1
|
Bonsack F, Dasari R, Thomas A, Xu H, Sukumari-Ramesh S. TSPO deficiency exacerbates acute brain damage after intracerebral hemorrhage in male mice. J Cereb Blood Flow Metab 2025:271678X251340509. [PMID: 40370317 DOI: 10.1177/0271678x251340509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Intracerebral hemorrhage (ICH) is a stroke subtype with no effective treatment despite high morbidity and mortality rates. The delineation of the mechanisms of brain damage after ICH is critical to identifying novel molecular targets for therapeutic intervention. Apart from the augmented expression of 18 kDa translocator protein (TSPO) in microglia/macrophages post-ICH and its potential to track neuroinflammation, the precise function of TSPO after brain damage remains largely enigmatic. In the present study, we employed transgenic animal models, such as global and myeloid-specific conditional knockouts, to elucidate the functional role of TSPO in ICH-induced acute brain damage. Neurological deficits, neurodegeneration, and neuroinflammation were assessed at 3-days post-ICH in male and female mice. Male TSPO global knockout and conditional knockout exhibited enhanced neurobehavioral deficits with a concomitant increase in neurodegeneration and neuroinflammation compared to their respective controls. Interestingly, their female counterparts did not exhibit augmented brain damage compared to the respective controls. Mechanistically, studies employing RNA-Seq and subsequent functional validation demonstrate that TSPO could regulate brain cholesterol efflux, which could partly be responsible for enhanced brain damage in TSPO KO male mice after ICH, warranting further investigation.
Collapse
Affiliation(s)
- Frederick Bonsack
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1120, 15th Street, CB3515, Augusta, GA 30912, USA
| | - Rajaneekar Dasari
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1120, 15th Street, CB3515, Augusta, GA 30912, USA
| | - Ashwin Thomas
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1120, 15th Street, CB3515, Augusta, GA 30912, USA
| | - Hongyan Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1120, 15th Street, CB3515, Augusta, GA 30912, USA
| | - Sangeetha Sukumari-Ramesh
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1120, 15th Street, CB3515, Augusta, GA 30912, USA
| |
Collapse
|
2
|
Jullian E, Russi M, Turki E, Bouvelot M, Tixier L, Middendorp S, Martin E, Monnier V. Glial overexpression of Tspo extends lifespan and protects against frataxin deficiency in Drosophila. Biochimie 2024; 224:71-79. [PMID: 38750879 DOI: 10.1016/j.biochi.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024]
Abstract
The translocator protein TSPO is an evolutionary conserved mitochondrial protein overexpressed in various contexts of neurodegeneration. Friedreich Ataxia (FA) is a neurodegenerative disease due to GAA expansions in the FXN gene leading to decreased expression of frataxin, a mitochondrial protein involved in the biosynthesis of iron-sulfur clusters. We previously reported that Tspo was overexpressed in a Drosophila model of this disease generated by CRISPR/Cas9 insertion of approximately 200 GAA in the intron of fh, the fly frataxin gene. Here, we describe a new Drosophila model of FA with 42 GAA repeats, called fh-GAAs. The smaller expansion size allowed to obtain adults exhibiting hallmarks of the FA disease, including short lifespan, locomotory defects and hypersensitivity to oxidative stress. The reduced lifespan was fully rescued by ubiquitous expression of human FXN, confirming that both frataxins share conserved functions. We observed that Tspo was overexpressed in heads and decreased in intestines of these fh-GAAs flies. Then, we further overexpressed Tspo specifically in glial cells and observed improved survival. Finally, we investigated the effects of Tspo overexpression in healthy flies. Increased longevity was conferred by glial-specific overexpression, with opposite effects in neurons. Overall, this study highlights protective effects of glial TSPO in Drosophila both in a neurodegenerative and a healthy context.
Collapse
Affiliation(s)
- Estelle Jullian
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| | - Maria Russi
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| | - Ema Turki
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| | - Margaux Bouvelot
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| | - Laura Tixier
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| | - Sandrine Middendorp
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| | - Elodie Martin
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| | - Véronique Monnier
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, F-75013, Paris, France.
| |
Collapse
|
3
|
Bréhat J, Issop L, Morin D. History of Tspo deletion and induction in vivo: Phenotypic outcomes under physiological and pathological situations. Biochimie 2024; 224:80-90. [PMID: 38432291 DOI: 10.1016/j.biochi.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/05/2024]
Abstract
The mitochondrial translocator protein (TSPO) is an outer mitochondrial protein membrane with high affinity for cholesterol. It is expressed in most tissues but is more particularly enriched in steroidogenic tissues. TSPO is involved in various biological mechanisms and TSPO regulation has been related to several diseases. However, despite a considerable number of published studies interested in TSPO over the past forty years, the precise function of the protein remains obscure. Most of the functions attributed to TSPO have been identified using pharmacological ligands of this protein, leading to much debate about the accuracy of these findings. In addition, research on the physiological role of TSPO has been hampered by the lack of in vivo deletion models. Studies to perform genetic deletion of Tspo in animal models have long been unsuccessful, which led to the conclusions that the deletion was deleterious and the gene essential to life. During the last decades, thanks to the significant technical advances allowing genome modification, several models of animal genetically modified for TSPO have been developed. These models have modified our view regarding TSPO and profoundly improved our fundamental knowledge on this protein. However, to date, they did not allow to elucidate the precise molecular function of TSPO and numerous questions persist concerning the physiological role of TSPO and its future as a therapeutic target. This article chronologically reviews the development of deletion and induction models of TSPO.
Collapse
Affiliation(s)
- Juliette Bréhat
- INSERM U955-IMRB, Team Ghaleh, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France
| | - Leeyah Issop
- INSERM U955-IMRB, Team Ghaleh, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France
| | - Didier Morin
- INSERM U955-IMRB, Team Ghaleh, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France.
| |
Collapse
|
4
|
Chvilicek MM, Seguin A, Lathen DR, Titos I, Cummins‐Beebee PN, Pabon MA, Miščević M, Nickel E, Merrill CB, Rodan AR, Rothenfluh A. Large analysis of genetic manipulations reveals an inverse correlation between initial alcohol resistance and rapid tolerance phenotypes. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12884. [PMID: 38968320 PMCID: PMC10825885 DOI: 10.1111/gbb.12884] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 07/07/2024]
Abstract
Tolerance occurs when, following an initial experience with a substance, more of the substance is required subsequently to induce identical behavioral effects. Tolerance is not well-understood, and numerous researchers have turned to model organisms, particularly Drosophila melanogaster, to unravel its mechanisms. Flies have high translational relevance for human alcohol responses, and there is substantial overlap in disease-causing genes between flies and humans, including those associated with Alcohol Use Disorder. Numerous Drosophila tolerance mutants have been described; however, approaches used to identify and characterize these mutants have varied across time and labs and have mostly disregarded any impact of initial resistance/sensitivity to ethanol on subsequent tolerance development. Here, we analyzed our own, as well as data published by other labs to uncover an inverse correlation between initial ethanol resistance and tolerance phenotypes. This inverse correlation suggests that initial resistance phenotypes can explain many 'perceived' tolerance phenotypes, thus classifying such mutants as 'secondary' tolerance mutants. Additionally, we show that tolerance should be measured as a relative increase in time to sedation between an initial and second exposure rather than an absolute change in time to sedation. Finally, based on our analysis, we provide a method for using a linear regression equation to assess the residuals of potential tolerance mutants. These residuals provide predictive insight into the likelihood of a mutant being a 'primary' tolerance mutant, where a tolerance phenotype is not solely a consequence of initial resistance, and we offer a framework for understanding the relationship between initial resistance and tolerance.
Collapse
Affiliation(s)
- Maggie M. Chvilicek
- Department of Psychiatry, Huntsman Mental Health Institute, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Neuroscience Graduate ProgramUniversity of UtahSalt Lake CityUtahUSA
| | - Alexandra Seguin
- Molecular Medicine Program, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Daniel R. Lathen
- Department of Psychiatry, Huntsman Mental Health Institute, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Neuroscience Graduate ProgramUniversity of UtahSalt Lake CityUtahUSA
| | - Iris Titos
- Molecular Medicine Program, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Pearl N. Cummins‐Beebee
- Department of Psychiatry, Huntsman Mental Health Institute, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Neuroscience Graduate ProgramUniversity of UtahSalt Lake CityUtahUSA
| | - Miguel A. Pabon
- Molecular Medicine Program, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Maša Miščević
- Molecular Medicine Program, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Present address:
Department of Neuroscience, Physiological Sciences Graduate Interdisciplinary ProgramUniversity of ArizonaTucsonArizonaUSA
| | - Emily Nickel
- Molecular Medicine Program, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Collin B. Merrill
- Department of Psychiatry, Huntsman Mental Health Institute, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Aylin R. Rodan
- Molecular Medicine Program, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Division of Nephrology, Department of Internal Medicine, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Medical ServiceVeterans Affairs Salt Lake City Health Care SystemSalt Lake CityUtahUSA
- Department of Human Genetics, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Adrian Rothenfluh
- Department of Psychiatry, Huntsman Mental Health Institute, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Neuroscience Graduate ProgramUniversity of UtahSalt Lake CityUtahUSA
- Molecular Medicine Program, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Department of Human Genetics, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Department of Neurobiology, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
5
|
Chvilicek MM, Seguin A, Lathen DR, Titos I, Cummins-Beebe PN, Pabon MA, Miscevic M, Nickel EA, Merrill CB, Rodan AR, Rothenfluh A. Large genetic analysis of alcohol resistance and tolerance reveals an inverse correlation and suggests 'true' tolerance mutants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561599. [PMID: 37873285 PMCID: PMC10592763 DOI: 10.1101/2023.10.09.561599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Tolerance occurs when, following an initial experience with a substance, more of the substance is required subsequently to induce the same behavioral effects. Tolerance is historically not well-understood, and numerous researchers have turned to model organisms, particularly Drosophila melanogaster, to unravel its mechanisms. Flies have high translational relevance for human alcohol responses, and there is substantial overlap in disease-causing genes between flies and humans, including those associated with Alcohol Use Disorder. Numerous Drosophila tolerance mutants have been described; however, approaches used to identify and characterize these mutants have varied across time and between labs and have mostly disregarded any impact of initial resistance/sensitivity to ethanol on subsequent tolerance development. Here, we have analyzed a large amount of data - our own published and unpublished data and data published by other labs - to uncover an inverse correlation between initial ethanol resistance and tolerance phenotypes. This inverse correlation suggests that initial resistance phenotypes can explain many 'perceived' tolerance phenotypes. Additionally, we show that tolerance should be measured as a relative increase in time to sedation between an initial and second exposure rather than an absolute change in time to sedation. Finally, based on our analysis, we provide a method for using a linear regression equation to assess the residuals of potential tolerance mutants. We show that these residuals provide predictive insight into the likelihood of a mutant being a 'true' tolerance mutant, and we offer a framework for understanding the relationship between initial resistance and tolerance.
Collapse
Affiliation(s)
- Maggie M. Chvilicek
- Department of Psychiatry, Huntsman Mental Health Institute, School of Medicine, University of Utah, Salt Lake City, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, USA
| | - Alexandra Seguin
- Molecular Medicine Program, School of Medicine, University of Utah, Salt Lake City, USA
| | - Daniel R. Lathen
- Department of Psychiatry, Huntsman Mental Health Institute, School of Medicine, University of Utah, Salt Lake City, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, USA
| | - Iris Titos
- Department of Psychiatry, Huntsman Mental Health Institute, School of Medicine, University of Utah, Salt Lake City, USA
| | - Pearl N Cummins-Beebe
- Department of Psychiatry, Huntsman Mental Health Institute, School of Medicine, University of Utah, Salt Lake City, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, USA
| | - Miguel A. Pabon
- Molecular Medicine Program, School of Medicine, University of Utah, Salt Lake City, USA
| | - Masa Miscevic
- Molecular Medicine Program, School of Medicine, University of Utah, Salt Lake City, USA
| | - Emily A. Nickel
- Molecular Medicine Program, School of Medicine, University of Utah, Salt Lake City, USA
| | - Collin B Merrill
- Department of Psychiatry, Huntsman Mental Health Institute, School of Medicine, University of Utah, Salt Lake City, USA
| | - Aylin R. Rodan
- Molecular Medicine Program, School of Medicine, University of Utah, Salt Lake City, USA
- Division of Nephrology, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, USA
- Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, USA
- Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, USA
| | - Adrian Rothenfluh
- Department of Psychiatry, Huntsman Mental Health Institute, School of Medicine, University of Utah, Salt Lake City, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, USA
- Molecular Medicine Program, School of Medicine, University of Utah, Salt Lake City, USA
- Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, USA
- Department of Neurobiology, School of Medicine, University of Utah, Salt Lake City, USA
| |
Collapse
|
6
|
Scholz H. From Natural Behavior to Drug Screening: Invertebrates as Models to Study Mechanisms Associated with Alcohol Use Disorders. Curr Top Behav Neurosci 2023. [PMID: 36598738 DOI: 10.1007/7854_2022_413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Humans consume ethanol-containing beverages, which may cause an uncontrollable or difficult-to-control intake of ethanol-containing liquids and may result in alcohol use disorders. How the transition at the molecular level from "normal" ethanol-associated behaviors to addictive behaviors occurs is still unknown. One problem is that the components contributing to normal ethanol intake and their underlying molecular adaptations, especially in neurons that regulate behavior, are not clear. The fruit fly Drosophila melanogaster and the earthworm Caenorhabditis elegans show behavioral similarities to humans such as signs of intoxication, tolerance, and withdrawal. Underlying the phenotypic similarities, invertebrates and vertebrates share mechanistic similarities. For example in Drosophila melanogaster, the dopaminergic neurotransmitter system regulates the positive reinforcing properties of ethanol and in Caenorhabditis elegans, serotonergic neurons regulate feeding behavior. Since these mechanisms are fundamental molecular mechanisms and are highly conserved, invertebrates are good models for uncovering the basic principles of neuronal adaptation underlying the behavioral response to ethanol. This review will focus on the following aspects that might shed light on the mechanisms underlying normal ethanol-associated behaviors. First, the current status of what is required at the behavioral and cellular level to respond to naturally occurring levels of ethanol is summarized. Low levels of ethanol delay the development and activate compensatory mechanisms that in turn might be beneficial for some aspects of the animal's physiology. Repeated exposure to ethanol however might change brain structures involved in mediating learning and memory processes. The smell of ethanol is already a key component in the environment that is able to elicit behavioral changes and molecular programs. Minimal networks have been identified that regulate normal ethanol consumption. Other environmental factors that influence ethanol-induced behaviors include the diet, dietary supplements, and the microbiome. Second, the molecular mechanisms underlying neuronal adaptation to the cellular stressor ethanol are discussed. Components of the heat shock and oxidative stress pathways regulate adaptive responses to low levels of ethanol and in turn change behavior. The adaptive potential of the brain cells is challenged when the organism encounters additional cellular stressors caused by aging, endosymbionts or environmental toxins or excessive ethanol intake. Finally, to underline the conserved nature of these mechanisms between invertebrates and higher organisms, recent approaches to identify drug targets for ethanol-induced behaviors are provided. Already approved drugs regulate ethanol-induced behaviors and they do so in part by interfering with cellular stress pathways. In addition, invertebrates have been used to identify new compounds targeting molecules involved in the regulation in ethanol withdrawal-like symptoms. This review primarily highlights the advances of the last 5 years concerning Drosophila melanogaster, but also provides intriguing examples of Caenorhabditis elegans and Apis mellifera in support.
Collapse
Affiliation(s)
- Henrike Scholz
- Department of Biology, Institute for Zoology, University of Köln, Köln, Germany.
| |
Collapse
|
7
|
Li YJ, Yang K, Long XM, Xiao G, Huang SJ, Zeng ZY, Liu ZY, Sun ZL. Toxicity assessment of gelsenicine and the search for effective antidotes. Hum Exp Toxicol 2022; 41:9603271211062857. [PMID: 35018838 DOI: 10.1177/09603271211062857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Gelsenicine, one of the most toxic alkaloids of Gelsemium elegans Benth (G. elegans), causes severe respiratory depression. However, its toxicity mechanisms are yet to be elucidated and no effective antidotes are available. OBJECTIVE This study aimed to analyse the toxicity characteristics of gelsenicine. METHODS Both acute and sub-acute toxicities were evaluated. Gelsenicine distribution and elimination in the central nervous system (CNS) and blood were observed. Effective antidotes for gelsenicine poisoning were screened. RESULTS In the acute toxicity study, gelsenicine was highly toxic, and female rats exhibited greater sensitivity to gelsenicine than male rats (LD50 0.520 mg/kg vs 0.996 mg/kg, respectively). Death was primarily caused by respiratory failure. However, in the sub-acute toxicity study, no significant organ damage was observed. Gelsenicine was easily absorbed from the gastrointestinal tract and penetrated the blood-brain barrier, reaching peak concentrations in the CNS within 15 min and rapidly decreasing thereafter. Flumazenil or diazepam combined with epinephrine reversed gelsenicine toxicity and significantly improved survival rate in mice. CONCLUSIONS Gelsenicine is a highly toxic substance that affects nerve conduction without causing damage; the potential toxic mechanism is possibly associated with GABAA receptors. Our findings provide insights into the clinical treatment of gelsenicine-related poisoning and its toxicity mechanisms.
Collapse
Affiliation(s)
- Yu-Juan Li
- Hunan Engineering Technology Research Center of Veterinary Drugs, 12575Hunan Agricultural University, Changsha, China.,Department of Basic Medicine, Xiangnan University, Chenzhou, China.,College of Veterinary Medicine, 12575Hunan Agricultural University, Changsha, China
| | - Kun Yang
- Hunan Engineering Technology Research Center of Veterinary Drugs, 12575Hunan Agricultural University, Changsha, China.,College of Veterinary Medicine, 12575Hunan Agricultural University, Changsha, China
| | - Xue-Ming Long
- Hunan Provincial Institute of Veterinary Drugs and Feed Control, Changsha, China
| | - Gang Xiao
- Hunan Engineering Technology Research Center of Veterinary Drugs, 12575Hunan Agricultural University, Changsha, China.,College of Veterinary Medicine, 12575Hunan Agricultural University, Changsha, China
| | - Si-Juan Huang
- Hunan Engineering Technology Research Center of Veterinary Drugs, 12575Hunan Agricultural University, Changsha, China.,College of Veterinary Medicine, 12575Hunan Agricultural University, Changsha, China
| | - Zi-Yue Zeng
- Hunan Engineering Technology Research Center of Veterinary Drugs, 12575Hunan Agricultural University, Changsha, China.,College of Veterinary Medicine, 12575Hunan Agricultural University, Changsha, China
| | - Zhao-Ying Liu
- Hunan Engineering Technology Research Center of Veterinary Drugs, 12575Hunan Agricultural University, Changsha, China.,College of Veterinary Medicine, 12575Hunan Agricultural University, Changsha, China
| | - Zhi-Liang Sun
- Hunan Engineering Technology Research Center of Veterinary Drugs, 12575Hunan Agricultural University, Changsha, China.,College of Veterinary Medicine, 12575Hunan Agricultural University, Changsha, China
| |
Collapse
|
8
|
De Carvalho LM, Wiers CE, Sun H, Wang G, Volkow ND. Increased transcription of TSPO, HDAC2, and HDAC6 in the amygdala of males with alcohol use disorder. Brain Behav 2021; 11:e01961. [PMID: 33216461 PMCID: PMC7882159 DOI: 10.1002/brb3.1961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Repeated exposure to high doses of alcohol triggers neuroinflammatory processes that contribute to craving and mood dysfunction in alcohol use disorder (AUD). The upregulation of the translocator protein (TSPO) is considered a biomarker of neuroinflammation, and TSPO ligands have been used as neuroimaging biomarkers of neuroinflammation. Epigenetic mechanisms are also implicated in neuroinflammatory responses to alcohol, and elevated expression of HDAC2 and HDAC6 has been reported in the brain of animals exposed to chronic alcohol. METHODS The present study examined the transcriptional regulation of TSPO, HDAC2, and HDAC6 in human postmortem brain tissue from males previously diagnosed with AUD (n = 11) compared to age-matched nondependent males (n = 13) in four brain regions relevant to AUD: prefrontal cortex (PFC), nucleus accumbens (NAc), hippocampus (HPP), and amygdala (AMY). RESULTS Translocator protein mRNA levels in AMY and PFC and HDAC2 and HDAC6 mRNA levels in AMY were upregulated in AUD compared to controls. In AMY, TSPO mRNA levels were positively associated with HDAC2 and HDAC6 mRNA levels, suggesting a possible regulation of TSPO by HDAC2 and HDAC6 in this brain region. In contrast, there were no group differences for TSPO, HDAC2, and HDAC6 in NAc and HPP. CONCLUSION Our study is the first to find upregulated TSPO mRNA levels in AMY and PFC in postmortem brains from AUD consistent with neuroinflammation, and in the amygdala, they implicate epigenetic regulation of TSPO by HDAC2 and HDAC6.
Collapse
Affiliation(s)
- Luana Martins De Carvalho
- National Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthBethesdaMDUSA
- Center for Alcohol Research in Epigenetics, Department of PsychiatryUniversity of Illinois at ChicagoChicagoILUSA
| | - Corinde E. Wiers
- National Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthBethesdaMDUSA
- Department of PsychiatryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Hui Sun
- National Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthBethesdaMDUSA
| | - Gene‐Jack Wang
- National Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthBethesdaMDUSA
| | - Nora D. Volkow
- National Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthBethesdaMDUSA
- National Institute on Drug AbuseNational Institutes of HealthRockvilleMDUSA
| |
Collapse
|
9
|
Dimitrova-Shumkovska J, Krstanoski L, Veenman L. Diagnostic and Therapeutic Potential of TSPO Studies Regarding Neurodegenerative Diseases, Psychiatric Disorders, Alcohol Use Disorders, Traumatic Brain Injury, and Stroke: An Update. Cells 2020; 9:cells9040870. [PMID: 32252470 PMCID: PMC7226777 DOI: 10.3390/cells9040870] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 02/08/2023] Open
Abstract
Neuroinflammation and cell death are among the common symptoms of many central nervous system diseases and injuries. Neuroinflammation and programmed cell death of the various cell types in the brain appear to be part of these disorders, and characteristic for each cell type, including neurons and glia cells. Concerning the effects of 18-kDa translocator protein (TSPO) on glial activation, as well as being associated with neuronal cell death, as a response mechanism to oxidative stress, the changes of its expression assayed with the aid of TSPO-specific positron emission tomography (PET) tracers' uptake could also offer evidence for following the pathogenesis of these disorders. This could potentially increase the number of diagnostic tests to accurately establish the stadium and development of the disease in question. Nonetheless, the differences in results regarding TSPO PET signals of first and second generations of tracers measured in patients with neurological disorders versus healthy controls indicate that we still have to understand more regarding TSPO characteristics. Expanding on investigations regarding the neuroprotective and healing effects of TSPO ligands could also contribute to a better understanding of the therapeutic potential of TSPO activity for brain damage due to brain injury and disease. Studies so far have directed attention to the effects on neurons and glia, and processes, such as death, inflammation, and regeneration. It is definitely worthwhile to drive such studies forward. From recent research it also appears that TSPO ligands, such as PK11195, Etifoxine, Emapunil, and 2-Cl-MGV-1, demonstrate the potential of targeting TSPO for treatments of brain diseases and disorders.
Collapse
Affiliation(s)
- Jasmina Dimitrova-Shumkovska
- Department of Experimental Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University Ss Cyril and Methodius, Arhimedova 3, P.O. Box 162, 1000 Skopje, Republic of North Macedonia;
- Correspondence: (J.D.-S.); (L.V.)
| | - Ljupcho Krstanoski
- Department of Experimental Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University Ss Cyril and Methodius, Arhimedova 3, P.O. Box 162, 1000 Skopje, Republic of North Macedonia;
| | - Leo Veenman
- Technion-Israel Institute of Technology, Faculty of Medicine, Rappaport Institute of Medical Research, 1 Efron Street, P.O. Box 9697, Haifa 31096, Israel
- Correspondence: (J.D.-S.); (L.V.)
| |
Collapse
|
10
|
Betlazar C, Middleton RJ, Banati R, Liu GJ. The Translocator Protein (TSPO) in Mitochondrial Bioenergetics and Immune Processes. Cells 2020; 9:cells9020512. [PMID: 32102369 PMCID: PMC7072813 DOI: 10.3390/cells9020512] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
The translocator protein (TSPO) is an outer mitochondrial membrane protein that is widely used as a biomarker of neuroinflammation, being markedly upregulated in activated microglia in a range of brain pathologies. Despite its extensive use as a target in molecular imaging studies, the exact cellular functions of this protein remain in question. The long-held view that TSPO plays a fundamental role in the translocation of cholesterol through the mitochondrial membranes, and thus, steroidogenesis, has been disputed by several groups with the advent of TSPO knockout mouse models. Instead, much evidence is emerging that TSPO plays a fundamental role in cellular bioenergetics and associated mitochondrial functions, also part of a greater role in the innate immune processes of microglia. In this review, we examine the more direct experimental literature surrounding the immunomodulatory effects of TSPO. We also review studies which highlight a more central role for TSPO in mitochondrial processes, from energy metabolism, to the propagation of inflammatory responses through reactive oxygen species (ROS) modulation. In this way, we highlight a paradigm shift in approaches to TSPO functioning.
Collapse
Affiliation(s)
- Calina Betlazar
- Human Health, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; (R.J.M.); (R.B.)
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia
- Correspondence: (C.B.); (G-J.L.)
| | - Ryan J. Middleton
- Human Health, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; (R.J.M.); (R.B.)
| | - Richard Banati
- Human Health, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; (R.J.M.); (R.B.)
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia
| | - Guo-Jun Liu
- Human Health, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; (R.J.M.); (R.B.)
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia
- Correspondence: (C.B.); (G-J.L.)
| |
Collapse
|
11
|
Choi HJ, Cha SJ, Kim K. Glutathione transferase modulates acute ethanol-induced sedation in Drosophila neurones. INSECT MOLECULAR BIOLOGY 2019; 28:246-252. [PMID: 30347459 DOI: 10.1111/imb.12547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Heavy alcohol consumption leads to neuropathological damage and alcohol use disorder, which affects the health of people and results in a cost burden. However, the genes modulating sensitivity to ethanol remain largely unknown. Here, we identified a novel gene, Drosophila glutathione transferase omega 1 (GstO1), which plays a critical role in regulating sensitivity to ethanol sedation. GstO1 mutant flies showed highly increased ethanol sensitivity. Furthermore, the expression level of GstO1 regulates the behavioural response to ethanol, because decreasing and increasing GstO1 affects sedation sensitivity in a contrasting manner. In addition, the RNA interference-mediated knockdown of GstO1 expression reveals that GstO1 mediates sensitivity to ethanol sedation in neurones, including dopaminergic and serotonergic neurones. Altogether, our findings provide the first evidence for the involvement of glutathione transferase in the response to alcohol in Drosophila and provide a novel mechanistic insight into the toxicity and sensitivity of ethanol exposure.
Collapse
Affiliation(s)
- H-J Choi
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Korea
| | - S J Cha
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Korea
| | - K Kim
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Korea
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Korea
| |
Collapse
|
12
|
Translocator Protein Ligand Protects against Neurodegeneration in the MPTP Mouse Model of Parkinsonism. J Neurosci 2019; 39:3752-3769. [PMID: 30796158 DOI: 10.1523/jneurosci.2070-18.2019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease is the second most common neurodegenerative disease, after Alzheimer's disease. Parkinson's disease is a movement disorder with characteristic motor features that arise due to the loss of dopaminergic neurons from the substantia nigra. Although symptomatic treatment by the dopamine precursor levodopa and dopamine agonists can improve motor symptoms, no disease-modifying therapy exists yet. Here, we show that Emapunil (AC-5216, XBD-173), a synthetic ligand of the translocator protein 18, ameliorates degeneration of dopaminergic neurons, preserves striatal dopamine metabolism, and prevents motor dysfunction in female mice treated with the MPTP, as a model of parkinsonism. We found that Emapunil modulates the inositol requiring kinase 1α (IRE α)/X-box binding protein 1 (XBP1) unfolded protein response pathway and induces a shift from pro-inflammatory toward anti-inflammatory microglia activation. Previously, Emapunil was shown to cross the blood-brain barrier and to be safe and well tolerated in a Phase II clinical trial. Therefore, our data suggest that Emapunil may be a promising approach in the treatment of Parkinson's disease.SIGNIFICANCE STATEMENT Our study reveals a beneficial effect of Emapunil on dopaminergic neuron survival, dopamine metabolism, and motor phenotype in the MPTP mouse model of parkinsonism. In addition, our work uncovers molecular networks which mediate neuroprotective effects of Emapunil, including microglial activation state and unfolded protein response pathways. These findings not only contribute to our understanding of biological mechanisms of translocator protein 18 (TSPO) function but also indicate that translocator protein 18 may be a promising therapeutic target. We thus propose to further validate Emapunil in other Parkinson's disease mouse models and subsequently in clinical trials to treat Parkinson's disease.
Collapse
|
13
|
Kim SW, Wiers CE, Tyler R, Shokri-Kojori E, Jang YJ, Zehra A, Freeman C, Ramirez V, Lindgren E, Miller G, Cabrera EA, Stodden T, Guo M, Demiral ŞB, Diazgranados N, Park L, Liow JS, Pike V, Morse C, Vendruscolo LF, Innis RB, Koob GF, Tomasi D, Wang GJ, Volkow ND. Influence of alcoholism and cholesterol on TSPO binding in brain: PET [ 11C]PBR28 studies in humans and rodents. Neuropsychopharmacology 2018; 43:1832-1839. [PMID: 29777199 PMCID: PMC6046047 DOI: 10.1038/s41386-018-0085-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/02/2018] [Accepted: 04/20/2018] [Indexed: 01/08/2023]
Abstract
Neuroinflammation appears to contribute to neurotoxicity observed with heavy alcohol consumption. To assess whether chronic alcohol results in neuroinflammation we used PET and [11C]PBR28, a ligand that binds to the 18-kDa translocator protein (TSPO), to compare participants with an alcohol use disorder (AUD: n = 19) with healthy controls (HC: n = 17), and alcohol-dependent (n = 9) with -nondependent rats (n = 10). Because TSPO is implicated in cholesterol's transport for steroidogenesis, we investigated whether plasma cholesterol levels influenced [11C]PBR28 binding. [11C]PBR28 binding did not differ between AUD and HC. However, when separating by TSPO genotype rs6971, we showed that medium-affinity binders AUD participants showed lower [11C]PBR28 binding than HC in regions of interest (whole brain, gray and white matter, hippocampus, and thalamus), but no group differences were observed in high-affinity binders. Cholesterol levels inversely correlated with brain [11C]PBR28 binding in combined groups, due to a correlation in AUD participants. In rodents, we observed no differences in brain [11C]PBR28 uptake between alcohol-dependent and -nondependent rats. These findings, which are consistent with two previous [11C]PBR28 PET studies, may indicate lower activation of microglia in AUD, whereas failure to observe alcohol effects in the rodent model indicate that species differences do not explain the discrepancy with prior rodent autoradiographic studies reporting increases in TSPO binding with chronic alcohol. However, reduced binding in AUD participants could also reflect competition from endogenous TSPO ligands such as cholesterol; and since the rs6971 polymorphism affects the cholesterol-binding domain of TSPO this could explain why differences were observed only in medium-affinity binders.
Collapse
Affiliation(s)
- Sung Won Kim
- 0000 0001 2297 5165grid.94365.3dNational Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892 USA
| | - Corinde E. Wiers
- 0000 0001 2297 5165grid.94365.3dNational Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892 USA
| | - Ryan Tyler
- 0000 0001 2297 5165grid.94365.3dNational Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892 USA
| | - Ehsan Shokri-Kojori
- 0000 0001 2297 5165grid.94365.3dNational Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892 USA
| | - Yeon Joo Jang
- 0000 0001 2297 5165grid.94365.3dNational Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892 USA
| | - Amna Zehra
- 0000 0001 2297 5165grid.94365.3dNational Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892 USA
| | - Clara Freeman
- 0000 0001 2297 5165grid.94365.3dNational Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892 USA
| | - Veronica Ramirez
- 0000 0001 2297 5165grid.94365.3dNational Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892 USA
| | - Elsa Lindgren
- 0000 0001 2297 5165grid.94365.3dNational Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892 USA
| | - Gregg Miller
- 0000 0001 2297 5165grid.94365.3dNational Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892 USA
| | - Elizabeth A. Cabrera
- 0000 0001 2297 5165grid.94365.3dNational Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892 USA
| | - Tyler Stodden
- 0000 0001 2297 5165grid.94365.3dNational Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892 USA
| | - Min Guo
- 0000 0001 2297 5165grid.94365.3dNational Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892 USA
| | - Şükrü B. Demiral
- 0000 0001 2297 5165grid.94365.3dNational Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892 USA
| | - Nancy Diazgranados
- 0000 0001 2297 5165grid.94365.3dNational Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892 USA
| | - Luke Park
- 0000 0001 2297 5165grid.94365.3dMolecular Imaging Branch, National Institute of Mental Health, NIH, Bethesda, MD 20892 USA
| | - Jeih-San Liow
- 0000 0001 2297 5165grid.94365.3dMolecular Imaging Branch, National Institute of Mental Health, NIH, Bethesda, MD 20892 USA
| | - Victor Pike
- 0000 0001 2297 5165grid.94365.3dMolecular Imaging Branch, National Institute of Mental Health, NIH, Bethesda, MD 20892 USA
| | - Cheryl Morse
- 0000 0001 2297 5165grid.94365.3dMolecular Imaging Branch, National Institute of Mental Health, NIH, Bethesda, MD 20892 USA
| | - Leandro F. Vendruscolo
- 0000 0000 9372 4913grid.419475.aNational Institute on Drug Abuse, NIH, Baltimore, MD 21224 USA
| | - Robert B. Innis
- 0000 0001 2297 5165grid.94365.3dMolecular Imaging Branch, National Institute of Mental Health, NIH, Bethesda, MD 20892 USA
| | - George F. Koob
- 0000 0000 9372 4913grid.419475.aNational Institute on Drug Abuse, NIH, Baltimore, MD 21224 USA
| | - Dardo Tomasi
- 0000 0001 2297 5165grid.94365.3dNational Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892 USA
| | - Gene-Jack Wang
- 0000 0001 2297 5165grid.94365.3dNational Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892 USA
| | - Nora D. Volkow
- 0000 0001 2297 5165grid.94365.3dNational Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892 USA
| |
Collapse
|
14
|
Shimamoto A, Rappeneau V. Sex-dependent mental illnesses and mitochondria. Schizophr Res 2017; 187:38-46. [PMID: 28279571 PMCID: PMC5581986 DOI: 10.1016/j.schres.2017.02.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 12/11/2022]
Abstract
The prevalence of some mental illnesses, including major depression, anxiety-, trauma-, and stress-related disorders, some substance use disorders, and later onset of schizophrenia, is higher in women than men. While the higher prevalence in women could simply be explained by socioeconomic determinants, such as income, social status, or cultural background, extensive studies show sex differences in biological, pharmacokinetic, and pharmacological factors contribute to females' vulnerability to these mental illnesses. In this review, we focus on estrogens, chronic stress, and neurotoxicity from behavioral, pharmacological, biological, and molecular perspectives to delineate the sex differences in these mental illnesses. Particularly, we investigate a possible role of mitochondrial function, including biosynthesis, bioenergetics, and signaling, on mediating the sex differences in psychiatric disorders.
Collapse
Affiliation(s)
- Akiko Shimamoto
- Department of Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, TN 37028-3599, United States.
| | - Virginie Rappeneau
- Department of Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, TN 37028-3599, United States
| |
Collapse
|
15
|
Zwarts L, Vulsteke V, Buhl E, Hodge JJL, Callaerts P. SlgA, encoded by the homolog of the human schizophrenia-associated gene PRODH, acts in clock neurons to regulate Drosophila aggression. Dis Model Mech 2017; 10:705-716. [PMID: 28331058 PMCID: PMC5483002 DOI: 10.1242/dmm.027151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 03/09/2017] [Indexed: 12/11/2022] Open
Abstract
Mutations in the proline dehydrogenase gene PRODH are linked to behavioral alterations in schizophrenia and as part of DiGeorge and velo-cardio-facial syndromes, but the role of PRODH in their etiology remains unclear. Here, we establish a Drosophila model to study the role of PRODH in behavioral disorders. We determine the distribution of the Drosophila PRODH homolog slgA in the brain and show that knockdown and overexpression of human PRODH and slgA in the lateral neurons ventral (LNv) lead to altered aggressive behavior. SlgA acts in an isoform-specific manner and is regulated by casein kinase II (CkII). Our data suggest that these effects are, at least partially, due to effects on mitochondrial function. We thus show that precise regulation of proline metabolism is essential to drive normal behavior and we identify Drosophila aggression as a model behavior relevant for the study of the mechanisms that are impaired in neuropsychiatric disorders. Editors' choice: A Drosophila model to study the role of PRODH, a schizophrenia-associated gene, in behavioral disorders.
Collapse
Affiliation(s)
- Liesbeth Zwarts
- KU Leuven - University of Leuven, Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, Leuven B-3000, Belgium.,VIB Center for the Biology of Disease, Laboratory of Behavioral and Developmental Genetics, Leuven B-3000, Belgium
| | - Veerle Vulsteke
- KU Leuven - University of Leuven, Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, Leuven B-3000, Belgium.,VIB Center for the Biology of Disease, Laboratory of Behavioral and Developmental Genetics, Leuven B-3000, Belgium
| | - Edgar Buhl
- University of Bristol, School of Physiology, Pharmacology and Neuroscience, Bristol BS8 1TD, UK
| | - James J L Hodge
- University of Bristol, School of Physiology, Pharmacology and Neuroscience, Bristol BS8 1TD, UK
| | - Patrick Callaerts
- KU Leuven - University of Leuven, Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, Leuven B-3000, Belgium .,VIB Center for the Biology of Disease, Laboratory of Behavioral and Developmental Genetics, Leuven B-3000, Belgium
| |
Collapse
|
16
|
Mitchell CL, Latuszek CE, Vogel KR, Greenlund IM, Hobmeier RE, Ingram OK, Dufek SR, Pecore JL, Nip FR, Johnson ZJ, Ji X, Wei H, Gailing O, Werner T. α-amanitin resistance in Drosophila melanogaster: A genome-wide association approach. PLoS One 2017; 12:e0173162. [PMID: 28241077 PMCID: PMC5328632 DOI: 10.1371/journal.pone.0173162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/15/2017] [Indexed: 11/17/2022] Open
Abstract
We investigated the mechanisms of mushroom toxin resistance in the Drosophila Genetic Reference Panel (DGRP) fly lines, using genome-wide association studies (GWAS). While Drosophila melanogaster avoids mushrooms in nature, some lines are surprisingly resistant to α-amanitin—a toxin found solely in mushrooms. This resistance may represent a pre-adaptation, which might enable this species to invade the mushroom niche in the future. Although our previous microarray study had strongly suggested that pesticide-metabolizing detoxification genes confer α-amanitin resistance in a Taiwanese D. melanogaster line Ama-KTT, none of the traditional detoxification genes were among the top candidate genes resulting from the GWAS in the current study. Instead, we identified Megalin, Tequila, and widerborst as candidate genes underlying the α-amanitin resistance phenotype in the North American DGRP lines, all three of which are connected to the Target of Rapamycin (TOR) pathway. Both widerborst and Tequila are upstream regulators of TOR, and TOR is a key regulator of autophagy and Megalin-mediated endocytosis. We suggest that endocytosis and autophagy of α-amanitin, followed by lysosomal degradation of the toxin, is one of the mechanisms that confer α-amanitin resistance in the DGRP lines.
Collapse
Affiliation(s)
- Chelsea L Mitchell
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Catrina E Latuszek
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Kara R Vogel
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, 1300 University Ave., Madison, WI, United States of America
| | - Ian M Greenlund
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Rebecca E Hobmeier
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Olivia K Ingram
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Shannon R Dufek
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Jared L Pecore
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Felicia R Nip
- College of Human Medicine, Michigan State University, Clinical Center, East Lansing, MI, United States of America
| | - Zachary J Johnson
- U.S. Forest Service, Salt Lake Ranger District 6944 S, 3000 E, Salt Lake City, UT, United States of America
| | - Xiaohui Ji
- School of Forest Resources and Environmental Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Hairong Wei
- School of Forest Resources and Environmental Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Oliver Gailing
- School of Forest Resources and Environmental Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America
| |
Collapse
|
17
|
Park A, Ghezzi A, Wijesekera TP, Atkinson NS. Genetics and genomics of alcohol responses in Drosophila. Neuropharmacology 2017; 122:22-35. [PMID: 28161376 DOI: 10.1016/j.neuropharm.2017.01.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 02/07/2023]
Abstract
Drosophila melanogaster has become a significant model organism for alcohol research. In flies, a rich variety of behaviors can be leveraged for identifying genes affecting alcohol responses and adaptations. Furthermore, almost all genes can be easily genetically manipulated. Despite the great evolutionary distance between flies and mammals, many of the same genes have been implicated in strikingly similar alcohol-induced behaviors. A major problem in medical research today is that it is difficult to extrapolate from any single model system to humans. Strong evolutionary conservation of a mechanistic response between distantly related organisms, such as flies and mammals, is a powerful predictor that conservation will continue all the way to humans. This review describes the state of the Drosophila alcohol research field. It describes common alcohol behavioral assays, the independent origins of resistance and tolerance, the results of classical genetic screens and candidate gene analysis, and the outcomes of recent genomics studies employing GWAS, transcriptome, miRNA, and genome-wide histone acetylation surveys. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Annie Park
- Department of Neuroscience and The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| | - Alfredo Ghezzi
- Department of Biology, University of Puerto Rico, Rio Piedras. San Juan, PR, United States
| | - Thilini P Wijesekera
- Department of Neuroscience and The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| | - Nigel S Atkinson
- Department of Neuroscience and The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
18
|
Selvaraj V, Tu LN. Current status and future perspectives: TSPO in steroid neuroendocrinology. J Endocrinol 2016; 231:R1-R30. [PMID: 27422254 DOI: 10.1530/joe-16-0241] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022]
Abstract
The mitochondrial translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), has received significant attention both as a diagnostic biomarker and as a therapeutic target for different neuronal disease pathologies. Recently, its functional basis believed to be mediating mitochondrial cholesterol import for steroid hormone production has been refuted by studies examining both in vivo and in vitro genetic Tspo-deficient models. As a result, there now exists a fundamental gap in the understanding of TSPO function in the nervous system, and its putative pharmacology in neurosteroid production. In this review, we discuss several recent findings in steroidogenic cells that are in direct contradiction to previous studies, and necessitate a re-examination of the purported role for TSPO in de novo neurosteroid biosynthesis. We critically examine the pharmacological effects of different TSPO-binding drugs with particular focus on studies that measure neurosteroid levels. We highlight the basis of key misconceptions regarding TSPO that continue to pervade the literature, and the need for interpretation with caution to avoid negative impacts. We also summarize the emerging perspectives that point to new directions that need to be investigated for understanding the molecular function of TSPO, only after which the true potential of this therapeutic target in medicine may be realized.
Collapse
Affiliation(s)
- Vimal Selvaraj
- Department of Animal ScienceCornell University, Ithaca, New York, USA
| | - Lan N Tu
- Department of Animal ScienceCornell University, Ithaca, New York, USA
| |
Collapse
|
19
|
Uchoa MF, Moser VA, Pike CJ. Interactions between inflammation, sex steroids, and Alzheimer's disease risk factors. Front Neuroendocrinol 2016; 43:60-82. [PMID: 27651175 PMCID: PMC5123957 DOI: 10.1016/j.yfrne.2016.09.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder for which there are no effective strategies to prevent or slow its progression. Because AD is multifactorial, recent research has focused on understanding interactions among the numerous risk factors and mechanisms underlying the disease. One mechanism through which several risk factors may be acting is inflammation. AD is characterized by chronic inflammation that is observed before clinical onset of dementia. Several genetic and environmental risk factors for AD increase inflammation, including apolipoprotein E4, obesity, and air pollution. Additionally, sex steroid hormones appear to contribute to AD risk, with age-related losses of estrogens in women and androgens in men associated with increased risk. Importantly, sex steroid hormones have anti-inflammatory actions and can interact with several other AD risk factors. This review examines the individual and interactive roles of inflammation and sex steroid hormones in AD, as well as their relationships with the AD risk factors apolipoprotein E4, obesity, and air pollution.
Collapse
Affiliation(s)
- Mariana F Uchoa
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - V Alexandra Moser
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Christian J Pike
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|