1
|
Charles M, Gaiani N, Sanchez MP, Boussaha M, Hozé C, Boichard D, Rocha D, Boulling A. Functional impact of splicing variants in the elaboration of complex traits in cattle. Nat Commun 2025; 16:3893. [PMID: 40274775 PMCID: PMC12022281 DOI: 10.1038/s41467-025-58970-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
GWAS conducted directly on imputed whole genome sequence have led to the identification of numerous genetic variants associated with agronomic traits in cattle. However, such variants are often simply markers in linkage disequilibrium with the actual causal variants, which is a limiting factor for the development of accurate genomic predictions. It is possible to identify causal variants by integrating information on how variants impact gene expression into GWAS output. RNA splicing plays a major role in regulating gene expression. Thus, assessing the effect of variants on RNA splicing may explain their function. Here, we use a high-throughput strategy to functionally analyse putative splice-disrupting variants in the bovine genome. Using GWAS, massively parallel reporter assay and deep learning algorithms designed to predict splice-disrupting variants, we identify 38 splice-disrupting variants associated with complex traits in cattle, three of which could be classified as causal. Our results indicate that splice-disrupting variants are widely found in the quantitative trait loci related to these phenotypes. Using our combined approach, we also assess the validity of splicing predictors originally developed to analyse human variants in the context of the bovine genome.
Collapse
Affiliation(s)
- Mathieu Charles
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- INRAE, SIGENAE, 78350, Jouy-en-Josas, France
| | - Nicolas Gaiani
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Marie-Pierre Sanchez
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Mekki Boussaha
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Chris Hozé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- ELIANCE, 75012, Paris, France
| | - Didier Boichard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Dominique Rocha
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Arnaud Boulling
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| |
Collapse
|
2
|
Capuzzello G, Jacinto JGP, Häfliger IM, Chapman GE, Martin SS, Viora L, Jonsson NN, Drögemüller C. A large deletion encompassing exon 2 of the ectodysplasin A (EDA) gene in a British blue crossbred calf with hypohidrotic ectodermal dysplasia. Acta Vet Scand 2022; 64:23. [PMID: 36068608 PMCID: PMC9446731 DOI: 10.1186/s13028-022-00641-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022] Open
Abstract
Background Hypohidrotic ectodermal dysplasia (HED) is a congenital syndrome of mammals affecting organs and tissues of ectodermal origin characterized by absence or hypoplasia of hair, teeth, and eccrine glands. The disorder has been reported in several species, including humans, mice, dogs and cattle, associated with variants in genes affecting the ectodysplasin pathway, including the X-linked ectodysplasin A (EDA) gene. Until now, nine pathogenic variants have been found in the bovine EDA gene. Here we report a novel variant in EDA in a crossbreed male Belgian Blue calf with HED, and provide an overview of the phenotypic and allelic heterogeneity of EDA-related forms of HED in cattle. Case presentation A 45-day-old male crossbreed British Blue calf was referred with congenital hypotrichosis, oligodontia and omphalitis. On histopathological examination of the nasal planum, nasolabial glands and ducts were not observed. The density of hair follicles was low, and they were small, with a predominance of telogen-phase hairs, and some serocellular crusts. The phenotype of the calf resembled that of HED. Whole-genome sequencing (WGS) was performed and revealed a 21,899 base-pair deletion encompassing the coding exon 2 of EDA, predicted to result in an altered transcript and aberrant protein. Conclusions The clinicopathological and genetic findings were consistent with a case of X-linked HED. A very similar EDA deletion has been previously reported in a family of Holstein cattle with HED. The newly identified hemizygous EDA loss-of-function variant is certainly pathogenic and therefore is the genetic cause for the observed phenotype. This case report provides an additional example of the potential of WGS-based precise diagnostics in livestock species such as cattle to increase the diagnostic yield in rare diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13028-022-00641-2.
Collapse
Affiliation(s)
- Giovanni Capuzzello
- College of Medical, Veterinary & Life Sciences, University of Glasgow, 464 Bearsden Rd, Glasgow, G61 1QH, UK
| | - Joana Gonçalves Pontes Jacinto
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50Ozzano dell'Emilia, 40064, Bologna, Italy.,Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| | - Irene Monika Häfliger
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| | - Gail E Chapman
- College of Medical, Veterinary & Life Sciences, University of Glasgow, 464 Bearsden Rd, Glasgow, G61 1QH, UK
| | - Sara Soto Martin
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| | - Lorenzo Viora
- College of Medical, Veterinary & Life Sciences, University of Glasgow, 464 Bearsden Rd, Glasgow, G61 1QH, UK
| | - Nicholas N Jonsson
- College of Medical, Veterinary & Life Sciences, University of Glasgow, 464 Bearsden Rd, Glasgow, G61 1QH, UK.
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| |
Collapse
|
3
|
A KRT71 Loss-of-Function Variant Results in Inner Root Sheath Dysplasia and Recessive Congenital Hypotrichosis of Hereford Cattle. Genes (Basel) 2021; 12:genes12071038. [PMID: 34356054 PMCID: PMC8304205 DOI: 10.3390/genes12071038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
Genodermatoses, such as heritable skin disorders, mostly represent Mendelian conditions. Congenital hypotrichosis (HY) characterize a condition of being born with less hair than normal. The purpose of this study was to characterize the clinicopathological phenotype of a breed-specific non-syndromic form of HY in Hereford cattle and to identify the causative genetic variant for this recessive disorder. Affected calves showed a very short, fine, wooly, kinky and curly coat over all parts of the body, with a major expression in the ears, the inner part of the limbs, and in the thoracic-abdominal region. Histopathology showed a severely altered morphology of the inner root sheath (IRS) of the hair follicle with abnormal Huxley and Henle’s layers and severely dysplastic hair shafts. A genome-wide association study revealed an association signal on chromosome 5. Homozygosity mapping in a subset of cases refined the HY locus to a 690 kb critical interval encompassing a cluster of type II keratin encoding genes. Protein-coding exons of six positional candidate genes with known hair or hair follicle function were re-sequenced. This revealed a protein-changing variant in the KRT71 gene that encodes a type II keratin specifically expressed in the IRS of the hair follicle (c.281delTGTGCCCA; p.Met94AsnfsX14). Besides obvious phenocopies, a perfect concordance between the presence of this most likely pathogenic loss-of-function variant located in the head domain of KRT71 and the HY phenotype was found. This recessive KRT71-related form of hypotrichosis provides a novel large animal model for similar human conditions. The results have been incorporated in the Online Mendelian Inheritance in Animals (OMIA) database (OMIA 002114-9913).
Collapse
|
4
|
Springer MS, Guerrero-Juarez CF, Huelsmann M, Collin MA, Danil K, McGowen MR, Oh JW, Ramos R, Hiller M, Plikus MV, Gatesy J. Genomic and anatomical comparisons of skin support independent adaptation to life in water by cetaceans and hippos. Curr Biol 2021; 31:2124-2139.e3. [PMID: 33798433 PMCID: PMC8154672 DOI: 10.1016/j.cub.2021.02.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/21/2021] [Accepted: 02/25/2021] [Indexed: 12/17/2022]
Abstract
The macroevolutionary transition from terra firma to obligatory inhabitance of the marine hydrosphere has occurred twice in the history of Mammalia: Cetacea and Sirenia. In the case of Cetacea (whales, dolphins, and porpoises), molecular phylogenies provide unambiguous evidence that fully aquatic cetaceans and semiaquatic hippopotamids (hippos) are each other's closest living relatives. Ancestral reconstructions suggest that some adaptations to the aquatic realm evolved in the common ancestor of Cetancodonta (Cetacea + Hippopotamidae). An alternative hypothesis is that these adaptations evolved independently in cetaceans and hippos. Here, we focus on the integumentary system and evaluate these hypotheses by integrating new histological data for cetaceans and hippos, the first genome-scale data for pygmy hippopotamus, and comprehensive genomic screens and molecular evolutionary analyses for protein-coding genes that have been inactivated in hippos and cetaceans. We identified eight skin-related genes that are inactivated in both cetaceans and hippos, including genes that are related to sebaceous glands, hair follicles, and epidermal differentiation. However, none of these genes exhibit inactivating mutations that are shared by cetaceans and hippos. Mean dates for the inactivation of skin genes in these two clades serve as proxies for phenotypic changes and suggest that hair reduction/loss, the loss of sebaceous glands, and changes to the keratinization program occurred ∼16 Ma earlier in cetaceans (∼46.5 Ma) than in hippos (∼30.5 Ma). These results, together with histological differences in the integument and prior analyses of oxygen isotopes from stem hippopotamids ("anthracotheres"), support the hypothesis that aquatic skin adaptations evolved independently in hippos and cetaceans.
Collapse
Affiliation(s)
- Mark S Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA.
| | - Christian F Guerrero-Juarez
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Matthias Huelsmann
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Matthew A Collin
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA; Department of Botany & Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Kerri Danil
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA 92037, USA
| | - Michael R McGowen
- Department of Vertebrate Zoology, Smithsonian Museum of Natural History, 10th & Constitution Avenue NW, Washington, DC 20560, USA
| | - Ji Won Oh
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea; Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Korea; Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - Raul Ramos
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany; LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany; Senckenberg Research Institute, 60325 Frankfurt, Germany; Faculty of Biosciences, Goethe-University, 60438 Frankfurt, Germany.
| | - Maksim V Plikus
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA.
| | - John Gatesy
- Division of Vertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA.
| |
Collapse
|
5
|
A Nonsense Variant in Hephaestin Like 1 ( HEPHL1) Is Responsible for Congenital Hypotrichosis in Belted Galloway Cattle. Genes (Basel) 2021; 12:genes12050643. [PMID: 33926013 PMCID: PMC8147104 DOI: 10.3390/genes12050643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022] Open
Abstract
Genodermatosis such as hair disorders mostly follow a monogenic mode of inheritance. Congenital hypotrichosis (HY) belong to this group of disorders and is characterized by abnormally reduced hair since birth. The purpose of this study was to characterize the clinical phenotype of a breed-specific non-syndromic form of HY in Belted Galloway cattle and to identify the causative genetic variant for this recessive disorder. An affected calf born in Switzerland presented with multiple small to large areas of alopecia on the limbs and on the dorsal part of the head, neck, and back. A genome-wide association study using Swiss and US Belted Galloway cattle encompassing 12 cases and 61 controls revealed an association signal on chromosome 29. Homozygosity mapping in a subset of cases refined the HY locus to a 1.5 Mb critical interval and subsequent Sanger sequencing of protein-coding exons of positional candidate genes revealed a stop gain variant in the HEPHL1 gene that encodes a multi-copper ferroxidase protein so-called hephaestin like 1 (c.1684A>T; p.Lys562*). A perfect concordance between the homozygous presence of this most likely pathogenic loss-of-function variant and the HY phenotype was found. Genotyping of more than 700 purebred Swiss and US Belted Galloway cattle showed the global spread of the mutation. This study provides a molecular test that will permit the avoidance of risk matings by systematic genotyping of relevant breeding animals. This rare recessive HEPHL1-related form of hypotrichosis provides a novel large animal model for similar human conditions. The results have been incorporated in the Online Mendelian Inheritance in Animals (OMIA) database (OMIA 002230-9913).
Collapse
|
6
|
De Lucia M, Angileri M, Bauer A, Spycher M, Jaggannathan V, Denti D, Di Diodoro F, Ferro S, Mezzalira G, Welle M, Leeb T. X-linked cutaneous mosaicism in a dog. Vet Dermatol 2019; 30:361-362. [PMID: 31012178 DOI: 10.1111/vde.12748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michela De Lucia
- San Marco Veterinary Clinic, Via Sorio 114/C, 35141, Padova, Italy.,San Marco Veterinary Laboratory, Via Sorio 114/C, 35141, Padova, Italy
| | - Martina Angileri
- San Marco Veterinary Clinic, Via Sorio 114/C, 35141, Padova, Italy
| | - Anina Bauer
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Melina Spycher
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Vidhya Jaggannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Daria Denti
- San Marco Veterinary Clinic, Via Sorio 114/C, 35141, Padova, Italy
| | | | - Silvia Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Giorgia Mezzalira
- San Marco Veterinary Laboratory, Via Sorio 114/C, 35141, Padova, Italy
| | - Monika Welle
- Dermfocus, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| |
Collapse
|
7
|
Bauer A, De Lucia M, Jagannathan V, Mezzalira G, Casal ML, Welle MM, Leeb T. A Large Deletion in the NSDHL Gene in Labrador Retrievers with a Congenital Cornification Disorder. G3 (BETHESDA, MD.) 2017; 7:3115-3121. [PMID: 28739597 PMCID: PMC5592936 DOI: 10.1534/g3.117.1124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/15/2017] [Indexed: 11/18/2022]
Abstract
In heterozygous females affected by an X-linked skin disorder, lesions often appear in a characteristic pattern, the so-called Blaschko's lines. We investigated a female Labrador Retriever and her crossbred daughter, which both showed similar clinical lesions that followed Blaschko's lines. The two male littermates of the affected daughter had died at birth, suggesting a monogenic X-chromosomal semidominant mode of inheritance. Whole genome sequencing of the affected daughter, and subsequent automated variant filtering with respect to 188 nonaffected control dogs of different breeds, revealed 332 hetero-zygous variants on the X-chromosome private to the affected dog. None of these variants was protein-changing. By visual inspection of candidate genes located on the X-chromosome, we identified a large deletion in the NSDHL gene, encoding NAD(P) dependent steroid dehydrogenase-like, a 3β-hydroxysteroid dehydrogenase involved in cholesterol biosynthesis. The deletion spanned >14 kb, and included the last three exons of the NSDHL gene. By PCR and fragment length analysis, we confirmed the presence of the variant in both affected dogs, and its absence in 50 control Labrador Retrievers. Variants in the NSDHL gene cause CHILD syndrome in humans, and the bare patches (Bpa) and striated (Str) phenotypes in mice. Taken together, our genetic data and the known role of NSDHL in X-linked skin disorders strongly suggest that the identified structural variant in the NSDHL gene is causative for the phenotype in the two affected dogs.
Collapse
Affiliation(s)
- Anina Bauer
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Switzerland
- Dermfocus, Vetsuisse Faculty, University of Bern, 3001, Switzerland
| | | | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Switzerland
- Dermfocus, Vetsuisse Faculty, University of Bern, 3001, Switzerland
| | | | - Margret L Casal
- Section of Medical Genetics, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Monika M Welle
- Dermfocus, Vetsuisse Faculty, University of Bern, 3001, Switzerland
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3001, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Switzerland
- Dermfocus, Vetsuisse Faculty, University of Bern, 3001, Switzerland
| |
Collapse
|
8
|
Agerholm JS, McEvoy FJ, Heegaard S, Charlier C, Jagannathan V, Drögemüller C. A de novo missense mutation of FGFR2 causes facial dysplasia syndrome in Holstein cattle. BMC Genet 2017; 18:74. [PMID: 28768473 PMCID: PMC5541750 DOI: 10.1186/s12863-017-0541-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/27/2017] [Indexed: 01/17/2023] Open
Abstract
Background Surveillance for bovine genetic diseases in Denmark identified a hitherto unreported congenital syndrome occurring among progeny of a Holstein sire used for artificial breeding. A genetic aetiology due to a dominant inheritance with incomplete penetrance or a mosaic germline mutation was suspected as all recorded cases were progeny of the same sire. Detailed investigations were performed to characterize the syndrome and to reveal its cause. Results Seven malformed calves were submitted examination. All cases shared a common morphology with the most striking lesions being severe facial dysplasia and complete prolapse of the eyes. Consequently the syndrome was named facial dysplasia syndrome (FDS). Furthermore, extensive brain malformations, including microencephaly, hydrocephalus, lobation of the cerebral hemispheres and compression of the brain were present. Subsequent data analysis of progeny of the sire revealed that around 0.5% of his offspring suffered from FDS. High density single nucleotide polymorphism (SNP) genotyping data of the seven cases and their parents were used to map the defect in the bovine genome. Significant genetic linkage was obtained for three regions, including chromosome 26 where whole genome sequencing of a case-parent trio revealed two de novo variants perfectly associated with the disease: an intronic SNP in the DMBT1 gene and a single non-synonymous variant in the FGFR2 gene. This FGFR2 missense variant (c.927G>T) affects a gene encoding a member of the fibroblast growth factor receptor family, where amino acid sequence is highly conserved between members and across species. It is predicted to change an evolutionary conserved tryptophan into a cysteine residue (p.Trp309Cys). Both variant alleles were proven to result from de novo mutation events in the germline of the sire. Conclusions FDS is a novel genetic disorder of Holstein cattle. Mutations in the human FGFR2 gene are associated with various dominant inherited craniofacial dysostosis syndromes. Given the phenotypic similarities in FDS affected calves, the genetic mapping and absence of further high impact variants in the critical genome regions, it is highly likely that the missense mutation in the FGFR2 gene caused the FDS phenotype in a dominant mode of inheritance. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0541-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jørgen S Agerholm
- Department of Clinical Veterinary Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, 1870, Frederiksberg C, DK, Denmark.
| | - Fintan J McEvoy
- Department of Clinical Veterinary Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, 1870, Frederiksberg C, DK, Denmark
| | - Steffen Heegaard
- Department of Pathology, Rigshospitalet, University of Copenhagen, Frederik V's Vej 11, 2100, Copenhagen Ø, DK, Denmark.,Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen Ø, DK, Denmark
| | - Carole Charlier
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001, Bern, Switzerland
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001, Bern, Switzerland
| |
Collapse
|
9
|
Hofstetter S, Welle M, Gorgas D, Balmer P, Roosje P, Mock T, Meylan M, Jagannathan V, Drögemüller C. A de novo germline mutation of DLX3 in a Brown Swiss calf with tricho-dento-osseus-like syndrome. Vet Dermatol 2017; 28:616-e150. [PMID: 28670783 DOI: 10.1111/vde.12462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVE A novel congenital disorder affecting a calf was observed, and its phenotype and genetic mutation identified. ANIMAL A six-month-old female Brown Swiss calf. METHODS Diagnostic investigation and whole genome sequencing of a case parent trio was performed. RESULTS The calf had a dull kinky coat with mild hypotrichosis, and teeth with brown staining and enamel defects. Histological examination of skin biopsies was compatible with a follicular dysplasia. Radiography and computed tomography revealed thickening of the skull bones and large pulp cavities with a marked thinning of enamel affecting all teeth. A de novo germline mutation affecting the distal-less homeobox gene (DLX3) was identified. The 10 bp frameshift mutation in exon 3 of the bovine DLX3 gene is predicted to replace the second C-terminal transactivation domain of the wild-type protein by a recoded peptide of 99 amino acids without any sequence similarity. CONCLUSION AND CLINICAL IMPORTANCE A causative mutation for a sporadic phenotype resembling human tricho-dento-osseous syndrome was identified after detection of a de novo germline mutation in the DLX3 gene.
Collapse
Affiliation(s)
- Sonja Hofstetter
- Vetsuisse Faculty, Institute of Genetics, University of Bern, Bremgartenstrasse 109a, Bern, 3001, Switzerland
| | - Monika Welle
- Vetsuisse Faculty, Institute of Animal Pathology, University of Bern, Länggassstrasse 122, Bern, 3001, Switzerland.,DermFocus, University of Bern, Bremgartenstrasse 109a, Bern, 3001, Switzerland
| | - Daniela Gorgas
- Vetsuisse Faculty, Division of Radiology, Department of Clinical Veterinary Medicine, University of Bern, Länggassstrasse 128, Bern, 3001, Switzerland
| | - Pierre Balmer
- DermFocus, University of Bern, Bremgartenstrasse 109a, Bern, 3001, Switzerland.,Vetsuisse Faculty, Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, University of Bern, Länggassstrasse 128, Bern, 3001, Switzerland
| | - Petra Roosje
- DermFocus, University of Bern, Bremgartenstrasse 109a, Bern, 3001, Switzerland.,Vetsuisse Faculty, Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, University of Bern, Länggassstrasse 128, Bern, 3001, Switzerland
| | - Thomas Mock
- Vetsuisse Faculty, Clinic for Ruminants, University of Bern, Bremgartenstrasse 109a, Bern, 3012, Switzerland
| | - Mireille Meylan
- Vetsuisse Faculty, Clinic for Ruminants, University of Bern, Bremgartenstrasse 109a, Bern, 3012, Switzerland
| | - Vidhya Jagannathan
- Vetsuisse Faculty, Institute of Genetics, University of Bern, Bremgartenstrasse 109a, Bern, 3001, Switzerland
| | - Cord Drögemüller
- Vetsuisse Faculty, Institute of Genetics, University of Bern, Bremgartenstrasse 109a, Bern, 3001, Switzerland
| |
Collapse
|
10
|
An Intronic MBTPS2 Variant Results in a Splicing Defect in Horses with Brindle Coat Texture. G3-GENES GENOMES GENETICS 2016; 6:2963-70. [PMID: 27449517 PMCID: PMC5015953 DOI: 10.1534/g3.116.032433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We investigated a family of horses exhibiting irregular vertical stripes in their hair coat texture along the neck, back, hindquarters, and upper legs. This phenotype is termed “brindle” by horse breeders. We propose the term “brindle 1 (BR1)” for this specific form of brindle. In some BR1 horses, the stripes were also differentially pigmented. Pedigree analyses were suggestive of a monogenic X-chromosomal semidominant mode of inheritance. Haplotype analyses identified a 5 Mb candidate region on chromosome X. Whole genome sequencing of four BR1 and 60 nonbrindle horses identified 61 private variants in the critical interval, none of them located in an exon of an annotated gene. However, one of the private variants was close to an exon/intron boundary in intron 10 of the MBTPS2 gene encoding the membrane bound transcription factor peptidase, site 2 (c.1437+4T>C). Different coding variants in this gene lead to three related genodermatoses in human patients. We therefore analyzed MBTPS2 transcripts in skin, and identified an aberrant transcript in a BR1 horse, which lacked the entire exon 10 and parts of exon 11. The MBTPS2:c1437+4T>C variant showed perfect cosegregation with the brindle phenotype in the investigated family, and was absent from 457 control horses of diverse breeds. Altogether, our genetic data, and previous knowledge on MBTPS2 function in the skin, suggest that the identified MBTPS2 intronic variant leads to partial exon skipping, and causes the BR1 phenotype in horses.
Collapse
|
11
|
Agerholm JS, McEvoy FJ, Menzi F, Jagannathan V, Drögemüller C. A CHRNB1 frameshift mutation is associated with familial arthrogryposis multiplex congenita in Red dairy cattle. BMC Genomics 2016; 17:479. [PMID: 27364156 PMCID: PMC4929742 DOI: 10.1186/s12864-016-2832-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bovine arthrogryposis multiplex congenita (AMC) is a syndromic term for a congenital condition characterized by multiple joint contractures. Rare inherited forms of bovine AMC have been reported in different breeds. For AMC in Angus cattle a causative genomic deletion encompassing the agrin (AGRN) gene, encoding an essential neural regulator that induces the aggregation of acetylcholine receptors (AChRs), is known. In 2015, three genetically related cases of generalized AMC affecting Red dairy calves were diagnosed in Denmark. RESULTS The family history of three affected calves suggested an autosomal recessive inheritance. Single nucleotide polymorphism (SNP) genotyping showed a single genomic region of extended homozygosity of 21.5 Mb on chromosome 19. Linkage analysis revealed a maximal parametric LOD score of 1.8 at this region. By whole genome re-sequencing of the three cases, two private homozygous non-synonymous variants were detected in the critical interval. Both variants, located in the myosin phosphatase Rho interacting protein (MPRIP) and the cholinergic receptor nicotinic beta 1 subunit gene (CHRNB1), were perfectly associated with the AMC phenotype. Previously described CHRNB1 variants in humans lead to a congenital myasthenic syndrome with impaired neuromuscular transmission. The cattle variant represents a single base deletion in the first exon of CHRNB1 (c.55delG) introducing a premature stop codon (p.Ala19Profs47*) in the second exon, truncating 96 % of the protein. CONCLUSIONS This study provides the first phenotypically and genetically characterized example of a bovine AMC phenotype that represents an inherited neuromuscular disorder corresponding to human congenital myasthenic syndrome. The identified CHRNB1 loss of function variant is predicted to have a deleterious effect on fetal AChR function, which could explain the lethal phenotype reported in this study. The identification of this candidate causative mutation thus widens the known phenotypic spectrum of CHRNB1 mutations and enables selection against this pathogenic variant in Red dairy cattle.
Collapse
Affiliation(s)
- Jørgen S Agerholm
- Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 68, Frederiksberg C, DK-1870, Denmark.
| | - Fintan J McEvoy
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, Frederiksberg C, DK-1870, Denmark
| | - Fiona Menzi
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, Bern, 3001, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, Bern, 3001, Switzerland
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, Bern, 3001, Switzerland
| |
Collapse
|
12
|
Agerholm JS, Menzi F, McEvoy FJ, Jagannathan V, Drögemüller C. Lethal chondrodysplasia in a family of Holstein cattle is associated with a de novo splice site variant of COL2A1. BMC Vet Res 2016; 12:100. [PMID: 27296271 PMCID: PMC4906884 DOI: 10.1186/s12917-016-0739-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/07/2016] [Indexed: 12/29/2022] Open
Abstract
Background Lethal chondrodysplasia (bulldog syndrome) is a well-known congenital syndrome in cattle and occurs sporadically in many breeds. In 2015, it was noticed that about 12 % of the offspring of the phenotypically normal Danish Holstein sire VH Cadiz Captivo showed chondrodysplasia resembling previously reported bulldog calves. Pedigree analysis of affected calves did not display obvious inbreeding to a common ancestor, suggesting the causative allele was not a rare recessive. The normal phenotype of the sire suggested a dominant inheritance with incomplete penetrance or a mosaic mutation. Results Three malformed calves were examined by necropsy, histopathology, radiology, and computed tomography scanning. These calves were morphologically similar and displayed severe disproportionate dwarfism and reduced body weight. The syndrome was characterized by shortening and compression of the body due to reduced length of the spine and the long bones of the limbs. The vicerocranium had severe dysplasia and palatoschisis. The bones had small irregular diaphyses and enlarged epiphyses consisting only of chondroid tissue. The sire and a total of four affected half-sib offspring and their dams were genotyped with the BovineHD SNP array to map the defect in the genome. Significant genetic linkage was obtained for several regions of the bovine genome including chromosome 5 where whole genome sequencing of an affected calf revealed a COL2A1 point mutation (g.32473300 G > A). This private sequence variant was predicted to affect splicing as it altered the conserved splice donor sequence GT at the 5’-end of COL2A1 intron 36, which was changed to AT. All five available cases carried the mutant allele in heterozygous state and all five dams were homozygous wild type. The sire VH Cadiz Captivo was shown to be a gonadal and somatic mosaic as assessed by the presence of the mutant allele at levels of about 5 % in peripheral blood and 15 % in semen. Conclusions The phenotypic and genetic findings are comparable to a previously reported COL2A1 missense mutation underlying lethal chondrodysplasia in the offspring of a mosaic French Holstein sire (Igale Masc). The identified independent spontaneous splice site variant in COL2A1 most likely caused chondrodysplasia and must have occurred during the early foetal development of the sire. This study provides a first example of a dominant COL2A1 splice site variant as candidate causal mutation of a severe lethal chondrodysplasia phenotype. Germline mosaicism is a relatively frequent mechanism in the origin of genetic disorders and explains the prevalence of a certain fraction of affected offspring. Paternal dominant de novo mutations are a risk in cattle breeding, especially because the ratio of defective offspring may be very high and be associated with significant animal welfare problems. Electronic supplementary material The online version of this article (doi:10.1186/s12917-016-0739-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jørgen S Agerholm
- Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 68, Frederiksberg C, DK-1870, Denmark.
| | - Fiona Menzi
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, Bern, CH-3001, Switzerland
| | - Fintan J McEvoy
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, Frederiksberg C, DK-1870, Denmark
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, Bern, CH-3001, Switzerland
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, Bern, CH-3001, Switzerland
| |
Collapse
|