1
|
Ding Z, Lin H, Liu L, Lu T, Xu Y, Peng J, Ren Y, Peng J, Xu T, Zhang X. Transcription factor FoAce2 regulates virulence, vegetative growth, conidiation, and cell wall homeostasis in Fusarium oxysporum f. sp. cubense. Fungal Biol 2024; 128:1960-1967. [PMID: 39059851 DOI: 10.1016/j.funbio.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024]
Abstract
Fusarium wilt of banana, caused by the fungus Fusarium oxysporum f. sp. cubense (Foc), is a serious fungal disease that affects banana plants globally. To explore the virulence mechanisms of this pathogen, we created a null mutation of the transcription factor gene FoAce2 (encoding F. oxysporum angiotensin converting enzyme 2). Deletion of FoAce2 resulted in slower growth, decreased aerial mycelia and conidiation, and a significant decrease in fungal virulence against banana hosts relative to those of the wild-type (WT) fungus. Additionally, transmission electron microscopy showed that the cell wall was thicker in the FoAce2 deletion mutants. Consistent with this finding, the cell wall glucose level was decreased in the ΔFoAce2 mutants compared with that in the WT and complemented strain, ΔFoAce2-C1. Complementation with the WT FoAce2 gene fully reversed the mutant phenotypes. Analysis of the transcriptome of ΔFoAce2 and the WT strain showed alterations in the expression levels of many genes associated with virulence and growth. Thus, FoAce2 appears to be essential for Foc virulence, cell wall homeostasis, conidiation, and vegetative growth.
Collapse
Affiliation(s)
- Zhaojian Ding
- Department of Biological Sciences, Qiongtai Normal University, Haikou, 571127, China; Tropical Biodiversity and Bioresource Utilization Laboratory, Qiongtai Normal University, Haikou, 571127, China.
| | - Huijiao Lin
- Department of Biological Sciences, Qiongtai Normal University, Haikou, 571127, China
| | - Liguang Liu
- Department of Biological Sciences, Qiongtai Normal University, Haikou, 571127, China
| | - Tiantian Lu
- Department of Biological Sciences, Qiongtai Normal University, Haikou, 571127, China
| | - Yifeng Xu
- Department of Biological Sciences, Qiongtai Normal University, Haikou, 571127, China
| | - Jiayi Peng
- Department of Biological Sciences, Qiongtai Normal University, Haikou, 571127, China
| | - Yujie Ren
- Department of Biological Sciences, Qiongtai Normal University, Haikou, 571127, China
| | - Jun Peng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Tianwei Xu
- Department of Biological Sciences, Qiongtai Normal University, Haikou, 571127, China.
| | - Xin Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
2
|
Forward and reverse genetic dissection of morphogenesis identifies filament-competent Candida auris strains. Nat Commun 2021; 12:7197. [PMID: 34893621 PMCID: PMC8664941 DOI: 10.1038/s41467-021-27545-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022] Open
Abstract
Candida auris is an emerging healthcare-associated pathogen of global concern. Recent reports have identified C. auris isolates that grow in cellular aggregates or filaments, often without a clear genetic explanation. To investigate the regulation of C. auris morphogenesis, we applied an Agrobacterium-mediated transformation system to all four C. auris clades. We identified aggregating mutants associated with disruption of chitin regulation, while disruption of ELM1 produced a polarized, filamentous growth morphology. We developed a transiently expressed Cas9 and sgRNA system for C. auris that significantly increased targeted transformation efficiency across the four C. auris clades. Using this system, we confirmed the roles of C. auris morphogenesis regulators. Morphogenic mutants showed dysregulated chitinase expression, attenuated virulence, and altered antifungal susceptibility. Our findings provide insights into the genetic regulation of aggregating and filamentous morphogenesis in C. auris. Furthermore, the genetic tools described here will allow for efficient manipulation of the C. auris genome. Some isolates of the emerging fungal pathogen Candida auris can form cellular aggregates or filaments. Here, Santana and O’Meara use Agrobacterium-mediated transformation and a CRISPR-Cas9 system to identify several genes that regulate C. auris morphogenesis.
Collapse
|
3
|
The Ndr/LATS Kinase Cbk1 Regulates a Specific Subset of Ace2 Functions and Suppresses the Hypha-to-Yeast Transition in Candida albicans. mBio 2020; 11:mBio.01900-20. [PMID: 32817109 PMCID: PMC7439482 DOI: 10.1128/mbio.01900-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The regulation of Ace2 and morphogenesis (RAM) pathway is a key regulatory network that plays a role in many aspects of C. albicans pathobiology. In addition to characterizing the transcriptional effects of this pathway, we discovered that Cbk1 and Ace2, a key RAM pathway regulator-effector pair, mediate a specific set of the overall functions of the RAM pathway. We have also discovered a new function for the Cbk1-Ace2 axis: suppression of the hypha-to-yeast transition. Very few regulators of this transition have been described, and our data indicate that maintenance of hyphal morphogenesis requires suppression of yeast phase growth by Cbk1-regulated Ace2. The regulation of Ace2 and morphogenesis (RAM) pathway is an important regulatory network in the human fungal pathogen Candida albicans. The RAM pathway’s two most well-studied components, the NDR/Lats kinase Cbk1 and its putative substrate, the transcription factor Ace2, have a wide range of phenotypes and functions. It is not clear, however, which of these functions are specifically due to the phosphorylation of Ace2 by Cbk1. To address this question, we first compared the transcriptional profiles of CBK1 and ACE2 deletion mutants. This analysis indicates that, of the large number of genes whose expression is affected by deletion of CBK1 and ACE2, only 5.5% of those genes are concordantly regulated. Our data also suggest that Ace2 directly or indirectly represses a large set of genes during hyphal morphogenesis. Second, we generated strains containing ACE2 alleles with alanine mutations at the Cbk1 phosphorylation sites. Phenotypic and transcriptional analysis of these ace2 mutants indicates that, as in Saccharomyces cerevisiae, Cbk1 regulation is important for daughter cell localization of Ace2 and cell separation during yeast-phase growth. In contrast, Cbk1 phosphorylation of Ace2 plays a minor role in C. albicans yeast-to-hypha transition. We have, however, discovered a new function for the Cbk1-Ace2 axis. Specifically, Cbk1 phosphorylation of Ace2 prevents the hypha-to-yeast transition. To our knowledge, this is one of the first regulators of the C. albicans hypha-to-yeast transition to be described. Finally, we present an integrated model for the role of Cbk1 in the regulation of hyphal morphogenesis in C. albicans.
Collapse
|
4
|
Sitterlé E, Maufrais C, Sertour N, Palayret M, d'Enfert C, Bougnoux ME. Within-Host Genomic Diversity of Candida albicans in Healthy Carriers. Sci Rep 2019; 9:2563. [PMID: 30796326 PMCID: PMC6385308 DOI: 10.1038/s41598-019-38768-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/09/2019] [Indexed: 12/14/2022] Open
Abstract
Genomic variations in Candida albicans, a major fungal pathogen of humans, have been observed upon exposure of this yeast to different stresses and experimental infections, possibly contributing to subsequent adaptation to these stress conditions. Yet, little is known about the extent of genomic diversity that is associated with commensalism, the predominant lifestyle of C. albicans in humans. In this study, we investigated the genetic diversity of C. albicans oral isolates recovered from healthy individuals, using multilocus sequencing typing (MLST) and whole genome sequencing. While MLST revealed occasional differences between isolates collected from a single individual, genome sequencing showed that they differed by numerous single nucleotide polymorphisms, mostly resulting from short-range loss-of-heterozygosity events. These differences were shown to have occurred upon human carriage of C. albicans rather than subsequent in vitro manipulation of the isolates. Thus, C. albicans intra-sample diversity appears common in healthy individuals, higher than that observed using MLST. We propose that diversifying lineages coexist in a single human individual, and this diversity can enable rapid adaptation under stress exposure. These results are crucial for the interpretation of longitudinal studies evaluating the evolution of the C. albicans genome.
Collapse
Affiliation(s)
- Emilie Sitterlé
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
- Unité de Parasitologie-Mycologie, Service de Microbiologie clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
| | - Corinne Maufrais
- Center for Bioinformatics, BioStatistics and Integrative Biology (C3BI), USR 3756 IP CNRS, Institut Pasteur, Paris, France
| | - Natacha Sertour
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France
| | | | - Christophe d'Enfert
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France
| | - Marie-Elisabeth Bougnoux
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France.
- Unité de Parasitologie-Mycologie, Service de Microbiologie clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France.
| |
Collapse
|
5
|
The Functional Specialization of Exomer as a Cargo Adaptor During the Evolution of Fungi. Genetics 2018; 208:1483-1498. [PMID: 29437703 DOI: 10.1534/genetics.118.300767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/31/2018] [Indexed: 11/18/2022] Open
Abstract
Yeast exomer is a heterotetrameric complex that is assembled at the trans-Golgi network, which is required for the delivery of a distinct set of proteins to the plasma membrane using ChAPs (Chs5-Arf1 binding proteins) Chs6 and Bch2 as dedicated cargo adaptors. However, our results show a significant functional divergence between them, suggesting an evolutionary specialization among the ChAPs. Moreover, the characterization of exomer mutants in several fungi indicates that exomer's function as a cargo adaptor is a late evolutionary acquisition associated with several gene duplications of the fungal ChAPs ancestor. Initial gene duplication led to the formation of the two ChAPs families, Chs6 and Bch1, in the Saccaromycotina group, which have remained functionally redundant based on the characterization of Kluyveromyces lactis mutants. The whole-genome duplication that occurred within the Saccharomyces genus facilitated a further divergence, which allowed Chs6/Bch2 and Bch1/Bud7 pairs to become specialized for specific cellular functions. We also show that the behavior of S. cerevisiae Chs3 as an exomer cargo is associated with the presence of specific cytosolic domains in this protein, which favor its interaction with exomer and AP-1 complexes. However, these domains are not conserved in the Chs3 proteins of other fungi, suggesting that they arose late in the evolution of fungi associated with the specialization of ChAPs as cargo adaptors.
Collapse
|
6
|
Modulation of the Fungal-Host Interaction by the Intra-Species Diversity of C. albicans. Pathogens 2018; 7:pathogens7010011. [PMID: 29342100 PMCID: PMC5874737 DOI: 10.3390/pathogens7010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/09/2023] Open
Abstract
The incidence of human infections caused by the opportunistic fungal pathogen Candida albicans is on the rise due to increasing numbers of immunosuppressed patients. The importance of the immune system in preventing overgrowth of the colonizing fungus and thereby limiting infection is well recognized and host protective mechanisms widely investigated. Only recently, it was recognized that the natural diversity in the fungal species could also influence the outcome of the interaction between the fungus and the host. C. albicans strain-specific differences are complex and their regulation at the genomic, genetic, and epigenetic level and by environmental factors is only partially understood. In this review, we provide an overview of the natural diversity of C. albicans and discuss how it impacts host-fungal interactions and thereby affects the balance between commensalism versus disease.
Collapse
|
7
|
Candida albicans Hyphae: From Growth Initiation to Invasion. J Fungi (Basel) 2018; 4:jof4010010. [PMID: 29371503 PMCID: PMC5872313 DOI: 10.3390/jof4010010] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 12/28/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022] Open
Abstract
Candida albicans is a commensal resident of the human gastrointestinal and genital tracts. Under conditions such as dysbiosis, host immune perturbances, or the presence of catheters/implanted medical devices, the fungus may cause debilitating mucosal or fatal systemic infections. The ability of C. albicans to grow as long filamentous hyphae is critical for its pathogenic potential as it allows the fungus to invade the underlying substratum. In this brief review, I will outline the current understanding regarding the mechanistic regulation of hyphal growth and invasion in C. albicans.
Collapse
|
8
|
Basso V, d'Enfert C, Znaidi S, Bachellier-Bassi S. From Genes to Networks: The Regulatory Circuitry Controlling Candida albicans Morphogenesis. Curr Top Microbiol Immunol 2018; 422:61-99. [PMID: 30368597 DOI: 10.1007/82_2018_144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Candida albicans is a commensal yeast of most healthy individuals, but also one of the most prevalent human fungal pathogens. During adaptation to the mammalian host, C. albicans encounters different niches where it is exposed to several types of stress, including oxidative, nitrosative (e.g., immune system), osmotic (e.g., kidney and oral cavity) stresses and pH variation (e.g., gastrointestinal (GI) tract and vagina). C. albicans has developed the capacity to respond to the environmental changes by modifying its morphology, which comprises the yeast-to-hypha transition, white-opaque switching, and chlamydospore formation. The yeast-to-hypha transition has been very well characterized and was shown to be modulated by several external stimuli that mimic the host environment. For instance, temperature above 37 ℃, serum, alkaline pH, and CO2 concentration are all reported to enhance filamentation. The transition is characterized by the activation of an intricate regulatory network of signaling pathways, involving many transcription factors. The regulatory pathways that control either the stress response or morphogenesis are required for full virulence and promote survival of C. albicans in the host. Many of these transcriptional circuitries have been characterized, highlighting the complexity and the interconnections between the different pathways. Here, we present the major signaling pathways and the main transcription factors involved in the yeast-to-hypha transition. Furthermore, we describe the role of heat shock transcription factors in the morphogenetic transition, providing an edifying example of the complex cross talk between pathways involved in morphogenesis and stress response.
Collapse
Affiliation(s)
- Virginia Basso
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 25 Rue Du Docteur Roux, 75015, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, 25 Rue Du Docteur Roux, Paris, France.,Department of Pathology and Laboratory Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 25 Rue Du Docteur Roux, 75015, Paris, France
| | - Sadri Znaidi
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 25 Rue Du Docteur Roux, 75015, Paris, France. .,Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, 13 Place Pasteur, 1002, Tunis-Belvédère, Tunisia.
| | - Sophie Bachellier-Bassi
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 25 Rue Du Docteur Roux, 75015, Paris, France.
| |
Collapse
|
9
|
Affiliation(s)
- Ilse D. Jacobsen
- Research Group Microbial Immunology, Hans Knöll Institute, Jena, Germany
- Friedrich Schiller University, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
- Friedrich Schiller University, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
10
|
van Wijlick L, Swidergall M, Brandt P, Ernst JF. Candida albicansresponds to glycostructure damage by Ace2-mediated feedback regulation of Cek1 signaling. Mol Microbiol 2016; 102:827-849. [DOI: 10.1111/mmi.13494] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Lasse van Wijlick
- Department Biologie; Molekulare Mykologie, Heinrich-Heine-Universität; 40225 Düsseldorf Germany
- Manchot Graduate School Molecules of Infection, Heinrich-Heine-Universität; 40225 Düsseldorf Germany
| | - Marc Swidergall
- Department Biologie; Molekulare Mykologie, Heinrich-Heine-Universität; 40225 Düsseldorf Germany
| | - Philipp Brandt
- Department Biologie; Molekulare Mykologie, Heinrich-Heine-Universität; 40225 Düsseldorf Germany
| | - Joachim F. Ernst
- Department Biologie; Molekulare Mykologie, Heinrich-Heine-Universität; 40225 Düsseldorf Germany
- Manchot Graduate School Molecules of Infection, Heinrich-Heine-Universität; 40225 Düsseldorf Germany
| |
Collapse
|
11
|
Saputo S, Norman KL, Murante T, Horton BN, Diaz JDLC, DiDone L, Colquhoun J, Schroeder JW, Simmons LA, Kumar A, Krysan DJ. Complex Haploinsufficiency-Based Genetic Analysis of the NDR/Lats Kinase Cbk1 Provides Insight into Its Multiple Functions in Candida albicans. Genetics 2016; 203:1217-33. [PMID: 27206715 PMCID: PMC4937472 DOI: 10.1534/genetics.116.188029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/11/2016] [Indexed: 01/11/2023] Open
Abstract
Although the analysis of genetic interactions and networks is a powerful approach to understanding biology, it has not been applied widely to the pathogenic yeast Candida albicans Here, we describe the use of both screening and directed genetic interaction studies based on complex haploinsufficiency to probe the function of the R: egulation of A: ce2 and M: orphogenesis (RAM) pathway in C. albicans A library of 5200 Tn7-mutagenized derivatives of a parental strain heterozygous at CBK1, the key kinase in the RAM pathway, was screened for alterations in serum-induced filamentation. Following confirmation of phenotypes and identification of insertion sites by sequencing, a set of 36 unique double heterozygous strains showing complex haploinsufficiency was obtained. In addition to a large set of genes regulated by the RAM transcription factor Ace2, genes related to cell wall biosynthesis, cell cycle, polarity, oxidative stress, and nitrogen utilization were identified. Follow-up analysis led to the first demonstration that the RAM pathway is required for oxidative stress tolerance in a manner related to the two-component-regulated kinase Chk1 and revealed a potential direct connection between the RAM pathway and the essential Mps1 spindle pole-related kinase. In addition, genetic interactions with CDC42-related genes MSB1, a putative scaffold protein, and RGD3, a putative Rho GTPase-activating protein (GAP) were identified. We also provide evidence that Rgd3 is a GAP for Cdc42 and show that its localization and phosphorylation are dependent on Cbk1.
Collapse
Affiliation(s)
- Sarah Saputo
- Department of Microbiology/Immunology University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Kaitlyn L Norman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Thomas Murante
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Brooke N Horton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Jacinto De La Cruz Diaz
- Department of Microbiology/Immunology University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Louis DiDone
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Jennifer Colquhoun
- Department of Microbiology/Immunology University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Jeremy W Schroeder
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Damian J Krysan
- Department of Microbiology/Immunology University of Rochester School of Medicine and Dentistry, Rochester, New York 14642 Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
12
|
Wang Y. Hgc1-Cdc28-how much does a single protein kinase do in the regulation of hyphal development in Candida albicans? J Microbiol 2016; 54:170-7. [PMID: 26920877 DOI: 10.1007/s12275-016-5550-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 01/06/2023]
Abstract
The fungal human pathogen Candida albicans can cause invasive infection with high mortality rates. A key virulence factor is its ability to switch between three morphologies: yeast, pseudohyphae and hyphae. In contrast to the ovalshaped unicellular yeast cells, hyphae are highly elongated, tube-like, and multicellular. A long-standing question is what coordinates all the cellular machines to construct cells with distinct shapes. Hyphal-specific genes (HSGs) are thought to hold the answer. Among the numerous HSGs found, only UME6 and HGC1 are required for hyphal development. UME6 encodes a transcription factor that regulates many HSGs including HGC1. HGC1 encodes a G1 cyclin which partners with the Cdc28 cyclin-dependent kinase. Hgc1-Cdc28 simultaneously phosphorylates and regulates multiple substrates, thus controlling multiple cellular apparatuses for morphogenesis. This review is focused on major progresses made in the past decade on Hgc1's roles and regulation in C. albicans hyphal development and other traits important for infection.
Collapse
Affiliation(s)
- Yue Wang
- Candida albicans Biology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|