violence and sexual assault. However, little is understood concerning its mechanistic origin. We have developed a Drosophila melanogaster model to genetically dissect and understand the phenomenon of sexually dimorphic alcohol-induced aggression. Males with blood alcohol levels of 0.04-mg/ml BAC were less aggressive than alcohol-naive males, but when the BAC had dropped to ~0.015 mg/ml, the alcohol-treated males showed an increase in aggression toward other males. This aggression-promoting treatment is referred to as the post-ethanol aggression (PEA) treatment. Females do not show increased aggression after the same treatment. PEA-treated males also spend less time courting and attempt to copulate earlier than alcohol-naive flies. PEA treatment induces expression of the FruM transcription factor (encoded by a male-specific transcript from the fruitless gene), whereas sedating doses of alcohol reduce FruM expression and reduce male aggression. Transgenic suppression of FruM induction also prevents alcohol-induced aggression. In male flies, alcohol-induced aggression is dependent on the male isoform of the fruitless transcription factor (FruM). Low-dose alcohol induces FruM expression and promotes aggression, whereas higher doses of alcohol suppress FruM and suppress aggression.
Collapse
Affiliation(s)
- Annie Park
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas USA
- Centre for Neural Circuits and Behaviour The University of Oxford Oxford UK
| | - Tracy Tran
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas USA
| | - Linda Gutierrez
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas USA
| | - Christopher J. Stojanik
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas USA
| | - Julian Plyler
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas USA
| | - Grace A. Thompson
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas USA
| | - Rudolf A. Bohm
- Department of Biological and Health Sciences Texas A&M University‐Kingsville Kingsville Texas USA
| | - Elizabeth A. Scheuerman
- Department of Pharmacology and Neuroscience University of Texas Southwestern Medical Center Dallas Texas USA
| | - Dean P. Smith
- Department of Pharmacology and Neuroscience University of Texas Southwestern Medical Center Dallas Texas USA
| | - Nigel S. Atkinson
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research The University of Texas at Austin Austin Texas USA
| |
Collapse
|
12
|
Bonilla M, McPherson M, Coreas J, Boulos M, Chavol P, Alrabadi RI, Loza-Coll M. Repeated ethanol intoxications of Drosophila melanogaster adults increases the resistance to ethanol of their progeny. Alcohol Clin Exp Res 2021; 45:1370-1382. [PMID: 34120365 PMCID: PMC8295206 DOI: 10.1111/acer.14647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/16/2021] [Accepted: 05/20/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND For decades, Drosophila melanogaster has been used as a model organism to understand the genetics and neurobiology of ethanol intoxication and tolerance. Previous research has shown that acute and chronic pre-exposures to ethanol can trigger the development of functional ethanol tolerance in flies and has unveiled some of the genetic pathways involved in the process. To our knowledge, however, no previous work has systematically explored whether repeated intoxications of adult flies can affect the ethanol tolerance of their progeny. METHODS Adult flies were intoxicated several times (once daily, over several days), and their F1 and F2 progeny were subjected to a functional tolerance test in which flies are exposed to ethanol and video recorded twice within 5 hr. Their behavior was subsequently analyzed to determine how long it took them to become sedated during the first and second exposures. One- and 2-way ANOVAs were used to determine whether parental treatment had an effect on their progeny's baseline resistance and/or acquired functional tolerance to ethanol. RESULTS Parental flies that were intoxicated several times produced F1 and F2 progeny with a significantly higher resistance to ethanol than progeny from unexposed controls. Further, parental intoxications inconsistently increased the progeny's capacity to develop rapid functional tolerance upon re-exposure to ethanol. The transmission of increased ethanol resistance to progeny lasted several days after the last parental intoxication. CONCLUSION To our knowledge, this is the first demonstration that repeated parental daily intoxications affect the progeny's response to ethanol in fruit flies. Our findings support the use of D. melanogaster to explore conserved pathways underlying the transmission of ethanol tolerance and can help in the identificaton of novel strategies for managing alcohol use disorder.
Collapse
Affiliation(s)
- Michelle Bonilla
- Department of Biology - California State University, Northridge (CSUN)
| | - Michael McPherson
- Department of Biology - California State University, Northridge (CSUN)
| | - Jocelyn Coreas
- Department of Biology - California State University, Northridge (CSUN)
| | - Michael Boulos
- Department of Biology - California State University, Northridge (CSUN)
| | - Paniz Chavol
- Department of Biology - California State University, Northridge (CSUN)
| | - Ranna I. Alrabadi
- Department of Biology - California State University, Northridge (CSUN)
| | - Mariano Loza-Coll
- Department of Biology - California State University, Northridge (CSUN)
| |
Collapse
|
13
|
Sarode GV, Neier K, Shibata NM, Shen Y, Goncharov DA, Goncharova EA, Mazi TA, Joshi N, Settles ML, LaSalle JM, Medici V. Wilson Disease: Intersecting DNA Methylation and Histone Acetylation Regulation of Gene Expression in a Mouse Model of Hepatic Copper Accumulation. Cell Mol Gastroenterol Hepatol 2021; 12:1457-1477. [PMID: 34098115 PMCID: PMC8487080 DOI: 10.1016/j.jcmgh.2021.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The pathogenesis of Wilson disease (WD) involves hepatic and brain copper accumulation resulting from pathogenic variants affecting the ATP7B gene and downstream epigenetic and metabolic mechanisms. Prior methylome investigations in human WD liver and blood and in the Jackson Laboratory (Bar Harbor, ME) C3He-Atp7btx-j/J (tx-j) WD mouse model revealed an epigenetic signature of WD, including changes in histone deacetylase (HDAC) 5. We tested the hypothesis that histone acetylation is altered with respect to copper overload and aberrant DNA methylation in WD. METHODS We investigated class IIa HDAC4 and HDAC5 and H3K9/H3K27 histone acetylation in tx-j mouse livers compared with C3HeB/FeJ (C3H) control in response to 3 treatments: 60% kcal fat diet, D-penicillamine (copper chelator), and choline (methyl group donor). Experiments with copper-loaded hepatoma G2 cells were conducted to validate in vivo studies. RESULTS In 9-week tx-j mice, HDAC5 levels increased significantly after 8 days of a 60% kcal fat diet compared with chow. In 24-week tx-j mice, HDAC4/5 levels were reduced 5- to 10-fold compared with C3H, likely through mechanisms involving HDAC phosphorylation. HDAC4/5 levels were affected by disease progression and accompanied by increased acetylation. D-penicillamine and choline partially restored HDAC4/5 and H3K9ac/H3K27ac to C3H levels. Integrated RNA and chromatin immunoprecipitation sequencing analyses revealed genes regulating energy metabolism and cellular stress/development, which, in turn, were regulated by histone acetylation in tx-j mice compared with C3H mice, with Pparα and Pparγ among the most relevant targets. CONCLUSIONS These results suggest dietary modulation of class IIa HDAC4/5, and subsequent H3K9/H3K27 acetylation/deacetylation can regulate gene expression in key metabolic pathways in the pathogenesis of WD.
Collapse
Affiliation(s)
| | - Kari Neier
- Department of Medical Microbiology and Immunology, Genome Center, Davis, California
| | | | - Yuanjun Shen
- Division of Pulmonary, Critical Care and Sleep Medicine, Lung Center, Department of Internal Medicine, Davis, California
| | - Dmitry A. Goncharov
- Division of Pulmonary, Critical Care and Sleep Medicine, Lung Center, Department of Internal Medicine, Davis, California
| | - Elena A. Goncharova
- Division of Pulmonary, Critical Care and Sleep Medicine, Lung Center, Department of Internal Medicine, Davis, California
| | - Tagreed A. Mazi
- Department of Nutrition, Davis, California,Department of Community Health Sciences–Clinical Nutrition, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nikhil Joshi
- Bioinformatics Core Facility, University of California–Davis, Davis, California
| | - Matthew L. Settles
- Bioinformatics Core Facility, University of California–Davis, Davis, California
| | - Janine M. LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, Davis, California
| | - Valentina Medici
- Division of Gastroenterology and Hepatology, Davis, California,Correspondence Address correspondence to: Valentina Medici, MD, FAASLD, Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California–Davis, 4150 V Street, Patient Support Services Building (PSSB) Suite 3500, Sacramento, California 95817. fax: (916) 734-7908.
| |
Collapse
|
14
|
Epigenetic and non-coding regulation of alcohol abuse and addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:63-86. [PMID: 33461665 DOI: 10.1016/bs.irn.2020.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alcohol use disorder is a chronic debilitated condition adversely affecting the lives of millions of individuals throughout the modern world. Individuals suffering from an alcohol use disorder diagnosis frequently have serious cooccurring conditions, which often further exacerbates problematic drinking behavior. Comprehending the biochemical processes underlying the progression and perpetuation of disease is essential for mitigating maladaptive behavior in order to restore both physiological and psychological health. The range of cellular and biological systems contributing to, and affected by, alcohol use disorder and other comorbid disorders necessitates a fundamental grasp of intricate functional relationships that govern molecular biology. Epigenetic factors are recognized as essential mediators of cellular behavior, orchestrating a symphony of gene expression changes within multicellular environments that are ultimately responsible for directing human behavior. Understanding the epigenetic and transcriptional regulatory mechanisms involved in the pathogenesis of disease is important for improving available pharmacotherapies and reducing the incidence of alcohol abuse and cooccurring conditions.
Collapse
|
15
|
Lathen DR, Merrill CB, Rothenfluh A. Flying Together: Drosophila as a Tool to Understand the Genetics of Human Alcoholism. Int J Mol Sci 2020; 21:E6649. [PMID: 32932795 PMCID: PMC7555299 DOI: 10.3390/ijms21186649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Alcohol use disorder (AUD) exacts an immense toll on individuals, families, and society. Genetic factors determine up to 60% of an individual's risk of developing problematic alcohol habits. Effective AUD prevention and treatment requires knowledge of the genes that predispose people to alcoholism, play a role in alcohol responses, and/or contribute to the development of addiction. As a highly tractable and translatable genetic and behavioral model organism, Drosophila melanogaster has proven valuable to uncover important genes and mechanistic pathways that have obvious orthologs in humans and that help explain the complexities of addiction. Vinegar flies exhibit remarkably strong face and mechanistic validity as a model for AUDs, permitting many advancements in the quest to understand human genetic involvement in this disease. These advancements occur via approaches that essentially fall into one of two categories: (1) discovering candidate genes via human genome-wide association studies (GWAS), transcriptomics on post-mortem tissue from AUD patients, or relevant physiological connections, then using reverse genetics in flies to validate candidate genes' roles and investigate their molecular function in the context of alcohol. (2) Utilizing flies to discover candidate genes through unbiased screens, GWAS, quantitative trait locus analyses, transcriptomics, or single-gene studies, then validating their translational role in human genetic surveys. In this review, we highlight the utility of Drosophila as a model for alcoholism by surveying recent advances in our understanding of human AUDs that resulted from these various approaches. We summarize the genes that are conserved in alcohol-related function between humans and flies. We also provide insight into some advantages and limitations of these approaches. Overall, this review demonstrates how Drosophila have and can be used to answer important genetic questions about alcohol addiction.
Collapse
Affiliation(s)
- Daniel R. Lathen
- Department of Psychiatry and Neuroscience Ph.D. Program, University of Utah, Salt Lake City, UT 84108, USA;
| | - Collin B. Merrill
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA;
| | - Adrian Rothenfluh
- Department of Psychiatry and Neuroscience Ph.D. Program, University of Utah, Salt Lake City, UT 84108, USA;
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
16
|
Rohde PD, Jensen IR, Sarup PM, Ørsted M, Demontis D, Sørensen P, Kristensen TN. Genetic Signatures of Drug Response Variability in Drosophila melanogaster. Genetics 2019; 213:633-650. [PMID: 31455722 PMCID: PMC6781897 DOI: 10.1534/genetics.119.302381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/26/2019] [Indexed: 12/27/2022] Open
Abstract
Knowledge of the genetic basis underlying variation in response to environmental exposures or treatments is important in many research areas. For example, knowing the set of causal genetic variants for drug responses could revolutionize personalized medicine. We used Drosophila melanogaster to investigate the genetic signature underlying behavioral variability in response to methylphenidate (MPH), a drug used in the treatment of attention-deficit/hyperactivity disorder. We exposed a wild-type D. melanogaster population to MPH and a control treatment, and observed an increase in locomotor activity in MPH-exposed individuals. Whole-genome transcriptomic analyses revealed that the behavioral response to MPH was associated with abundant gene expression alterations. To confirm these patterns in a different genetic background and to further advance knowledge on the genetic signature of drug response variability, we used a system of inbred lines, the Drosophila Genetic Reference Panel (DGRP). Based on the DGRP, we showed that the behavioral response to MPH was strongly genotype-dependent. Using an integrative genomic approach, we incorporated known gene interactions into the genomic analyses of the DGRP, and identified putative candidate genes for variability in drug response. We successfully validated 71% of the investigated candidate genes by gene expression knockdown. Furthermore, we showed that MPH has cross-generational behavioral and transcriptomic effects. Our findings establish a foundation for understanding the genetic mechanisms driving genotype-specific responses to medical treatment, and highlight the opportunities that integrative genomic approaches have in optimizing medical treatment of complex diseases.
Collapse
Affiliation(s)
- Palle Duun Rohde
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8000 Aarhus C, Denmark
- Center for Integrative Sequencing, Aarhus University, 8000, Denmark
| | - Iben Ravnborg Jensen
- Section for Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg University, 9220, Denmark
| | - Pernille Merete Sarup
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - Michael Ørsted
- Section for Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg University, 9220, Denmark
| | - Ditte Demontis
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8000 Aarhus C, Denmark
- Center for Integrative Sequencing, Aarhus University, 8000, Denmark
- Department of Biomedicine, Aarhus University, 8000, Denmark
| | - Peter Sørensen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - Torsten Nygaard Kristensen
- Section for Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg University, 9220, Denmark
- Section for Genetics, Ecology and Evolution, Department of Bioscience, Aarhus University, 8000, Denmark
| |
Collapse
|
17
|
Engel GL, Taber K, Vinton E, Crocker AJ. Studying alcohol use disorder using Drosophila melanogaster in the era of 'Big Data'. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2019; 15:7. [PMID: 30992041 PMCID: PMC6469124 DOI: 10.1186/s12993-019-0159-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/04/2019] [Indexed: 02/08/2023]
Abstract
Our understanding of the networks of genes and protein functions involved in Alcohol Use Disorder (AUD) remains incomplete, as do the mechanisms by which these networks lead to AUD phenotypes. The fruit fly (Drosophila melanogaster) is an efficient model for functional and mechanistic characterization of the genes involved in alcohol behavior. The fly offers many advantages as a model organism for investigating the molecular and cellular mechanisms of alcohol-related behaviors, and for understanding the underlying neural circuitry driving behaviors, such as locomotor stimulation, sedation, tolerance, and appetitive (reward) learning and memory. Fly researchers are able to use an extensive variety of tools for functional characterization of gene products. To understand how the fly can guide our understanding of AUD in the era of Big Data we will explore these tools, and review some of the gene networks identified in the fly through their use, including chromatin-remodeling, glial, cellular stress, and innate immunity genes. These networks hold great potential as translational drug targets, making it prudent to conduct further research into how these gene mechanisms are involved in alcohol behavior.
Collapse
Affiliation(s)
- Gregory L. Engel
- Department of Psychological Sciences, Castleton University, Castleton, VT 05735 USA
| | - Kreager Taber
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753 USA
| | - Elizabeth Vinton
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753 USA
| | - Amanda J. Crocker
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753 USA
| |
Collapse
|
18
|
Agrawal P, Chung P, Heberlein U, Kent C. Enabling cell-type-specific behavioral epigenetics in Drosophila: a modified high-yield INTACT method reveals the impact of social environment on the epigenetic landscape in dopaminergic neurons. BMC Biol 2019; 17:30. [PMID: 30967153 PMCID: PMC6456965 DOI: 10.1186/s12915-019-0646-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/07/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Epigenetic mechanisms play fundamental roles in brain function and behavior and stressors such as social isolation can alter animal behavior via epigenetic mechanisms. However, due to cellular heterogeneity, identifying cell-type-specific epigenetic changes in the brain is challenging. Here, we report the first use of a modified isolation of nuclei tagged in specific cell type (INTACT) method in behavioral epigenetics of Drosophila melanogaster, a method we call mini-INTACT. RESULTS Using ChIP-seq on mini-INTACT purified dopaminergic nuclei, we identified epigenetic signatures in socially isolated and socially enriched Drosophila males. Social experience altered the epigenetic landscape in clusters of genes involved in transcription and neural function. Some of these alterations could be predicted by expression changes of four transcription factors and the prevalence of their binding sites in several clusters. These transcription factors were previously identified as activity-regulated genes, and their knockdown in dopaminergic neurons reduced the effects of social experience on sleep. CONCLUSIONS Our work enables the use of Drosophila as a model for cell-type-specific behavioral epigenetics and establishes that social environment shifts the epigenetic landscape in dopaminergic neurons. Four activity-related transcription factors are required in dopaminergic neurons for the effects of social environment on sleep.
Collapse
Affiliation(s)
- Pavan Agrawal
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Phuong Chung
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ulrike Heberlein
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Clement Kent
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
- Department of Biology, York University, Toronto, Canada.
| |
Collapse
|
19
|
Petruccelli E, Kaun KR. Insights from intoxicated Drosophila. Alcohol 2019; 74:21-27. [PMID: 29980341 DOI: 10.1016/j.alcohol.2018.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 01/31/2023]
Abstract
Our understanding of alcohol use disorder (AUD), particularly alcohol's effects on the nervous system, has unquestionably benefited from the use of model systems such as Drosophila melanogaster. Here, we briefly introduce the use of flies in alcohol research, and highlight the genetic accessibility and neurobiological contribution that flies have made to our understanding of AUD. Future fly research offers unique opportunities for addressing unresolved questions in the alcohol field, such as the neuromolecular and circuit basis for cravings and alcohol-induced neuroimmune dysfunction. This review strongly advocates for interdisciplinary approaches and translational collaborations with the united goal of confronting the major health problems associated with alcohol abuse and addiction.
Collapse
|
20
|
Signor S, Nuzhdin S. Dynamic changes in gene expression and alternative splicing mediate the response to acute alcohol exposure in Drosophila melanogaster. Heredity (Edinb) 2018; 121:342-360. [PMID: 30143789 PMCID: PMC6133934 DOI: 10.1038/s41437-018-0136-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/21/2018] [Accepted: 07/19/2018] [Indexed: 12/18/2022] Open
Abstract
Environmental changes typically cause rapid gene expression responses in the exposed organisms, including changes in the representation of gene isoforms with different functions or properties. Identifying the genes that respond to environmental change, including in genotype-specific ways, is an important step in treating the undesirable physiological effects of stress, such as exposure to toxins or ethanol. Ethanol is a unique environmental stress in that chronic exposure results in permanent physiological changes and the development of alcohol use disorders. Drosophila is a classic model for deciphering the mechanisms of the response to alcohol exposure, as it meets the criteria for the development of alcohol use disorders, and has similar physiological underpinnings with vertebrates. Because many studies on the response to ethanol have relied on a priori candidate genes, broad surveys of gene expression and splicing are required and have been investigated here. Further, we expose Drosophila to ethanol in an environment that is genetically, socially, and ecologically relevant. Both expression and splicing differences, inasmuch as they can be decomposed, contribute to the response to ethanol in Drosophila melanogaster. However, we find that while D. melanogaster responds to ethanol, there is very little genetic variation in how it responds to ethanol. In addition, the response to alcohol over time is dynamic, suggesting that incorporating time into studies on the response to the environment is important.
Collapse
Affiliation(s)
- Sarah Signor
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA.
| | - Sergey Nuzhdin
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
21
|
Ethanol Regulates Presynaptic Activity and Sedation through Presynaptic Unc13 Proteins in Drosophila. eNeuro 2018; 5:eN-NWR-0125-18. [PMID: 29911175 PMCID: PMC6001265 DOI: 10.1523/eneuro.0125-18.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/09/2018] [Accepted: 05/12/2018] [Indexed: 11/21/2022] Open
Abstract
Ethanol has robust effects on presynaptic activity in many neurons, however, it is not yet clear how this drug acts within this compartment to change neural activity, nor the significance of this change on behavior and physiology in vivo. One possible presynaptic effector for ethanol is the Munc13-1 protein. Herein, we show that ethanol binding to the rat Munc13-1 C1 domain, at concentrations consistent with binge exposure, reduces diacylglycerol (DAG) binding. The inhibition of DAG binding is predicted to reduce the activity of Munc13-1 and presynaptic release. In Drosophila, we show that sedating concentrations of ethanol significantly reduce synaptic vesicle release in olfactory sensory neurons (OSNs), while having no significant impact on membrane depolarization and Ca2+ influx into the presynaptic compartment. These data indicate that ethanol targets the active zone in reducing synaptic vesicle exocytosis. Drosophila, haploinsufficent for the Munc13-1 ortholog Dunc13, are more resistant to the effect of ethanol on presynaptic inhibition. Genetically reducing the activity of Dunc13 through mutation or expression of RNAi transgenes also leads to a significant resistance to the sedative effects of ethanol. The neuronal expression of Munc13-1 in heterozygotes for a Dunc13 loss-of-function mutation can largely rescue the ethanol sedation resistance phenotype, indicating a conservation of function between Munc13-1 and Dunc13 in ethanol sedation. Hence, reducing Dunc13 activity leads to naïve physiological and behavioral resistance to sedating concentrations of ethanol. We propose that reducing Dunc13 activity, genetically or pharmacologically by ethanol binding to the C1 domain of Munc13-1/Dunc13, promotes a homeostatic response that leads to ethanol tolerance.
Collapse
|
22
|
Ramirez-Roman ME, Billini CE, Ghezzi A. Epigenetic Mechanisms of Alcohol Neuroadaptation: Insights from Drosophila. J Exp Neurosci 2018; 12:1179069518779809. [PMID: 29899666 PMCID: PMC5990879 DOI: 10.1177/1179069518779809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022] Open
Abstract
Alcohol addiction is a serious condition perpetuated by enduring physiological and behavioral adaptations. An important component of these adaptations is the long-term rearrangement of neuronal gene expression in the brain of the addicted individual. Epigenetic histone modifications have recently surfaced as important modulators of the transcriptional adaptation to alcohol as these are thought to represent a form of transcriptional memory that is directly imprinted on the chromosome. Some histone modifications affect transcription by modulating the accessibility of the underlying DNA, whereas others have been proposed to serve as marks read by transcription factors as a "histone code" that helps to specify the expression level of a gene. Although the effects of some epigenetic modifications on the transcriptional activity of genes are well known, the mechanisms by which alcohol consumption produces this rearrangement and leads to lasting changes in behavior remain unresolved. Recent advances using the Drosophila model system have started to unravel the epigenetic modulators underlying functional alcohol neuroadaptations. In this review, we discuss the role of 3 different histone modification systems in Drosophila, which have a direct impact on key alcohol neuroadaptations associated with the addictive process. These systems involve the histone deacetylase Sirt1, the histone acetyltransferase CREB-binding protein (CBP), and a subset of the Drosophila JmjC-Domain histone demethylase family.
Collapse
Affiliation(s)
| | - Carlos E Billini
- Department of Biology, University of Puerto Rico–Rio Piedras, San Juan, PR, USA
| | - Alfredo Ghezzi
- Department of Biology, University of Puerto Rico–Rio Piedras, San Juan, PR, USA
| |
Collapse
|
23
|
Adhikari P, Orozco D, Randhawa H, Wolf FW. Mef2 induction of the immediate early gene Hr38/Nr4a is terminated by Sirt1 to promote ethanol tolerance. GENES BRAIN AND BEHAVIOR 2018; 18:e12486. [PMID: 29726098 PMCID: PMC6215524 DOI: 10.1111/gbb.12486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 02/06/2023]
Abstract
Drug naïve animals given a single dose of ethanol show changed responses to subsequent doses, including the development of ethanol tolerance and ethanol preference. These simple forms of behavioral plasticity are due in part to changes in gene expression and neuronal properties. Surprisingly little is known about how ethanol initiates changes in gene expression or what the changes do. Here we demonstrate a role in ethanol plasticity for Hr38, the sole Drosophila homolog of the mammalian Nr4a1/2/3 class of immediate early response transcription factors. Acute ethanol exposure induces transient expression of Hr38 and other immediate early neuronal activity genes. Ethanol activates the Mef2 transcriptional activator to induce Hr38, and the Sirt1 histone/protein deacetylase is required to terminate Hr38 induction. Loss of Hr38 decreases ethanol tolerance and causes precocious but short‐lasting ethanol preference. Similarly, reduced Mef2 activity in all neurons or specifically in the mushroom body α/β neurons decreases ethanol tolerance; Sirt1 promotes ethanol tolerance in these same neurons. Genetically decreasing Hr38 expression levels in Sirt1 null mutants restores ethanol tolerance, demonstrating that both induction and termination of Hr38 expression are important for behavioral plasticity to proceed. These data demonstrate that Hr38 functions as an immediate early transcription factor that promotes ethanol behavioral plasticity.
Collapse
Affiliation(s)
- P Adhikari
- Quantitative and Systems Biology, University of California, Merced, California
| | - D Orozco
- Molecular Cell Biology, University of California, Merced, California
| | - H Randhawa
- Molecular Cell Biology, University of California, Merced, California
| | - F W Wolf
- Quantitative and Systems Biology, University of California, Merced, California.,Molecular Cell Biology, University of California, Merced, California
| |
Collapse
|
24
|
Ryvkin J, Bentzur A, Zer-Krispil S, Shohat-Ophir G. Mechanisms Underlying the Risk to Develop Drug Addiction, Insights From Studies in Drosophila melanogaster. Front Physiol 2018; 9:327. [PMID: 29740329 PMCID: PMC5928757 DOI: 10.3389/fphys.2018.00327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/15/2018] [Indexed: 12/21/2022] Open
Abstract
The ability to adapt to environmental changes is an essential feature of biological systems, achieved in animals by a coordinated crosstalk between neuronal and hormonal programs that allow rapid and integrated organismal responses. Reward systems play a key role in mediating this adaptation by reinforcing behaviors that enhance immediate survival, such as eating or drinking, or those that ensure long-term survival, such as sexual behavior or caring for offspring. Drugs of abuse co-opt neuronal and molecular pathways that mediate natural rewards, which under certain circumstances can lead to addiction. Many factors can contribute to the transition from drug use to drug addiction, highlighting the need to discover mechanisms underlying the progression from initial drug use to drug addiction. Since similar responses to natural and drug rewards are present in very different animals, it is likely that the central systems that process reward stimuli originated early in evolution, and that common ancient biological principles and genes are involved in these processes. Thus, the neurobiology of natural and drug rewards can be studied using simpler model organisms that have their systems stripped of some of the immense complexity that exists in mammalian brains. In this paper we review studies in Drosophila melanogaster that model different aspects of natural and drug rewards, with an emphasis on how motivational states shape the value of the rewarding experience, as an entry point to understanding the mechanisms that contribute to the vulnerability of drug addiction.
Collapse
Affiliation(s)
- Julia Ryvkin
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Assa Bentzur
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Shir Zer-Krispil
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Galit Shohat-Ophir
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
25
|
Lowenstein EG, Velazquez-Ulloa NA. A Fly's Eye View of Natural and Drug Reward. Front Physiol 2018; 9:407. [PMID: 29720947 PMCID: PMC5915475 DOI: 10.3389/fphys.2018.00407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
Animals encounter multiple stimuli each day. Some of these stimuli are innately appetitive or aversive, while others are assigned valence based on experience. Drugs like ethanol can elicit aversion in the short term and attraction in the long term. The reward system encodes the predictive value for different stimuli, mediating anticipation for attractive or punishing stimuli and driving animal behavior to approach or avoid conditioned stimuli. The neurochemistry and neurocircuitry of the reward system is partly evolutionarily conserved. In both vertebrates and invertebrates, including Drosophila melanogaster, dopamine is at the center of a network of neurotransmitters and neuromodulators acting in concert to encode rewards. Behavioral assays in D. melanogaster have become increasingly sophisticated, allowing more direct comparison with mammalian research. Moreover, recent evidence has established the functional modularity of the reward neural circuits in Drosophila. This functional modularity resembles the organization of reward circuits in mammals. The powerful genetic and molecular tools for D. melanogaster allow characterization and manipulation at the single-cell level. These tools are being used to construct a detailed map of the neural circuits mediating specific rewarding stimuli and have allowed for the identification of multiple genes and molecular pathways that mediate the effects of reinforcing stimuli, including their rewarding effects. This report provides an overview of the research on natural and drug reward in D. melanogaster, including natural rewards such as sugar and other food nutrients, and drug rewards including ethanol, cocaine, amphetamine, methamphetamine, and nicotine. We focused mainly on the known genetic and neural mechanisms underlying appetitive reward for sugar and reward for ethanol. We also include genes, molecular pathways, and neural circuits that have been identified using assays that test the palatability of the rewarding stimulus, the preference for the rewarding stimulus, or other effects of the stimulus that indicate how it can modify behavior. Commonalities between mechanisms of natural and drug reward are highlighted and future directions are presented, putting forward questions best suited for research using D. melanogaster as a model organism.
Collapse
Affiliation(s)
- Eve G Lowenstein
- Department of Biology, Lewis & Clark College, Portland, OR, United States
| | | |
Collapse
|
26
|
Sir2/Sirt1 Links Acute Inebriation to Presynaptic Changes and the Development of Alcohol Tolerance, Preference, and Reward. J Neurosci 2017; 36:5241-51. [PMID: 27170122 DOI: 10.1523/jneurosci.0499-16.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/23/2016] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Acute ethanol inebriation causes neuroadaptive changes in behavior that favor increased intake. Ethanol-induced alterations in gene expression, through epigenetic and other means, are likely to change cellular and neural circuit function. Ethanol markedly changes histone acetylation, and the sirtuin Sir2/SIRT1 that deacetylates histones and transcription factors is essential for the rewarding effects of long-term drug use. The molecular transformations leading from short-term to long-term ethanol responses mostly remain to be discovered. We find that Sir2 in the mushroom bodies of the fruit fly Drosophila promotes short-term ethanol-induced behavioral plasticity by allowing changes in the expression of presynaptic molecules. Acute inebriation strongly reduces Sir2 levels and increases histone H3 acetylation in the brain. Flies lacking Sir2 globally, in the adult nervous system, or specifically in the mushroom body α/β-lobes show reduced ethanol sensitivity and tolerance. Sir2-dependent ethanol reward is also localized to the mushroom bodies, and Sir2 mutants prefer ethanol even without a priming ethanol pre-exposure. Transcriptomic analysis reveals that specific presynaptic molecules, including the synaptic vesicle pool regulator Synapsin, depend on Sir2 to be regulated by ethanol. Synapsin is required for ethanol sensitivity and tolerance. We propose that the regulation of Sir2/SIRT1 by acute inebriation forms part of a transcriptional program in mushroom body neurons to alter presynaptic properties and neural responses to favor the development of ethanol tolerance, preference, and reward. SIGNIFICANCE STATEMENT We identify a mechanism by which acute ethanol inebriation leads to changes in nervous system function that may be an important basis for increasing ethanol intake and addiction liability. The findings are significant because they identify ethanol-driven transcriptional events that target presynaptic properties and direct behavioral plasticity. They also demonstrate that multiple forms of ethanol behavioral plasticity that are relevant to alcoholism are initiated by a shared mechanism. Finally, they link these events to the Drosophila brain region that associates context with innate approach and avoidance responses to code for reward and other higher-order behavior, similar in aspects to the role of the vertebrate mesolimbic system.
Collapse
|
27
|
Loci Contributing to Boric Acid Toxicity in Two Reference Populations of Drosophila melanogaster. G3-GENES GENOMES GENETICS 2017; 7:1631-1641. [PMID: 28592646 PMCID: PMC5473745 DOI: 10.1534/g3.117.041418] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Populations maintain considerable segregating variation in the response to toxic, xenobiotic compounds. To identify variants associated with resistance to boric acid, a commonly-used household insecticide with a poorly understood mechanism of action, we assayed thousands of individuals from hundreds of strains. Using the Drosophila Synthetic Population Resource (DSPR), a multi-parental population (MPP) of inbred genotypes, we mapped six QTL to short genomic regions containing few protein-coding genes (3–188), allowing us to identify plausible candidate genes underlying resistance to boric acid toxicity. One interval contains multiple genes from the cytochrome P450 family, and we show that ubiquitous RNAi of one of these genes, Cyp9b2, markedly reduces resistance to the toxin. Resistance to boric acid is positively correlated with caffeine resistance. The two phenotypes additionally share a pair of QTL, potentially suggesting a degree of pleiotropy in the genetic control of resistance to these two distinct xenobiotics. Finally, we screened the Drosophila Genetic Reference Panel (DGRP) in an attempt to identify sequence variants within mapped QTL that are associated with boric acid resistance. The approach was largely unsuccessful, with only one QTL showing any associations at QTL-specific 20% False Discovery Rate (FDR) thresholds. Nonetheless, these associations point to a potential candidate gene that can be targeted in future validation efforts. Although the mapping data resulting from the two reference populations do not clearly overlap, our work provides a starting point for further genetic dissection of the processes underlying boric acid toxicity in insects.
Collapse
|
28
|
Abstract
Liver fibrosis arises because prolonged injury combined with excessive scar deposition within hepatic parenchyma arising from overactive wound healing response mediated by activated myofibroblasts. Fibrosis is the common end point for any type of chronic liver injury including alcoholic liver disease, nonalcoholic fatty liver disease, viral hepatitis, and cholestatic liver diseases. Although genetic influences are important, it is epigenetic mechanisms that have been shown to orchestrate many aspects of fibrogenesis in the liver. New discoveries in the field are leading toward the development of epigenetic biomarkers and targeted therapies. This review considers epigenetic mechanisms as well as recent advances in epigenetic programming in the context of hepatic fibrosis.
Collapse
Key Words
- CLD, chronic liver disease
- Chronic Liver Disease
- CpG, cytosine-phospho-guanine
- DNA Methylation
- DNMT, DNA methyltransferase
- Epigenetics
- HDAC, histone deacetylase
- HSC, hepatic stellate cell
- Histone Modifications
- Liver Fibrosis
- NAFLD, nonalcoholic fatty liver disease
- PPAR, peroxisome proliferator activated receptor
- TET, Ten Eleven Translocation
- miRNA, microRNA
- ncRNA, non-coding RNA
Collapse
Affiliation(s)
| | - Jelena Mann
- Correspondence Address correspondence to: Jelena Mann, PhD, Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH United Kingdom. fax: +44-191-208-0723.Institute of Cellular MedicineFaculty of Medical Sciences4th FloorWilliam Leech BuildingNewcastle UniversityFramlington PlaceNewcastle upon TyneNE2 4HH United Kingdom
| |
Collapse
|
29
|
Ghezzi A, Li X, Lew LK, Wijesekera TP, Atkinson NS. Alcohol-Induced Neuroadaptation Is Orchestrated by the Histone Acetyltransferase CBP. Front Mol Neurosci 2017; 10:103. [PMID: 28442993 PMCID: PMC5387060 DOI: 10.3389/fnmol.2017.00103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/24/2017] [Indexed: 12/19/2022] Open
Abstract
Homeostatic neural adaptations to alcohol underlie the production of alcohol tolerance and the associated symptoms of withdrawal. These adaptations have been shown to persist for relatively long periods of time and are believed to be of central importance in promoting the addictive state. In Drosophila, a single exposure to alcohol results in long-lasting alcohol tolerance and symptoms of withdrawal following alcohol clearance. These persistent adaptations involve mechanisms such as long-lasting changes in gene expression and perhaps epigenetic restructuring of chromosomal regions. Histone modifications have emerged as important modulators of gene expression and are thought to orchestrate and maintain the expression of multi-gene networks. Previously genes that contribute to tolerance were identified as those that show alcohol-induced changes in histone H4 acetylation following a single alcohol exposure. However, the molecular mediator of the acetylation process that orchestrates their expression remains unknown. Here we show that the Drosophila ortholog of mammalian CBP, nejire, is the histone acetyltransferase involved in regulatory changes producing tolerance—alcohol induces nejire expression, nejire mutations suppress tolerance, and transgenic nejire induction mimics tolerance in alcohol-naive animals. Moreover, we observed that a loss-of-function mutation in the alcohol tolerance gene slo epistatically suppresses the effects of CBP induction on alcohol resistance, linking nejire to a well-established alcohol tolerance gene network. We propose that CBP is a central regulator of the network of genes underlying an alcohol adaptation.
Collapse
Affiliation(s)
- Alfredo Ghezzi
- Department of Biology, University of Puerto Rico, Río Piedras CampusSan Juan, Puerto Rico
| | - Xiaolei Li
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research, The University of Texas at AustinAustin, TX, USA
| | - Linda K Lew
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research, The University of Texas at AustinAustin, TX, USA
| | - Thilini P Wijesekera
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research, The University of Texas at AustinAustin, TX, USA
| | - Nigel S Atkinson
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research, The University of Texas at AustinAustin, TX, USA
| |
Collapse
|
30
|
Park A, Ghezzi A, Wijesekera TP, Atkinson NS. Genetics and genomics of alcohol responses in Drosophila. Neuropharmacology 2017; 122:22-35. [PMID: 28161376 DOI: 10.1016/j.neuropharm.2017.01.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 02/07/2023]
Abstract
Drosophila melanogaster has become a significant model organism for alcohol research. In flies, a rich variety of behaviors can be leveraged for identifying genes affecting alcohol responses and adaptations. Furthermore, almost all genes can be easily genetically manipulated. Despite the great evolutionary distance between flies and mammals, many of the same genes have been implicated in strikingly similar alcohol-induced behaviors. A major problem in medical research today is that it is difficult to extrapolate from any single model system to humans. Strong evolutionary conservation of a mechanistic response between distantly related organisms, such as flies and mammals, is a powerful predictor that conservation will continue all the way to humans. This review describes the state of the Drosophila alcohol research field. It describes common alcohol behavioral assays, the independent origins of resistance and tolerance, the results of classical genetic screens and candidate gene analysis, and the outcomes of recent genomics studies employing GWAS, transcriptome, miRNA, and genome-wide histone acetylation surveys. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Annie Park
- Department of Neuroscience and The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| | - Alfredo Ghezzi
- Department of Biology, University of Puerto Rico, Rio Piedras. San Juan, PR, United States
| | - Thilini P Wijesekera
- Department of Neuroscience and The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| | - Nigel S Atkinson
- Department of Neuroscience and The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
31
|
Wu Z, Tian X, He S, Quan L, Wei Y, Wu Z. Evaluation of intoxicating effects of liquor products on drunken mice. MEDCHEMCOMM 2017; 8:122-129. [PMID: 30108697 DOI: 10.1039/c6md00491a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/30/2016] [Indexed: 12/22/2022]
Abstract
Consumption of alcoholic beverages increases the risk of human health problems such as liver, heart and blood vessel diseases. In the present study, the concept of intoxicating degree (ID) is proposed as an index to demonstrate the degree of intoxicating activity for consuming liquor products. A mice model was designed for the evaluation of liquor product IDs. The intoxicating effects of liquor products were investigated by blood alcohol concentrations (BAC) and behaviour abilities of mice including righting reflex, running and forced-swim abilities. A linear regression model between comprehensive drunkenness degree (CD), calculated by integrating BAC and the behaviour abilities, and alcohol-feeding dosages (W), was established (with R2 > 0.9) with a slope factor of K. The ratio of the K values of liquor products to that of purified alcohol could be used to express the ID. For ID values less than 1, the liquor product would have a lower intoxicating effect when the same amount of alcohol content was consumed and vice versa.
Collapse
Affiliation(s)
- Zhiqiang Wu
- School of Bioscience and Bioengineering , South China University of Technology , Guangzhou , 510006 , Guangdong , China . ; ; Tel: +86 20 39380663
| | - Xiaofei Tian
- School of Bioscience and Bioengineering , South China University of Technology , Guangzhou , 510006 , Guangdong , China . ; ; Tel: +86 20 39380663
| | - Songgui He
- Guangdong Jiujiang Distillery Co. Ltd. , Foshan , 528203 , Guangdong , China
| | - Lei Quan
- School of Bioscience and Bioengineering , South China University of Technology , Guangzhou , 510006 , Guangdong , China . ; ; Tel: +86 20 39380663
| | - Yunlu Wei
- Guangdong Jiujiang Distillery Co. Ltd. , Foshan , 528203 , Guangdong , China
| | - Zhenqiang Wu
- School of Bioscience and Bioengineering , South China University of Technology , Guangzhou , 510006 , Guangdong , China . ; ; Tel: +86 20 39380663
| |
Collapse
|
32
|
Kamat PK, Mallonee CJ, George AK, Tyagi SC, Tyagi N. Homocysteine, Alcoholism, and Its Potential Epigenetic Mechanism. Alcohol Clin Exp Res 2016; 40:2474-2481. [PMID: 27805256 PMCID: PMC5133158 DOI: 10.1111/acer.13234] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/08/2016] [Indexed: 12/20/2022]
Abstract
Alcohol is the most socially accepted addictive drug. Alcohol consumption is associated with some health problems such as neurological, cognitive, behavioral deficits, cancer, heart, and liver disease. Mechanisms of alcohol-induced toxicity are presently not yet clear. One of the mechanisms underlying alcohol toxicity has to do with its interaction with amino acid homocysteine (Hcy), which has been linked with brain neurotoxicity. Elevated Hcy impairs with various physiological mechanisms in the body, especially metabolic pathways. Hcy metabolism is predominantly controlled by epigenetic regulation such as DNA methylation, histone modifications, and acetylation. An alteration in these processes leads to epigenetic modification. Therefore, in this review, we summarize the role of Hcy metabolism abnormalities in alcohol-induced toxicity with epigenetic adaptation and their influences on cerebrovascular pathology.
Collapse
Affiliation(s)
- Pradip K Kamat
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida
| | - Carissa J Mallonee
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Akash K George
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Neetu Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
33
|
Ghezzi A, Zomeno M, Pietrzykowski AZ, Atkinson NS. Immediate-early alcohol-responsive miRNA expression in Drosophila. J Neurogenet 2016; 30:195-204. [PMID: 27845601 DOI: 10.1080/01677063.2016.1252764] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
At the core of the changes characteristic of alcoholism are alterations in gene expression in the brain of the addicted individual. These changes are believed to underlie some of the neuroadaptations that promote compulsive drinking. Unfortunately, the mechanisms by which alcohol consumption produces changes in gene expression remain poorly understood. MicroRNAs (miRNAs) have emerged as important regulators of gene expression because they can coordinately modulate the translation efficiency of large sets of specific mRNAs. Here, we investigate the early miRNA responses elicited by an acute sedating dose of alcohol in the Drosophila model organism. In our analysis, we combine the power of next-generation sequencing with Drosophila genetics to identify alcohol-sensitive miRNAs and to functionally test them for a role in modulating alcohol sensitivity. We identified 14 known Drosophila miRNAs, and 13 putative novel miRNAs that respond to an acute sedative exposure to alcohol. Using the GeneSwitch Gal4/UAS system, a subset of these ethanol-responsive miRNAs was functionally tested to determine their individual contribution in modulating ethanol sensitivity. We identified two microRNAs that when overexpressed significantly increased ethanol sensitivity: miR-6 and miR-310. MicroRNA target prediction analysis revealed that the different alcohol-responsive miRNAs target-overlapping sets of mRNAs. Alcoholism is the product of accumulated cellular changes produced by chronic ethanol consumption. Although all of the changes described herein are extremely rapid responses evoked by a single ethanol exposure, understanding the gene expression changes that occur in the first few minutes after ethanol exposure will help us to categorize ethanol responses into those that are near instantaneous and those that are emergent responses produced only by repeated ethanol exposure.
Collapse
Affiliation(s)
- Alfredo Ghezzi
- a Department of Biology , University of Puerto Rico , Rio Piedras, San Juan , Puerto Rico
| | - Marie Zomeno
- b Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research , The University of Texas at Austin , Austin , TX , USA
| | - Andrzej Z Pietrzykowski
- c The Biologically Inspired Neural and Dynamical Systems (BINDS) Lab, Department of Computer Science , University of Massachusetts Amherst , Amherst , MA , USA
| | - Nigel S Atkinson
- b Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research , The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
34
|
Carbone MA, Yamamoto A, Huang W, Lyman RA, Meadors TB, Yamamoto R, Anholt RRH, Mackay TFC. Genetic architecture of natural variation in visual senescence in Drosophila. Proc Natl Acad Sci U S A 2016; 113:E6620-E6629. [PMID: 27791033 PMCID: PMC5087026 DOI: 10.1073/pnas.1613833113] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Senescence, i.e., functional decline with age, is a major determinant of health span in a rapidly aging population, but the genetic basis of interindividual variation in senescence remains largely unknown. Visual decline and age-related eye disorders are common manifestations of senescence, but disentangling age-dependent visual decline in human populations is challenging due to inability to control genetic background and variation in histories of environmental exposures. We assessed the genetic basis of natural variation in visual senescence by measuring age-dependent decline in phototaxis using Drosophila melanogaster as a genetic model system. We quantified phototaxis at 1, 2, and 4 wk of age in the sequenced, inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and found an average decline in phototaxis with age. We observed significant genetic variation for phototaxis at each age and significant genetic variation in senescence of phototaxis that is only partly correlated with phototaxis. Genome-wide association analyses in the DGRP and a DGRP-derived outbred, advanced intercross population identified candidate genes and genetic networks associated with eye and nervous system development and function, including seven genes with human orthologs previously associated with eye diseases. Ninety percent of candidate genes were functionally validated with targeted RNAi-mediated suppression of gene expression. Absence of candidate genes previously implicated with longevity indicates physiological systems may undergo senescence independent of organismal life span. Furthermore, we show that genes that shape early developmental processes also contribute to senescence, demonstrating that senescence is part of a genetic continuum that acts throughout the life span.
Collapse
Affiliation(s)
- Mary Anna Carbone
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695; W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695; Program in Genetics, North Carolina State University, Raleigh, NC 27695
| | - Akihiko Yamamoto
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695; W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695; Program in Genetics, North Carolina State University, Raleigh, NC 27695
| | - Wen Huang
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695; W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695; Program in Genetics, North Carolina State University, Raleigh, NC 27695; Initiative in Biological Complexity, North Carolina State University, Raleigh, NC 27695
| | - Rachel A Lyman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695
| | - Tess Brune Meadors
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695
| | - Ryoan Yamamoto
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695
| | - Robert R H Anholt
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695; W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695; Program in Genetics, North Carolina State University, Raleigh, NC 27695; Initiative in Biological Complexity, North Carolina State University, Raleigh, NC 27695
| | - Trudy F C Mackay
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695; W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695; Program in Genetics, North Carolina State University, Raleigh, NC 27695; Initiative in Biological Complexity, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
35
|
Yoshimura A, Komoto Y, Higuchi S. Exploration of Core Symptoms for the Diagnosis of Alcohol Dependence in the ICD-10. Alcohol Clin Exp Res 2016; 40:2409-2417. [PMID: 27716976 PMCID: PMC5108416 DOI: 10.1111/acer.13225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 08/21/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND The classification of alcohol use disorder has changed over the past century. Now, the conceptualization of alcohol dependence is still controversial. Accumulating evidence has shown the reliability and validity for the diagnosis of alcohol dependence in the ICD-10 and DSM-IV. However, the meaning and association of the respective diagnostic items, which are descriptive of representative symptoms, have hardly been examined. The core symptom of substance use disorder has been debated in various situations, but has never been elucidated logically. METHODS We consecutively registered 192 patients with alcohol-related problems who visited our hospital for the first time during a certain period. The relations and principal components among the checked items of the ICD-10 diagnostic criteria were examined statistically. RESULTS Three diagnostic items in the ICD-10 were strongly correlated with each other and were thought to form the core symptoms of alcohol dependence: "strong desire," "difficulties in controlling," and "neglect of pleasures." One major physical phenomenon, "withdrawal," seemed to complement the core symptoms in the diagnosis of alcohol dependence. Another physical phenomenon, "tolerance," was demonstrated to be a relatively independent item. The principal component analysis also demonstrated that the diagnostic item "difficulties in controlling" had the maximum component loading value, followed by 2 items, "neglect of pleasures" and "strong desire." CONCLUSIONS The core symptomatic elements in the diagnosis of alcohol dependence were statistically suggested in this study. Knowledge of the relations and components among the diagnostic items of alcohol dependence might also be applicable to other forms of substance use dependence and behavioral addiction.
Collapse
Affiliation(s)
- Atsushi Yoshimura
- National Hospital Organization, Kurihama Medical and Addiction Center, Yokosuka, Kanagawa, Japan. .,Department of Psychiatry, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
| | - Yasunobu Komoto
- National Hospital Organization, Kurihama Medical and Addiction Center, Yokosuka, Kanagawa, Japan
| | - Susumu Higuchi
- National Hospital Organization, Kurihama Medical and Addiction Center, Yokosuka, Kanagawa, Japan
| |
Collapse
|
36
|
Abstract
This is a brief reminiscence of my time in the Ganetzky lab from 1986-1990 and its effect on my scientific trajectory.
Collapse
Affiliation(s)
- Nigel S Atkinson
- a Department of Neuroscience and The Waggoner Center for Alcohol and Addiction Research , College of Natural Sciences, The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
37
|
The Impact of External Factors on the Epigenome: In Utero and over Lifetime. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2568635. [PMID: 27294112 PMCID: PMC4887632 DOI: 10.1155/2016/2568635] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/12/2016] [Accepted: 04/26/2016] [Indexed: 01/07/2023]
Abstract
Epigenetic marks change during fetal development, adult life, and aging. Some changes play an important role in the establishment and regulation of gene programs, but others seem to occur without any apparent physiological role. An important future challenge in the field of epigenetics will be to describe how the environment affects both of these types of epigenetic change and to learn if interaction between them can determine healthy and disease phenotypes during lifetime. Here we discuss how chemical and physical environmental stressors, diet, life habits, and pharmacological treatments can affect the epigenome during lifetime and the possible impact of these epigenetic changes on pathophysiological processes.
Collapse
|
38
|
A DNA element in the slo gene modulates ethanol tolerance. Alcohol 2016; 51:37-42. [PMID: 26992698 DOI: 10.1016/j.alcohol.2015.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 12/20/2022]
Abstract
In Drosophila, the slo gene encodes BK-type Ca(2+)-activated K(+) channels and is involved in producing rapid functional tolerance to sedation with ethanol. Drosophila are ideal for the study of functional ethanol tolerance because the adult does not acquire metabolic ethanol tolerance (Scholz, Ramond, Singh, & Heberlein, 2000). It has been shown that mutations in slo block the capacity to acquire tolerance, that sedation with ethanol vapor induces slo gene expression in the nervous system, and that transgenic induction of slo can phenocopy tolerance (Cowmeadow, Krishnan, & Atkinson, 2005; Cowmeadow et al., 2006). Here we use ethanol-induced histone acetylation to map a DNA regulatory element in the slo transcriptional control region and functionally test the element for a role in producing ethanol tolerance. Histone acetylation is commonly associated with activating transcription factors. We used the chromatin immunoprecipitation assay to map histone acetylation changes following ethanol sedation to identify an ethanol-responsive DNA element. Ethanol sedation induced an increase in histone acetylation over a 60 n DNA element called 6b, which is situated between the two ethanol-responsive neural promoters of the slo gene. Removal of the 6b element from the endogenous slo gene affected the production of functional ethanol tolerance as assayed in an ethanol-vapor recovery from sedation assay. Removal of element 6b extended the period of functional ethanol tolerance from ∼10 days to more than 21 days after a single ethanol-vapor sedation. This study demonstrates that mapping the position of ethanol-induced histone acetylation is an effective way to identify DNA regulatory elements that help to mediate the response of a gene to ethanol. Using this approach, we identified a DNA element, which is conserved among Drosophila species, and which is important for producing a behaviorally relevant ethanol response.
Collapse
|
39
|
Farris SP, Pietrzykowski AZ, Miles MF, O'Brien MA, Sanna PP, Zakhari S, Mayfield RD, Harris RA. Applying the new genomics to alcohol dependence. Alcohol 2015; 49:825-36. [PMID: 25896098 PMCID: PMC4586299 DOI: 10.1016/j.alcohol.2015.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/05/2015] [Accepted: 03/07/2015] [Indexed: 12/15/2022]
Abstract
This review summarizes the proceedings of a symposium presented at the "Alcoholism and Stress: A Framework for Future Treatment Strategies" conference held in Volterra, Italy on May 6-9, 2014. The overall goal of the symposium titled "Applying the New Genomics to Alcohol Dependence", chaired by Dr. Adron Harris, was to highlight recent genomic discoveries and applications for profiling alcohol use disorder (AUD). Dr. Sean Farris discussed the gene expression networks related to lifetime consumption of alcohol within human prefrontal cortex. Dr. Andrzej Pietrzykowski presented the effects of alcohol on microRNAs in humans and animal models. Alcohol-induced alterations in the synaptic transcriptome were discussed by Dr. Michael Miles. Dr. Pietro Sanna examined methods to probe the gene regulatory networks that drive excessive alcohol drinking, and Dr. Samir Zakhari served as a panel discussant and summarized the proceedings. Collectively, the presentations emphasized the power of integrating multiple levels of genetics and transcriptomics with convergent biological processes and phenotypic behaviors to determine causal factors of AUD. The combined use of diverse data types demonstrates how unique approaches and applications can help categorize genetic complexities into relevant biological networks using a systems-level model of disease.
Collapse
Affiliation(s)
- Sean P Farris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Andrzej Z Pietrzykowski
- Department of Animal Sciences, Rutgers University, New Brunswick, NJ, USA; Department of Genetics, Rutgers University, New Brunswick, NJ, USA
| | - Michael F Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Megan A O'Brien
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Pietro P Sanna
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Samir Zakhari
- Office of Science, Distilled Spirits Council of the United States, Washington, DC, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA.
| |
Collapse
|
40
|
Morozova TV, Huang W, Pray VA, Whitham T, Anholt RRH, Mackay TFC. Polymorphisms in early neurodevelopmental genes affect natural variation in alcohol sensitivity in adult drosophila. BMC Genomics 2015; 16:865. [PMID: 26503115 PMCID: PMC4624176 DOI: 10.1186/s12864-015-2064-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/13/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Alcohol abuse and alcoholism are significant public health problems, but the genetic basis for individual variation in alcohol sensitivity remains poorly understood. Drosophila melanogaster presents a powerful model system for dissecting the genetic underpinnings that determine individual variation in alcohol-related phenotypes. We performed genome wide association analyses for alcohol sensitivity using the sequenced, inbred lines of the D. melanogaster Genetic Reference Panel (DGRP) together with extreme QTL mapping in an advanced intercross population derived from sensitive and resistant DGRP lines. RESULTS The DGRP harbors substantial genetic variation for alcohol sensitivity and tolerance. We identified 247 candidate genes affecting alcohol sensitivity in the DGRP or the DGRP-derived advanced intercross population, some of which met a Bonferroni-corrected significance threshold, while others occurred among the top candidate genes associated with variation in alcohol sensitivity in multiple analyses. Among these were candidate genes associated with development and function of the nervous system, including several genes in the Dopamine decarboxylase (Ddc) cluster involved in catecholamine synthesis. We found that 58 of these genes formed a genetic interaction network. We verified candidate genes using mutational analysis, targeted gene disruption through RNAi knock-down and transcriptional profiling. Two-thirds of the candidate genes have been implicated in previous Drosophila, mouse and human studies of alcohol-related phenotypes. CONCLUSIONS Individual variation in alcohol sensitivity in Drosophila is highly polygenic and in part determined by variation in evolutionarily conserved signaling pathways that are associated with catecholamine neurotransmitter biosynthesis and early development of the nervous system.
Collapse
Affiliation(s)
- Tatiana V Morozova
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology and Program in Genetics, North Carolina State University, Box 7614, Raleigh, NC, 27695, USA
| | - Wen Huang
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology and Program in Genetics, North Carolina State University, Box 7614, Raleigh, NC, 27695, USA
| | - Victoria A Pray
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology and Program in Genetics, North Carolina State University, Box 7614, Raleigh, NC, 27695, USA
| | - Thomas Whitham
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology and Program in Genetics, North Carolina State University, Box 7614, Raleigh, NC, 27695, USA
- Department of Biochemistry and Physiology, School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Robert R H Anholt
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology and Program in Genetics, North Carolina State University, Box 7614, Raleigh, NC, 27695, USA
| | - Trudy F C Mackay
- Department of Biological Sciences, W. M. Keck Center for Behavioral Biology and Program in Genetics, North Carolina State University, Box 7614, Raleigh, NC, 27695, USA.
| |
Collapse
|
41
|
Decoding liver injury: A regulatory role for histone modifications. Int J Biochem Cell Biol 2015; 67:188-93. [DOI: 10.1016/j.biocel.2015.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/05/2015] [Accepted: 03/11/2015] [Indexed: 01/05/2023]
|
42
|
Multigenerational and transgenerational inheritance of drug exposure: The effects of alcohol, opiates, cocaine, marijuana, and nicotine. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:21-33. [PMID: 25839742 DOI: 10.1016/j.pbiomolbio.2015.03.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 03/02/2015] [Accepted: 03/06/2015] [Indexed: 12/15/2022]
Abstract
Familial inheritance of drug abuse is composed of both genetic and environmental factors. Additionally, epigenetic transgenerational inheritance may provide a means by which parental drug use can influence several generations of offspring. Recent evidence suggests that parental drug exposure produces behavioral, biochemical, and neuroanatomical changes in future generations. The focus of this review is to discuss these multigenerational and transgenerational phenotypes in the offspring of animals exposed to drugs of abuse. Specifically, changes found following the administration of alcohol, opioids, cocaine, marijuana, and nicotine will be discussed. In addition, epigenetic modifications to the genome following administration of these drugs will be detailed as well as their potential for transmission to the next generation.
Collapse
|
43
|
Krishnan HR, Sakharkar AJ, Teppen TL, Berkel TDM, Pandey SC. The epigenetic landscape of alcoholism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 115:75-116. [PMID: 25131543 DOI: 10.1016/b978-0-12-801311-3.00003-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alcoholism is a complex psychiatric disorder that has a multifactorial etiology. Epigenetic mechanisms are uniquely capable of accounting for the multifactorial nature of the disease in that they are highly stable and are affected by environmental factors, including alcohol itself. Chromatin remodeling causes changes in gene expression in specific brain regions contributing to the endophenotypes of alcoholism such as tolerance and dependence. The epigenetic mechanisms that regulate changes in gene expression observed in addictive behaviors respond not only to alcohol exposure but also to comorbid psychopathology such as the presence of anxiety and stress. This review summarizes recent developments in epigenetic research that may play a role in alcoholism. We propose that pharmacologically manipulating epigenetic targets, as demonstrated in various preclinical models, hold great therapeutic potential in the treatment and prevention of alcoholism.
Collapse
Affiliation(s)
- Harish R Krishnan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Amul J Sakharkar
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Tara L Teppen
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Tiffani D M Berkel
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Subhash C Pandey
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA; Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|