1
|
Bespalova AV, Kulikova DA, Zelentsova ES, Rezvykh AP, Guseva IO, Dorador AP, Evgen’ev MB, Funikov SY. Paramutation-Like Behavior of Genic piRNA-Producing Loci in Drosophila virilis. Int J Mol Sci 2025; 26:4243. [PMID: 40362480 PMCID: PMC12072073 DOI: 10.3390/ijms26094243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Piwi-interacting RNAs (piRNAs) play a crucial role in silencing transposable elements (TEs) in the germ cells of Metazoa by acting as sequence-specific guides. Originating from distinct genomic loci, called piRNA clusters, piRNA can trigger an epigenetic conversion of TE insertions into piRNA clusters by means of a paramutation-like process. However, the variability in piRNA clusters' capacity to induce such conversions remains poorly understood. Here, we investigated two Drosophila virilis strains with differing capacities to produce piRNAs from the subtelomeric RhoGEF3 and Adar gene loci. We found that active piRNA generation correlates with high levels of the heterochromatic mark histone 3 lysine 9 trimethylation (H3K9me3) over genomic regions that give rise to piRNAs. Importantly, the maternal transmission of piRNAs drives their production in the progeny, even from homologous loci previously inactive in piRNA biogenesis. The RhoGEF3 locus, once epigenetically converted, maintained enhanced piRNA production in subsequent generations lacking the original allele carrying the active piRNA cluster. In contrast, piRNA expression from the converted Adar locus was lost in offspring lacking the inducer allele. The present findings suggest that the paramutation-like behavior of piRNA clusters may be influenced not only by piRNAs but also by structural features and the chromatin environment in the proximity to telomeres, providing new insights into the epigenetic regulation of the Drosophila genome.
Collapse
Affiliation(s)
- Alina V. Bespalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dina A. Kulikova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elena S. Zelentsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander P. Rezvykh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Iuliia O. Guseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Ana P. Dorador
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mikhail B. Evgen’ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sergei Y. Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
2
|
Kulikova DA, Bespalova AV, Zelentsova ES, Evgen'ev MB, Funikov SY. Epigenetic Phenomenon of Paramutation in Plants and Animals. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1429-1450. [PMID: 39245454 DOI: 10.1134/s0006297924080054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 09/10/2024]
Abstract
The phenomenon of paramutation describes the interaction between two alleles, in which one allele initiates inherited epigenetic conversion of another allele without affecting the DNA sequence. Epigenetic transformations due to paramutation are accompanied by the change in DNA and/or histone methylation patterns, affecting gene expression. Studies of paramutation in plants and animals have identified small non-coding RNAs as the main effector molecules required for the initiation of epigenetic changes in gene loci. Due to the fact that small non-coding RNAs can be transmitted across generations, the paramutation effect can be inherited and maintained in a population. In this review, we will systematically analyze examples of paramutation in different living systems described so far, highlighting common and different molecular and genetic aspects of paramutation between organisms, and considering the role of this phenomenon in evolution.
Collapse
Affiliation(s)
- Dina A Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alina V Bespalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Elena S Zelentsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Mikhail B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Sergei Yu Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
3
|
Kumar D, Budachetri K, Rikihisa Y, Karim S. Analysis of Amblyomma americanum microRNAs in response to Ehrlichia chaffeensis infection and their potential role in vectorial capacity. Front Cell Infect Microbiol 2024; 14:1427562. [PMID: 39086604 PMCID: PMC11288922 DOI: 10.3389/fcimb.2024.1427562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
Background MicroRNAs (miRNAs) represent a subset of small noncoding RNAs and carry tremendous potential for regulating gene expression at the post-transcriptional level. They play pivotal roles in distinct cellular mechanisms including inhibition of bacterial, parasitic, and viral infections via immune response pathways. Intriguingly, pathogens have developed strategies to manipulate the host's miRNA profile, fostering environments conducive to successful infection. Therefore, changes in an arthropod host's miRNA profile in response to pathogen invasion could be critical in understanding host-pathogen dynamics. Additionally, this area of study could provide insights into discovering new targets for disease control and prevention. The main objective of the present study is to investigate the functional role of differentially expressed miRNAs upon Ehrlichia chaffeensis, a tick-borne pathogen, infection in tick vector, Amblyomma americanum. Methods Small RNA libraries from uninfected and E. chaffeensis-infected Am. americanum midgut and salivary gland tissues were prepared using the Illumina Truseq kit. Small RNA sequencing data was analyzed using miRDeep2 and sRNAtoolbox to identify novel and known miRNAs. The differentially expressed miRNAs were validated using a quantitative PCR assay. Furthermore, a miRNA inhibitor approach was used to determine the functional role of selected miRNA candidates. Results The sequencing of small RNA libraries generated >147 million raw reads in all four libraries and identified a total of >250 miRNAs across the four libraries. We identified 23 and 14 differentially expressed miRNAs in salivary glands, and midgut tissues infected with E. chaffeensis, respectively. Three differentially expressed miRNAs (miR-87, miR-750, and miR-275) were further characterized to determine their roles in pathogen infection. Inhibition of target miRNAs significantly decreased the E. chaffeensis load in tick tissues, which warrants more in-depth mechanistic studies. Conclusions The current study identified known and novel miRNAs and suggests that interfering with these miRNAs may impact the vectorial capacity of ticks to harbor Ehrlichia. This study identified several new miRNAs for future analysis of their functions in tick biology and tick-pathogen interaction studies.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Khemraj Budachetri
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Yasuko Rikihisa
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
4
|
Kumar D, Budachetri K, Rikihisa Y, Karim S. Analysis of Amblyomma americanum microRNAs in response to Ehrlichia chaffeensis infection and their potential role in vectorial capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592465. [PMID: 38765993 PMCID: PMC11100627 DOI: 10.1101/2024.05.03.592465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background MicroRNAs (miRNAs) represent a subset of small noncoding RNAs and carry tremendous potential for regulating gene expression at the post-transcriptional level. They play pivotal roles in distinct cellular mechanisms including inhibition of bacterial, parasitic, and viral infections via immune response pathways. Intriguingly, pathogens have developed strategies to manipulate the host's miRNA profile, fostering environments conducive to successful infection. Therefore, changes in an arthropod host's miRNA profile in response to pathogen invasion could be critical in understanding host-pathogen dynamics. Additionally, this area of study could provide insights into discovering new targets for disease control and prevention. The main objective of the present study is to investigate the functional role of differentially expressed miRNAs upon Ehrlichia chaffeensis, a tick-borne pathogen, infection in tick vector, Amblyomma americanum. Methods Small RNA libraries from uninfected and E. chaffeensis-infected Am. americanum midgut and salivary gland tissues were prepared using the Illumina Truseq kit. Small RNA sequencing data was analyzed using miRDeep2 and sRNAtoolbox to identify novel and known miRNAs. The differentially expressed miRNAs were validated using a quantitative PCR assay. Furthermore, a miRNA inhibitor approach was used to determine the functional role of selected miRNA candidates. Results The sequencing of small RNA libraries generated >147 million raw reads in all four libraries and identified a total of >250 miRNAs across the four libraries. We identified 23 and 14 differentially expressed miRNAs in salivary glands, and midgut tissues infected with E. chaffeensis, respectively. Three differentially expressed miRNAs (miR-87, miR-750, and miR-275) were further characterized to determine their roles in pathogen infection. Inhibition of target miRNAs significantly decreased the E. chaffeensis load in tick tissues, which warrants more in-depth mechanistic studies. Conclusions The current study identified known and novel miRNAs and suggests that interfering with these miRNAs may impact the vectorial capacity of ticks to harbor Ehrlichia. This study identified several new miRNAs for future analysis of their functions in tick biology and tick-pathogen interaction studies.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Khemraj Budachetri
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Yasuko Rikihisa
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
5
|
Huang Y, Lee YCG. Blessing or curse: how the epigenetic resolution of host-transposable element conflicts shapes their evolutionary dynamics. Proc Biol Sci 2024; 291:20232775. [PMID: 38593848 PMCID: PMC11003778 DOI: 10.1098/rspb.2023.2775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/01/2024] [Indexed: 04/11/2024] Open
Abstract
Transposable elements (TEs) are selfish genetic elements whose antagonistic interactions with hosts represent a common genetic conflict in eukaryotes. To resolve this conflict, hosts have widely adopted epigenetic silencing that deposits repressive marks at TEs. However, this mechanism is imperfect and fails to fully halt TE replication. Furthermore, TE epigenetic silencing can inadvertently spread repressive marks to adjacent functional sequences, a phenomenon considered a 'curse' of this conflict resolution. Here, we used forward simulations to explore how TE epigenetic silencing and its harmful side effects shape the evolutionary dynamics of TEs and their hosts. Our findings reveal that epigenetic silencing allows TEs and their hosts to stably coexist under a wide range of conditions, because the underlying molecular mechanisms give rise to copy-number dependency of the strength of TE silencing. Interestingly, contrary to intuitive expectations that TE epigenetic silencing should evolve to be as strong as possible, we found a selective benefit for modifier alleles that weaken TE silencing under biologically feasible conditions. These results reveal that the dual nature of TE epigenetic silencing, with both positive and negative effects, complicates its evolutionary trajectory and makes it challenging to determine whether TE epigenetic silencing is a 'blessing' or a 'curse'.
Collapse
Affiliation(s)
- Yuheng Huang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - Yuh Chwen G. Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| |
Collapse
|
6
|
Miller DE, Dorador AP, Van Vaerenberghe K, Li A, Grantham EK, Cerbin S, Cummings C, Barragan M, Egidy RR, Scott AR, Hall KE, Perera A, Gilliland WD, Hawley RS, Blumenstiel JP. Off-target piRNA gene silencing in Drosophila melanogaster rescued by a transposable element insertion. PLoS Genet 2023; 19:e1010598. [PMID: 36809339 PMCID: PMC9983838 DOI: 10.1371/journal.pgen.1010598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 03/03/2023] [Accepted: 01/04/2023] [Indexed: 02/23/2023] Open
Abstract
Transposable elements (TE) are selfish genetic elements that can cause harmful mutations. In Drosophila, it has been estimated that half of all spontaneous visible marker phenotypes are mutations caused by TE insertions. Several factors likely limit the accumulation of exponentially amplifying TEs within genomes. First, synergistic interactions between TEs that amplify their harm with increasing copy number are proposed to limit TE copy number. However, the nature of this synergy is poorly understood. Second, because of the harm posed by TEs, eukaryotes have evolved systems of small RNA-based genome defense to limit transposition. However, as in all immune systems, there is a cost of autoimmunity and small RNA-based systems that silence TEs can inadvertently silence genes flanking TE insertions. In a screen for essential meiotic genes in Drosophila melanogaster, a truncated Doc retrotransposon within a neighboring gene was found to trigger the germline silencing of ald, the Drosophila Mps1 homolog, a gene essential for proper chromosome segregation in meiosis. A subsequent screen for suppressors of this silencing identified a new insertion of a Hobo DNA transposon in the same neighboring gene. Here we describe how the original Doc insertion triggers flanking piRNA biogenesis and local gene silencing. We show that this local gene silencing occurs in cis and is dependent on deadlock, a component of the Rhino-Deadlock-Cutoff (RDC) complex, to trigger dual-strand piRNA biogenesis at TE insertions. We further show how the additional Hobo insertion leads to de-silencing by reducing flanking piRNA biogenesis triggered by the original Doc insertion. These results support a model of TE-mediated gene silencing by piRNA biogenesis in cis that depends on local determinants of transcription. This may explain complex patterns of off-target gene silencing triggered by TEs within populations and in the laboratory. It also provides a mechanism of sign epistasis among TE insertions, illuminates the complex nature of their interactions and supports a model in which off-target gene silencing shapes the evolution of the RDC complex.
Collapse
Affiliation(s)
- Danny E. Miller
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Ana P. Dorador
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Kelley Van Vaerenberghe
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Angela Li
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Emily K. Grantham
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Stefan Cerbin
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Celeste Cummings
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Marilyn Barragan
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Rhonda R. Egidy
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Allison R. Scott
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kate E. Hall
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Anoja Perera
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - William D. Gilliland
- Department of Biological Sciences, DePaul University, Chicago, Illinois, United States of America
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Justin P. Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
7
|
Dorador AP, Dalikova M, Cerbin S, Stillman CM, Zych MG, Hawley RS, Miller DE, Ray DA, Funikov SY, Evgen’ev MB, Blumenstiel JP. Paramutation-like Epigenetic Conversion by piRNA at the Telomere of Drosophila virilis. BIOLOGY 2022; 11:biology11101480. [PMID: 36290385 PMCID: PMC9598792 DOI: 10.3390/biology11101480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022]
Abstract
First discovered in maize, paramutation is a phenomenon in which one allele can trigger an epigenetic conversion of an alternate allele. This conversion causes a genetically heterozygous individual to transmit alleles that are functionally the same, in apparent violation of Mendelian segregation. Studies over the past several decades have revealed a strong connection between mechanisms of genome defense against transposable elements by small RNA and the phenomenon of paramutation. For example, a system of paramutation in Drosophila melanogaster has been shown to be mediated by piRNAs, whose primary function is to silence transposable elements in the germline. In this paper, we characterize a second system of piRNA-mediated paramutation-like behavior at the telomere of Drosophila virilis. In Drosophila, telomeres are maintained by arrays of retrotransposons that are regulated by piRNAs. As a result, the telomere and sub-telomeric regions of the chromosome have unique regulatory and chromatin properties. Previous studies have shown that maternally deposited piRNAs derived from a sub-telomeric piRNA cluster can silence the sub-telomeric center divider gene of Drosophila virilis in trans. In this paper, we show that this silencing can also be maintained in the absence of the original silencing allele in a subsequent generation. The precise mechanism of this paramutation-like behavior may be explained by either the production of retrotransposon piRNAs that differ across strains or structural differences in the telomere. Altogether, these results show that the capacity for piRNAs to mediate paramutation in trans may depend on the local chromatin environment and proximity to the uniquely structured telomere regulated by piRNAs. This system promises to provide significant insights into the mechanisms of paramutation.
Collapse
Affiliation(s)
- Ana P. Dorador
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - Martina Dalikova
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - Stefan Cerbin
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - Chris M. Stillman
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - Molly G. Zych
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Danny E. Miller
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - David A. Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Sergei Y. Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Michael B. Evgen’ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Justin P. Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
- Correspondence:
| |
Collapse
|
8
|
Castillo DM, Moyle LC. Hybrid incompatibility between Drosophila virilis and D. lummei is stronger in the presence of transposable elements. J Evol Biol 2022; 35:1319-1334. [PMID: 35988129 PMCID: PMC9805144 DOI: 10.1111/jeb.14079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 01/09/2023]
Abstract
Mismatches between parental genomes in selfish elements are frequently hypothesized to underlie hybrid dysfunction and drive speciation. However, because the genetic basis of most hybrid incompatibilities is unknown, testing the contribution of selfish elements to reproductive isolation is difficult. Here, we evaluated the role of transposable elements (TEs) in hybrid incompatibilities between Drosophila virilis and D. lummei by experimentally comparing hybrid incompatibility in a cross where active TEs are present in D. virilis (TE+) and absent in D. lummei, to a cross where these TEs are absent from both D. virilis (TE-) and D. lummei genotypes. Using genomic data, we confirmed copy number differences in TEs between the D. virilis (TE+) strain and both the D. virilis (TE-) strain and D. lummei. We observed F1 postzygotic reproductive isolation exclusively in the interspecific cross involving TE+ D. virilis but not in crosses involving TE- D. virilis. This mirrors intraspecies dysgenesis where atrophied testes only occur when TE+ D. virilis is the paternal parent. A series of backcross experiments, that accounted for alternative models of hybrid incompatibility, showed that both F1 hybrid incompatibility and intrastrain dysgenesis are consistent with the action of TEs rather than genic interactions. Thus, our data suggest that this TE mechanism manifests as two different incompatibility phenotypes. A further Y-autosome interaction contributes to additional, sex-specific, inviability in one direction of this cross-combination. These experiments demonstrate that TEs that cause intraspecies dysgenesis can increase reproductive isolation between closely related lineages, thereby adding to the processes that consolidate speciation.
Collapse
Affiliation(s)
- Dean M. Castillo
- Department of BiologyIndiana UniversityBloomingtonIndianaUSA,Institute for Agriculture and Natural ResourcesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Leonie C. Moyle
- Department of BiologyIndiana UniversityBloomingtonIndianaUSA
| |
Collapse
|
9
|
Hill T, Rosales-Stephens HL, Unckless RL. Rapid divergence of the male reproductive proteins in the Drosophila dunni group and implications for postmating incompatibilities between species. G3 (BETHESDA, MD.) 2021; 11:jkab050. [PMID: 33599779 PMCID: PMC8759818 DOI: 10.1093/g3journal/jkab050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/17/2021] [Indexed: 11/17/2022]
Abstract
Proteins involved in post-copulatory interactions between males and females are among the fastest evolving genes in many species, usually attributed to their involvement in reproductive conflict. As a result, these proteins are thought to often be involved in the formation of postmating-prezygotic incompatibilities between species. The Drosophila dunni subgroup consists of a dozen recently diverged species found across the Caribbean islands with varying levels of hybrid incompatibility. We performed experimental crosses between species in the dunni group and see some evidence of hybrid incompatibilities. We also find evidence of reduced survival following hybrid mating, likely due to postmating-prezygotic incompatibilities. We assessed rates of evolution between these species genomes and find evidence of rapid evolution and divergence of some reproductive proteins, specifically the seminal fluid proteins. This work suggests the rapid evolution of seminal fluid proteins may be associated with postmating-prezygotic isolation, which acts as a barrier for gene flow between even the most closely related species.
Collapse
Affiliation(s)
- Tom Hill
- The Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | | | - Robert L Unckless
- The Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
10
|
Rezvykh AP, Funikov SY, Protsenko LA, Kulikova DA, Zelentsova ES, Chuvakova LN, Blumenstiel JP, Evgen’ev MB. Evolutionary Dynamics of the Pericentromeric Heterochromatin in Drosophila virilis and Related Species. Genes (Basel) 2021; 12:175. [PMID: 33513919 PMCID: PMC7911463 DOI: 10.3390/genes12020175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/19/2022] Open
Abstract
Pericentromeric heterochromatin in Drosophila generally consists of repetitive DNA, forming the environment associated with gene silencing. Despite the expanding knowledge of the impact of transposable elements (TEs) on the host genome, little is known about the evolution of pericentromeric heterochromatin, its structural composition, and age. During the evolution of the Drosophilidae, hundreds of genes have become embedded within pericentromeric regions yet retained activity. We investigated a pericentromeric heterochromatin fragment found in D. virilis and related species, describing the evolution of genes in this region and the age of TE invasion. Regardless of the heterochromatic environment, the amino acid composition of the genes is under purifying selection. However, the selective pressure affects parts of genes in varying degrees, resulting in expansion of gene introns due to TEs invasion. According to the divergence of TEs, the pericentromeric heterochromatin of the species of virilis group began to form more than 20 million years ago by invasions of retroelements, miniature inverted repeat transposable elements (MITEs), and Helitrons. Importantly, invasions into the heterochromatin continue to occur by TEs that fall under the scope of piRNA silencing. Thus, the pericentromeric heterochromatin, in spite of its ability to induce silencing, has the means for being dynamic, incorporating the regions of active transcription.
Collapse
Affiliation(s)
- Alexander P. Rezvykh
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia; (A.P.R.); (S.Y.F.); (L.A.P.); (E.S.Z.); (L.N.C.)
- Moscow Institute of Physics and Technology, 117303 Dolgoprudny, Russia
| | - Sergei Yu. Funikov
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia; (A.P.R.); (S.Y.F.); (L.A.P.); (E.S.Z.); (L.N.C.)
| | - Lyudmila A. Protsenko
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia; (A.P.R.); (S.Y.F.); (L.A.P.); (E.S.Z.); (L.N.C.)
- Moscow Institute of Physics and Technology, 117303 Dolgoprudny, Russia
| | - Dina A. Kulikova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Elena S. Zelentsova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia; (A.P.R.); (S.Y.F.); (L.A.P.); (E.S.Z.); (L.N.C.)
| | - Lyubov N. Chuvakova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia; (A.P.R.); (S.Y.F.); (L.A.P.); (E.S.Z.); (L.N.C.)
| | - Justin P. Blumenstiel
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA;
| | - Michael B. Evgen’ev
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia; (A.P.R.); (S.Y.F.); (L.A.P.); (E.S.Z.); (L.N.C.)
| |
Collapse
|
11
|
Gamez S, Srivastav S, Akbari OS, Lau NC. Diverse Defenses: A Perspective Comparing Dipteran Piwi-piRNA Pathways. Cells 2020; 9:E2180. [PMID: 32992598 PMCID: PMC7601171 DOI: 10.3390/cells9102180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Animals face the dual threat of virus infections hijacking cellular function and transposons proliferating in germline genomes. For insects, the deeply conserved RNA interference (RNAi) pathways and other chromatin regulators provide an important line of defense against both viruses and transposons. For example, this innate immune system displays adaptiveness to new invasions by generating cognate small RNAs for targeting gene silencing measures against the viral and genomic intruders. However, within the Dipteran clade of insects, Drosophilid fruit flies and Culicids mosquitoes have evolved several unique mechanistic aspects of their RNAi defenses to combat invading transposons and viruses, with the Piwi-piRNA arm of the RNAi pathways showing the greatest degree of novel evolution. Whereas central features of Piwi-piRNA pathways are conserved between Drosophilids and Culicids, multiple lineage-specific innovations have arisen that may reflect distinct genome composition differences and specific ecological and physiological features dividing these two branches of Dipterans. This perspective review focuses on the most recent findings illuminating the Piwi/piRNA pathway distinctions between fruit flies and mosquitoes, and raises open questions that need to be addressed in order to ameliorate human diseases caused by pathogenic viruses that mosquitoes transmit as vectors.
Collapse
Affiliation(s)
- Stephanie Gamez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA 92093, USA; (S.G.); (O.S.A.)
| | - Satyam Srivastav
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA;
| | - Omar S. Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA 92093, USA; (S.G.); (O.S.A.)
| | - Nelson C. Lau
- Department of Biochemistry and Genome Science Institute, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
12
|
Hénault M, Marsit S, Charron G, Landry CR. The effect of hybridization on transposable element accumulation in an undomesticated fungal species. eLife 2020; 9:e60474. [PMID: 32955438 PMCID: PMC7584455 DOI: 10.7554/elife.60474] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that can profoundly impact the evolution of genomes and species. A long-standing hypothesis suggests that hybridization could deregulate TEs and trigger their accumulation, although it received mixed support from studies mostly in plants and animals. Here, we tested this hypothesis in fungi using incipient species of the undomesticated yeast Saccharomyces paradoxus. Population genomic data revealed no signature of higher transposition in natural hybrids. As we could not rule out the elimination of past transposition increase signatures by natural selection, we performed a laboratory evolution experiment on a panel of artificial hybrids to measure TE accumulation in the near absence of selection. Changes in TE copy numbers were not predicted by the level of evolutionary divergence between the parents of a hybrid genotype. Rather, they were highly dependent on the individual hybrid genotypes, showing that strong genotype-specific deterministic factors govern TE accumulation in yeast hybrids.
Collapse
Affiliation(s)
- Mathieu Hénault
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Département de biochimie, microbiologie et bioinformatique, Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
| | - Souhir Marsit
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Département de biochimie, microbiologie et bioinformatique, Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
- Département de biologie, Université LavalQuébecCanada
| | - Guillaume Charron
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
- Département de biologie, Université LavalQuébecCanada
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Département de biochimie, microbiologie et bioinformatique, Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
- Département de biologie, Université LavalQuébecCanada
| |
Collapse
|
13
|
Kelleher ES, Barbash DA, Blumenstiel JP. Taming the Turmoil Within: New Insights on the Containment of Transposable Elements. Trends Genet 2020; 36:474-489. [PMID: 32473745 DOI: 10.1016/j.tig.2020.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/28/2022]
Abstract
Transposable elements (TEs) are mobile genetic parasites that can exponentially increase their genomic abundance through self-propagation. Classic theoretical papers highlighted the importance of two potentially escalating forces that oppose TE spread: regulated transposition and purifying selection. Here, we review new insights into mechanisms of TE regulation and purifying selection, which reveal the remarkable foresight of these theoretical models. We further highlight emergent connections between transcriptional control enacted by small RNAs and the contribution of TE insertions to structural mutation and host-gene regulation. Finally, we call for increased comparative analysis of TE dynamics and fitness effects, as well as host control mechanisms, to reveal how interconnected forces shape the differential prevalence and distribution of TEs across the tree of life.
Collapse
|
14
|
Kofler R. piRNA Clusters Need a Minimum Size to Control Transposable Element Invasions. Genome Biol Evol 2020; 12:736-749. [PMID: 32219390 PMCID: PMC7259680 DOI: 10.1093/gbe/evaa064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
piRNA clusters are thought to repress transposable element (TE) activity in mammals and invertebrates. Here, we show that a simple population genetics model reveals a constraint on the size of piRNA clusters: The total size of the piRNA clusters of an organism must exceed 0.2% of a genome to repress TE invasions. Moreover, larger piRNA clusters accounting for up to 3% of the genome may be necessary when populations are small, transposition rates are high, and TE insertions are recessive. If piRNA clusters are too small, the load of deleterious TE insertions that accumulate during a TE invasion may drive populations extinct before an effective piRNA-based defense against the TE can be established. Our findings are solely based on three well-supported assumptions: 1) TEs multiply within genomes, 2) TEs are mostly deleterious, and 3) piRNA clusters act as transposon traps, where a single insertion in a cluster silences all TE copies in trans. Interestingly, the piRNA clusters of some species meet our observed minimum size requirements, whereas the clusters of other species do not. Species with small piRNA clusters, such as humans and mice, may experience severe fitness reductions during invasions of novel TEs, which is possibly even threatening the persistence of some populations. This work also raises the important question of how piRNA clusters evolve. We propose that the size of piRNA clusters may be at an equilibrium between evolutionary forces that act to expand and contract piRNA clusters.
Collapse
Affiliation(s)
- Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien, Austria
| |
Collapse
|
15
|
Ellison CE, Cao W. Nanopore sequencing and Hi-C scaffolding provide insight into the evolutionary dynamics of transposable elements and piRNA production in wild strains of Drosophila melanogaster. Nucleic Acids Res 2020; 48:290-303. [PMID: 31754714 PMCID: PMC6943127 DOI: 10.1093/nar/gkz1080] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 01/29/2023] Open
Abstract
Illumina sequencing has allowed for population-level surveys of transposable element (TE) polymorphism via split alignment approaches, which has provided important insight into the population dynamics of TEs. However, such approaches are not able to identify insertions of uncharacterized TEs, nor can they assemble the full sequence of inserted elements. Here, we use nanopore sequencing and Hi-C scaffolding to produce de novo genome assemblies for two wild strains of Drosophila melanogaster from the Drosophila Genetic Reference Panel (DGRP). Ovarian piRNA populations and Illumina split-read TE insertion profiles have been previously produced for both strains. We find that nanopore sequencing with Hi-C scaffolding produces highly contiguous, chromosome-length scaffolds, and we identify hundreds of TE insertions that were missed by Illumina-based methods, including a novel micropia-like element that has recently invaded the DGRP population. We also find hundreds of piRNA-producing loci that are specific to each strain. Some of these loci are created by strain-specific TE insertions, while others appear to be epigenetically controlled. Our results suggest that Illumina approaches reveal only a portion of the repetitive sequence landscape of eukaryotic genomes and that population-level resequencing using long reads is likely to provide novel insight into the evolutionary dynamics of repetitive elements.
Collapse
Affiliation(s)
- Christopher E Ellison
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Weihuan Cao
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
16
|
Hemmer LW, Dias GB, Smith B, Van Vaerenberghe K, Howard A, Bergman CM, Blumenstiel JP. Hybrid dysgenesis in Drosophila virilis results in clusters of mitotic recombination and loss-of-heterozygosity but leaves meiotic recombination unaltered. Mob DNA 2020; 11:10. [PMID: 32082426 PMCID: PMC7023781 DOI: 10.1186/s13100-020-0205-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Transposable elements (TEs) are endogenous mutagens and their harmful effects are especially evident in syndromes of hybrid dysgenesis. In Drosophila virilis, hybrid dysgenesis is a syndrome of incomplete gonadal atrophy that occurs when males with multiple active TE families fertilize females that lack active copies of the same families. This has been demonstrated to cause the transposition of paternally inherited TE families, with gonadal atrophy driven by the death of germline stem cells. Because there are abundant, active TEs in the male inducer genome, that are not present in the female reactive genome, the D. virilis syndrome serves as an excellent model for understanding the effects of hybridization between individuals with asymmetric TE profiles. RESULTS Using the D. virilis syndrome of hybrid dysgenesis as a model, we sought to determine how the landscape of germline recombination is affected by parental TE asymmetry. Using a genotyping-by-sequencing approach, we generated a high-resolution genetic map of D. virilis and show that recombination rate and TE density are negatively correlated in this species. We then contrast recombination events in the germline of dysgenic versus non-dysgenic F1 females to show that the landscape of meiotic recombination is hardly perturbed during hybrid dysgenesis. In contrast, hybrid dysgenesis in the female germline increases transmission of chromosomes with mitotic recombination. Using a de novo PacBio assembly of the D. virilis inducer genome we show that clusters of mitotic recombination events in dysgenic females are associated with genomic regions with transposons implicated in hybrid dysgenesis. CONCLUSIONS Overall, we conclude that increased mitotic recombination is likely the result of early TE activation in dysgenic progeny, but a stable landscape of meiotic recombination indicates that either transposition is ameliorated in the adult female germline or that regulation of meiotic recombination is robust to ongoing transposition. These results indicate that the effects of parental TE asymmetry on recombination are likely sensitive to the timing of transposition.
Collapse
Affiliation(s)
- Lucas W. Hemmer
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045 USA
- Present Address: Department of Biology, University of Rochester, Rochester, NY 14627 USA
| | - Guilherme B. Dias
- Department of Genetics and Institute of Bioinformatics, University of Georgia, Athens, GA 30602 USA
| | - Brittny Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 USA
| | - Kelley Van Vaerenberghe
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045 USA
| | - Ashley Howard
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045 USA
| | - Casey M. Bergman
- Department of Genetics and Institute of Bioinformatics, University of Georgia, Athens, GA 30602 USA
| | - Justin P. Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045 USA
| |
Collapse
|
17
|
Srivastav SP, Rahman R, Ma Q, Pierre J, Bandyopadhyay S, Lau NC. Har-P, a short P-element variant, weaponizes P-transposase to severely impair Drosophila development. eLife 2019; 8:49948. [PMID: 31845649 PMCID: PMC6917496 DOI: 10.7554/elife.49948] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/16/2019] [Indexed: 12/20/2022] Open
Abstract
Without transposon-silencing Piwi-interacting RNAs (piRNAs), transposition causes an ovarian atrophy syndrome in Drosophila called gonadal dysgenesis (GD). Harwich (Har) strains with P-elements cause severe GD in F1 daughters when Har fathers mate with mothers lacking P-element-piRNAs (i.e. ISO1 strain). To address the mystery of why Har induces severe GD, we bred hybrid Drosophila with Har genomic fragments into the ISO1 background to create HISR-D or HISR-N lines that still cause Dysgenesis or are Non-dysgenic, respectively. In these lines, we discovered a highly truncated P-element variant we named ‘Har-P’ as the most frequent de novo insertion. Although HISR-D lines still contain full-length P-elements, HISR-N lines lost functional P-transposase but retained Har-P’s that when crossed back to P-transposase restores GD induction. Finally, we uncovered P-element-piRNA-directed repression on Har-P’s transmitted paternally to suppress somatic transposition. The Drosophila short Har-P’s and full-length P-elements relationship parallels the MITEs/DNA-transposase in plants and SINEs/LINEs in mammals. DNA provides the instructions needed for life, a role that relies on it being a very stable and organized molecule. However, some sections of DNA are able to move from one place in the genome to another. When these “mobile genetic elements” move they may disrupt other genes and cause disease. For example, a mobile section of DNA known as the P-element causes a condition called gonadal dysgenesis in female fruit flies, leading to infertility. Only certain strains of fruit flies carry P-elements and the severity of gonadal dysgenesis in their daughters varies. For example, when male fruit flies of a strain known as Harwich (or Har for short) is crossed with female fruit flies that do not contain P-elements, all of their daughters develop severe gonadal dysgenesis and are infertile. However, if the cross is done the other way around, and female Har flies mate with males that do not contain P-elements, the daughters are fertile because the Har mothers provide their daughters with protective molecules that silence the P-elements. But it was a mystery as to why the P-elements from the Har fathers always caused such severe gonadal dysgenesis in all the daughters. Here, Srivastav et al. bred fruit flies to create offspring that had different pieces of Har DNA in a genetic background that was normally free from P-elements; they then analyzed the ‘hybrid’ offspring to identify which pieces of the Har genome caused gonadal dysgenesis in the daughter flies. These experiments showed that Har flies possess a very short variant of the P-element (named “Har-P”) that is more mobile than other variants. However, the Har-P variants still depended on an enzyme known as P-transposase encoded by the full-length P-elements to move around the genome. Further experiments showed that other strains of fruit flies that cause severe gonadal dysgenesis also had very short P-element variants that were almost identical to Har-P. These findings may explain why Har and some other strains of fruit flies drive severe gonadal dysgenesis. In the future, it may be possible to transfer P-transposase and Har-P into mosquitoes, ticks and other biting insects to make them infertile and help reduce the spread of certain diseases in humans.
Collapse
Affiliation(s)
- Satyam P Srivastav
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, United States
| | - Reazur Rahman
- Department of Biology, Brandeis University, Waltham, United States
| | - Qicheng Ma
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, United States
| | - Jasmine Pierre
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, United States
| | - Saptaparni Bandyopadhyay
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, United States
| | - Nelson C Lau
- Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, United States.,Department of Biology, Brandeis University, Waltham, United States.,Genome Science Institute, Boston University School of Medicine, Boston, United States
| |
Collapse
|
18
|
Yagound B, Smith NMA, Buchmann G, Oldroyd BP, Remnant EJ. Unique DNA Methylation Profiles Are Associated with cis-Variation in Honey Bees. Genome Biol Evol 2019; 11:2517-2530. [PMID: 31406991 PMCID: PMC6740151 DOI: 10.1093/gbe/evz177] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 02/07/2023] Open
Abstract
DNA methylation is an important epigenetic modification that mediates diverse processes such as cellular differentiation, phenotypic plasticity, and genomic imprinting. Mounting evidence suggests that local DNA sequence variation can be associated with particular DNA methylation states, indicating that the interplay between genetic and epigenetic factors may contribute synergistically to the phenotypic complexity of organisms. Social insects such as ants, bees, and wasps have extensive phenotypic plasticity manifested in their different castes, and this plasticity has been associated with variation in DNA methylation. Yet, the influence of genetic variation on DNA methylation state remains mostly unknown. Here we examine the importance of sequence-specific methylation at the genome-wide level, using whole-genome bisulfite sequencing of the semen of individual honey bee males. We find that individual males harbor unique DNA methylation patterns in their semen, and that genes that are more variable at the epigenetic level are also more likely to be variable at the genetic level. DNA sequence variation can affect DNA methylation by modifying CG sites directly, but can also be associated with local variation in cis that is not CG-site specific. We show that covariation in sequence polymorphism and DNA methylation state contributes to the individual-specificity of epigenetic marks in social insects, which likely promotes their retention across generations, and their capacity to influence evolutionary adaptation.
Collapse
Affiliation(s)
- Boris Yagound
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environmental Sciences, University of Sydney, Australia
| | - Nicholas M A Smith
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environmental Sciences, University of Sydney, Australia
| | - Gabriele Buchmann
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environmental Sciences, University of Sydney, Australia
| | - Benjamin P Oldroyd
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environmental Sciences, University of Sydney, Australia
| | - Emily J Remnant
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environmental Sciences, University of Sydney, Australia
| |
Collapse
|
19
|
Spermatozoal mRNAs expression implicated in embryonic development were influenced by dietary folate supplementation of breeder roosters by altering spermatozoal piRNA expression profiles. Theriogenology 2019; 138:102-110. [PMID: 31325740 DOI: 10.1016/j.theriogenology.2019.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/20/2019] [Accepted: 07/08/2019] [Indexed: 11/20/2022]
Abstract
Dietary folate intake, together with changes in its metabolism process, have effects on male reproduction, sperm epigenetic patterning and offspring outcome. Previous studies have proven that PIWI-interacting RNAs (piRNAs) play important roles in successful spermatogenesis and regulating genes expression of sperm and offspring embryo. Herein, we fed breeder roosters with five different levels (0, 0.25, 1.25, 2.50, and 5.00 mg/kg) of folate throughout life and found that paternal folate supplementation was beneficial to the growth and organ development of offspring broilers. Further spermatozoal mRNAs sequencing analyses implied that the dietary folate supplementation could regulate the spermatozoal mRNA abundance of genes related to the fetal development. Furthermore, global piRNAs analyses of breeder roosters' sperm revealed that differential concentration of dietary folate supplementation could change piRNAs profiles. Combined mRNAs sequencing and target gene prediction of differentially expressed gene-derived piRNAs, embryonic development and metabolism related pathways and biological processes, which were consisted to the regulatory roles of paternal folate supplementations, were significantly affected by the differentially expressed gene-derived piRNAs based on the GO and KEGG analyses. Overall, our results provided a novel insight into the role of piRNAs in response to folate intake, which will broaden the understanding about the relationship between folate and sperm epigenetic patterning of breeder roosters.
Collapse
|
20
|
Kofler R, Senti KA, Nolte V, Tobler R, Schlötterer C. Molecular dissection of a natural transposable element invasion. Genome Res 2018; 28:824-835. [PMID: 29712752 PMCID: PMC5991514 DOI: 10.1101/gr.228627.117] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
The first tracking of the dynamics of a natural invasion by a transposable element (TE) provides unprecedented details on the establishment of host defense mechanisms against TEs. We captured a D. simulans population at an early stage of a P-element invasion and studied the spread of the TE in replicated experimentally evolving populations kept under hot and cold conditions. We analyzed the factors controlling the invasion by NGS, RNA-FISH, and gonadal dysgenesis assays. Under hot conditions, the P-element spread rapidly for 20 generations, but no further spread was noted later on. This plateauing of the invasion was mediated by the rapid emergence of P-element-specific piRNAs. Under cold conditions, we observed a lower expression of the P-element and a slower emergence of the piRNA defense, resulting in a three times slower invasion that continued beyond 40 generations. We conclude that the environment is a major factor determining the evolution of TEs in their host.
Collapse
Affiliation(s)
- Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria
| | | | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria
| | - Ray Tobler
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Vienna, Austria
| | | |
Collapse
|
21
|
Wu S, Guo J, Zhu L, Yang J, Chen S, Yang X. Identification and characterisation of microRNAs and Piwi-interacting RNAs in cockerels' spermatozoa by Solexa sequencing. Br Poult Sci 2018; 59:371-380. [PMID: 29667432 DOI: 10.1080/00071668.2018.1464123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
1. There has been substantial research focused on the roles of microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs) derived from mammalian spermatozoa; however, comparatively little is known about the role of spermatozoa-derived miRNAs and piRNAs within breeding cockerels' spermatozoa. 2. A small RNA library of cockerels' spermatozoa was constructed using Illumina high-throughput sequencing technology. Unique sequences with lengths of 18-26 nucleotides were mapped to miRBase 21.0 and unique sequences with lengths of 25-37 nucleotides were mapped to a piRNA database. A total of 1311 miRNAs and 2448 potential piRNAs were identified. Based on stem-loop qRT-PCR, 8 miRNAs were validated. 3. Potential target genes of the abundant miRNAs were predicted, and further Kyoto Encyclopedia of Genes and Genomes database (KEGG) and Gene Ontology (GO) analyses were performed, which revealed that some candidate miRNAs were involved in the spermatogenesis process, spermatozoa epigenetic programming and further embryonic development. 5. GO and KEGG analyses based on mapping genes of expressed piRNAs were performed, which revealed that spermatozoal piRNAs could play important regulatory roles in embryonic development of offspring. 6. The search for endogenous spermatozoa miRNAs and piRNAs will contribute to a preliminary database for functional and molecular mechanistic studies in embryonic development and spermatozoa epigenetic programming.
Collapse
Affiliation(s)
- S Wu
- a College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi , China
| | - J Guo
- a College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi , China
| | - L Zhu
- a College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi , China
| | - J Yang
- a College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi , China
| | - S Chen
- a College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi , China
| | - X Yang
- a College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi , China
| |
Collapse
|
22
|
Serrato-Capuchina A, Matute DR. The Role of Transposable Elements in Speciation. Genes (Basel) 2018; 9:E254. [PMID: 29762547 PMCID: PMC5977194 DOI: 10.3390/genes9050254] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 01/20/2023] Open
Abstract
Understanding the phenotypic and molecular mechanisms that contribute to genetic diversity between and within species is fundamental in studying the evolution of species. In particular, identifying the interspecific differences that lead to the reduction or even cessation of gene flow between nascent species is one of the main goals of speciation genetic research. Transposable elements (TEs) are DNA sequences with the ability to move within genomes. TEs are ubiquitous throughout eukaryotic genomes and have been shown to alter regulatory networks, gene expression, and to rearrange genomes as a result of their transposition. However, no systematic effort has evaluated the role of TEs in speciation. We compiled the evidence for TEs as potential causes of reproductive isolation across a diversity of taxa. We find that TEs are often associated with hybrid defects that might preclude the fusion between species, but that the involvement of TEs in other barriers to gene flow different from postzygotic isolation is still relatively unknown. Finally, we list a series of guides and research avenues to disentangle the effects of TEs on the origin of new species.
Collapse
Affiliation(s)
- Antonio Serrato-Capuchina
- Biology Department, Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27514, USA.
| | - Daniel R Matute
- Biology Department, Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27514, USA.
| |
Collapse
|
23
|
Funikov SY, Kulikova DA, Krasnov GS, Rezvykh AP, Chuvakova LN, Shostak NG, Zelentsova ES, Blumenstiel JP, Evgen’ev MB. Spontaneous gain of susceptibility suggests a novel mechanism of resistance to hybrid dysgenesis in Drosophila virilis. PLoS Genet 2018; 14:e1007400. [PMID: 29813067 PMCID: PMC5993320 DOI: 10.1371/journal.pgen.1007400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/08/2018] [Accepted: 05/08/2018] [Indexed: 11/18/2022] Open
Abstract
Syndromes of hybrid dysgenesis (HD) have been critical for our understanding of the transgenerational maintenance of genome stability by piRNA. HD in D. virilis represents a special case of HD since it includes simultaneous mobilization of a set of TEs that belong to different classes. The standard explanation for HD is that eggs of the responder strains lack an abundant pool of piRNAs corresponding to the asymmetric TE families transmitted solely by sperm. However, there are several strains of D. virilis that lack asymmetric TEs, but exhibit a "neutral" cytotype that confers resistance to HD. To characterize the mechanism of resistance to HD, we performed a comparative analysis of the landscape of ovarian small RNAs in strains that vary in their resistance to HD mediated sterility. We demonstrate that resistance to HD cannot be solely explained by a maternal piRNA pool that matches the assemblage of TEs that likely cause HD. In support of this, we have witnessed a cytotype shift from neutral (N) to susceptible (M) in a strain devoid of all major TEs implicated in HD. This shift occurred in the absence of significant change in TE copy number and expression of piRNAs homologous to asymmetric TEs. Instead, this shift is associated with a change in the chromatin profile of repeat sequences unlikely to be causative of paternal induction. Overall, our data suggest that resistance to TE-mediated sterility during HD may be achieved by mechanisms that are distinct from the canonical syndromes of HD.
Collapse
Affiliation(s)
- Sergei Y. Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dina A. Kulikova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander P. Rezvykh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Lubov N. Chuvakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia G. Shostak
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena S. Zelentsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Justin P. Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States of America
| | - Michael B. Evgen’ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
24
|
Fu Q, Liu CJ, Zhai ZS, Zhang X, Qin T, Zhang HW. Single-Cell Non-coding RNA in Embryonic Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:19-32. [DOI: 10.1007/978-981-13-0502-3_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Chen CC, Qian X, Yoon BJ. Effective computational detection of piRNAs using n-gram models and support vector machine. BMC Bioinformatics 2017; 18:517. [PMID: 29297285 PMCID: PMC5751586 DOI: 10.1186/s12859-017-1896-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Piwi-interacting RNAs (piRNAs) are a new class of small non-coding RNAs that are known to be associated with RNA silencing. The piRNAs play an important role in protecting the genome from invasive transposons in the germline. Recent studies have shown that piRNAs are linked to the genome stability and a variety of human cancers. Due to their clinical importance, there is a pressing need for effective computational methods that can be used for computational identification of piRNAs. However, piRNAs lack conserved structural motifs and show relatively low sequence similarity across different species, which makes accurate computational prediction of piRNAs challenging. Results In this paper, we propose a novel method, piRNAdetect, for reliable computational prediction of piRNAs in genome sequences. In the proposed method, we first classify piRNA sequences in the training dataset that share similar sequence motifs and extract effective predictive features through the use of n-gram models (NGMs). The extracted NGM-based features are then used to construct a support vector machine that can be used for accurate prediction of novel piRNAs. Conclusions We demonstrate the effectiveness of the proposed piRNAdetect algorithm through extensive performance evaluation based on piRNAs in three different species – H. sapiens, R. norvegicus, and M. musculus – obtained from the piRBase and show that piRNAdetect outperforms the current state-of-the-art methods in terms of efficiency and accuracy.
Collapse
Affiliation(s)
- Chun-Chi Chen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Xiaoning Qian
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Byung-Jun Yoon
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
26
|
Wu S, Li Y, Chen S, Liang S, Ren X, Guo W, Sun Q, Yang X. Effect of dietary Astragalus Polysaccharide supplements on testicular piRNA expression profiles of breeding cocks. Int J Biol Macromol 2017; 103:957-964. [DOI: 10.1016/j.ijbiomac.2017.05.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/08/2017] [Accepted: 05/19/2017] [Indexed: 01/04/2023]
|
27
|
Abstract
Zebrafish have been extensively used for studying vertebrate development and modeling human diseases such as cancer. In the last two decades, they have also emerged as an important model for developmental toxicology research and, more recently, for studying the developmental origins of health and disease (DOHaD). It is widely recognized that epigenetic mechanisms mediate the persistent effects of exposure to chemicals during sensitive windows of development. There is considerable interest in understanding the epigenetic mechanisms associated with DOHaD using zebrafish as a model system. This review summarizes our current knowledge on the effects of environmental chemicals on DNA methylation, histone modifications and noncoding RNAs in the context of DOHaD, and suggest some key considerations in designing experiments for characterizating the mechanisms of action.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
28
|
Reexamining the P-Element Invasion of Drosophila melanogaster Through the Lens of piRNA Silencing. Genetics 2017; 203:1513-31. [PMID: 27516614 DOI: 10.1534/genetics.115.184119] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/25/2016] [Indexed: 11/18/2022] Open
Abstract
Transposable elements (TEs) are both important drivers of genome evolution and genetic parasites with potentially dramatic consequences for host fitness. The recent explosion of research on regulatory RNAs reveals that small RNA-mediated silencing is a conserved genetic mechanism through which hosts repress TE activity. The invasion of the Drosophila melanogaster genome by P elements, which happened on a historical timescale, represents an incomparable opportunity to understand how small RNA-mediated silencing of TEs evolves. Repression of P-element transposition emerged almost concurrently with its invasion. Recent studies suggest that this repression is implemented in part, and perhaps predominantly, by the Piwi-interacting RNA (piRNA) pathway, a small RNA-mediated silencing pathway that regulates TE activity in many metazoan germlines. In this review, I consider the P-element invasion from both a molecular and evolutionary genetic perspective, reconciling classic studies of P-element regulation with the new mechanistic framework provided by the piRNA pathway. I further explore the utility of the P-element invasion as an exemplar of the evolution of piRNA-mediated silencing. In light of the highly-conserved role for piRNAs in regulating TEs, discoveries from this system have taxonomically broad implications for the evolution of repression.
Collapse
|
29
|
Ryazansky S, Radion E, Mironova A, Akulenko N, Abramov Y, Morgunova V, Kordyukova MY, Olovnikov I, Kalmykova A. Natural variation of piRNA expression affects immunity to transposable elements. PLoS Genet 2017; 13:e1006731. [PMID: 28448516 PMCID: PMC5407775 DOI: 10.1371/journal.pgen.1006731] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/31/2017] [Indexed: 11/25/2022] Open
Abstract
In the Drosophila germline, transposable elements (TEs) are silenced by PIWI-interacting RNA (piRNA) that originate from distinct genomic regions termed piRNA clusters and are processed by PIWI-subfamily Argonaute proteins. Here, we explore the variation in the ability to restrain an alien TE in different Drosophila strains. The I-element is a retrotransposon involved in the phenomenon of I-R hybrid dysgenesis in Drosophila melanogaster. Genomes of R strains do not contain active I-elements, but harbour remnants of ancestral I-related elements. The permissivity to I-element activity of R females, called reactivity, varies considerably in natural R populations, indicating the existence of a strong natural polymorphism in defense systems targeting transposons. To reveal the nature of such polymorphisms, we compared ovarian small RNAs between R strains with low and high reactivity and show that reactivity negatively correlates with the ancestral I-element-specific piRNA content. Analysis of piRNA clusters containing remnants of I-elements shows increased expression of the piRNA precursors and enrichment by the Heterochromatin Protein 1 homolog, Rhino, in weak R strains, which is in accordance with stronger piRNA expression by these regions. To explore the nature of the differences in piRNA production, we focused on two R strains, weak and strong, and showed that the efficiency of maternal inheritance of piRNAs as well as the I-element copy number are very similar in both strains. At the same time, germline and somatic uni-strand piRNA clusters generate more piRNAs in strains with low reactivity, suggesting the relationship between the efficiency of primary piRNA production and variable response to TE invasions. The strength of adaptive genome defense is likely driven by naturally occurring polymorphisms in the rapidly evolving piRNA pathway proteins. We hypothesize that hyper-efficient piRNA production is contributing to elimination of a telomeric retrotransposon HeT-A, which we have observed in one particular transposon-resistant R strain. Transposon activity in the germline is suppressed by the PIWI-interacting RNA (piRNA) pathway. The resistance of natural Drosophila strains to transposon invasion varies considerably, but the nature of this variability is unknown. We discovered that natural variation in the efficiency of primary piRNA production in the germline causes dramatic differences in the susceptibility to expansion of a newly invaded transposon. A high level of piRNA production in the germline is achieved by increased expression of piRNA precursors. In one of the most transposon-resistant strains, increased content of primary piRNA is observed in both the germline and ovarian somatic cells. We suggest that polymorphisms in piRNA pathway factors are responsible for increased piRNA production. piRNA pathway proteins have been shown to be evolving rapidly under selective pressure. Our data are the first to describe a phenotype that might be caused by this kind of polymorphism. We also demonstrate a likely explanation as to why an overly active piRNA pathway can cause more harm than good in Drosophila: Highly efficient piRNA processing leads to elimination of domesticated telomeric retrotransposons essential for telomere elongation, an effect which has been observed in a natural strain that is extremely resistant to transposon invasion.
Collapse
Affiliation(s)
- Sergei Ryazansky
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Elizaveta Radion
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Anastasia Mironova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Natalia Akulenko
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Yuri Abramov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Valeriya Morgunova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Maria Y. Kordyukova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ivan Olovnikov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Alla Kalmykova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
- * E-mail:
| |
Collapse
|
30
|
Identification of misexpressed genetic elements in hybrids between Drosophila-related species. Sci Rep 2017; 7:40618. [PMID: 28091568 PMCID: PMC5238404 DOI: 10.1038/srep40618] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 12/09/2016] [Indexed: 12/30/2022] Open
Abstract
Crosses between close species can lead to genomic disorders, often considered to be the cause of hybrid incompatibility, one of the initial steps in the speciation process. How these incompatibilities are established and what are their causes remain unclear. To understand the initiation of hybrid incompatibility, we performed reciprocal crosses between two species of Drosophila (D. mojavensis and D. arizonae) that diverged less than 1 Mya. We performed a genome-wide transcriptomic analysis on ovaries from parental lines and on hybrids from reciprocal crosses. Using an innovative procedure of co-assembling transcriptomes, we show that parental lines differ in the expression of their genes and transposable elements. Reciprocal hybrids presented specific gene categories and few transposable element families misexpressed relative to the parental lines. Because TEs are mainly silenced by piwi-interacting RNAs (piRNAs), we hypothesize that in hybrids the deregulation of specific TE families is due to the absence of such small RNAs. Small RNA sequencing confirmed our hypothesis and we therefore propose that TEs can indeed be major players of genome differentiation and be implicated in the first steps of genomic incompatibilities through small RNA regulation.
Collapse
|
31
|
Galbraith DA, Yi SV, Grozinger CM. Evaluation of Possible Proximate Mechanisms Underlying the Kinship Theory of Intragenomic Conflict in Social Insects. Integr Comp Biol 2016; 56:1206-1214. [DOI: 10.1093/icb/icw111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
32
|
Blumenstiel JP, Erwin AA, Hemmer LW. What Drives Positive Selection in the Drosophila piRNA Machinery? The Genomic Autoimmunity Hypothesis. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:499-512. [PMID: 28018141 PMCID: PMC5168828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In animals, PIWI-interacting RNAs (piRNAs) play a crucial role in genome defense. Moreover, because piRNAs can be maternally transmitted, they contribute to the epigenetic profile of inheritance. Multiple studies, especially in Drosophila, have demonstrated that the machinery of piRNA biogenesis is often the target of positive selection. Because transposable elements (TEs) are a form of genetic parasite, positive selection in the piRNA machinery is often explained by analogy to the signatures of positive selection commonly observed in genes that play a role in host-parasite dynamics. However, the precise mechanisms that drive positive selection in the piRNA machinery are not known. In this review, we outline several mechanistic models that might explain pervasive positive selection in the piRNA machinery of Drosophila species. We propose that recurrent positive selection in the piRNA machinery can be partly explained by an ongoing tension between selection for sensitivity required by genome defense and selection for specificity to avoid the off-target effects of maladaptive genic silencing by piRNA.
Collapse
Affiliation(s)
| | - Alexandra A. Erwin
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS
| | - Lucas W. Hemmer
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS
| |
Collapse
|
33
|
Li R, Ren X, Bi Y, Ho VWS, Hsieh CL, Young A, Zhang Z, Lin T, Zhao Y, Miao L, Sarkies P, Zhao Z. Specific down-regulation of spermatogenesis genes targeted by 22G RNAs in hybrid sterile males associated with an X-Chromosome introgression. Genome Res 2016; 26:1219-32. [PMID: 27197225 PMCID: PMC5052035 DOI: 10.1101/gr.204479.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/16/2016] [Indexed: 12/23/2022]
Abstract
Hybrid incompatibility (HI) prevents gene flow between species, thus lying at the heart of speciation genetics. One of the most common HIs is male sterility. Two superficially contradictory observations exist for hybrid male sterility. First, an introgression on the X Chromosome is more likely to produce male sterility than on autosome (so-called large-X theory); second, spermatogenesis genes are enriched on the autosomes but depleted on the X Chromosome (demasculinization of X Chromosome). Analysis of gene expression in Drosophila hybrids suggests a genetic interaction between the X Chromosome and autosomes that is essential for male fertility. However, the prevalence of such an interaction and its underlying mechanism remain largely unknown. Here we examine the interaction in nematode species by contrasting the expression of both coding genes and transposable elements (TEs) between hybrid sterile males and its parental nematode males. We use two lines of hybrid sterile males, each carrying an independent introgression fragment from Caenorhabditis briggsae X Chromosome in an otherwise Caenorhabditis nigoni background, which demonstrate similar defects in spermatogenesis. We observe a similar pattern of down-regulated genes that are specific for spermatogenesis between the two hybrids. Importantly, the down-regulated genes caused by the X Chromosome introgressions show a significant enrichment on the autosomes, supporting an epistatic interaction between the X Chromosome and autosomes. We investigate the underlying mechanism of the interaction by measuring small RNAs and find that a subset of 22G RNAs specifically targeting the down-regulated spermatogenesis genes is significantly up-regulated in hybrids, suggesting that perturbation of small RNA-mediated regulation may contribute to the X-autosome interaction.
Collapse
Affiliation(s)
- Runsheng Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoliang Ren
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yu Bi
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Vincy Wing Sze Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | | | - Amanda Young
- Illumina Incorporated, San Diego, California 92122, USA
| | - Zhihong Zhang
- Illumina Incorporated, San Diego, California 92122, USA
| | - Tingting Lin
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanmei Zhao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Long Miao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Peter Sarkies
- MRC Clinical Sciences Centre, London W12 0NN, United Kingdom; Institute of Clinical Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
34
|
Chirn GW, Rahman R, Sytnikova YA, Matts JA, Zeng M, Gerlach D, Yu M, Berger B, Naramura M, Kile BT, Lau NC. Conserved piRNA Expression from a Distinct Set of piRNA Cluster Loci in Eutherian Mammals. PLoS Genet 2015; 11:e1005652. [PMID: 26588211 PMCID: PMC4654475 DOI: 10.1371/journal.pgen.1005652] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/15/2015] [Indexed: 12/18/2022] Open
Abstract
The Piwi pathway is deeply conserved amongst animals because one of its essential functions is to repress transposons. However, many Piwi-interacting RNAs (piRNAs) do not base-pair to transposons and remain mysterious in their targeting function. The sheer number of piRNA cluster (piC) loci in animal genomes and infrequent piRNA sequence conservation also present challenges in determining which piC loci are most important for development. To address this question, we determined the piRNA expression patterns of piC loci across a wide phylogenetic spectrum of animals, and reveal that most genic and intergenic piC loci evolve rapidly in their capacity to generate piRNAs, regardless of known transposon silencing function. Surprisingly, we also uncovered a distinct set of piC loci with piRNA expression conserved deeply in Eutherian mammals. We name these loci Eutherian-Conserved piRNA cluster (ECpiC) loci. Supporting the hypothesis that conservation of piRNA expression across ~100 million years of Eutherian evolution implies function, we determined that one ECpiC locus generates abundant piRNAs antisense to the STOX1 transcript, a gene clinically associated with preeclampsia. Furthermore, we confirmed reduced piRNAs in existing mouse mutations at ECpiC-Asb1 and -Cbl, which also display spermatogenic defects. The Asb1 mutant testes with strongly reduced Asb1 piRNAs also exhibit up-regulated gene expression profiles. These data indicate ECpiC loci may be specially adapted to support Eutherian reproduction. Animal genomes from flies to humans contain many hundreds of non-coding elements called Piwi-interacting RNAs (piRNAs) cluster loci (piC loci). Some of these elements generate piRNAs that direct the silencing of transposable elements, which are pervasive genetic parasites. However, we lack an understanding of the targeting function for the remaining bulk of piRNAs because their loci are not complementarity to transposable elements. In addition, the field does not know if all piC loci are quickly evolving, or if some piC loci might be deeply conserved in piRNA expression, an indication of its potentially functional importance. Our study confirms the highly rapid evolution in piRNA expression capacity for the majority of piC loci in flies and mammals, with many clade- and species-specific piC loci expression patterns. In spite of this, we also discover a cohort of piC loci that are deeply conserved in piRNA expression from the human to the dog, a significantly broad phylogenetic spectrum of eutherian mammals. However, this conservation in piRNA expression ends at non-eutherian mammals like marsupials and monotremes. Existing mutations in two of these Eutherian-Conserved piC (ECpiC) loci impair mouse reproduction and abrogate piRNA production. Therefore, we suggest these ECpiC loci are conserved for piRNA expression due to their important function in eutherian reproduction and stand out as prime candidates for future genetic studies.
Collapse
Affiliation(s)
- Gung-wei Chirn
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Reazur Rahman
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Yuliya A. Sytnikova
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Jessica A. Matts
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Mei Zeng
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Daniel Gerlach
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Michael Yu
- Mathematics Department and Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Bonnie Berger
- Mathematics Department and Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Mayumi Naramura
- Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Benjamin T. Kile
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Nelson C. Lau
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|