1
|
Niault T, Talavera A, Le Cam E, Baconnais S, Skovgaard O, Fournes F, Wagner L, Tamman H, Thompson A, Echemendia-Blanco D, Guzzi N, Garcia-Pino A, Mazel D, Val ME. Dynamic transitions of initiator binding coordinate the replication of the two chromosomes in Vibrio cholerae. Nat Commun 2025; 16:485. [PMID: 39779702 PMCID: PMC11711613 DOI: 10.1038/s41467-024-55598-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
The replication of the two chromosomes in the pathogenic bacterium Vibrio cholerae is coordinated by the binding of initiator protein RctB to a checkpoint sequence, crtS. Replication of crtS on the primary chromosome (Chr1) triggers replication of the secondary chromosome (Chr2), but the details are poorly understood. Here, we analyze RctB binding patterns in the V. cholerae genome across various cell cycle stages. We find that RctB primarily binds to sites inhibiting replication initiation at the Chr2 origin (ori2). This inhibitory effect is counteracted when crtS is replicated on Chr1, causing a shift in RctB binding to sites that activate replication at ori2. Structural analyzes indicate the formation of diverse oligomeric states of RctB, coupled to the allosteric effect of DNA, which determine ori2 accessibility. We propose a synchronization model where, upon replication, crtS locally destabilizes the RctB inhibition complex, releasing the Chr2 replication origin.
Collapse
Affiliation(s)
- Théophile Niault
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Ariel Talavera
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium
| | - Eric Le Cam
- Genome Integrity and Cancer UMR 9019 CNRS, Université Paris Saclay, Gustave Roussy, Villejuif, France
| | - Sonia Baconnais
- Genome Integrity and Cancer UMR 9019 CNRS, Université Paris Saclay, Gustave Roussy, Villejuif, France
| | - Ole Skovgaard
- Department of Science and Environment, Systems and Models, Roskilde University, Roskilde, Denmark
| | - Florian Fournes
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
| | - Léa Wagner
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
| | - Hedvig Tamman
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium
| | - Andrew Thompson
- SOLEIL Synchrotron, Saint-Aubin - BP48, Gif sur Yvette, France
| | - Dannele Echemendia-Blanco
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium
| | - Noa Guzzi
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Brussels, Belgium.
- WEL Research Institute, Wavre, Belgium.
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.
| | - Marie-Eve Val
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.
| |
Collapse
|
2
|
Ramming L, Stukenberg D, Sánchez Olmos MDC, Glatter T, Becker A, Schindler D. Rationally designed chromosome fusion does not prevent rapid growth of Vibrio natriegens. Commun Biol 2024; 7:519. [PMID: 38698198 PMCID: PMC11066055 DOI: 10.1038/s42003-024-06234-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/23/2024] [Indexed: 05/05/2024] Open
Abstract
DNA replication is essential for the proliferation of all cells. Bacterial chromosomes are replicated bidirectionally from a single origin of replication, with replication proceeding at about 1000 bp per second. For the model organism, Escherichia coli, this translates into a replication time of about 40 min for its 4.6 Mb chromosome. Nevertheless, E. coli can propagate by overlapping replication cycles with a maximum short doubling time of 20 min. The fastest growing bacterium known, Vibrio natriegens, is able to replicate with a generation time of less than 10 min. It has a bipartite genome with chromosome sizes of 3.2 and 1.9 Mb. Is simultaneous replication from two origins a prerequisite for its rapid growth? We fused the two chromosomes of V. natriegens to create a strain carrying one chromosome with a single origin of replication. Compared to the parental, this strain showed no significant deviation in growth rate. This suggests that the split genome is not a prerequisite for rapid growth.
Collapse
Affiliation(s)
- Lea Ramming
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Daniel Stukenberg
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | | | - Timo Glatter
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Anke Becker
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Daniel Schindler
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
3
|
Doan A, Chatterjee S, Kothapalli R, Khan Z, Sen S, Kedei N, Jha JK, Chattoraj DK, Ramachandran R. The replication enhancer crtS depends on transcription factor Lrp for modulating binding of initiator RctB to ori2 of Vibrio cholerae. Nucleic Acids Res 2024; 52:708-723. [PMID: 38000366 PMCID: PMC10810183 DOI: 10.1093/nar/gkad1111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Replication of Vibrio cholerae chromosome 2 (Chr2) initiates when the Chr1 locus, crtS (Chr2 replication triggering site) duplicates. The site binds the Chr2 initiator, RctB, and the binding increases when crtS is complexed with the transcription factor, Lrp. How Lrp increases the RctB binding and how RctB is subsequently activated for initiation by the crtS-Lrp complex remain unclear. Here we show that Lrp bends crtS DNA and possibly contacts RctB, acts that commonly promote DNA-protein interactions. To understand how the crtS-Lrp complex enhances replication, we isolated Tn-insertion and point mutants of RctB, selecting for retention of initiator activity without crtS. Nearly all mutants (42/44) still responded to crtS for enhancing replication, exclusively in an Lrp-dependent manner. The results suggest that the Lrp-crtS controls either an essential function or more than one function of RctB. Indeed, crtS modulates two kinds of RctB binding to the origin of Chr2, ori2, both of which we find to be Lrp-dependent. Some point mutants of RctB that are optimally modulated for ori2 binding without crtS still remained responsive to crtS and Lrp for replication enhancement. We infer that crtS-Lrp functions as a unit, which has an overarching role, beyond controlling initiator binding to ori2.
Collapse
Affiliation(s)
- Alexander Doan
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Soniya Chatterjee
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Roopa Kothapalli
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zaki Khan
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shaanit Sen
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Noemi Kedei
- Collaborative Protein Technology Resource, OSTP, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Jyoti K Jha
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dhruba K Chattoraj
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Revathy Ramachandran
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- College of Medicine, Mohammed Bin Rashid University, Dubai, UAE
| |
Collapse
|
4
|
Cornet F, Blanchais C, Dusfour-Castan R, Meunier A, Quebre V, Sekkouri Alaoui H, Boudsoq F, Campos M, Crozat E, Guynet C, Pasta F, Rousseau P, Ton Hoang B, Bouet JY. DNA Segregation in Enterobacteria. EcoSal Plus 2023; 11:eesp00382020. [PMID: 37220081 PMCID: PMC10729935 DOI: 10.1128/ecosalplus.esp-0038-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/13/2023] [Indexed: 01/28/2024]
Abstract
DNA segregation ensures that cell offspring receive at least one copy of each DNA molecule, or replicon, after their replication. This important cellular process includes different phases leading to the physical separation of the replicons and their movement toward the future daughter cells. Here, we review these phases and processes in enterobacteria with emphasis on the molecular mechanisms at play and their controls.
Collapse
Affiliation(s)
- François Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Corentin Blanchais
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Romane Dusfour-Castan
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Alix Meunier
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Valentin Quebre
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Hicham Sekkouri Alaoui
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - François Boudsoq
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Manuel Campos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Estelle Crozat
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Catherine Guynet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Franck Pasta
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Philippe Rousseau
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Bao Ton Hoang
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| |
Collapse
|
5
|
Niault T, Czarnecki J, Lambérioux M, Mazel D, Val ME. Cell cycle-coordinated maintenance of the Vibrio bipartite genome. EcoSal Plus 2023; 11:eesp00082022. [PMID: 38277776 PMCID: PMC10729929 DOI: 10.1128/ecosalplus.esp-0008-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
To preserve the integrity of their genome, bacteria rely on several genome maintenance mechanisms that are co-ordinated with the cell cycle. All members of the Vibrio family have a bipartite genome consisting of a primary chromosome (Chr1) homologous to the single chromosome of other bacteria such as Escherichia coli and a secondary chromosome (Chr2) acquired by a common ancestor as a plasmid. In this review, we present our current understanding of genome maintenance in Vibrio cholerae, which is the best-studied model for bacteria with multi-partite genomes. After a brief overview on the diversity of Vibrio genomic architecture, we describe the specific, common, and co-ordinated mechanisms that control the replication and segregation of the two chromosomes of V. cholerae. Particular attention is given to the unique checkpoint mechanism that synchronizes Chr1 and Chr2 replication.
Collapse
Affiliation(s)
- Théophile Niault
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Jakub Czarnecki
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
| | - Morgan Lambérioux
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Didier Mazel
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
| | - Marie-Eve Val
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
6
|
Chodha SS, Brooks AC, Davis PJ, Ramachandran R, Chattoraj D, Hwang L. Kinetic principles of ParA2-ATP cycling guide dynamic subcellular localizations in Vibrio cholerae. Nucleic Acids Res 2023; 51:5603-5620. [PMID: 37140034 PMCID: PMC10287910 DOI: 10.1093/nar/gkad321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/07/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
Dynamic protein gradients are exploited for the spatial organization and segregation of replicated chromosomes. However, mechanisms of protein gradient formation and how that spatially organizes chromosomes remain poorly understood. Here, we have determined the kinetic principles of subcellular localizations of ParA2 ATPase, an essential spatial regulator of chromosome 2 segregation in the multichromosome bacterium, Vibrio cholerae. We found that ParA2 gradients self-organize in V. cholerae cells into dynamic pole-to-pole oscillations. We examined the ParA2 ATPase cycle and ParA2 interactions with ParB2 and DNA. In vitro, ParA2-ATP dimers undergo a rate-limiting conformational switch, catalysed by DNA to achieve DNA-binding competence. This active ParA2 state loads onto DNA cooperatively as higher order oligomers. Our results indicate that the midcell localization of ParB2-parS2 complexes stimulate ATP hydrolysis and ParA2 release from the nucleoid, generating an asymmetric ParA2 gradient with maximal concentration toward the poles. This rapid dissociation coupled with slow nucleotide exchange and conformational switch provides for a temporal lag that allows the redistribution of ParA2 to the opposite pole for nucleoid reattachment. Based on our data, we propose a 'Tug-of-war' model that uses dynamic oscillations of ParA2 to spatially regulate symmetric segregation and positioning of bacterial chromosomes.
Collapse
Affiliation(s)
- Satpal S Chodha
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Adam C Brooks
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Peter J Davis
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Revathy Ramachandran
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4260, USA
| | - Dhruba K Chattoraj
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4260, USA
| | - Ling Chin Hwang
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- Medical Technology Research Centre, School of Medicine, Faculty of Health, Education, Medicine & Social Care, Anglia Ruskin University, Chelmsford, UK
| |
Collapse
|
7
|
Kothapalli R, Ghirlando R, Khan ZA, Chatterjee S, Kedei N, Chattoraj D. The dimerization interface of initiator RctB governs chaperone and enhancer dependence of Vibrio cholerae chromosome 2 replication. Nucleic Acids Res 2022; 50:4529-4544. [PMID: 35390166 PMCID: PMC9071482 DOI: 10.1093/nar/gkac210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/01/2022] [Accepted: 03/20/2022] [Indexed: 11/13/2022] Open
Abstract
Protein function often requires remodeling of protein structure. In the well-studied iteron-containing plasmids, the initiator of replication has a dimerization interface that undergoes chaperone-mediated remodeling. This remodeling reduces dimerization and promotes DNA replication, since only monomers bind origin DNA. A structurally homologs interface exists in RctB, the replication initiator of Vibrio cholerae chromosome 2 (Chr2). Chaperones also promote Chr2 replication, although both monomers and dimers of RctB bind to origin, and chaperones increase the binding of both. Here we report how five changes in the dimerization interface of RctB affect the protein. The mutants are variously defective in dimerization, more active as initiator, and except in one case, unresponsive to chaperone (DnaJ). The results indicate that chaperones also reduce RctB dimerization and support the proposal that the paradoxical chaperone-promoted dimer binding likely represents sequential binding of monomers on DNA. RctB is also activated for replication initiation upon binding to a DNA site, crtS, and three of the mutants are also unresponsive to crtS. This suggests that crtS, like chaperones, reduces dimerization, but additional evidence suggests that the remodelling activities function independently. Involvement of two remodelers in reducing dimerization signifies the importance of dimerization in limiting Chr2 replication.
Collapse
Affiliation(s)
- Roopa Kothapalli
- Basic Research Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Zaki Ali Khan
- Basic Research Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Soniya Chatterjee
- Basic Research Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Noemi Kedei
- Collaborative Protein Technology Resource, OSTP, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Dhruba K Chattoraj
- Basic Research Laboratory, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Conformation and dynamic interactions of the multipartite genome in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 2022; 119:2115854119. [PMID: 35101983 PMCID: PMC8833148 DOI: 10.1073/pnas.2115854119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
How bacteria with multipartite genomes organize and segregate their DNA is poorly understood. Here, we investigate a prototypical multipartite genome in the plant pathogen Agrobacterium tumefaciens. We identify previously unappreciated interreplicon interactions: the four replicons cluster through interactions at their centromeres, and the two chromosomes, one circular and one linear, interact along their replication arms. Our data suggest that these interreplicon contacts play critical roles in the organization and maintenance of multipartite genomes. Bacterial species from diverse phyla contain multiple replicons, yet how these multipartite genomes are organized and segregated during the cell cycle remains poorly understood. Agrobacterium tumefaciens has a 2.8-Mb circular chromosome (Ch1), a 2.1-Mb linear chromosome (Ch2), and two large plasmids (pAt and pTi). We used this alpha proteobacterium as a model to investigate the global organization and temporal segregation of a multipartite genome. Using chromosome conformation capture assays, we demonstrate that both the circular and the linear chromosomes, but neither of the plasmids, have their left and right arms juxtaposed from their origins to their termini, generating interarm interactions that require the broadly conserved structural maintenance of chromosomes complex. Moreover, our study revealed two types of interreplicon interactions: “ori-ori clustering” in which the replication origins of all four replicons interact, and “Ch1-Ch2 alignment” in which the arms of Ch1 and Ch2 interact linearly along their lengths. We show that the centromeric proteins (ParB1 for Ch1 and RepBCh2 for Ch2) are required for both types of interreplicon contacts. Finally, using fluorescence microscopy, we validated the clustering of the origins and observed their frequent colocalization during segregation. Altogether, our findings provide a high-resolution view of the conformation of a multipartite genome. We hypothesize that intercentromeric contacts promote the organization and maintenance of diverse replicons.
Collapse
|
9
|
Adam Y, Brezellec P, Espinosa E, Besombes A, Naquin D, Paly E, Possoz C, van Dijk E, Francois-Xavier B, Jean-Luc F. Plesiomonas shigelloides, an Atypical Enterobacterales with a Vibrio-related secondary chromosome. Genome Biol Evol 2022; 14:6515279. [PMID: 35078241 PMCID: PMC8826520 DOI: 10.1093/gbe/evac011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2022] [Indexed: 11/18/2022] Open
Abstract
About 10% of bacteria have a multichromosome genome with a primary replicon of bacterial origin, called the chromosome, and other replicons of plasmid origin, the chromids. Studies on multichromosome bacteria revealed potential points of coordination between the replication/segregation of chromids and the progression of the cell cycle. For example, replication of the chromid of Vibrionales (called Chr2) is initiated upon duplication of a sequence carried by the primary chromosome (called Chr1), in such a way that replication of both replicons is completed synchronously. Also, Chr2 uses the Chr1 as a scaffold for its partition in the daughter cells. How many of the features detected so far are required for the proper integration of a secondary chromosome in the cell cycle? How many more features remain to be discovered? We hypothesized that critical features for the integration of the replication/segregation of a given chromid within the cell cycle program would be conserved independently of the species in which the chromid has settled. Hence, we searched for a chromid related to that found in Vibrionales outside of this order. We identified one in Plesiomonas shigelloides, an aquatic and pathogenic enterobacterium that diverged early within the clade of Enterobacterales. Our results suggest that the chromids present in P. shigelloides and Vibrionales derive from a common ancestor. We initiated in silico genomic and proteomic comparative analyses of P. shigelloides, Vibrionales, and Enterobacterales that enabled us to establish a list of features likely involved in the maintenance of the chromid within the host cell cycle.
Collapse
Affiliation(s)
- Yazid Adam
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Pierre Brezellec
- Université de Versailles Saint Quentin, 45 avenue des Etats Unis, Versailles, 78000, France
- Atelier de Bioinformatique, UMR 7205 ISYEB, CNRS-MNHN-UPMC-EPHE, Muséum d'Histoire Naturelle, Paris, France
| | - Elena Espinosa
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Amelie Besombes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Delphine Naquin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Evelyne Paly
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Christophe Possoz
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Erwin van Dijk
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Barre Francois-Xavier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Ferat Jean-Luc
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
- Université de Versailles Saint Quentin, 45 avenue des Etats Unis, Versailles, 78000, France
| |
Collapse
|
10
|
Fournes F, Niault T, Czarnecki J, Tissier-Visconti A, Mazel D, Val ME. The coordinated replication of Vibrio cholerae's two chromosomes required the acquisition of a unique domain by the RctB initiator. Nucleic Acids Res 2021; 49:11119-11133. [PMID: 34643717 PMCID: PMC8565311 DOI: 10.1093/nar/gkab903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/30/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
Vibrio cholerae, the pathogenic bacterium that causes cholera, has two chromosomes (Chr1, Chr2) that replicate in a well-orchestrated sequence. Chr2 initiation is triggered only after the replication of the crtS site on Chr1. The initiator of Chr2 replication, RctB, displays activities corresponding with its different binding sites: initiator at the iteron sites, repressor at the 39m sites, and trigger at the crtS site. The mechanism by which RctB relays the signal to initiate Chr2 replication from crtS is not well-understood. In this study, we provide new insights into how Chr2 replication initiation is regulated by crtS via RctB. We show that crtS (on Chr1) acts as an anti-inhibitory site by preventing 39m sites (on Chr2) from repressing initiation. The competition between these two sites for RctB binding is explained by the fact that RctB interacts with crtS and 39m via the same DNA-binding surface. We further show that the extreme C-terminal tail of RctB, essential for RctB self-interaction, is crucial for the control exerted by crtS. This subregion of RctB is conserved in all Vibrio, but absent in other Rep-like initiators. Hence, the coordinated replication of both chromosomes likely results from the acquisition of this unique domain by RctB.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites
- Binding, Competitive
- Chromosomes, Bacterial/chemistry
- Chromosomes, Bacterial/metabolism
- Cloning, Molecular
- DNA Replication
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Regulation, Bacterial
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Models, Molecular
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Replication Origin
- Sequence Alignment
- Sequence Homology, Amino Acid
- Signal Transduction
- Vibrio cholerae/genetics
- Vibrio cholerae/metabolism
Collapse
Affiliation(s)
- Florian Fournes
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris 75015, France
- Centre National de la Recherche Scientifique, UMR3525, Paris 75015, France
| | - Theophile Niault
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris 75015, France
- Centre National de la Recherche Scientifique, UMR3525, Paris 75015, France
- Sorbonne Université, Collège Doctoral, Paris 75005, France
| | - Jakub Czarnecki
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris 75015, France
- Centre National de la Recherche Scientifique, UMR3525, Paris 75015, France
- University of Warsaw, Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, Warsaw 02-096, Poland
| | - Alvise Tissier-Visconti
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris 75015, France
- Centre National de la Recherche Scientifique, UMR3525, Paris 75015, France
| | - Didier Mazel
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris 75015, France
- Centre National de la Recherche Scientifique, UMR3525, Paris 75015, France
| | - Marie-Eve Val
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris 75015, France
- Centre National de la Recherche Scientifique, UMR3525, Paris 75015, France
| |
Collapse
|
11
|
Dineen RL, Penno C, Kelleher P, Bourin MJB, O'Connell‐Motherway M, van Sinderen D. Molecular analysis of the replication functions of the bifidobacterial conjugative megaplasmid pMP7017. Microb Biotechnol 2021; 14:1494-1511. [PMID: 33939264 PMCID: PMC8313286 DOI: 10.1111/1751-7915.13810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/22/2021] [Indexed: 11/29/2022] Open
Abstract
pMP7017 is a conjugative megaplasmid isolated from the gut commensal Bifidobacterium breve JCM7017 and was shown to encode two putative replicases, designated here as RepA and RepB. In the current work, RepB was identified as the pMP7017 replicative initiator, as the repB gene, and its surrounding region was shown to be sufficient to allow autonomous replication in two bifidobacterial species, B. breve and Bifidobacterium longum subsp. longum. RepB was shown to bind to repeat sequence downstream of its coding sequence and this region was determined to be essential for efficient replication. Based on our results, we hypothesize that pMP7017 is an iteron-regulated plasmid (IRP) under strict auto-regulatory control. Recombinantly produced and purified RepB was determined to exist as a dimer in solution, differing from replicases of other IRPs, which exist as a mix of dimers and monomers. Furthermore, a stable low-copy Bifidobacterium-E. coli shuttle vector, pRD1.3, was created which can be employed for cloning and expression of large genes, as was demonstrated by the cloning and heterologous expression of the 5.1 kb apuB gene encoding the extracellular amylopullulanase from B. breve UCC2003 into B. longum subsp. longum NCIMB8809.
Collapse
Affiliation(s)
- Rebecca L. Dineen
- APC Microbiome IrelandUniversity College CorkWestern RoadCorkIreland
- School of MicrobiologyUniversity College CorkWestern RoadCorkIreland
| | - Christophe Penno
- CNRS UMR 6553 EcoBioUniversite de Rennes 1Campus de Beaulieu, Bat. 14ARennes cedex35042France
| | - Philip Kelleher
- APC Microbiome IrelandUniversity College CorkWestern RoadCorkIreland
- School of MicrobiologyUniversity College CorkWestern RoadCorkIreland
| | - Maxence J. B. Bourin
- APC Microbiome IrelandUniversity College CorkWestern RoadCorkIreland
- School of MicrobiologyUniversity College CorkWestern RoadCorkIreland
| | | | - Douwe van Sinderen
- APC Microbiome IrelandUniversity College CorkWestern RoadCorkIreland
- School of MicrobiologyUniversity College CorkWestern RoadCorkIreland
| |
Collapse
|
12
|
Abstract
Chromosome replication is an essential process for cell division. The mode of chromosome replication has important impacts on the structure of the chromosome and replication speed. As typical bacterial replicons, circular chromosomes replicate bidirectionally and circular plasmids replicate either bidirectionally or unidirectionally. Whereas the finding of chromids (plasmid-derived chromosomes) in multiple bacterial lineages provides circumstantial evidence that chromosomes likely evolved from plasmids, all experimentally assayed chromids were shown to use bidirectional replication. Here, we employed a model system, the marine bacterial genus Pseudoalteromonas, members of which consistently carry a chromosome and a chromid. We provide experimental and bioinformatic evidence that while chromids in a few strains replicate bidirectionally, most replicate unidirectionally. This is the first experimental demonstration of the unidirectional replication mode in bacterial chromids. Phylogenomic and comparative genomic analyses showed that the bidirectional replication evolved only once from a unidirectional ancestor and that this transition was associated with insertions of exogenous DNA and relocation of the replication terminus region (ter2) from near the origin site (ori2) to a position roughly opposite it. This process enables a plasmid-derived chromosome to increase its size and expand the bacterium’s metabolic versatility while keeping its replication synchronized with that of the main chromosome. A major implication of our study is that the uni- and bidirectionally replicating chromids may represent two stages on the evolutionary trajectory from unidirectionally replicating plasmids to bidirectionally replicating chromosomes in bacteria. Further bioinformatic analyses predicted unidirectionally replicating chromids in several unrelated bacterial phyla, suggesting that evolution from unidirectionally to bidirectionally replicating replicons occurred multiple times in bacteria.
Collapse
|
13
|
Chatterjee S, Jha JK, Ciaccia P, Venkova T, Chattoraj DK. Interactions of replication initiator RctB with single- and double-stranded DNA in origin opening of Vibrio cholerae chromosome 2. Nucleic Acids Res 2020; 48:11016-11029. [PMID: 33035310 DOI: 10.1093/nar/gkaa826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Studies of bacterial chromosomes and plasmids indicate that their replication initiator proteins bind to origins of replication at many double-stranded sites and also at AT-rich regions where single-stranded DNA is exposed during origin opening. Single-strand binding apparently promotes origin opening by stabilizing an open structure, but how the initiator participates in this process and the contributions of the several binding sites remain unclear. Here, we show that the initiator protein of Vibrio cholerae specific to chromosome 2 (Chr2) also has single-strand binding activity in the AT-rich region of its origin. Binding is strand specific, depends on repeats of the sequence 5'ATCA and is greatly stabilized in vitro by specific double-stranded sites of the origin. The stability derives from the formation of ternary complexes of the initiator with the single- and double-stranded sites. An IHF site lies between these two kinds of sites in the Chr2 origin and an IHF-induced looping out of the intervening DNA mediates their interaction. Simultaneous binding to two kinds of sites in the origin appears to be a common mechanism by which bacterial replication initiators stabilize an open origin.
Collapse
Affiliation(s)
- Soniya Chatterjee
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4260, USA
| | - Jyoti K Jha
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4260, USA
| | - Peter Ciaccia
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4260, USA
| | - Tatiana Venkova
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4260, USA
| | - Dhruba K Chattoraj
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4260, USA
| |
Collapse
|
14
|
Espinosa E, Paly E, Barre FX. High-Resolution Whole-Genome Analysis of Sister-Chromatid Contacts. Mol Cell 2020; 79:857-869.e3. [PMID: 32681820 DOI: 10.1016/j.molcel.2020.06.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
Sister-chromatid cohesion describes the orderly association of newly replicated DNA molecules behind replication forks. It plays an essential role in the maintenance and faithful transmission of genetic information. Cohesion is created by DNA topological links and proteinaceous bridges, whose formation and deposition could be potentially affected by many processes. Current knowledge on cohesion has been mainly gained by fluorescence microscopy observation. However, the resolution limit of microscopy and the restricted number of genomic positions that can be simultaneously visualized considerably hampered progress. Here, we present a high-throughput methodology to monitor sister-chromatid contacts (Hi-SC2). Using the multi-chromosomal Vibrio cholerae bacterium as a model, we show that Hi-SC2 permits to monitor local variations in sister-chromatid cohesion at a high resolution over a whole genome.
Collapse
Affiliation(s)
- Elena Espinosa
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Evelyne Paly
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - François-Xavier Barre
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
15
|
Hoff J, Daniel B, Stukenberg D, Thuronyi BW, Waldminghaus T, Fritz G. Vibrio natriegens
: an ultrafast‐growing marine bacterium as emerging synthetic biology chassis. Environ Microbiol 2020; 22:4394-4408. [DOI: 10.1111/1462-2920.15128] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Josef Hoff
- School of Molecular Sciences The University of Western Australia Perth Australia
- Center for Synthetic Microbiology Philipps‐Universität Marburg Marburg Germany
| | - Benjamin Daniel
- Center for Synthetic Microbiology Philipps‐Universität Marburg Marburg Germany
- Institute of Microbiology, ETH Zurich Zürich Switzerland
| | - Daniel Stukenberg
- Center for Synthetic Microbiology Philipps‐Universität Marburg Marburg Germany
| | | | - Torsten Waldminghaus
- Centre for Synthetic Biology Technische Universität Darmstadt Darmstadt Germany
- Department of Biology Technische Universität Darmstadt Darmstadt Germany
| | - Georg Fritz
- School of Molecular Sciences The University of Western Australia Perth Australia
| |
Collapse
|
16
|
Sozhamannan S, Waldminghaus T. Exception to the exception rule: synthetic and naturally occurring single chromosome Vibrio cholerae. Environ Microbiol 2020; 22:4123-4132. [PMID: 32237026 DOI: 10.1111/1462-2920.15002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/25/2020] [Indexed: 12/26/2022]
Abstract
The genome of Vibrio cholerae, the etiological agent of cholera, is an exception to the single chromosome rule found in the vast majority of bacteria and has its genome partitioned between two unequally sized chromosomes. This unusual two-chromosome arrangement in V. cholerae has sparked considerable research interest since its discovery. It was demonstrated that the two chromosomes could be fused by deliberate genome engineering or forced to fuse spontaneously by blocking the replication of Chr2, the secondary chromosome. Recently, natural isolates of V. cholerae with chromosomal fusion have been found. Here, we summarize the pertinent findings on this exception to the exception rule and discuss the potential utility of single-chromosome V. cholerae to address fundamental questions on chromosome biology in general and DNA replication in particular.
Collapse
Affiliation(s)
- Shanmuga Sozhamannan
- Defense Biological Product Assurance Office, CBRND-Enabling Biotechnologies, 110 Thomas Johnson Drive, Frederick, MD, 21702, USA.,Logistics Management Institute, Tysons, VA, 22102, USA
| | - Torsten Waldminghaus
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany.,Centre for Synthetic Biology, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
17
|
Kivisaar M. Mutation and Recombination Rates Vary Across Bacterial Chromosome. Microorganisms 2019; 8:microorganisms8010025. [PMID: 31877811 PMCID: PMC7023495 DOI: 10.3390/microorganisms8010025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022] Open
Abstract
Bacteria evolve as a result of mutations and acquisition of foreign DNA by recombination processes. A growing body of evidence suggests that mutation and recombination rates are not constant across the bacterial chromosome. Bacterial chromosomal DNA is organized into a compact nucleoid structure which is established by binding of the nucleoid-associated proteins (NAPs) and other proteins. This review gives an overview of recent findings indicating that the mutagenic and recombination processes in bacteria vary at different chromosomal positions. Involvement of NAPs and other possible mechanisms in these regional differences are discussed. Variations in mutation and recombination rates across the bacterial chromosome may have implications in the evolution of bacteria.
Collapse
Affiliation(s)
- Maia Kivisaar
- Chair of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| |
Collapse
|
18
|
Gao F, Leonard AC. Editorial: DNA Replication Origins in Microbial Genomes, Volume 2. Front Microbiol 2019; 10:2416. [PMID: 31708893 PMCID: PMC6819313 DOI: 10.3389/fmicb.2019.02416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/07/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin, China
- Frontier Science Center of Synthetic Biology (MOE), Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Alan C. Leonard
- Laboratory of Microbial Genetics, Department of Biomedical and Chemical Engineering and Science, Florida Institute of Technology, Melbourne, FL, United States
| |
Collapse
|
19
|
Abstract
Bacterial chromosomes harbour a unique origin of bidirectional replication, oriC. They are almost always circular, with replication terminating in a region diametrically opposite to oriC, the terminus. The oriC-terminus organisation is reflected by the orientation of the genes and by the disposition of DNA-binding protein motifs implicated in the coordination of chromosome replication and segregation with cell division. Correspondingly, the E. coli and B. subtilis model bacteria possess a replication fork trap system, Tus/ter and RTP/ter, respectively, which enforces replication termination in the terminus region. Here, we show that tus and rtp are restricted to four clades of bacteria, suggesting that tus was recently domesticated from a plasmid gene. We further demonstrate that there is no replication fork system in Vibrio cholerae, a bacterium closely related to E. coli. Marker frequency analysis showed that replication forks originating from ectopic origins were not blocked in the terminus region of either of the two V. cholerae chromosomes, but progressed normally until they encountered an opposite fork. As expected, termination synchrony of the two chromosomes is disrupted by these ectopic origins. Finally, we show that premature completion of the primary chromosome replication did not modify the choreography of segregation of its terminus region.
Collapse
|
20
|
Kemter FS, Schallopp N, Sperlea T, Serrania J, Sobetzko P, Fritz G, Waldminghaus T. Stringent response leads to continued cell division and a temporal restart of DNA replication after initial shutdown in Vibrio cholerae. Mol Microbiol 2019; 111:1617-1637. [PMID: 30873684 DOI: 10.1111/mmi.14241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2019] [Indexed: 11/29/2022]
Abstract
Vibrio cholerae is an aquatic bacterium with the potential to infect humans and cause the cholera disease. While most bacteria have single chromosomes, the V. cholerae genome is encoded on two replicons of different size. This study focuses on the DNA replication and cell division of this bi-chromosomal bacterium during the stringent response induced by starvation stress. V. cholerae cells were found to initially shut DNA replication initiation down upon stringent response induction by the serine analog serine hydroxamate. Surprisingly, cells temporarily restart their DNA replication before finally reaching a state with fully replicated single chromosome sets. This division-replication pattern is very different to that of the related single chromosome model bacterium Escherichia coli. Within the replication restart phase, both chromosomes of V. cholerae maintained their known order of replication timing to achieve termination synchrony. Using flow cytometry combined with mathematical modeling, we established that a phase of cellular regrowth be the reason for the observed restart of DNA replication after the initial shutdown. Our study shows that although the stringent response induction itself is widely conserved, bacteria developed different ways of how to react to the sensed nutrient limitation, potentially reflecting their individual lifestyle requirements.
Collapse
Affiliation(s)
- Franziska S Kemter
- LOEWE Center for Synthetic Microbiology - SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Nadine Schallopp
- LOEWE Center for Synthetic Microbiology - SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Theodor Sperlea
- LOEWE Center for Synthetic Microbiology - SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Javier Serrania
- LOEWE Center for Synthetic Microbiology - SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Patrick Sobetzko
- LOEWE Center for Synthetic Microbiology - SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Georg Fritz
- LOEWE Center for Synthetic Microbiology - SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Torsten Waldminghaus
- LOEWE Center for Synthetic Microbiology - SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
21
|
Bruhn M, Schindler D, Kemter FS, Wiley MR, Chase K, Koroleva GI, Palacios G, Sozhamannan S, Waldminghaus T. Functionality of Two Origins of Replication in Vibrio cholerae Strains With a Single Chromosome. Front Microbiol 2018; 9:2932. [PMID: 30559732 PMCID: PMC6284228 DOI: 10.3389/fmicb.2018.02932] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022] Open
Abstract
Chromosomal inheritance in bacteria usually entails bidirectional replication of a single chromosome from a single origin into two copies and subsequent partitioning of one copy each into daughter cells upon cell division. However, the human pathogen Vibrio cholerae and other Vibrionaceae harbor two chromosomes, a large Chr1 and a small Chr2. Chr1 and Chr2 have different origins, an oriC-type origin and a P1 plasmid-type origin, respectively, driving the replication of respective chromosomes. Recently, we described naturally occurring exceptions to the two-chromosome rule of Vibrionaceae: i.e., Chr1 and Chr2 fused single chromosome V. cholerae strains, NSCV1 and NSCV2, in which both origins of replication are present. Using NSCV1 and NSCV2, here we tested whether two types of origins of replication can function simultaneously on the same chromosome or one or the other origin is silenced. We found that in NSCV1, both origins are active whereas in NSCV2 ori2 is silenced despite the fact that it is functional in an isolated context. The ori2 activity appears to be primarily determined by the copy number of the triggering site, crtS, which in turn is determined by its location with respect to ori1 and ori2 on the fused chromosome.
Collapse
Affiliation(s)
- Matthias Bruhn
- LOEWE Centre for Synthetic Microbiology-SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Daniel Schindler
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Franziska S Kemter
- LOEWE Centre for Synthetic Microbiology-SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Michael R Wiley
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Kitty Chase
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Galina I Koroleva
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Shanmuga Sozhamannan
- Defense Biological Product Assurance Office, Frederick, MD, United States.,The Tauri Group, LLC, Alexandria, VA, United States
| | - Torsten Waldminghaus
- LOEWE Centre for Synthetic Microbiology-SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
22
|
de Lemos Martins F, Fournes F, Mazzuoli MV, Mazel D, Val ME. Vibrio cholerae chromosome 2 copy number is controlled by the methylation-independent binding of its monomeric initiator to the chromosome 1 crtS site. Nucleic Acids Res 2018; 46:10145-10156. [PMID: 30184118 PMCID: PMC6212839 DOI: 10.1093/nar/gky790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 12/13/2022] Open
Abstract
Bacteria contain a primary chromosome and, frequently, either essential secondary chromosomes or dispensable megaplasmids of plasmid origin. Incoming plasmids are often poorly adapted to their hosts and their stabilization requires integration with the host's cellular mechanisms in a process termed domestication. All Vibrio, including pathogenic species, carry a domesticated secondary chromosome (Chr2) where replication is coordinated with that of the primary chromosome (Chr1). Chr2 replication is triggered by the replication of an intergenic sequence (crtS) located on Chr1. Yet, the molecular mechanisms by which crtS replication controls the initiation of Chr2 replication are still largely unknown. In this study, we show that crtS not only regulates the timing of Chr2 initiation but also controls Chr2 copy number. We observed and characterized the direct binding of the Chr2 initiator (RctB) on crtS. RctB binding to crtS is independent of its methylation state. RctB molecules, which naturally form dimers, preferentially bind to crtS as monomers, with DnaK/J protein chaperones shown to stimulate binding of additional RctB monomers on crtS. In this study, we addressed various hypothesis of how replication of crtS could trigger Chr2 replication and provide new insights into its mode of action.
Collapse
Affiliation(s)
- Francisco de Lemos Martins
- Bacterial Genome Plasticity, Genomes & Genetics Department, Institut Pasteur, Paris 75015, France
- UMR3525, Centre National de la Recherche Scientifique, Paris 75015, France
| | - Florian Fournes
- Bacterial Genome Plasticity, Genomes & Genetics Department, Institut Pasteur, Paris 75015, France
- UMR3525, Centre National de la Recherche Scientifique, Paris 75015, France
| | - Maria-Vittoria Mazzuoli
- Bacterial Genome Plasticity, Genomes & Genetics Department, Institut Pasteur, Paris 75015, France
- UMR3525, Centre National de la Recherche Scientifique, Paris 75015, France
| | - Didier Mazel
- Bacterial Genome Plasticity, Genomes & Genetics Department, Institut Pasteur, Paris 75015, France
- UMR3525, Centre National de la Recherche Scientifique, Paris 75015, France
| | - Marie-Eve Val
- Bacterial Genome Plasticity, Genomes & Genetics Department, Institut Pasteur, Paris 75015, France
- UMR3525, Centre National de la Recherche Scientifique, Paris 75015, France
| |
Collapse
|
23
|
Ciaccia PN, Ramachandran R, Chattoraj DK. A Requirement for Global Transcription Factor Lrp in Licensing Replication of Vibrio cholerae Chromosome 2. Front Microbiol 2018; 9:2103. [PMID: 30250457 PMCID: PMC6139311 DOI: 10.3389/fmicb.2018.02103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/20/2018] [Indexed: 12/28/2022] Open
Abstract
The human pathogen, Vibrio cholerae, belongs to the 10% of bacteria in which the genome is divided. Each of its two chromosomes, like bacterial chromosomes in general, replicates from a unique origin at fixed times in the cell cycle. Chr1 initiates first, and upon duplication of a site in Chr1, crtS, Chr2 replication initiates. Recent in vivo experiments demonstrate that crtS binds the Chr2-specific initiator RctB and promotes its initiator activity by remodeling it. Compared to the well-defined RctB binding sites in the Chr2 origin, crtS is an order of magnitude longer, suggesting that other factors can bind to it. We developed an in vivo screen to identify additional crtS-binding proteins and identified the global transcription factor, Lrp, as one such protein. Studies in vivo and in vitro indicate that Lrp binds to crtS and facilitates RctB binding to crtS. Chr2 replication is severely defective in the absence of Lrp, indicative of a critical role of the transcription factor in licensing Chr2 replication. Since Lrp responds to stresses such as nutrient limitation, its interaction with RctB presumably sensitizes Chr2 replication to the physiological state of the cell.
Collapse
Affiliation(s)
| | - Revathy Ramachandran
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | | |
Collapse
|
24
|
Abstract
The causes and consequences of spatiotemporal variation in mutation rates remain to be explored in nearly all organisms. Here we examine relationships between local mutation rates and replication timing in three bacterial species whose genomes have multiple chromosomes: Vibrio fischeri, Vibrio cholerae, and Burkholderia cenocepacia. Following five mutation accumulation experiments with these bacteria conducted in the near absence of natural selection, the genomes of clones from each lineage were sequenced and analyzed to identify variation in mutation rates and spectra. In lineages lacking mismatch repair, base substitution mutation rates vary in a mirrored wave-like pattern on opposing replichores of the large chromosomes of V. fischeri and V. cholerae, where concurrently replicated regions experience similar base substitution mutation rates. The base substitution mutation rates on the small chromosome are less variable in both species but occur at similar rates to those in the concurrently replicated regions of the large chromosome. Neither nucleotide composition nor frequency of nucleotide motifs differed among regions experiencing high and low base substitution rates, which along with the inferred ~800-kb wave period suggests that the source of the periodicity is not sequence specific but rather a systematic process related to the cell cycle. These results support the notion that base substitution mutation rates are likely to vary systematically across many bacterial genomes, which exposes certain genes to elevated deleterious mutational load. That mutation rates vary within bacterial genomes is well known, but the detailed study of these biases has been made possible only recently with contemporary sequencing methods. We applied these methods to understand how bacterial genomes with multiple chromosomes, like those of Vibrio and Burkholderia, might experience heterogeneous mutation rates because of their unusual replication and the greater genetic diversity found on smaller chromosomes. This study captured thousands of mutations and revealed wave-like rate variation that is synchronized with replication timing and not explained by sequence context. The scale of this rate variation over hundreds of kilobases of DNA strongly suggests that a temporally regulated cellular process may generate wave-like variation in mutation risk. These findings add to our understanding of how mutation risk is distributed across bacterial and likely also eukaryotic genomes, owing to their highly conserved replication and repair machinery.
Collapse
|
25
|
Fournes F, Val ME, Skovgaard O, Mazel D. Replicate Once Per Cell Cycle: Replication Control of Secondary Chromosomes. Front Microbiol 2018; 9:1833. [PMID: 30131796 PMCID: PMC6090056 DOI: 10.3389/fmicb.2018.01833] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
Faithful vertical transmission of genetic information, especially of essential core genes, is a prerequisite for bacterial survival. Hence, replication of all the replicons is tightly controlled to ensure that all daughter cells get the same genome copy as their mother cell. Essential core genes are very often carried by the main chromosome. However they can occasionally be found on secondary chromosomes, recently renamed chromids. Chromids have evolved from non-essential megaplasmids, and further acquired essential core genes and a genomic signature closed to that of the main chromosome. All chromids carry a plasmidic replication origin, belonging so far to either the iterons or repABC type. Based on these differences, two categories of chromids have been distinguished. In this review, we focus on the replication initiation controls of these two types of chromids. We show that the sophisticated mechanisms controlling their replication evolved from their plasmid counterparts to allow a timely controlled replication, occurring once per cell cycle.
Collapse
Affiliation(s)
- Florian Fournes
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, Paris, France.,UMR3525, Centre National de la Recherche Scientifique, Paris, France
| | - Marie-Eve Val
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, Paris, France.,UMR3525, Centre National de la Recherche Scientifique, Paris, France
| | - Ole Skovgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Didier Mazel
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, Paris, France.,UMR3525, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
26
|
Ramachandran R, Ciaccia PN, Filsuf TA, Jha JK, Chattoraj DK. Chromosome 1 licenses chromosome 2 replication in Vibrio cholerae by doubling the crtS gene dosage. PLoS Genet 2018; 14:e1007426. [PMID: 29795553 PMCID: PMC5991422 DOI: 10.1371/journal.pgen.1007426] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/06/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022] Open
Abstract
Initiation of chromosome replication in bacteria is precisely timed in the cell cycle. Bacteria that harbor multiple chromosomes face the additional challenge of orchestrating replication initiation of different chromosomes. In Vibrio cholerae, the smaller of its two chromosomes, Chr2, initiates replication after Chr1 such that both chromosomes terminate replication synchronously. The delay is due to the dependence of Chr2 initiation on the replication of a site, crtS, on Chr1. The mechanism by which replication of crtS allows Chr2 replication remains unclear. Here, we show that blocking Chr1 replication indeed blocks Chr2 replication, but providing an extra crtS copy in replication-blocked Chr1 permitted Chr2 replication. This demonstrates that unreplicated crtS copies have significant activity, and suggests that a role of replication is to double the copy number of the site that sufficiently increases its activity for licensing Chr2 replication. We further show that crtS activity promotes the Chr2-specific initiator function and that this activity is required in every cell cycle, as would be expected of a cell-cycle regulator. This study reveals how increase of gene dosage through replication can be utilized in a critical regulatory switch.
Collapse
Affiliation(s)
- Revathy Ramachandran
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter N. Ciaccia
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tara A. Filsuf
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jyoti K. Jha
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dhruba K. Chattoraj
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
27
|
Myka KK, McGlynn P, Ferguson GP. Insights into the initiation of chromosome II replication of the pressure-loving deep-sea bacterium Photobacterium profundum SS9. MICROBIOLOGY-SGM 2018; 164:920-933. [PMID: 29757128 DOI: 10.1099/mic.0.000663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
How DNA metabolism is adapted to survival of organisms such as the bacterium Photobacterium profundum SS9 at high pressure is unknown. Previously, a high pressure-sensitive P. profundum SS9 transposon mutant (FL31) was identified, with an insertion in a putative rctB gene. The Vibrio cholerae RctB protein is essential for replication initiation at the origin of chromosome II, oriCII. Using a plasmid-based system in E. coli we have identified the replication origin of chromosome II from P. profundum SS9 and have shown that the putative rctB gene, disrupted in FL31, is essential for oriCII function. Moreover, we found that a region corresponding to the V. cholerae oriCII incompatibility region (incII) exerts an inhibitory effect on P. profundum oriCII. The truncated rctB gene in FL31 confers insensitivity to incII inhibition, indicating that the C-terminus of RctB is important for the negative regulation of replication. The RctB proteins of V. cholerae and P. profundum are partially interchangeable, but full functionality is achieved only with the cognate origin. Our findings provide the first characterization of the replication origin of chromosome II in a deep-sea bacterium.
Collapse
Affiliation(s)
- Kamila K Myka
- Present address: Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.,School of Medicine and Dentistry, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Peter McGlynn
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.,Present address: Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Gail P Ferguson
- School of Medicine and Dentistry, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
28
|
Inter-replicon Gene Flow Contributes to Transcriptional Integration in the Sinorhizobium meliloti Multipartite Genome. G3-GENES GENOMES GENETICS 2018; 8:1711-1720. [PMID: 29563186 PMCID: PMC5940162 DOI: 10.1534/g3.117.300405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Integration of newly acquired genes into existing regulatory networks is necessary for successful horizontal gene transfer (HGT). Ten percent of bacterial species contain at least two DNA replicons over 300 kilobases in size, with the secondary replicons derived predominately through HGT. The Sinorhizobium meliloti genome is split between a 3.7 Mb chromosome, a 1.7 Mb chromid consisting largely of genes acquired through ancient HGT, and a 1.4 Mb megaplasmid consisting primarily of recently acquired genes. Here, RNA-sequencing is used to examine the transcriptional consequences of massive, synthetic genome reduction produced through the removal of the megaplasmid and/or the chromid. Removal of the pSymA megaplasmid influenced the transcription of only six genes. In contrast, removal of the chromid influenced expression of ∼8% of chromosomal genes and ∼4% of megaplasmid genes. This was mediated in part by the loss of the ETR DNA region whose presence on pSymB is due to a translocation from the chromosome. No obvious functional bias among the up-regulated genes was detected, although genes with putative homologs on the chromid were enriched. Down-regulated genes were enriched in motility and sensory transduction pathways. Four transcripts were examined further, and in each case the transcriptional change could be traced to loss of specific pSymB regions. In particularly, a chromosomal transporter was induced due to deletion of bdhA likely mediated through 3-hydroxybutyrate accumulation. These data provide new insights into the evolution of the multipartite bacterial genome, and more generally into the integration of horizontally acquired genes into the transcriptome.
Collapse
|
29
|
Kemter FS, Messerschmidt SJ, Schallopp N, Sobetzko P, Lang E, Bunk B, Spröer C, Teschler JK, Yildiz FH, Overmann J, Waldminghaus T. Synchronous termination of replication of the two chromosomes is an evolutionary selected feature in Vibrionaceae. PLoS Genet 2018; 14:e1007251. [PMID: 29505558 PMCID: PMC5854411 DOI: 10.1371/journal.pgen.1007251] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/15/2018] [Accepted: 02/13/2018] [Indexed: 11/18/2022] Open
Abstract
Vibrio cholerae, the causative agent of the cholera disease, is commonly used as a model organism for the study of bacteria with multipartite genomes. Its two chromosomes of different sizes initiate their DNA replication at distinct time points in the cell cycle and terminate in synchrony. In this study, the time-delayed start of Chr2 was verified in a synchronized cell population. This replication pattern suggests two possible regulation mechanisms for other Vibrio species with different sized secondary chromosomes: Either all Chr2 start DNA replication with a fixed delay after Chr1 initiation, or the timepoint at which Chr2 initiates varies such that termination of chromosomal replication occurs in synchrony. We investigated these two models and revealed that the two chromosomes of various Vibrionaceae species terminate in synchrony while Chr2-initiation timing relative to Chr1 is variable. Moreover, the sequence and function of the Chr2-triggering crtS site recently discovered in V. cholerae were found to be conserved, explaining the observed timing mechanism. Our results suggest that it is beneficial for bacterial cells with multiple chromosomes to synchronize their replication termination, potentially to optimize chromosome related processes as dimer resolution or segregation.
Collapse
Affiliation(s)
- Franziska S. Kemter
- LOEWE Center for Synthetic Microbiology–SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Sonja J. Messerschmidt
- LOEWE Center for Synthetic Microbiology–SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Nadine Schallopp
- LOEWE Center for Synthetic Microbiology–SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Patrick Sobetzko
- LOEWE Center for Synthetic Microbiology–SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Elke Lang
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jennifer K. Teschler
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, United States of America
| | - Fitnat H. Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, United States of America
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Centre of Infection Research (DZIF), Partner Site Hannover–Braunschweig, Braunschweig, Germany
| | - Torsten Waldminghaus
- LOEWE Center for Synthetic Microbiology–SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
30
|
Establishing a System for Testing Replication Inhibition of the Vibrio cholerae Secondary Chromosome in Escherichia coli. Antibiotics (Basel) 2017; 7:antibiotics7010003. [PMID: 29295515 PMCID: PMC5872114 DOI: 10.3390/antibiotics7010003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/05/2017] [Accepted: 12/20/2017] [Indexed: 12/29/2022] Open
Abstract
Regulators of DNA replication in bacteria are an attractive target for new antibiotics, as not only is replication essential for cell viability, but its underlying mechanisms also differ from those operating in eukaryotes. The genetic information of most bacteria is encoded on a single chromosome, but about 10% of species carry a split genome spanning multiple chromosomes. The best studied bacterium in this context is the human pathogen Vibrio cholerae, with a primary chromosome (Chr1) of 3 M bps, and a secondary one (Chr2) of about 1 M bps. Replication of Chr2 is under control of a unique mechanism, presenting a potential target in the development of V. cholerae-specific antibiotics. A common challenge in such endeavors is whether the effects of candidate chemicals can be focused on specific mechanisms, such as DNA replication. To test the specificity of antimicrobial substances independent of other features of the V. cholerae cell for the replication mechanism of the V. cholerae secondary chromosome, we establish the replication machinery in the heterologous E. coli system. We characterize an E. coli strain in which chromosomal replication is driven by the replication origin of V. cholerae Chr2. Surprisingly, the E. coli ori2 strain was not inhibited by vibrepin, previously found to inhibit ori2-based replication.
Collapse
|
31
|
Huang Z, Liu Z, Shao Z. The Pelagic Bacterium Paraphotobacterium marinum Has the Smallest Complete Genome Within the Family Vibrionaceae. Front Microbiol 2017; 8:1994. [PMID: 29085348 PMCID: PMC5649133 DOI: 10.3389/fmicb.2017.01994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/28/2017] [Indexed: 02/01/2023] Open
Abstract
Members of the family Vibrionaceae are metabolically versatile and ubiquitous in natural environments, with extraordinary genome feature of two chromosomes. Here we reported the complete genome of Paraphotobacterium marinum NSCS20N07DT, a recently described novel genus-level species in the family Vibrionaceae. It contained two circular chromosomes with a size of 2,593,992 bp with G+C content of 31.2 mol%, and a plasmid with a size of 5,539 bp. The larger chromosome (Chr. I) had a genome size of 1,426,504 bp with G+C content of 31.6 mol%, and the smaller one (Chr. II) had a genome size of 1,161,949 bp with G+C content of 30.8 mol%. The two chromosomes have strikingly similar G+C contents with difference of <1% and similar percentages of coding regions. Interestingly, by comparison to 134 species affiliated with seven genera within the family Vibrionaceae, P. marinum NSCS20N07DT possessed the smallest genome size and lowest G+C content. Clusters of orthologous groups of proteins functional categories revealed that the two chromosomes had different distributions of functional classes, indicating they take different cellular functions. Surprisingly, Chr. II had a large proportion of unknown genes than Chr. I. Metabolic characteristics predicted that Chr. I performed the essential metabolism, which can be complemented by the Chr. II, such as amino acids biosynthesis. Microbial community analysis of in situ surface seawater revealed that P. marinum accounted for one to four sequences among more than 20,000 of 16S ribosomal RNA gene V4 contigs, representing it apparently appeared as a rare species. What’s more, P. marinum was anticipated to be specific to the pelagic ocean. This study will provide new insight into more understanding the genomic and metabolic features of multiple chromosomes in prokaryote and emphasize the ecological distribution of the members in the family Vibrionaceae as a rare species.
Collapse
Affiliation(s)
- Zhaobin Huang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State of Oceanic Administration, Xiamen, China.,Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China.,Fujian Collaborative Innovation Center of Marine Biological Resources, Xiamen, China.,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen, China
| | - Zhen Liu
- Shanghai Majorbio Bio-Pharm Biotechnology Co., Ltd., Shanghai, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State of Oceanic Administration, Xiamen, China.,Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China.,Fujian Collaborative Innovation Center of Marine Biological Resources, Xiamen, China.,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen, China
| |
Collapse
|
32
|
diCenzo GC, Finan TM. The Divided Bacterial Genome: Structure, Function, and Evolution. Microbiol Mol Biol Rev 2017; 81:e00019-17. [PMID: 28794225 PMCID: PMC5584315 DOI: 10.1128/mmbr.00019-17] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Approximately 10% of bacterial genomes are split between two or more large DNA fragments, a genome architecture referred to as a multipartite genome. This multipartite organization is found in many important organisms, including plant symbionts, such as the nitrogen-fixing rhizobia, and plant, animal, and human pathogens, including the genera Brucella, Vibrio, and Burkholderia. The availability of many complete bacterial genome sequences means that we can now examine on a broad scale the characteristics of the different types of DNA molecules in a genome. Recent work has begun to shed light on the unique properties of each class of replicon, the unique functional role of chromosomal and nonchromosomal DNA molecules, and how the exploitation of novel niches may have driven the evolution of the multipartite genome. The aims of this review are to (i) outline the literature regarding bacterial genomes that are divided into multiple fragments, (ii) provide a meta-analysis of completed bacterial genomes from 1,708 species as a way of reviewing the abundant information present in these genome sequences, and (iii) provide an encompassing model to explain the evolution and function of the multipartite genome structure. This review covers, among other topics, salient genome terminology; mechanisms of multipartite genome formation; the phylogenetic distribution of multipartite genomes; how each part of a genome differs with respect to genomic signatures, genetic variability, and gene functional annotation; how each DNA molecule may interact; as well as the costs and benefits of this genome structure.
Collapse
Affiliation(s)
- George C diCenzo
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Turlough M Finan
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
33
|
Exception to the Rule: Genomic Characterization of Naturally Occurring Unusual Vibrio cholerae Strains with a Single Chromosome. Int J Genomics 2017; 2017:8724304. [PMID: 28951866 PMCID: PMC5603330 DOI: 10.1155/2017/8724304] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/15/2017] [Accepted: 06/22/2017] [Indexed: 11/18/2022] Open
Abstract
The genetic make-up of most bacteria is encoded in a single chromosome while about 10% have more than one chromosome. Among these, Vibrio cholerae, with two chromosomes, has served as a model system to study various aspects of chromosome maintenance, mainly replication, and faithful partitioning of multipartite genomes. Here, we describe the genomic characterization of strains that are an exception to the two chromosome rules: naturally occurring single-chromosome V. cholerae. Whole genome sequence analyses of NSCV1 and NSCV2 (natural single-chromosome vibrio) revealed that the Chr1 and Chr2 fusion junctions contain prophages, IS elements, and direct repeats, in addition to large-scale chromosomal rearrangements such as inversions, insertions, and long tandem repeats elsewhere in the chromosome compared to prototypical two chromosome V. cholerae genomes. Many of the known cholera virulence factors are absent. The two origins of replication and associated genes are generally intact with synonymous mutations in some genes, as are recA and mismatch repair (MMR) genes dam, mutH, and mutL; MutS function is probably impaired in NSCV2. These strains are ideal tools for studying mechanistic aspects of maintenance of chromosomes with multiple origins and other rearrangements and the biological, functional, and evolutionary significance of multipartite genome architecture in general.
Collapse
|
34
|
An evolutionary perspective on plasmid lifestyle modes. Curr Opin Microbiol 2017; 38:74-80. [DOI: 10.1016/j.mib.2017.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 11/19/2022]
|
35
|
Abstract
The last three decades have witnessed an explosion of discoveries about the mechanistic details of binary fission in model bacteria such as Escherichia coli, Bacillus subtilis, and Caulobacter crescentus. This was made possible not only by advances in microscopy that helped answer questions about cell biology but also by clever genetic manipulations that directly and easily tested specific hypotheses. More recently, research using understudied organisms, or nonmodel systems, has revealed several alternate mechanistic strategies that bacteria use to divide and propagate. In this review, we highlight new findings and compare these strategies to cell division mechanisms elucidated in model organisms.
Collapse
Affiliation(s)
- Prahathees J Eswara
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620;
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5132;
| |
Collapse
|
36
|
Pillet F, Passot FM, Pasta F, Anton Leberre V, Bouet JY. Analysis of ParB-centromere interactions by multiplex SPR imaging reveals specific patterns for binding ParB in six centromeres of Burkholderiales chromosomes and plasmids. PLoS One 2017; 12:e0177056. [PMID: 28562673 PMCID: PMC5450999 DOI: 10.1371/journal.pone.0177056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/23/2017] [Indexed: 12/20/2022] Open
Abstract
Bacterial centromeres–also called parS, are cis-acting DNA sequences which, together with the proteins ParA and ParB, are involved in the segregation of chromosomes and plasmids. The specific binding of ParB to parS nucleates the assembly of a large ParB/DNA complex from which ParA—the motor protein, segregates the sister replicons. Closely related families of partition systems, called Bsr, were identified on the chromosomes and large plasmids of the multi-chromosomal bacterium Burkholderia cenocepacia and other species from the order Burkholeriales. The centromeres of the Bsr partition families are 16 bp palindromes, displaying similar base compositions, notably a central CG dinucleotide. Despite centromeres bind the cognate ParB with a narrow specificity, weak ParB-parS non cognate interactions were nevertheless detected between few Bsr partition systems of replicons not belonging to the same genome. These observations suggested that Bsr partition systems could have a common ancestry but that evolution mostly erased the possibilities of cross-reactions between them, in particular to prevent replicon incompatibility. To detect novel similarities between Bsr partition systems, we have analyzed the binding of six Bsr parS sequences and a wide collection of modified derivatives, to their cognate ParB. The study was carried out by Surface Plasmon Resonance imaging (SPRi) mulitplex analysis enabling a systematic survey of each nucleotide position within the centromere. We found that in each parS some positions could be changed while maintaining binding to ParB. Each centromere displays its own pattern of changes, but some positions are shared more or less widely. In addition from these changes we could speculate evolutionary links between these centromeres.
Collapse
Affiliation(s)
- Flavien Pillet
- Ingénierie des Systèmes Biologiques et des Procédés INRA UMR792, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées, Toulouse, France
- Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés CNRS UMR5504, Centre National de la Recherche Scientifique, Institut National des Sciences Appliquées, Université de Toulouse, Toulouse, France
| | - Fanny Marie Passot
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Franck Pasta
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
- * E-mail:
| | - Véronique Anton Leberre
- Ingénierie des Systèmes Biologiques et des Procédés INRA UMR792, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées, Toulouse, France
- Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés CNRS UMR5504, Centre National de la Recherche Scientifique, Institut National des Sciences Appliquées, Université de Toulouse, Toulouse, France
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
37
|
Jha JK, Li M, Ghirlando R, Miller Jenkins LM, Wlodawer A, Chattoraj D. The DnaK Chaperone Uses Different Mechanisms To Promote and Inhibit Replication of Vibrio cholerae Chromosome 2. mBio 2017; 8:e00427-17. [PMID: 28420739 PMCID: PMC5395669 DOI: 10.1128/mbio.00427-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 12/17/2022] Open
Abstract
Replication of Vibrio cholerae chromosome 2 (Chr2) depends on molecular chaperone DnaK to facilitate binding of the initiator (RctB) to the replication origin. The binding occurs at two kinds of site, 12-mers and 39-mers, which promote and inhibit replication, respectively. Here we show that DnaK employs different mechanisms to enhance the two kinds of binding. We found that mutations in rctB that reduce DnaK binding also reduce 12-mer binding and initiation. The initiation defect is suppressed by second-site mutations that increase 12-mer binding only marginally. Instead, they reduce replication inhibitory mechanisms: RctB dimerization and 39-mer binding. One suppressing change was in a dimerization domain which is folded similarly to the initiator of an iteron plasmid-the presumed progenitor of Chr2. In plasmids, DnaK promotes initiation by reducing dimerization. A different mutation was in the 39-mer binding domain of RctB and inactivated it, indicating an alternative suppression mechanism. Paradoxically, although DnaK increases 39-mer binding, the increase was also achieved by inactivating the DnaK binding site of RctB. This result suggests that the site inhibits the 39-mer binding domain (via autoinhibition) when prevented from binding DnaK. Taken together, our results reveal an important feature of the transition from plasmid to chromosome: the Chr2 initiator retains the plasmid-like dimerization domain and its control by chaperones but uses the chaperones in an unprecedented way to control the inhibitory 39-mer binding.IMPORTANCE The capacity of proteins to undergo remodeling provides opportunities to control their function. However, remodeling remains a poorly understood aspect of the structure-function paradigm due to its dynamic nature. Here we have studied remodeling of the initiator of replication of Vibrio cholerae Chr2 by the molecular chaperone, DnaK. We show that DnaK binds to a site on the Chr2 initiator (RctB) that promotes initiation by reducing the initiator's propensity to dimerize. Dimerization of the initiator of the putative plasmid progenitor of Chr2 is also reduced by DnaK, which promotes initiation. Paradoxically, the DnaK binding also promotes replication inhibition by reducing an autoinhibitory activity of RctB. In the plasmid-to-chromosome transition, it appears that the initiator has acquired an autoinhibitory activity and along with it a new chaperone activity that apparently helps to control replication inhibition independently of replication promotion.
Collapse
Affiliation(s)
- Jyoti K Jha
- Laboratory of Biochemistry and Molecular Biology, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Mi Li
- Macromolecular Crystallography Laboratory, NCI, Frederick, Maryland, USA
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, Maryland, USA
| | | | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, NCI, Frederick, Maryland, USA
| | - Dhruba Chattoraj
- Laboratory of Biochemistry and Molecular Biology, CCR, NCI, NIH, Bethesda, Maryland, USA
| |
Collapse
|
38
|
Messerschmidt SJ, Schindler D, Zumkeller CM, Kemter FS, Schallopp N, Waldminghaus T. Optimization and Characterization of the Synthetic Secondary Chromosome synVicII in Escherichia coli. Front Bioeng Biotechnol 2016; 4:96. [PMID: 28066763 PMCID: PMC5179572 DOI: 10.3389/fbioe.2016.00096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/09/2016] [Indexed: 11/15/2022] Open
Abstract
Learning by building is one of the core ideas of synthetic biology research. Consequently, building synthetic chromosomes is the way to fully understand chromosome characteristics. The last years have seen exciting synthetic chromosome studies. We had previously introduced the synthetic secondary chromosome synVicII in Escherichia coli. It is based on the replication mechanism of the secondary chromosome in Vibrio cholerae. Here, we present a detailed analysis of its genetic characteristics and a selection approach to optimize replicon stability. We probe the origin diversity of secondary chromosomes from Vibrionaceae by construction of several new respective replicons. Finally, we present a synVicII version 2.0 with several innovations including its full compatibility with the popular modular cloning (MoClo) assembly system.
Collapse
Affiliation(s)
- Sonja J Messerschmidt
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg , Marburg , Germany
| | - Daniel Schindler
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg , Marburg , Germany
| | - Celine M Zumkeller
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg , Marburg , Germany
| | - Franziska S Kemter
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg , Marburg , Germany
| | - Nadine Schallopp
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg , Marburg , Germany
| | - Torsten Waldminghaus
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg , Marburg , Germany
| |
Collapse
|
39
|
Control of bacterial chromosome replication by non-coding regions outside the origin. Curr Genet 2016; 63:607-611. [PMID: 27942832 DOI: 10.1007/s00294-016-0671-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
Abstract
Chromosome replication in Eubacteria is initiated by initiator protein(s) binding to specific sites within the replication origin, oriC. Recently, initiator protein binding to chromosomal regions outside the origin has attracted renewed attention; as such binding sites contribute to control the frequency of initiations. These outside-oriC binding sites function in several different ways: by steric hindrances of replication fork assembly, by titration of initiator proteins away from the origin, by performing a chaperone-like activity for inactivation- or activation of initiator proteins or by mediating crosstalk between chromosomes. Here, we discuss initiator binding to outside-oriC sites in a broad range of different taxonomic groups, to highlight the significance of such regions for regulation of bacterial chromosome replication. For Escherichia coli, it was recently shown that the genomic positions of regulatory elements are important for bacterial fitness, which, as we discuss, could be true for several other organisms.
Collapse
|
40
|
Random versus Cell Cycle-Regulated Replication Initiation in Bacteria: Insights from Studying Vibrio cholerae Chromosome 2. Microbiol Mol Biol Rev 2016; 81:81/1/e00033-16. [PMID: 27903655 DOI: 10.1128/mmbr.00033-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial chromosomes initiate replication at a fixed time in the cell cycle, whereas there is generally no particular time for plasmid replication initiation or chromosomal replication initiation from integrated plasmids. In bacteria with divided genomes, the replication system of one of the chromosomes typically resembles that of bacteria with undivided genomes, whereas the remaining chromosomes have plasmid-like replication systems. For example, in Vibrio cholerae, a bacterium with two chromosomes (chromosome 1 [Chr1] and Chr2), the Chr1 system resembles that of the Escherichia coli chromosome, and the Chr2 system resembles that of iteron-based plasmids. However, Chr2 still initiates replication at a fixed time in the cell cycle and thus offers an opportunity to understand the molecular basis for the difference between random and cell cycle-regulated modes of replication. Here we review studies of replication control in Chr2 and compare it to those of plasmids and chromosomes. We argue that although the Chr2 control mechanisms in many ways are reminiscent of those of plasmids, they also appear to combine more regulatory features than are found on a typical plasmid, including some that are more typical of chromosomes. One of the regulatory mechanisms is especially novel, the coordinated timing of replication initiation of Chr1 and Chr2, providing the first example of communication between chromosomes for replication initiation.
Collapse
|
41
|
Milbredt S, Farmani N, Sobetzko P, Waldminghaus T. DNA Replication in Engineered Escherichia coli Genomes with Extra Replication Origins. ACS Synth Biol 2016; 5:1167-1176. [PMID: 27268399 DOI: 10.1021/acssynbio.6b00064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The standard outline of bacterial genomes is a single circular chromosome with a single replication origin. From the bioengineering perspective, it appears attractive to extend this basic setup. Bacteria with split chromosomes or multiple replication origins have been successfully constructed in the last few years. The characteristics of these engineered strains will largely depend on the respective DNA replication patterns. However, the DNA replication has not been investigated systematically in engineered bacteria with multiple origins or split replicons. Here we fill this gap by studying a set of strains consisting of (i) E. coli strains with an extra copy of the native replication origin (oriC), (ii) E. coli strains with an extra copy of the replication origin from the secondary chromosome of Vibrio cholerae (oriII), and (iii) a strain in which the E. coli chromosome is split into two linear replicons. A combination of flow cytometry, microarray-based comparative genomic hybridization (CGH), and modeling revealed silencing of extra oriC copies and differential timing of ectopic oriII copies compared to the native oriC. The results were used to derive construction rules for future multiorigin and multireplicon projects.
Collapse
Affiliation(s)
- Sarah Milbredt
- LOEWE Center for Synthetic
Microbiology, SYNMIKRO, Philipps-University, Marburg, Hans-Meerwein-Strasse 6, D-35043 Marburg, Germany
| | - Neda Farmani
- LOEWE Center for Synthetic
Microbiology, SYNMIKRO, Philipps-University, Marburg, Hans-Meerwein-Strasse 6, D-35043 Marburg, Germany
| | - Patrick Sobetzko
- LOEWE Center for Synthetic
Microbiology, SYNMIKRO, Philipps-University, Marburg, Hans-Meerwein-Strasse 6, D-35043 Marburg, Germany
| | - Torsten Waldminghaus
- LOEWE Center for Synthetic
Microbiology, SYNMIKRO, Philipps-University, Marburg, Hans-Meerwein-Strasse 6, D-35043 Marburg, Germany
| |
Collapse
|
42
|
Orderly Replication and Segregation of the Four Replicons of Burkholderia cenocepacia J2315. PLoS Genet 2016; 12:e1006172. [PMID: 27428258 PMCID: PMC4948915 DOI: 10.1371/journal.pgen.1006172] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 06/15/2016] [Indexed: 11/19/2022] Open
Abstract
Bacterial genomes typically consist of a single chromosome and, optionally, one or more plasmids. But whole-genome sequencing reveals about ten per-cent of them to be multipartite, with additional replicons which by size and indispensability are considered secondary chromosomes. This raises the questions of how their replication and partition is managed without compromising genome stability and of how such genomes arose. Vibrio cholerae, with a 1 Mb replicon in addition to its 3 Mb chromosome, is the only species for which maintenance of a multipartite genome has been investigated. In this study we have explored the more complex genome of Burkholderia cenocepacia (strain J2315). It comprises an extra replicon (c2) of 3.21 Mb, comparable in size to the3.87Mb main chromosome (c1), another extra replicon(c3) of 0.87 Mb and a plasmid of 0.09 Mb. The replication origin of c1 is typically chromosomal and those of c2 and c3 are plasmid-like; all are replicated bidirectionally. Fluorescence microscopy of tagged origins indicates that all initiate replication at mid-cell and segregate towards the cell quarter positions sequentially, c1-c2-p1/c3. c2 segregation is as well-phased with the cell cycle as c1, implying that this plasmid-like origin has become subject to regulation not typical of plasmids; in contrast, c3 segregates more randomly through the cycle. Disruption of individual Par systems by deletion of parAB or by addition of parS sites showed each Par system to govern the positioning of its own replicon only. Inactivation of c1, c2 and c3 Par systems not only reduced growth rate, generated anucleate cells and compromised viability but influenced processes beyond replicon partition, notably regulation of replication, chromosome condensation and cell size determination. In particular, the absence of the c1 ParA protein altered replication of all three chromosomes, suggesting that the partition system of the main chromosome is a major participant in the choreography of the cell cycle. Unlike higher organisms, bacteria typically carry their genetic information on a single chromosome. But in a few bacterial families the genome includes one to three additional chromosome-like DNA molecules. Because these families are rich in pathogenic and environmentally versatile species, it is important to understand how their split genomes evolved and how their maintenance is managed without confusion. We find that mitotic segregation (partition) of all three chromosomes of the cystic fibrosis type strain, Burkholderia cenocepacia J2315, proceeds from mid-cell to cell quarter positions, but that it occurs in a sequential manner, from largest chromosome to smallest. Positioning of each chromosome is specified solely by its own partition proteins. Nevertheless, the partition system of the largest chromosome appears also to play a global role in the cell cycle, by modulating the timing of initiation of replication. In addition, disrupting the partition systems of all three chromosomes induced specific cell abnormalities. Hence, although such bacteria are governed mainly by the largest, housekeeping chromosome, all the Par systems have insinuated themselves into cell cycle regulation to become indispensable for normal growth. Exploration of the underlying mechanisms should allow us to understand their full importance to bacterial life.
Collapse
|
43
|
Frage B, Döhlemann J, Robledo M, Lucena D, Sobetzko P, Graumann PL, Becker A. Spatiotemporal choreography of chromosome and megaplasmids in theSinorhizobium meliloticell cycle. Mol Microbiol 2016; 100:808-23. [DOI: 10.1111/mmi.13351] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin Frage
- LOEWE Center for Synthetic Microbiology and Faculty of Biology; Philipps-Universität Marburg; 35032 Marburg Germany
| | - Johannes Döhlemann
- LOEWE Center for Synthetic Microbiology and Faculty of Biology; Philipps-Universität Marburg; 35032 Marburg Germany
| | - Marta Robledo
- LOEWE Center for Synthetic Microbiology and Faculty of Biology; Philipps-Universität Marburg; 35032 Marburg Germany
| | - Daniella Lucena
- LOEWE Center for Synthetic Microbiology and Faculty of Chemistry, Philipps-Universität Marburg, 35032; Marburg Germany
| | - Patrick Sobetzko
- LOEWE Center for Synthetic Microbiology and Faculty of Biology; Philipps-Universität Marburg; 35032 Marburg Germany
| | - Peter L. Graumann
- LOEWE Center for Synthetic Microbiology and Faculty of Chemistry, Philipps-Universität Marburg, 35032; Marburg Germany
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology and Faculty of Biology; Philipps-Universität Marburg; 35032 Marburg Germany
| |
Collapse
|
44
|
Val ME, Marbouty M, de Lemos Martins F, Kennedy SP, Kemble H, Bland MJ, Possoz C, Koszul R, Skovgaard O, Mazel D. A checkpoint control orchestrates the replication of the two chromosomes of Vibrio cholerae. SCIENCE ADVANCES 2016; 2:e1501914. [PMID: 27152358 PMCID: PMC4846446 DOI: 10.1126/sciadv.1501914] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/28/2016] [Indexed: 05/04/2023]
Abstract
Bacteria with multiple chromosomes represent up to 10% of all bacterial species. Unlike eukaryotes, these bacteria use chromosome-specific initiators for their replication. In all cases investigated, the machineries for secondary chromosome replication initiation are of plasmid origin. One of the important differences between plasmids and chromosomes is that the latter replicate during a defined period of the cell cycle, ensuring a single round of replication per cell. Vibrio cholerae carries two circular chromosomes, Chr1 and Chr2, which are replicated in a well-orchestrated manner with the cell cycle and coordinated in such a way that replication termination occurs at the same time. However, the mechanism coordinating this synchrony remains speculative. We investigated this mechanism and revealed that initiation of Chr2 replication is triggered by the replication of a 150-bp locus positioned on Chr1, called crtS. This crtS replication-mediated Chr2 replication initiation mechanism explains how the two chromosomes communicate to coordinate their replication. Our study reveals a new checkpoint control mechanism in bacteria, and highlights possible functional interactions mediated by contacts between two chromosomes, an unprecedented observation in bacteria.
Collapse
Affiliation(s)
- Marie-Eve Val
- Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
- CNRS UMR 3525, Paris 75015, France
| | - Martial Marbouty
- CNRS UMR 3525, Paris 75015, France
- Spatial Regulation of Genomes, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
| | - Francisco de Lemos Martins
- Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
- CNRS UMR 3525, Paris 75015, France
| | | | - Harry Kemble
- Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
- CNRS UMR 3525, Paris 75015, France
| | - Michael J. Bland
- Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
- CNRS UMR 3525, Paris 75015, France
| | - Christophe Possoz
- Department of Genome Biology, Institute of Integrative Biology of the Cell (I2BC), Paris-Sud University, CEA, CNRS, Gif-sur-Yvette 91190, France
| | - Romain Koszul
- CNRS UMR 3525, Paris 75015, France
- Spatial Regulation of Genomes, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
| | - Ole Skovgaard
- Department of Science, Systems and Models, Roskilde University, Roskilde DK-4000, Denmark
- Corresponding author. E-mail: (D.M.); (O.S.)
| | - Didier Mazel
- Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris 75015, France
- CNRS UMR 3525, Paris 75015, France
- Corresponding author. E-mail: (D.M.); (O.S.)
| |
Collapse
|
45
|
Val ME, Soler-Bistué A, Bland MJ, Mazel D. Management of multipartite genomes: the Vibrio cholerae model. Curr Opin Microbiol 2015; 22:120-6. [PMID: 25460805 DOI: 10.1016/j.mib.2014.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 09/29/2014] [Accepted: 10/06/2014] [Indexed: 11/26/2022]
Abstract
A minority of bacterial species has been found to carry a genome divided among several chromosomes. Among these, all Vibrio species harbor a genome split into two chromosomes of uneven size, with distinctive replication origins whose replication firing involves common and specific factors. Most of our current knowledge on replication and segregation in multi-chromosome bacteria has come from the study of Vibrio cholerae, which is now the model organism for this field. It has been firmly established that replication of the two V. cholerae chromosomes is temporally regulated and coupled to the cell cycle, but the mediators of these processes are as yet mostly unknown. The two chromosomes are also organized along different patterns within the cell and occupy different subcellular domains. The selective advantages provided by this partitioning into two replicons are still unclear and are a key motivation for these studies.
Collapse
Affiliation(s)
- Marie-Eve Val
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
| | | | | | | |
Collapse
|
46
|
Molecular Dissection of the Essential Features of the Origin of Replication of the Second Vibrio cholerae Chromosome. mBio 2015. [PMID: 26220967 PMCID: PMC4551981 DOI: 10.1128/mbio.00973-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vibrionaceae family members are interesting models for studying DNA replication initiation, as they contain two circular chromosomes. Chromosome II (chrII) replication is governed by two evolutionarily unique yet highly conserved elements, the origin DNA sequence oriCII and the initiator protein RctB. The minimum functional region of oriCII, oriCII-min, contains multiple elements that are bound by RctB in vitro, but little is known about the specific requirements for individual elements during oriCII initiation. We utilized undirected and site-specific mutagenesis to investigate the functionality of mutant forms of oriCII-min and assessed binding to various mutant forms by RctB. Our analyses showed that deletions, point mutations, and changes in RctB target site spacing or methylation all impaired oriCII-min-based replication. RctB displayed a reduced affinity for most of the low-efficacy origins tested, although its characteristic cooperative binding was generally maintained. Mutations that removed or altered the relative positions of origin components other than RctB binding sites (e.g., AT-rich sequence, DnaA target site) also abolished replicative capacity. Comprehensive mutagenesis and deep-sequencing-based screening (OriSeq) allowed the identification of a previously uncharacterized methylated domain in oriCII that is required for origin function. Together, our results reveal the remarkable evolutionary honing of oriCII and provide new insight into the complex interplay between RctB and oriCII. The genome of the enteric pathogen Vibrio cholerae consists of two chromosomes. While the chromosome I replication origin and its cognate replication initiator protein resemble those of Escherichia coli, the factors responsible for chromosome II replication initiation display no similarity to any other known initiation systems. Here, to enhance our understanding of how this DNA sequence, oriCII, and its initiator protein, RctB, function, we used both targeted mutagenesis and a new random-mutagenesis approach (OriSeq) to finely map the oriCII structural features and sequences required for RctB-mediated DNA replication. Collectively, our findings reveal the extraordinary evolutionary honing of the architecture and motifs that constitute oriCII and reveal a new role for methylation in oriCII-based replication. Finally, our findings suggest that the OriSeq approach is likely to be widely applicable for defining critical bases in cis-acting sequences.
Collapse
|
47
|
Ramachandran R, Jha J, Chattoraj DK. Chromosome segregation in Vibrio cholerae. J Mol Microbiol Biotechnol 2015; 24:360-70. [PMID: 25732338 DOI: 10.1159/000368853] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The study of chromosome segregation is currently one of the most exciting research frontiers in cell biology. In this review, we discuss our current knowledge of the chromosome segregation process in Vibrio cholerae, based primarily on findings from fluorescence microscopy experiments. This bacterium is of special interest because of its eukaryotic feature of having a divided genome, a feature shared with 10% of known bacteria. We also discuss how the segregation mechanisms of V. cholerae compare with those in other bacteria, and highlight some of the remaining questions regarding the process of bacterial chromosome segregation.
Collapse
Affiliation(s)
- Revathy Ramachandran
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Md., USA
| | | | | |
Collapse
|
48
|
Wolański M, Donczew R, Zawilak-Pawlik A, Zakrzewska-Czerwińska J. oriC-encoded instructions for the initiation of bacterial chromosome replication. Front Microbiol 2015; 5:735. [PMID: 25610430 PMCID: PMC4285127 DOI: 10.3389/fmicb.2014.00735] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/05/2014] [Indexed: 01/09/2023] Open
Abstract
Replication of the bacterial chromosome initiates at a single origin of replication that is called oriC. This occurs via the concerted action of numerous proteins, including DnaA, which acts as an initiator. The origin sequences vary across species, but all bacterial oriCs contain the information necessary to guide assembly of the DnaA protein complex at oriC, triggering the unwinding of DNA and the beginning of replication. The requisite information is encoded in the unique arrangement of specific sequences called DnaA boxes, which form a framework for DnaA binding and assembly. Other crucial sequences of bacterial origin include DNA unwinding element (DUE, which designates the site at which oriC melts under the influence of DnaA) and binding sites for additional proteins that positively or negatively regulate the initiation process. In this review, we summarize our current knowledge and understanding of the information encoded in bacterial origins of chromosomal replication, particularly in the context of replication initiation and its regulation. We show that oriC encoded instructions allow not only for initiation but also for precise regulation of replication initiation and coordination of chromosomal replication with the cell cycle (also in response to environmental signals). We focus on Escherichia coli, and then expand our discussion to include several other microorganisms in which additional regulatory proteins have been recently shown to be involved in coordinating replication initiation to other cellular processes (e.g., Bacillus, Caulobacter, Helicobacter, Mycobacterium, and Streptomyces). We discuss diversity of bacterial oriC regions with the main focus on roles of individual DNA recognition sequences at oriC in binding the initiator and regulatory proteins as well as the overall impact of these proteins on the formation of initiation complex.
Collapse
Affiliation(s)
- Marcin Wolański
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław Wrocław, Poland
| | - Rafał Donczew
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Anna Zawilak-Pawlik
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Jolanta Zakrzewska-Czerwińska
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław Wrocław, Poland ; Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| |
Collapse
|
49
|
Messerschmidt SJ, Kemter FS, Schindler D, Waldminghaus T. Synthetic secondary chromosomes in Escherichia coli based on the replication origin of chromosome II in Vibrio cholerae. Biotechnol J 2014; 10:302-14. [PMID: 25359671 DOI: 10.1002/biot.201400031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 10/02/2014] [Accepted: 10/30/2014] [Indexed: 01/25/2023]
Abstract
Recent developments in DNA-assembly methods make the synthesis of synthetic chromosomes a reachable goal. However, the redesign of primary chromosomes bears high risks and still requires enormous resources. An alternative approach is the addition of synthetic chromosomes to the cell. The natural secondary chromosome of Vibrio cholerae could potentially serve as template for a synthetic secondary chromosome in Escherichia coli. To test this assumption we constructed a replicon named synVicII based on the replication module of V. cholerae chromosome II (oriII). A new assay for the assessment of replicon stability was developed based on flow-cytometric analysis of unstable GFP variants. Application of this assay to cells carrying synVicII revealed an improved stability compared to a secondary replicon based on E. coli oriC. Cell cycle analysis and determination of cellular copy numbers of synVicII indicate that replication timing of the synthetic replicon in E. coli is comparable to the natural chromosome II (ChrII) in V. cholerae. The presented synthetic biology work provides the basis to use secondary chromosomes in E. coli to answer basic research questions as well as for several biotechnological applications.
Collapse
Affiliation(s)
- Sonja J Messerschmidt
- LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps-Universität Marburg, Germany
| | | | | | | |
Collapse
|
50
|
Jha JK, Ghirlando R, Chattoraj DK. Initiator protein dimerization plays a key role in replication control of Vibrio cholerae chromosome 2. Nucleic Acids Res 2014; 42:10538-49. [PMID: 25159619 PMCID: PMC4176361 DOI: 10.1093/nar/gku771] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
RctB, the initiator of replication of Vibrio cholerae chromosome 2 (chr2), binds to the origin of replication to specific 12-mer sites both as a monomer and a dimer. Binding to 12-mers is essential for initiation. The monomers also bind to a second kind of site, 39-mers, which inhibits initiation. Mutations in rctB that reduce dimer binding increase monomer binding to 12-mers but decrease monomer binding to 39-mers. The mechanism of this paradoxical binding behavior has been unclear. Using deletion and alanine substitution mutants of RctB, we have now localized to a 71 amino acid region residues important for binding to the two kinds of DNA sites and for RctB dimerization. We find that the dimerization domain overlaps with both the DNA binding domains, explaining how changes in the dimerization domain can alter both kinds of DNA binding. Moreover, dimerization-defective mutants could be initiation-defective without apparent DNA binding defect. These results suggest that dimerization might be important for initiation beyond its role in controlling DNA binding. The finding that determinants of crucial initiator functions reside in a small region makes the region an attractive target for anti-V. cholerae drugs.
Collapse
Affiliation(s)
- Jyoti K Jha
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dhruba K Chattoraj
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| |
Collapse
|