1
|
Wei H, Wang Z, Huang Y, Gao L, Wang W, Liu S, Sun Y, Liu H, Weng Y, Fan H, Zhang M. DCAF2 regulates the proliferation and differentiation of mouse progenitor spermatogonia by targeting p21 and thymine DNA glycosylase. Cell Prolif 2024; 57:e13676. [PMID: 38837535 PMCID: PMC11471390 DOI: 10.1111/cpr.13676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/24/2024] [Accepted: 05/11/2024] [Indexed: 06/07/2024] Open
Abstract
DDB1-Cullin-4-associated factor-2 (DCAF2, also known as DTL or CDT2), a conserved substrate recognition protein of Cullin-RING E3 ligase 4 (CRL4), recognizes and degrades several substrate proteins during the S phase to maintain cell cycle progression and genome stability. Dcaf2 mainly expressed in germ cells of human and mouse. Our study found that Dcaf2 was expressed in mouse spermatogonia and spermatocyte. The depletion of Dcaf2 in germ cells by crossing Dcaf2fl/fl mice with stimulated by retinoic acid gene 8(Stra8)-Cre mice caused a reduction in progenitor spermatogonia and differentiating spermatogonia, eventually leading to the failure of meiosis initiation and male infertility. Further studies showed that depletion of Dcaf2 in germ cells caused abnormal accumulation of the substrate proteins, cyclin-dependent kinase inhibitor 1A (p21) and thymine DNA glycosylase (TDG), decreasing of cell proliferation, increasing of DNA damage and apoptosis. Overexpression of p21 or TDG attenuates proliferation and increases DNA damage and apoptosis in GC-1 cells, which is exacerbated by co-overexpression of p21 and TDG. The findings indicate that DCAF2 maintains the proliferation and differentiation of progenitor spermatogonia by targeting the substrate proteins p21 and TDG during the S phase.
Collapse
Affiliation(s)
- Hongwei Wei
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Zhijuan Wang
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Yating Huang
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Longwei Gao
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Weiyong Wang
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Shuang Liu
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Yan‐Li Sun
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Huiyu Liu
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Yashuang Weng
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Heng‐Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling NetworkLife Sciences Institute, Zhejiang UniversityHangzhouChina
| | - Meijia Zhang
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| |
Collapse
|
2
|
Włodarczyk M, Nowicka G, Ciebiera M, Ali M, Yang Q, Al-Hendy A. Epigenetic Regulation in Uterine Fibroids-The Role of Ten-Eleven Translocation Enzymes and Their Potential Therapeutic Application. Int J Mol Sci 2022; 23:2720. [PMID: 35269864 PMCID: PMC8910916 DOI: 10.3390/ijms23052720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023] Open
Abstract
Uterine fibroids (UFs) are monoclonal, benign tumors that contain abnormal smooth muscle cells and the accumulation of extracellular matrix (ECM). Although benign, UFs are a major source of gynecologic and reproductive dysfunction, ranging from menorrhagia and pelvic pain to infertility, recurrent miscarriage, and preterm labor. Many risk factors are involved in the pathogenesis of UFs via genetic and epigenetic mechanisms. The latter involving DNA methylation and demethylation reactions provide specific DNA methylation patterns that regulate gene expression. Active DNA demethylation reactions mediated by ten-eleven translocation proteins (TETs) and elevated levels of 5-hydroxymethylcytosine have been suggested to be involved in UF formation. This review paper summarizes the main findings regarding the function of TET enzymes and their activity dysregulation that may trigger the development of UFs. Understanding the role that epigenetics plays in the pathogenesis of UFs may possibly lead to a new type of pharmacological fertility-sparing treatment method.
Collapse
Affiliation(s)
- Marta Włodarczyk
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Grażyna Nowicka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Michał Ciebiera
- The Center of Postgraduate Medical Education, Second Department of Obstetrics and Gynecology, 01-809 Warsaw, Poland;
| | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (Q.Y.); (A.A.-H.)
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (Q.Y.); (A.A.-H.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (Q.Y.); (A.A.-H.)
| |
Collapse
|
3
|
de Castro E Gloria H, Jesuíno Nogueira L, Bencke Grudzinski P, da Costa Ghignatti PV, Guecheva TN, Motta Leguisamo N, Saffi J. Olaparib-mediated enhancement of 5-fluorouracil cytotoxicity in mismatch repair deficient colorectal cancer cells. BMC Cancer 2021; 21:448. [PMID: 33888065 PMCID: PMC8063290 DOI: 10.1186/s12885-021-08188-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Background The advances in colorectal cancer (CRC) treatment include the identification of deficiencies in Mismatch Repair (MMR) pathway to predict the benefit of adjuvant 5-fluorouracil (5-FU) and oxaliplatin for stage II CRC and immunotherapy. Defective MMR contributes to chemoresistance in CRC. A growing body of evidence supports the role of Poly-(ADP-ribose) polymerase (PARP) inhibitors, such as Olaparib, in the treatment of different subsets of cancer beyond the tumors with homologous recombination deficiencies. In this work we evaluated the effect of Olaparib on 5-FU cytotoxicity in MMR-deficient and proficient CRC cells and the mechanisms involved. Methods Human colon cancer cell lines, proficient (HT29) and deficient (HCT116) in MMR, were treated with 5-FU and Olaparib. Cytotoxicity was assessed by MTT and clonogenic assays, apoptosis induction and cell cycle progression by flow cytometry, DNA damage by comet assay. Adhesion and transwell migration assays were also performed. Results Our results showed enhancement of the 5-FU citotoxicity by Olaparib in MMR-deficient HCT116 colon cancer cells. Moreover, the combined treatment with Olaparib and 5-FU induced G2/M arrest, apoptosis and polyploidy in these cells. In MMR proficient HT29 cells, the Olaparib alone reduced clonogenic survival, induced DNA damage accumulation and decreased the adhesion and migration capacities. Conclusion Our results suggest benefits of Olaparib inclusion in CRC treatment, as combination with 5-FU for MMR deficient CRC and as monotherapy for MMR proficient CRC. Thus, combined therapy with Olaparib could be a strategy to overcome 5-FU chemotherapeutic resistance in MMR-deficient CRC.
Collapse
Affiliation(s)
- Helena de Castro E Gloria
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st 245, Porto Alegre, RS, Brazil
| | - Laura Jesuíno Nogueira
- Cardiology Institute of Rio Grande do Sul/ University Foundation of Cardiology (ICFUC), Porto Alegre, RS, Brazil
| | - Patrícia Bencke Grudzinski
- Cardiology Institute of Rio Grande do Sul/ University Foundation of Cardiology (ICFUC), Porto Alegre, RS, Brazil
| | | | - Temenouga Nikolova Guecheva
- Cardiology Institute of Rio Grande do Sul/ University Foundation of Cardiology (ICFUC), Porto Alegre, RS, Brazil
| | - Natalia Motta Leguisamo
- Cardiology Institute of Rio Grande do Sul/ University Foundation of Cardiology (ICFUC), Porto Alegre, RS, Brazil
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st 245, Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Almutairi M, Rouabhia M, Sahab Almutairi M, Al-Zahrani M, Al-Numair NS, Mohammad Alhadeq A, Reddy Parine N, Semlali A. Correlation between genetic variation in thymine DNA glycosylase and smoking behavior. Gene 2020; 766:145092. [PMID: 32916247 DOI: 10.1016/j.gene.2020.145092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/09/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
Abstract
Cigarette smoking is a major lifestyle factor leading to different human diseases. The DNA repair gene, thymine DNA glycosylase, is important to cell survival because it stops cells from becoming cancerous protecting/preventing DNA. Exposure to CS may induce genetic changes such as single nucleotide polymorphisms in DNA repair genes. Therefore, the purpose of this study was to investigate the genotype and allele distributions of four TDG SNPs with only smoking behavior in normal patients. Four TDG SNPs-rs4135066 (C/T), rs3751209 (A/G), rs1866074 (C/T), and rs1882018 (C/T) were analyzed by genotyping 235 and 239 blood samples collected from cigarette smokers and non-smokers, among the Saudi population. The results showed that TDG rs4135066 has a significant susceptibility effect observed in long-term smokers (>5 years; OR = 4.53; P = 0.0347) but not in short-term smokers (≤5 years) in contrast with non-smokers. Also, in smokers aged less than 29 years, the "CT," "TT," and "CT + TT" alleles of rs1882018 increased the risk of developing all diseases related to smoking by approximately 6, 4, and 5 times, respectively, in contrast with the ancestral "CC" homozygous allele. A comparison of the allele distributions of TDG SNPs in a Saudi population with those in other populations represented in the HapMap project showed that the genetic makeup of the Saudi Arabian population appears to differ from that of other ethnicities. Exceptions include the Yoruba people in Ibadan, Nigeria; those of Mexican ancestry in Los Angeles, California; the Luhya population in Webuye, Kenya; Gujarati Indians in Houston, Texas; and the Tuscan population in Italy, which showed similar allelic frequencies for rs3751209 compared to our Saudi population. In this ethnic, we have found a high variation in the distribution of the alleles and genotype frequencies on TDG gene. This variation on TDG SNP's with smoking could lead to increase the susceptibility to many diseases related to smoking habits in this population.
Collapse
Affiliation(s)
- Mikhlid Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud Rouabhia
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Québec, Canada
| | | | - Mohammed Al-Zahrani
- Al Imam Mohammad IBN Saud Islamic University (IMSIU), College of Science, Biology Department, Riyadh, Saudi Arabia
| | - Nouf S Al-Numair
- Department of Genetics, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Narasimha Reddy Parine
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
5
|
TDG Gene Polymorphisms and Their Possible Association with Colorectal Cancer: A Case Control Study. JOURNAL OF ONCOLOGY 2019; 2019:7091815. [PMID: 31239841 PMCID: PMC6556271 DOI: 10.1155/2019/7091815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/05/2019] [Accepted: 05/07/2019] [Indexed: 12/28/2022]
Abstract
Genetic alterations that might lead to colorectal cancer involve essential genes including those involved in DNA repair, inclusive of base excision repair (BER). Thymine DNA glycosylase (TDG) is one of the most well characterized BER genes that catalyzes the removal of thymine moieties from G/T mismatches and is also involved in many cellular functions, such as the regulation of gene expression, transcriptional coactivation, and the control of epigenetic DNA modification. Mutation of the TDG gene is implicated in carcinogenesis. In the present study, we aimed to investigate the association between TDG gene polymorphisms and their involvement in colon cancer susceptibility. One hundred blood samples were obtained from colorectal cancer patients and healthy controls for the genotyping of seven SNPs in the TDG gene. DNA was extracted from the blood, and the polymorphic sites (SNPs) rs4135113, rs4135050, rs4135066, rs3751209, rs1866074, and rs1882018 were investigated using TaqMan genotyping. One of the six TDG SNPs was associated with an increased risk of colon cancer. The AA genotype of the TDG SNP rs4135113 increased the risk of colon cancer development by more than 3.6-fold, whereas the minor allele A increased the risk by 1.6-fold. It also showed a 5-fold higher risk in patients over the age of 57. SNP rs1866074 showed a significant protective association in CRC patients. The GA genotype of TDG rs3751209 was associated with a decreased risk in males. There is a significant relationship between TDG gene function and colorectal cancer progression.
Collapse
|
6
|
Almutairi M, Mohammad Alhadeq A, Almeer R, Almutairi M, Alzahrani M, Semlali A. Effect of the thymine-DNA glycosylase rs4135050 variant on Saudi smoker population. Mol Genet Genomic Med 2019; 7:e00590. [PMID: 30779328 PMCID: PMC6465727 DOI: 10.1002/mgg3.590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/13/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022] Open
Abstract
Background Thymine‐DNA glycosylase (TDG) is an essential DNA‐repair enzyme which works in both epigenetic regulation and genome maintenance. It is also responsible for efficient correction of multiple endogenous DNA lesions which occur commonly in mammalian genomes. Research of genetic variants such as SNPs, resulting in disease, is predicted to yield clinical advancements through the identification of sensitive genetic markers and the development of disease prevention and therapy. To that end, the main objective of the present study is to identify the possible interactions between cigarette smoking and the rs4135050 variant of the TDG gene, situated in the intron position, among Saudi individuals. Methods TDG rs4135050 (A/T) was investigated by genotyping 239, and 235 blood specimens were obtained from nonsmokers and smokers of cigarette respectively. Results T allele frequency was found which showed a significant protective effect on Saudi male smokers (OR = 0.64, p = 0.0187) compared to nonsmoking subjects, but not in female smokers. Furthermore, smokers aged less than 29 years, the AT and AT+TT genotypes decreased more than four times the risk of initiation of smoking related‐diseases compare to the ancestral AA homozygous genotype. Paradoxically, the AT (OR = 3.88, p = 0.0169) and AT+TT (OR = 2.86, p = 0.0420) genotypes were present at a higher frequency in smoking patients aged more than 29 years as compared to nonsmokers at the same ages. Conclusion Depending on the gender and age of patients, TDG rs4135050 may provide a novel biomarker for the early diagnosis and prevention of several diseases caused by cigarette smoking.
Collapse
Affiliation(s)
- Mikhlid Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | | | - Rafa Almeer
- Zoology Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Alzahrani
- Biology Department, College of Science, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Université Laval, Québec, Québec, Canada.,Department of Biochemistry, College of Science, King Saud University, Kingdom of Saudi Arabia, Riyadh
| |
Collapse
|
7
|
Steinacher R, Barekati Z, Botev P, Kuśnierczyk A, Slupphaug G, Schär P. SUMOylation coordinates BERosome assembly in active DNA demethylation during cell differentiation. EMBO J 2018; 38:embj.201899242. [PMID: 30523148 DOI: 10.15252/embj.201899242] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 11/09/2022] Open
Abstract
During active DNA demethylation, 5-methylcytosine (5mC) is oxidized by TET proteins to 5-formyl-/5-carboxylcytosine (5fC/5caC) for replacement by unmethylated C by TDG-initiated DNA base excision repair (BER). Base excision generates fragile abasic sites (AP-sites) in DNA and has to be coordinated with subsequent repair steps to limit accumulation of genome destabilizing secondary DNA lesions. Here, we show that 5fC/5caC is generated at a high rate in genomes of differentiating mouse embryonic stem cells and that SUMOylation and the BER protein XRCC1 play critical roles in orchestrating TDG-initiated BER of these lesions. SUMOylation of XRCC1 facilitates physical interaction with TDG and promotes the assembly of a TDG-BER core complex. Within this TDG-BERosome, SUMO is transferred from XRCC1 and coupled to the SUMO acceptor lysine in TDG, promoting its dissociation while assuring the engagement of the BER machinery to complete demethylation. Although well-studied, the biological importance of TDG SUMOylation has remained obscure. Here, we demonstrate that SUMOylation of TDG suppresses DNA strand-break accumulation and toxicity to PARP inhibition in differentiating mESCs and is essential for neural lineage commitment.
Collapse
Affiliation(s)
| | - Zeinab Barekati
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Petar Botev
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Anna Kuśnierczyk
- Department of Cancer Research and Molecular Medicine, Proteomics and Metabolomics Core Facility, PROMEC, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine, Proteomics and Metabolomics Core Facility, PROMEC, Norwegian University of Science and Technology, Trondheim, Norway
| | - Primo Schär
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
D'Errico M, Parlanti E, Pascucci B, Fortini P, Baccarini S, Simonelli V, Dogliotti E. Single nucleotide polymorphisms in DNA glycosylases: From function to disease. Free Radic Biol Med 2017; 107:278-291. [PMID: 27932076 DOI: 10.1016/j.freeradbiomed.2016.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/25/2016] [Accepted: 12/02/2016] [Indexed: 02/08/2023]
Abstract
Oxidative stress is associated with a growing number of diseases that span from cancer to neurodegeneration. Most oxidatively induced DNA base lesions are repaired by the base excision repair (BER) pathway which involves the action of various DNA glycosylases. There are numerous genome wide studies attempting to associate single-nucleotide polymorphisms (SNPs) with predispositions to various types of disease; often, these common variants do not have significant alterations in their biochemical function and do not exhibit a convincing phenotype. Nevertheless several lines of evidence indicate that SNPs in DNA repair genes may modulate DNA repair capacity and contribute to risk of disease. This overview provides a convincing picture that SNPs of DNA glycosylases that remove oxidatively generated DNA lesions are susceptibility factors for a wide disease spectrum that includes besides cancer (particularly lung, breast and gastrointestinal tract), cochlear/ocular disorders, myocardial infarction and neurodegenerative disorders which can be all grouped under the umbrella of oxidative stress-related pathologies.
Collapse
Affiliation(s)
- Mariarosaria D'Errico
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Eleonora Parlanti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Barbara Pascucci
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Salaria, Km 29,300, 00016 Monterotondo Stazione, Rome, Italy
| | - Paola Fortini
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Sara Baccarini
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Valeria Simonelli
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Eugenia Dogliotti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
9
|
Abstract
Base excision repair (BER) is a key genome maintenance pathway that removes endogenously damaged DNA bases that arise in cells at very high levels on a daily basis. Failure to remove these damaged DNA bases leads to increased levels of mutagenesis and chromosomal instability, which have the potential to drive carcinogenesis. Next-generation sequencing of the germline and tumor genomes of thousands of individuals has uncovered many rare mutations in BER genes. Given that BER is critical for genome maintenance, it is important to determine whether BER genomic variants have functional phenotypes. In this chapter, we present our in silico methods for the identification and prioritization of BER variants for further study. We also provide detailed instructions and commentary on the initial cellular assays we employ to dissect potentially important phenotypes of human BER variants and highlight the strengths and weaknesses of our approaches. BER variants possessing interesting functional phenotypes can then be studied in more detail to provide important mechanistic insights regarding the role of aberrant BER in carcinogenesis.
Collapse
|
10
|
Abstract
Human alkyladenine DNA glycosylase (AAG) initiates base excision repair (BER) to guard against mutations by excising alkylated and deaminated purines. Counterintuitively, increased expression of AAG has been implicated in increased rates of spontaneous mutation in microsatellite repeats. This microsatellite mutator phenotype is consistent with a model in which AAG excises bulged (unpaired) bases, altering repeat length. To directly test the role of base excision in AAG-induced mutagenesis, we conducted mutation accumulation experiments in yeast overexpressing different variants of AAG and detected mutations via high-depth genome resequencing. We also developed a new software tool, hp_caller, to perform accurate genotyping at homopolymeric repeat loci. Overexpression of wild-type AAG elevated indel mutations in homopolymeric sequences distributed throughout the genome. However, catalytically inactive variants (E125Q/E125A) caused equal or greater increases in frameshift mutations. These results disprove the hypothesis that base excision is the key step in mutagenesis by overexpressed wild-type AAG. Instead, our results provide additional support for the previously published model wherein overexpressed AAG interferes with the mismatch repair (MMR) pathway. In addition to the above results, we observed a dramatic mutator phenotype for N169S AAG, which has increased rates of excision of undamaged purines. This mutant caused a 10-fold increase in point mutations at G:C base pairs and a 50-fold increase in frameshifts in A:T homopolymers. These results demonstrate that it is necessary to consider the relative activities and abundance of many DNA replication and repair proteins when considering mutator phenotypes, as they are relevant to the development of cancer and its resistance to treatment.
Collapse
|
11
|
Illuzzi JL, McNeill DR, Bastian P, Brenerman B, Wersto R, Russell HR, Bunz F, McKinnon PJ, Becker KG, Wilson DM. Tumor-associated APE1 variant exhibits reduced complementation efficiency but does not promote cancer cell phenotypes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:84-98. [PMID: 28181292 PMCID: PMC5321783 DOI: 10.1002/em.22074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
Base excision repair (BER) is the major pathway for coping with most forms of endogenous DNA damage, and defects in the process have been associated with carcinogenesis. Apurinic/apyrimidinic endonuclease 1 (APE1) is a central participant in BER, functioning as a critical endonuclease in the processing of noncoding abasic sites in DNA. Evidence has suggested that APE1 missense mutants, as well as altered expression or localization of the protein, can contribute to disease manifestation. We report herein that the tumor-associated APE1 variant, R237C, shows reduced complementation efficiency of the methyl methanesulfonate hypersensitivity and impaired cell growth exhibited by APE1-deficient mouse embryonic fibroblasts. Overexpression of wild-type APE1 or the R237C variant in the nontransformed C127I mouse cell line had no effect on proliferation, cell cycle status, steady-state DNA damage levels, mitochondrial function, or cellular transformation. A human cell line heterozygous for an APE1 knockout allele had lower levels of endogenous APE1, increased cellular sensitivity to DNA-damaging agents, impaired proliferation with time, and a distinct global gene expression pattern consistent with a stress phenotype. Our results indicate that: (i) the tumor-associated R237C variant is a possible susceptibility factor, but not likely a driver of cancer cell phenotypes, (ii) overexpression of APE1 does not readily promote cellular transformation, and (iii) haploinsufficiency at the APE1 locus can have profound cellular consequences, consistent with BER playing a critical role in proliferating cells. Environ. Mol. Mutagen. 58:84-98, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jennifer L. Illuzzi
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | - Daniel R. McNeill
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | - Paul Bastian
- Laboratory of Genetics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | - Boris Brenerman
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | - Robert Wersto
- Flow Cytometry Unit, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | - Helen R. Russell
- Genetics Department, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Fred Bunz
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - Peter J. McKinnon
- Genetics Department, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Kevin G. Becker
- Laboratory of Genetics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | - David M. Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| |
Collapse
|
12
|
Nemec AA, Bush KB, Towle-Weicksel JB, Taylor BF, Schulz V, Weidhaas JB, Tuck DP, Sweasy JB. Estrogen Drives Cellular Transformation and Mutagenesis in Cells Expressing the Breast Cancer-Associated R438W DNA Polymerase Lambda Protein. Mol Cancer Res 2016; 14:1068-1077. [PMID: 27621267 DOI: 10.1158/1541-7786.mcr-16-0209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/22/2016] [Accepted: 08/30/2016] [Indexed: 11/16/2022]
Abstract
Repair of DNA damage is critical for maintaining the genomic integrity of cells. DNA polymerase lambda (POLL/Pol λ) is suggested to function in base excision repair (BER) and nonhomologous end-joining (NHEJ), and is likely to play a role in damage tolerance at the replication fork. Here, using next-generation sequencing, it was discovered that the POLL rs3730477 single-nucleotide polymorphism (SNP) encoding R438W Pol λ was significantly enriched in the germlines of breast cancer patients. Expression of R438W Pol λ in human breast epithelial cells induces cellular transformation and chromosomal aberrations. The role of estrogen was assessed as it is commonly used in hormone replacement therapies and is a known breast cancer risk factor. Interestingly, the combination of estrogen treatment and the expression of the R438W Pol λ SNP drastically accelerated the rate of transformation. Estrogen exposure produces 8-oxoguanine lesions that persist in cells expressing R438W Pol λ compared with wild-type (WT) Pol λ-expressing cells. Unlike WT Pol λ, which performs error-free bypass of 8-oxoguanine lesions, expression of R438W Pol λ leads to an increase in mutagenesis and replicative stress in cells treated with estrogen. Together, these data suggest that individuals who carry the rs3730477 POLL germline variant have an increased risk of estrogen-associated breast cancer. IMPLICATIONS The Pol λ R438W mutation can serve as a biomarker to predict cancer risk and implicates that treatment with estrogen in individuals with this mutation may further increase their risk of breast cancer. Mol Cancer Res; 14(11); 1068-77. ©2016 AACR.
Collapse
Affiliation(s)
- Antonia A Nemec
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| | - Korie B Bush
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut
| | | | - B Frazier Taylor
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut
| | - Vincent Schulz
- Department of Pediatrics, Yale University, New Haven, Connecticut
| | - Joanne B Weidhaas
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.,Division of Molecular and Cellular Oncology, UCLA, Los Angeles, California
| | - David P Tuck
- Departmentof Pathology, Yale University, New Haven, Connecticut
| | - Joann B Sweasy
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.
| |
Collapse
|
13
|
Ray D, Kidane D. Gut Microbiota Imbalance and Base Excision Repair Dynamics in Colon Cancer. J Cancer 2016; 7:1421-30. [PMID: 27471558 PMCID: PMC4964126 DOI: 10.7150/jca.15480] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/18/2016] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota are required for host nutrition, energy balance, and regulating immune homeostasis, however, in some cases, this mutually beneficial relationship becomes twisted (dysbiosis), and the gut flora can incite pathological disorders including colon cancer. Microbial dysbiosis promotes the release of bacterial genotoxins, metabolites, and causes chronic inflammation, which promote oxidative DNA damage. Oxidized DNA base lesions are removed by base excision repair (BER), however, the role of this altered function of BER, as well as microbiota-mediated genomic instability and colon cancer development, is still poorly understood. In this review article, we will discuss how dysbiotic microbiota induce DNA damage, its impact on base excision repair capacity, the potential link of host BER gene polymorphism, and the risk of dysbiotic microbiota mediated genomic instability and colon cancer.
Collapse
Affiliation(s)
- Debolina Ray
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| | - Dawit Kidane
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| |
Collapse
|
14
|
Huehls AM, Huntoon CJ, Joshi PM, Baehr CA, Wagner JM, Wang X, Lee MY, Karnitz LM. Genomically Incorporated 5-Fluorouracil that Escapes UNG-Initiated Base Excision Repair Blocks DNA Replication and Activates Homologous Recombination. Mol Pharmacol 2016; 89:53-62. [PMID: 26494862 PMCID: PMC4702102 DOI: 10.1124/mol.115.100164] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/21/2015] [Indexed: 12/17/2022] Open
Abstract
5-Fluorouracil (5-FU) and its metabolite 5-fluorodeoxyuridine (FdUrd, floxuridine) are chemotherapy agents that are converted to 5-fluorodeoxyuridine monophosphate (FdUMP) and 5-fluorodeoxyuridine triphosphate (FdUTP). FdUMP inhibits thymidylate synthase and causes the accumulation of uracil in the genome, whereas FdUTP is incorporated by DNA polymerases as 5-FU in the genome; however, it remains unclear how either genomically incorporated U or 5-FU contributes to killing. We show that depletion of the uracil DNA glycosylase (UNG) sensitizes tumor cells to FdUrd. Furthermore, we show that UNG depletion does not sensitize cells to the thymidylate synthase inhibitor (raltitrexed), which induces uracil but not 5-FU accumulation, thus indicating that genomically incorporated 5-FU plays a major role in the antineoplastic effects of FdUrd. We also show that 5-FU metabolites do not block the first round of DNA synthesis but instead arrest cells at the G1/S border when cells again attempt replication and activate homologous recombination (HR). This arrest is not due to 5-FU lesions blocking DNA polymerase δ but instead depends, in part, on the thymine DNA glycosylase. Consistent with the activation of HR repair, disruption of HR sensitized cells to FdUrd, especially when UNG was disabled. These results show that 5-FU lesions that escape UNG repair activate HR, which promotes cell survival.
Collapse
Affiliation(s)
- Amelia M Huehls
- Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
| | - Catherine J Huntoon
- Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
| | - Poorval M Joshi
- Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
| | - Carly A Baehr
- Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
| | - Jill M Wagner
- Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
| | - Xiaoxiao Wang
- Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
| | - Marietta Y Lee
- Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
| | - Larry M Karnitz
- Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
| |
Collapse
|
15
|
Xu X, Watt DS, Liu C. Multifaceted roles for thymine DNA glycosylase in embryonic development and human carcinogenesis. Acta Biochim Biophys Sin (Shanghai) 2016; 48:82-9. [PMID: 26370152 DOI: 10.1093/abbs/gmv083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/12/2015] [Indexed: 01/03/2023] Open
Abstract
Thymine DNA glycosylase (TDG) is a multifunctional protein that plays important roles in DNA repair, DNA demethylation, and transcriptional regulation. These diverse functions make TDG a unique enzyme in embryonic development and carcinogenesis. This review discusses the molecular function of TDG in human cancers and the previously unrecognized value of TDG as a potential target for drug therapy.
Collapse
Affiliation(s)
- Xuehe Xu
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA
| | - David S Watt
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Chunming Liu
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA
| |
Collapse
|
16
|
Bellacosa A, Drohat AC. Role of base excision repair in maintaining the genetic and epigenetic integrity of CpG sites. DNA Repair (Amst) 2015; 32:33-42. [PMID: 26021671 DOI: 10.1016/j.dnarep.2015.04.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cytosine methylation at CpG dinucleotides is a central component of epigenetic regulation in vertebrates, and the base excision repair (BER) pathway is important for maintaining both the genetic stability and the methylation status of CpG sites. This perspective focuses on two enzymes that are of particular importance for the genetic and epigenetic integrity of CpG sites, methyl binding domain 4 (MBD4) and thymine DNA glycosylase (TDG). We discuss their capacity for countering C to T mutations at CpG sites, by initiating base excision repair of G · T mismatches generated by deamination of 5-methylcytosine (5mC). We also consider their role in active DNA demethylation, including pathways that are initiated by oxidation and/or deamination of 5mC.
Collapse
Affiliation(s)
- Alfonso Bellacosa
- Cancer Epigenetics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, United States.
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, United States.
| |
Collapse
|