1
|
Tan YR, Roan HY, Chen CH. Zebrafish tailfin as an in vivo model for capturing tissue-scale cell dynamics. Semin Cell Dev Biol 2025; 166:29-35. [PMID: 39724824 DOI: 10.1016/j.semcdb.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
The intricate control of collective cell dynamics is crucial for enabling organismic development and tissue regeneration. Despite the availability of various in vitro and in vivo models, studies on tissue-scale cell dynamics and associated emergent properties in living systems remain methodically challenging. Here, we describe key advantages of using the adult zebrafish tailfin (caudal fin) as a robust in vivo model for dissecting millimeter-scale collective cell dynamics during regeneration and wound healing in a complex tissue. For researchers considering this model system, we briefly introduce the tailfin anatomy, as well as available transgenic reporter tools and live-imaging setups that may be utilized to study epidermal cell behaviors. To highlight the unique strengths of the zebrafish tailfin model, we present an example project that was made possible by techniques for tracking cell dynamics at a millimeter scale with single-cell resolution in live animals. Finally, we discuss the research directions at the interface of collective cell dynamics and regenerative biology that most excite us and can be examined using the tailfin model.
Collapse
Affiliation(s)
- Yue Rong Tan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsiao-Yuh Roan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
2
|
Ortega Granillo A, Zamora D, Schnittker RR, Scott AR, Spluga A, Russell J, Brewster CE, Ross EJ, Acheampong DA, Zhang N, Ferro K, Morrison JA, Rubinstein BY, Perera AG, Wang W, Sánchez Alvarado A. Positional information modulates transient regeneration-activated cell states during vertebrate appendage regeneration. iScience 2024; 27:110737. [PMID: 39286507 PMCID: PMC11404194 DOI: 10.1016/j.isci.2024.110737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/18/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Injury is common in the life of organisms. Because the extent of damage cannot be predicted, injured organisms must determine how much tissue needs to be restored. Although it is known that amputation position affects the regeneration speed of appendages, mechanisms conveying positional information remain unclear. We investigated tissue dynamics in regenerating caudal fins of the African killifish (Nothobranchius furzeri) and found position-specific, differential spatial distribution modulation, persistence, and magnitude of proliferation. Single-cell RNA sequencing revealed a transient regeneration-activated cell state (TRACS) in the basal epidermis that is amplified to match a given amputation position and expresses components and modifiers of the extracellular matrix (ECM). Notably, CRISPR-Cas9-mediated deletion of the ECM modifier sequestosome 1 (sqstm1) increased the regenerative capacity of distal injuries, suggesting that regeneration growth rate can be uncoupled from amputation position. We propose that basal epidermis TRACS transduce positional information to the regenerating blastema by remodeling the ECM.
Collapse
Affiliation(s)
| | - Daniel Zamora
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Robert R Schnittker
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Allison R Scott
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Alessia Spluga
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Jonathon Russell
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Carolyn E Brewster
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Eric J Ross
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Daniel A Acheampong
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Ning Zhang
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Kevin Ferro
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Jason A Morrison
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Boris Y Rubinstein
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Anoja G Perera
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Wei Wang
- National Institute of Biological Sciences, 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
| | | |
Collapse
|
3
|
Santoso F, De Leon MP, Kao WC, Chu WC, Roan HY, Lee GH, Tang MJ, Cheng JY, Chen CH. Appendage-resident epithelial cells expedite wound healing response in adult zebrafish. Curr Biol 2024; 34:3603-3615.e4. [PMID: 39019037 DOI: 10.1016/j.cub.2024.06.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/10/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Adult zebrafish are able to heal large-sized cutaneous wounds in hours with little to no scarring. This rapid re-epithelialization is crucial for preventing infection and jumpstarting the subsequent regeneration of damaged tissues. Despite significant progress in understanding this process, it remains unclear how vast numbers of epithelial cells are orchestrated on an organismic scale to ensure the timely closure of millimeter-sized wounds. Here, we report an unexpected role of adult zebrafish appendages (fins) in accelerating the re-epithelialization process. Through whole-body monitoring of single-cell dynamics in live animals, we found that fin-resident epithelial cells (FECs) are highly mobile and migrate to cover wounds in nearby body regions. Upon injury, FECs readily undergo organ-level mobilization, allowing for coverage of body surfaces of up to 4.78 mm2 in less than 8 h. Intriguingly, long-term fate-tracking experiments revealed that the migratory FECs are not short-lived at the wound site; instead, the cells can persist on the body surface for more than a year. Our experiments on "fin-less" and "fin-gaining" individuals demonstrated that the fin structures are not only capable of promoting rapid re-epithelialization but are also necessary for the process. We further found that fin-enriched extracellular matrix laminins promote the active migration of FECs by facilitating lamellipodia formation. These findings lead us to conclude that appendage structures in regenerative vertebrates, such as fins, may possess a previously unrecognized function beyond serving as locomotor organs. The appendages may also act as a massive reservoir of healing cells, which speed up wound closure and tissue repair.
Collapse
Affiliation(s)
- Fiorency Santoso
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Marco P De Leon
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Chen Kao
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Chen Chu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsiao-Yuh Roan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Gang-Hui Lee
- Department of Physiology, Medical College, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Jer Tang
- Department of Physiology, Medical College, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Ji-Yen Cheng
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
4
|
Ando K, Ou J, Thompson JD, Welsby J, Bangru S, Shen J, Wei X, Diao Y, Poss KD. A screen for regeneration-associated silencer regulatory elements in zebrafish. Dev Cell 2024; 59:676-691.e5. [PMID: 38290519 PMCID: PMC10939760 DOI: 10.1016/j.devcel.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/03/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
Regeneration involves gene expression changes explained in part by context-dependent recruitment of transcriptional activators to distal enhancers. Silencers that engage repressive transcriptional complexes are less studied than enhancers and more technically challenging to validate, but they potentially have profound biological importance for regeneration. Here, we identified candidate silencers through a screening process that examined the ability of DNA sequences to limit injury-induced gene expression in larval zebrafish after fin amputation. A short sequence (s1) on chromosome 5 near several genes that reduce expression during adult fin regeneration could suppress promoter activity in stable transgenic lines and diminish nearby gene expression in knockin lines. High-resolution analysis of chromatin organization identified physical associations of s1 with gene promoters occurring preferentially during fin regeneration, and genomic deletion of s1 elevated the expression of these genes after fin amputation. Our study provides methods to identify "tissue regeneration silencer elements" (TRSEs) with the potential to reduce unnecessary or deleterious gene expression during regeneration.
Collapse
Affiliation(s)
- Kazunori Ando
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jianhong Ou
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - John D Thompson
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - John Welsby
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sushant Bangru
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jingwen Shen
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaolin Wei
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yarui Diao
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kenneth D Poss
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
5
|
Cudak N, López-Delgado AC, Rost F, Kurth T, Lesche M, Reinhardt S, Dahl A, Rulands S, Knopf F. Compartmentalization and synergy of osteoblasts drive bone formation in the regenerating fin. iScience 2024; 27:108841. [PMID: 38318374 PMCID: PMC10838958 DOI: 10.1016/j.isci.2024.108841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Zebrafish regenerate their fins which involves a component of cell plasticity. It is currently unclear how regenerate cells divide labor to allow for appropriate growth and patterning. Here, we studied lineage relationships of fluorescence-activated cell sorting-enriched epidermal, bone-forming (osteoblast), and (non-osteoblast) blastemal fin regenerate cells by single-cell RNA sequencing, lineage tracing, targeted osteoblast ablation, and electron microscopy. Most osteoblasts in the outgrowing regenerate derive from osterix+ osteoblasts, while mmp9+ cells reside at segment joints. Distal blastema cells contribute to distal osteoblast progenitors, suggesting compartmentalization of the regenerating appendage. Ablation of osterix+ osteoblasts impairs segment joint and bone matrix formation and decreases regenerate length which is partially compensated for by distal regenerate cells. Our study characterizes expression patterns and lineage relationships of rare fin regenerate cell populations, indicates inherent detection and compensation of impaired regeneration, suggests variable dependence on growth factor signaling, and demonstrates zonation of the elongating fin regenerate.
Collapse
Affiliation(s)
- Nicole Cudak
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany
- Center for Healthy Aging, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Alejandra Cristina López-Delgado
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany
- Center for Healthy Aging, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Fabian Rost
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, Dresden, Germany
| | - Thomas Kurth
- Core Facility Electron Microscopy and Histology, Technology Platform, Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, Dresden, Germany
| | - Mathias Lesche
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, Dresden, Germany
| | - Susanne Reinhardt
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, Dresden, Germany
| | - Andreas Dahl
- DRESDEN-concept Genome Center, DFG NGS Competence Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, Dresden, Germany
| | - Steffen Rulands
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Ludwig-Maximilians-Universität München, Arnold-Sommerfeld-Center for Theoretical Physics, München, Germany
| | - Franziska Knopf
- CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany
- Center for Healthy Aging, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
6
|
Jackson A, Lin SJ, Jones EA, Chandler KE, Orr D, Moss C, Haider Z, Ryan G, Holden S, Harrison M, Burrows N, Jones WD, Loveless M, Petree C, Stewart H, Low K, Donnelly D, Lovell S, Drosou K, Varshney GK, Banka S. Clinical, genetic, epidemiologic, evolutionary, and functional delineation of TSPEAR-related autosomal recessive ectodermal dysplasia 14. HGG ADVANCES 2023; 4:100186. [PMID: 37009414 PMCID: PMC10064225 DOI: 10.1016/j.xhgg.2023.100186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/27/2023] [Indexed: 06/11/2023] Open
Abstract
TSPEAR variants cause autosomal recessive ectodermal dysplasia (ARED) 14. The function of TSPEAR is unknown. The clinical features, the mutation spectrum, and the underlying mechanisms of ARED14 are poorly understood. Combining data from new and previously published individuals established that ARED14 is primarily characterized by dental anomalies such as conical tooth cusps and hypodontia, like those seen in individuals with WNT10A-related odontoonychodermal dysplasia. AlphaFold-predicted structure-based analysis showed that most of the pathogenic TSPEAR missense variants likely destabilize the β-propeller of the protein. Analysis of 100000 Genomes Project (100KGP) data revealed multiple founder TSPEAR variants across different populations. Mutational and recombination clock analyses demonstrated that non-Finnish European founder variants likely originated around the end of the last ice age, a period of major climatic transition. Analysis of gnomAD data showed that the non-Finnish European population TSPEAR gene-carrier rate is ∼1/140, making it one of the commonest AREDs. Phylogenetic and AlphaFold structural analyses showed that TSPEAR is an ortholog of drosophila Closca, an extracellular matrix-dependent signaling regulator. We, therefore, hypothesized that TSPEAR could have a role in enamel knot, a structure that coordinates patterning of developing tooth cusps. Analysis of mouse single-cell RNA sequencing (scRNA-seq) data revealed highly restricted expression of Tspear in clusters representing enamel knots. A tspeara -/-;tspearb -/- double-knockout zebrafish model recapitulated the clinical features of ARED14 and fin regeneration abnormalities of wnt10a knockout fish, thus suggesting interaction between tspear and wnt10a. In summary, we provide insights into the role of TSPEAR in ectodermal development and the evolutionary history, epidemiology, mechanisms, and consequences of its loss of function variants.
Collapse
Affiliation(s)
- Adam Jackson
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Sheng-Jia Lin
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Elizabeth A. Jones
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Kate E. Chandler
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - David Orr
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Celia Moss
- Department of Dermatology, Birmingham Children’s Hospital, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Zahra Haider
- Department of Dermatology, Birmingham Children’s Hospital, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Gavin Ryan
- West Midlands Regional Genetics Laboratory, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Simon Holden
- Clinical Genetics, Addenbrooke’s Hospital, Cambridge, UK
| | - Mike Harrison
- Department of Pediatric Dentistry, Guy’s and St Thomas' Dental Institute, London, UK
| | - Nigel Burrows
- Department of Dermatology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Wendy D. Jones
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children, Great Ormond Street NHS Foundation Trust, London, UK
| | - Mary Loveless
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Cassidy Petree
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Karen Low
- Department of Clinical Genetics, St Michael’s Hospital, Bristol, UK
| | - Deirdre Donnelly
- Department of Genetic Medicine, Belfast HSC Trust, Lisburn Road, Belfast, UK
| | - Simon Lovell
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Konstantina Drosou
- Department of Earth and Environmental Sciences, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 99 Oxford Road, Manchester, UK
| | - Gaurav K. Varshney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| |
Collapse
|
7
|
Osorio-Méndez D, Miller A, Begeman IJ, Kurth A, Hagle R, Rolph D, Dickson AL, Chen CH, Halloran M, Poss KD, Kang J. Voltage-gated sodium channel scn8a is required for innervation and regeneration of amputated adult zebrafish fins. Proc Natl Acad Sci U S A 2022; 119:e2200342119. [PMID: 35867745 PMCID: PMC9282381 DOI: 10.1073/pnas.2200342119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/10/2022] [Indexed: 01/09/2023] Open
Abstract
Teleost fishes and urodele amphibians can regenerate amputated appendages, whereas this ability is restricted to digit tips in adult mammals. One key component of appendage regeneration is reinnervation of the wound area. However, how innervation is regulated in injured appendages of adult vertebrates has seen limited research attention. From a forward genetics screen for temperature-sensitive defects in zebrafish fin regeneration, we identified a mutation that disrupted regeneration while also inducing paralysis at the restrictive temperature. Genetic mapping and complementation tests identify a mutation in the major neuronal voltage-gated sodium channel (VGSC) gene scn8ab. Conditional disruption of scn8ab impairs early regenerative events, including blastema formation, but does not affect morphogenesis of established regenerates. Whereas scn8ab mutations reduced neural activity as expected, they also disrupted axon regrowth and patterning in fin regenerates, resulting in hypoinnervation. Our findings indicate that the activity of VGSCs plays a proregenerative role by promoting innervation of appendage stumps.
Collapse
Affiliation(s)
- Daniel Osorio-Méndez
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - Andrew Miller
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53705
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| | - Ian J. Begeman
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - Andrew Kurth
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - Ryan Hagle
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - Daniela Rolph
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - Amy L. Dickson
- Duke Regeneration Center, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Mary Halloran
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53705
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| | - Kenneth D. Poss
- Duke Regeneration Center, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| |
Collapse
|
8
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
9
|
Sehring I, Weidinger G. Zebrafish Fin: Complex Molecular Interactions and Cellular Mechanisms Guiding Regeneration. Cold Spring Harb Perspect Biol 2022; 14:a040758. [PMID: 34649924 PMCID: PMC9248819 DOI: 10.1101/cshperspect.a040758] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The zebrafish caudal fin has become a popular model to study cellular and molecular mechanisms of regeneration due to its high regenerative capacity, accessibility for experimental manipulations, and relatively simple anatomy. The formation of a regenerative epidermis and blastema are crucial initial events and tightly regulated. Both the regenerative epidermis and the blastema are highly organized structures containing distinct domains, and several signaling pathways regulate the formation and interaction of these domains. Bone is the major tissue regenerated from the progenitor cells of the blastema. Several cellular mechanisms can provide source cells for blastemal (pre-)osteoblasts, including dedifferentiation of differentiated osteoblasts and de novo formation from other cell types, providing intriguing examples of cellular plasticity. In recent years, omics analyses and single-cell approaches have elucidated genetic and epigenetic regulation, increasing our knowledge of the surprisingly complex coordination of various mechanisms to achieve successful restoration of a seemingly simple structure.
Collapse
Affiliation(s)
- Ivonne Sehring
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
10
|
Sun J, Peterson EA, Jiao C, Chen X, Zhao Y, Wang J. Zebrafish heart regeneration after coronary dysfunction-induced cardiac damage. Dev Biol 2022; 487:57-66. [PMID: 35490764 PMCID: PMC11017783 DOI: 10.1016/j.ydbio.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/03/2022]
Abstract
Over the past 20 years, various zebrafish injury models demonstrated efficient heart regeneration after cardiac tissue loss. However, no established coronary vessel injury methods exist in the zebrafish model, despite coronary endothelial dysfunction occurring in most patients with acute coronary syndrome. This is due to difficulties performing surgery on small coronary vessels and a lack of genetic tools to precisely manipulate coronary cells in zebrafish. We determined that the Notch ligand gene deltaC regulatory sequences drive gene expression in zebrafish coronary endothelial cells, enabling us to overcome these obstacles. We created a deltaC fluorescent reporter line and visualized robust coronary growth during heart development and regeneration. Importantly, this reporter facilitated the visualization of coronary growth without an endocardial background. Moreover, we visualized robust coronary growth on the surface of juvenile hearts and regrowth in the wounded area of adult hearts ex vivo. With this approach, we observed growth inhibition by reported vascular growth antagonists of the VEGF, EGF and Notch signaling pathways. Furthermore, we established a coronary genetic ablation system and observed that severe coronary endothelial cell loss resulted in fish death, whereas fish survived mild coronary cell loss. Coronary cell depletion triggered regenerative responses, which resulted in the restoration of damaged cardiac tissues within several weeks. Overall, our work demonstrated the efficacy of using deltaC regulatory elements for high-resolution visualization of the coronary endothelium; screening small molecules for coronary growth effects; and revealed complete recovery in adult zebrafish after coronary-induced heart damage.
Collapse
Affiliation(s)
- Jisheng Sun
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Elizabeth A Peterson
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Cheng Jiao
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Xin Chen
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Yun Zhao
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jinhu Wang
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
11
|
Sehring IM, Mohammadi HF, Haffner-Luntzer M, Ignatius A, Huber-Lang M, Weidinger G. Zebrafish fin regeneration involves generic and regeneration-specific osteoblast injury responses. eLife 2022; 11:77614. [PMID: 35748539 PMCID: PMC9259016 DOI: 10.7554/elife.77614] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Successful regeneration requires the coordinated execution of multiple cellular responses to injury. In amputated zebrafish fins, mature osteoblasts dedifferentiate, migrate towards the injury and form proliferative osteogenic blastema cells. We show that osteoblast migration is preceded by cell elongation and alignment along the proximodistal axis, which require actomyosin, but not microtubule turnover. Surprisingly, osteoblast dedifferentiation and migration can be uncoupled. Using pharmacological and genetic interventions, we found that NF-ĸB and retinoic acid signalling regulate dedifferentiation without affecting migration, while the complement system and actomyosin dynamics affect migration but not dedifferentiation. Furthermore, by removing bone at two locations within a fin ray, we established an injury model containing two injury sites. We found that osteoblasts dedifferentiate at and migrate towards both sites, while accumulation of osteogenic progenitor cells and regenerative bone formation only occur at the distal-facing injury. Together, these data indicate that osteoblast dedifferentiation and migration represent generic injury responses that are differentially regulated and can occur independently of each other and of regenerative growth. We conclude that successful fin bone regeneration appears to involve the coordinated execution of generic and regeneration-specific responses of osteoblasts to injury.
Collapse
Affiliation(s)
| | | | | | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Hospital Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology (ITI), University Hospital Ulm, Ulm, Germany
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
| |
Collapse
|
12
|
Roan HY, Tseng TL, Chen CH. Whole-body clonal mapping identifies giant dominant clones in zebrafish skin epidermis. Development 2021; 148:272161. [PMID: 34463754 DOI: 10.1242/dev.199669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022]
Abstract
Skin expansion during development is predominantly driven by growth of basal epithelial cell (BEC)-derived clonal populations, which often display varied sizes and shapes. However, little is known about the causes of clonal heterogeneity and the maximum size to which a single clone can grow. Here, we created a zebrafish model, basebow, for capturing clonal growth behavior in the BEC population on a whole-body, centimeter scale. By tracking 222 BECs over the course of a 28-fold expansion of body surface area, we determined that most BECs survive and grow clonal populations with an average size of 0.013 mm2. An extensive survey of 742 sparsely labeled BECs further revealed that giant dominant clones occasionally arise on specific body regions, covering up to 0.6% of the surface area. Additionally, a growth-induced extracellular matrix component, Lamb1a, mediates clonal growth in a cell-autonomous manner. Altogether, our findings demonstrate how clonal heterogeneity and clonal dominance may emerge to enable post-embryonic growth of a vertebrate organ, highlighting key cellular mechanisms that may only become evident when visualizing single cell behavior at the whole-animal level.
Collapse
Affiliation(s)
- Hsiao-Yuh Roan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Tzu-Lun Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
13
|
Tseng TL, Wang YT, Tsao CY, Ke YT, Lee YC, Hsu HJ, Poss KD, Chen CH. The RNA helicase Ddx52 functions as a growth switch in juvenile zebrafish. Development 2021; 148:271093. [PMID: 34323273 DOI: 10.1242/dev.199578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022]
Abstract
Vertebrate animals usually display robust growth trajectories during juvenile stages, and reversible suspension of this growth momentum by a single genetic determinant has not been reported. Here, we report a single genetic factor that is essential for juvenile growth in zebrafish. Using a forward genetic screen, we recovered a temperature-sensitive allele, pan (after Peter Pan), that suspends whole-organism growth at juvenile stages. Remarkably, even after growth is halted for a full 8-week period, pan mutants are able to resume a robust growth trajectory after release from the restrictive temperature, eventually growing into fertile adults without apparent adverse phenotypes. Positional cloning and complementation assays revealed that pan encodes a probable ATP-dependent RNA helicase (DEAD-Box Helicase 52; ddx52) that maintains the level of 47S precursor ribosomal RNA. Furthermore, genetic silencing of ddx52 and pharmacological inhibition of bulk RNA transcription similarly suspend the growth of flies, zebrafish and mice. Our findings reveal evidence that safe, reversible pauses of juvenile growth can be mediated by targeting the activity of a single gene, and that its pausing mechanism has high evolutionary conservation.
Collapse
Affiliation(s)
- Tzu-Lun Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ying-Ting Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chang-Yu Tsao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Teng Ke
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Ching Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hwei-Jan Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Kenneth D Poss
- Department of Cell Biology, Regeneration Next, Duke University Medical Center, Durham, NC 27710, USA
| | - Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
14
|
Hou Q, Chen H, Liu Q, Yan X. FGF10 Attenuates Experimental Traumatic Brain Injury through TLR4/MyD88/NF-κB Pathway. Cells Tissues Organs 2021; 209:248-256. [PMID: 33440393 DOI: 10.1159/000511381] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/27/2020] [Indexed: 11/19/2022] Open
Abstract
Traumatic brain injury (TBI) can induce neuronal apoptosis and neuroinflammation, resulting in substantial neuronal damage and behavioral disorders. Fibroblast growth factors (FGFs) have been shown to be critical mediators in tissue repair. However, the role of FGF10 in experimental TBI remains unknown. In this study, mice with TBI were established via weight-loss model and validated by increase of modified neurological severity scores (mNSS) and brain water content. Secondly, FGF10 levels were elevated in mice after TBI, whereas intraventricular injection of Ad-FGF10 decreased mNSS score and brain water content, indicating the remittance of neurological deficit and cerebral edema in TBI mice. In addition, neuronal damage could also be ameliorated by stereotactic injection of Ad-FGF10. Overexpression of FGF10 increased protein expression of Bcl-2, while it decreased Bax and cleaved caspase-3/PARP, and improved neuronal apoptosis in TBI mice. In addition, Ad-FGF10 relieved neuroinflammation induced by TBI and significantly reduced the level of interleukin 1β/6, tumor necrosis factor α, and monocyte chemoattractant protein-1. Moreover, Ad-FGF10 injection decreased the protein expression level of Toll-like receptor 4 (TLR4), MyD88, and phosphorylation of NF-κB (p-NF-κB), suggesting the inactivation of the TLR4/MyD88/NF-κB pathway. In conclusion, overexpression of FGF10 could ameliorate neurological deficit, neuronal apoptosis, and neuroinflammation through inhibition of the TLR4/MyD88/NF-κB pathway, providing a potential therapeutic strategy for brain injury in the future.
Collapse
Affiliation(s)
- Qinhan Hou
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou City, China
| | - Hongmou Chen
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou City, China,
| | - Quan Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou City, China
| | - Xianlei Yan
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou City, China
| |
Collapse
|
15
|
Mishra R, Sehring I, Cederlund M, Mulaw M, Weidinger G. NF-κB Signaling Negatively Regulates Osteoblast Dedifferentiation during Zebrafish Bone Regeneration. Dev Cell 2020; 52:167-182.e7. [DOI: 10.1016/j.devcel.2019.11.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 09/27/2019] [Accepted: 11/21/2019] [Indexed: 01/08/2023]
|
16
|
Genetic Reprogramming of Positional Memory in a Regenerating Appendage. Curr Biol 2019; 29:4193-4207.e4. [PMID: 31786062 DOI: 10.1016/j.cub.2019.10.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/01/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022]
Abstract
Certain vertebrates such as salamanders and zebrafish are able to regenerate complex tissues (e.g., limbs and fins) with remarkable fidelity. However, how positional information of the missing structure is recalled by appendage stump cells has puzzled researchers for centuries. Here, we report that sizing information for adult zebrafish tailfins is encoded within proliferating blastema cells during a critical period of regeneration. Using a chemical mutagenesis screen, we identified a temperature-sensitive allele of the gene encoding DNA polymerase alpha subunit 2 (pola2) that disrupts fin regeneration in zebrafish. Temperature shift assays revealed a 48-h window of regeneration, during which positional identities could be disrupted in pola2 mutants, leading to regeneration of miniaturized appendages. These fins retained memory of the new size in subsequent rounds of amputation and regeneration. Similar effects were observed upon transient genetic or pharmacological disruption of progenitor cell proliferation after plucking of zebrafish scales or head or tail amputation in amphioxus and annelids. Our results provide evidence that positional information in regenerating tissues is not hardwired but malleable, based on regulatory mechanisms that appear to be evolutionarily conserved across distantly related phyla.
Collapse
|
17
|
Recent advancements in understanding fin regeneration in zebrafish. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e367. [DOI: 10.1002/wdev.367] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/07/2019] [Accepted: 10/23/2019] [Indexed: 11/07/2022]
|
18
|
Cox BD, Yun MH, Poss KD. Can laboratory model systems instruct human limb regeneration? Development 2019; 146:146/20/dev181016. [PMID: 31578190 DOI: 10.1242/dev.181016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regeneration has fascinated scientists since well before the 20th century revolutions in genetics and molecular biology. The field of regenerative biology has grown steadily over the past decade, incorporating advances in imaging, genomics and genome editing to identify key cell types and molecules involved across many model organisms. Yet for many or most tissues, it can be difficult to predict when and how findings from these studies will advance regenerative medicine. Establishing technologies to stimulate regrowth of a lost or amputated limb with a patterned replicate, as salamanders do routinely, is one of the most challenging directives of tissue regeneration research. Here, we speculate upon what research avenues the field must explore to move closer to this capstone achievement.
Collapse
Affiliation(s)
- Ben D Cox
- Regeneration Next, Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maximina H Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden 01307, Germany .,Max Planck Institute for Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Kenneth D Poss
- Regeneration Next, Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
19
|
Li L, Zhang J, Akimenko MA. Inhibition of mmp13a during zebrafish fin regeneration disrupts fin growth, osteoblasts differentiation, and Laminin organization. Dev Dyn 2019; 249:187-198. [PMID: 31487071 DOI: 10.1002/dvdy.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Matrix metalloproteinases 13 (MMP13) is a potent endopeptidase that regulate cell growth, migration, and extracellular matrix remodeling. However, its role in fin regeneration remains unclear. RESULTS mmp13a expression is strongly upregulated during blastema formation and persists in the distal blastema. mmp13a knockdown via morpholino electroporation impairs regenerative outgrowth by decreasing cell proliferation, which correlates with a downregulation of fgf10a and sall4 expression in the blastema. Laminin distribution in the basement membrane is also affected in mmp13a MO-injected rays. Another impact of mmp13a knockdown is observed in the skeletal elements of the fin rays. Expression of two main components of actinotrichia, Collagen II and Actinodin 1 is highly reduced in mmp13a MO-injected rays leading to highly disorganized actinotrichia pattern. Inhibition of mmp13a strongly affects bone formation as shown by a reduction of Zns5 and sp7 expression and of bone matrix mineralization in rays. These defects are accompanied by a significant increase in apoptosis in mmp13a MO-injected fin regenerates. CONCLUSION Defects of expression of this multifunctional proteinase drastically affects osteoblast differentiation, bone and actinotrichia formation as well as Laminin distribution in the basement membrane of the fin regenerate, suggesting the important role of Mmp13 during the regenerative process.
Collapse
Affiliation(s)
- Li Li
- College of Life Science, Henan Normal University, Xinxiang, Henan, China.,CAREG, University of Ottawa, Ottawa, Ontario, Canada.,Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jing Zhang
- CAREG, University of Ottawa, Ottawa, Ontario, Canada.,Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marie-Andrée Akimenko
- CAREG, University of Ottawa, Ottawa, Ontario, Canada.,Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Ohgo S, Ichinose S, Yokota H, Sato-Maeda M, Shoji W, Wada N. Tissue regeneration during lower jaw restoration in zebrafish shows some features of epimorphic regeneration. Dev Growth Differ 2019; 61:419-430. [PMID: 31468519 DOI: 10.1111/dgd.12625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023]
Abstract
Zebrafish have the ability to regenerate skeletal structures, including the fin, skull roof, and jaw. Although fin regeneration proceeds by epimorphic regeneration, it remains unclear whether this process is involved in other skeletal regeneration in zebrafish. Initially in epimorphic regeneration, the wound epidermis covers the wound surface. Subsequently, the blastema, an undifferentiated mesenchymal mass, forms beneath the epidermis. In the present study, we re-examined the regeneration of the zebrafish lower jaw in detail, and investigated whether epimorphic regeneration is involved in this process. We performed amputation of the lower jaw at two different positions; the proximal level (presence of Meckel's cartilage) and the distal level (absence of Meckel's cartilage). In both manipulations, a blastema-like cellular mass was initially formed. Subsequently, cartilaginous aggregates were formed in this mass. In the proximal amputation, the cartilaginous aggregates were then fused with Meckel's cartilage and remained as a skeletal component of the regenerated jaw, whereas in the distal amputation, the cartilaginous aggregates disappeared as regeneration progressed. Two molecules that were observed during epimorphic regeneration, Laminin and msxb, were expressed in the regenerating lower jaw, although the domain of msxb expression was out of the main plain of the aggregate formation. Administration of an inhibitor of Wnt/β-catenin signaling, a pathway associated with epimorphic regeneration, showed few effects on lower jaw regeneration. Our finding suggests that skeletal regeneration of the lower jaw mainly progresses through tissue regeneration that is dependent on the position in the jaw, and epimorphic regeneration plays an adjunctive role in this regeneration.
Collapse
Affiliation(s)
- Shiro Ohgo
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Sayaka Ichinose
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Hinako Yokota
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Mika Sato-Maeda
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Wataru Shoji
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Naoyuki Wada
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
21
|
Mokalled MH, Poss KD. A Regeneration Toolkit. Dev Cell 2019; 47:267-280. [PMID: 30399333 DOI: 10.1016/j.devcel.2018.10.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/13/2022]
Abstract
The ability of animals to replace injured body parts has been a subject of fascination for centuries. The emerging importance of regenerative medicine has reinvigorated investigations of innate tissue regeneration, and the development of powerful genetic tools has fueled discoveries into how tissue regeneration occurs. Here, we present an overview of the armamentarium employed to probe regeneration in vertebrates, highlighting areas where further methodology advancement will deepen mechanistic findings.
Collapse
Affiliation(s)
- Mayssa H Mokalled
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
22
|
Schmidt JR, Geurtzen K, von Bergen M, Schubert K, Knopf F. Glucocorticoid Treatment Leads to Aberrant Ion and Macromolecular Transport in Regenerating Zebrafish Fins. Front Endocrinol (Lausanne) 2019; 10:674. [PMID: 31636606 PMCID: PMC6787175 DOI: 10.3389/fendo.2019.00674] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022] Open
Abstract
Long-term glucocorticoid administration in patients undergoing immunosuppressive and anti-inflammatory treatment is accompanied by impaired bone formation and increased fracture risk. Furthermore, glucocorticoid treatment can lead to impaired wound healing and altered cell metabolism. Recently, we showed that exposure of zebrafish to the glucocorticoid prednisolone during fin regeneration impacts negatively on the length, bone formation, and osteoblast function of the regenerate. The underlying cellular and molecular mechanisms of impairment, however, remain incompletely understood. In order to further elucidate the anti-regenerative effects of continued glucocorticoid exposure on fin tissues, we performed proteome profiling of fin regenerates undergoing prednisolone treatment, in addition to profiling of homeostatic fin tissue and fins undergoing undisturbed regeneration. By using LC-MS (liquid chromatography-mass spectrometry) we identified more than 6,000 proteins across all tissue samples. In agreement with previous reports, fin amputation induces changes in chromatin structure and extracellular matrix (ECM) composition within the tissue. Notably, prednisolone treatment leads to impaired expression of selected ECM components in the fin regenerate. Moreover, the function of ion transporting ATPases and other proteins involved in macromolecule and vesicular transport mechanisms of the cell appears to be altered by prednisolone treatment. In particular, acidification of membrane-enclosed organelles such as lysosomes is inhibited. Taken together, our data indicate that continued synthetic glucocorticoid exposure in zebrafish deteriorates cellular trafficking processes in the regenerating fin, which interferes with appropriate tissue restoration upon injury.
Collapse
Affiliation(s)
- Johannes R. Schmidt
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| | - Karina Geurtzen
- CRTD—Center for Regenerative Therapies Dresden, Technische Universität (TU) Dresden, Dresden, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
- *Correspondence: Kristin Schubert
| | - Franziska Knopf
- CRTD—Center for Regenerative Therapies Dresden, Technische Universität (TU) Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität (TU) Dresden, Dresden, Germany
- Franziska Knopf
| |
Collapse
|
23
|
Nauroy P, Guiraud A, Chlasta J, Malbouyres M, Gillet B, Hughes S, Lambert E, Ruggiero F. Gene profile of zebrafish fin regeneration offers clues to kinetics, organization and biomechanics of basement membrane. Matrix Biol 2018; 75-76:82-101. [PMID: 30031067 DOI: 10.1016/j.matbio.2018.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022]
Abstract
How some animals regenerate missing body parts is not well understood. Taking advantage of the zebrafish caudal fin model, we performed a global unbiased time-course transcriptomic analysis of fin regeneration. Biostatistics analyses identified extracellular matrix (ECM) as the most enriched gene sets. Basement membranes (BMs) are specialized ECM structures that provide tissues with structural cohesion and serve as a major extracellular signaling platform. While the embryonic formation of BM has been extensively investigated, its regeneration in adults remains poorly studied. We therefore focused on BM gene expression kinetics and showed that it recapitulates many aspects of development. As such, the re-expression of the embryonic col14a1a gene indicated that col14a1a is part of the regeneration-specific program. We showed that laminins and col14a1a genes display similar kinetics and that the corresponding proteins are spatially and temporally controlled during regeneration. Analysis of our CRISPR/Cas9-mediated col14a1a knockout fish showed that collagen XIV-A contributes to timely deposition of laminins. As changes in ECM organization can affect tissue mechanical properties, we analyzed the biomechanics of col14a1a-/- regenerative BM using atomic force microscopy (AFM). Our data revealed a thinner BM accompanied by a substantial increase of the stiffness when compared to controls. Further AFM 3D-reconstructions showed that BM is organized as a checkerboard made of alternation of soft and rigid regions that is compromised in mutants leading to a more compact structure. We conclude that collagen XIV-A transiently acts as a molecular spacer responsible for BM structure and biomechanics possibly by helping laminins integration within regenerative BM.
Collapse
Affiliation(s)
- Pauline Nauroy
- Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, F-69364 Lyon, France
| | - Alexandre Guiraud
- Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, F-69364 Lyon, France
| | - Julien Chlasta
- BioMeca, ENSL, Université de Lyon, 46 allée d'Italie, F-69364 Lyon, France
| | - Marilyne Malbouyres
- Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, F-69364 Lyon, France
| | - Benjamin Gillet
- Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, F-69364 Lyon, France
| | - Sandrine Hughes
- Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, F-69364 Lyon, France
| | - Elise Lambert
- Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, F-69364 Lyon, France
| | - Florence Ruggiero
- Université de Lyon, ENSL, CNRS, Institut de Génomique Fonctionnelle de Lyon, 46 allée d'Italie, F-69364 Lyon, France.
| |
Collapse
|
24
|
Shibata E, Ando K, Murase E, Kawakami A. Heterogeneous fates and dynamic rearrangement of regenerative epidermis-derived cells during zebrafish fin regeneration. Development 2018; 145:dev.162016. [DOI: 10.1242/dev.162016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/20/2018] [Indexed: 01/14/2023]
Abstract
The regenerative epidermis (RE) is a specialized tissue that plays an essential role in tissue regeneration. However, the fate of the RE during and after regeneration is unknown. In this study, we performed Cre-loxP-mediated cell fate tracking and revealed the fates of major population of regenerative epidermis cells that express fibronectin 1b (fn1b) during zebrafish fin regeneration. Our study showed that these RE cells are mainly recruited from the inter-ray epidermis, and that they follow heterogeneous cell fates. Early recruited cells contribute to initial wound healing and soon disappear by apoptosis, while the later recruited cells contribute to the regenerated epidermis. Intriguingly, many of these cells were also expelled from the regenerated tissue by a dynamic caudal movement of the epidermis over time, and in turn the loss of epidermal cells was replenished by a global self-replication of basal and suprabasal cells in fin. De-differentiation of non-basal epidermal cells into the basal epidermal cells did not occur during regeneration. Overall, our study revealed heterogeneous fates of RE cells and a dynamic rearrangement of the epidermis during and after regeneration.
Collapse
Affiliation(s)
- Eri Shibata
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Kazunori Ando
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Emiko Murase
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Atsushi Kawakami
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
25
|
Maddaluno L, Urwyler C, Werner S. Fibroblast growth factors: key players in regeneration and tissue repair. Development 2017; 144:4047-4060. [PMID: 29138288 DOI: 10.1242/dev.152587] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissue injury initiates a complex repair process, which in some organisms can lead to the complete regeneration of a tissue. In mammals, however, the repair of most organs is imperfect and results in scar formation. Both regeneration and repair are orchestrated by a highly coordinated interplay of different growth factors and cytokines. Among the key players are the fibroblast growth factors (FGFs), which control the migration, proliferation, differentiation and survival of different cell types. In addition, FGFs influence the expression of other factors involved in the regenerative response. Here, we summarize current knowledge on the roles of endogenous FGFs in regeneration and repair in different organisms and in different tissues and organs. Gaining a better understanding of these FGF activities is important for appropriate modulation of FGF signaling after injury to prevent impaired healing and to promote organ regeneration in humans.
Collapse
Affiliation(s)
- Luigi Maddaluno
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Corinne Urwyler
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| |
Collapse
|
26
|
Abstract
Understanding how and why animals regenerate complex tissues has the potential to transform regenerative medicine. Here we present an overview of genetic approaches that have recently been applied to dissect mechanisms of regeneration. We describe new advances that relate to central objectives of regeneration biologists researching different tissues and species, focusing mainly on vertebrates. These objectives include defining the cellular sources and key cell behaviors in regenerating tissue, elucidating molecular triggers and brakes for regeneration, and defining the earliest events that control the presence of these molecular factors.
Collapse
Affiliation(s)
- Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA;
- Regeneration Next, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
27
|
Armstrong BE, Henner A, Stewart S, Stankunas K. Shh promotes direct interactions between epidermal cells and osteoblast progenitors to shape regenerated zebrafish bone. Development 2017; 144:1165-1176. [PMID: 28351866 DOI: 10.1242/dev.143792] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/28/2017] [Indexed: 01/08/2023]
Abstract
Zebrafish innately regenerate amputated fins by mechanisms that expand and precisely position injury-induced progenitor cells to re-form tissue of the original size and pattern. For example, cell signaling networks direct osteoblast progenitors (pObs) to rebuild thin cylindrical bony rays with a stereotypical branched morphology. Hedgehog/Smoothened (Hh/Smo) signaling has been variably proposed to stimulate overall fin regenerative outgrowth or promote ray branching. Using a photoconvertible patched2 reporter, we resolve active Hh/Smo output to a narrow distal regenerate zone comprising pObs and adjacent motile basal epidermal cells. This Hh/Smo activity is driven by epidermal Sonic hedgehog a (Shha) rather than Ob-derived Indian hedgehog a (Ihha), which nevertheless functions atypically to support bone maturation. Using BMS-833923, a uniquely effective Smo inhibitor, and high-resolution imaging, we show that Shha/Smo is functionally dedicated to ray branching during fin regeneration. Hh/Smo activation enables transiently divided clusters of Shha-expressing epidermis to escort pObs into similarly split groups. This co-movement likely depends on epidermal cellular protrusions that directly contact pObs only where an otherwise occluding basement membrane remains incompletely assembled. Progressively separated pObs pools then continue regenerating independently to collectively re-form a now branched skeletal structure.
Collapse
Affiliation(s)
- Benjamin E Armstrong
- Institute of Molecular Biology, University of Oregon, 297A Klamath Hall, 1370 Franklin Blvd, Eugene, OR 97403, USA.,Department of Chemistry and Biochemistry, University of Oregon, 297A Klamath Hall, 1370 Franklin Blvd, Eugene, OR 97403, USA
| | - Astra Henner
- Institute of Molecular Biology, University of Oregon, 297A Klamath Hall, 1370 Franklin Blvd, Eugene, OR 97403, USA
| | - Scott Stewart
- Institute of Molecular Biology, University of Oregon, 297A Klamath Hall, 1370 Franklin Blvd, Eugene, OR 97403, USA
| | - Kryn Stankunas
- Institute of Molecular Biology, University of Oregon, 297A Klamath Hall, 1370 Franklin Blvd, Eugene, OR 97403, USA .,Department of Biology, University of Oregon, 297A Klamath Hall, 1370 Franklin Blvd, Eugene, OR 97403, USA
| |
Collapse
|
28
|
Nauroy P, Hughes S, Naba A, Ruggiero F. The in-silico zebrafish matrisome: A new tool to study extracellular matrix gene and protein functions. Matrix Biol 2017; 65:5-13. [PMID: 28739138 DOI: 10.1016/j.matbio.2017.07.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 01/19/2023]
Abstract
Extracellular matrix (ECM) proteins are major components of most tissues and organs. In addition to their crucial role in tissue cohesion and biomechanics, they chiefly regulate various important biological processes during embryonic development, tissue homeostasis and repair. In essence, ECM proteins were defined as secreted proteins that localized in the extracellular space. The characterization of the human and mouse matrisomes provided the first definition of ECM actors by comprehensively listing ECM proteins and classified them into categories. Because zebrafish is becoming a popular model to study ECM biology, we sought to characterize the zebrafish matrisome using an in-silico gene-orthology-based approach. We report the identification of 1002 genes encoding the in-silico zebrafish matrisome. Using independent validations, we provide evidence for the robustness of the orthology-based approach. Moreover, we evaluated the orthology relationships between human and zebrafish genes at the whole-genome and matrisome levels and showed that the different categories of ECM genes are differentially subjected to evolutionary pressure. Last, we illustrate how the zebrafish matrisome list can be employed to annotate big data using the example of a previously published proteomic study of the skeletal ECM. The establishment of the zebrafish matrisome will undoubtedly facilitate the analysis of ECM components in "-omic" data sets.
Collapse
Affiliation(s)
- Pauline Nauroy
- Univ Lyon, Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie, F-69364 Lyon, France
| | - Sandrine Hughes
- Univ Lyon, Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie, F-69364 Lyon, France
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA.
| | - Florence Ruggiero
- Univ Lyon, Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie, F-69364 Lyon, France.
| |
Collapse
|
29
|
Bonar NA, Petersen CP. Integrin suppresses neurogenesis and regulates brain tissue assembly in planarian regeneration. Development 2017; 144:784-794. [PMID: 28126842 DOI: 10.1242/dev.139964] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 12/30/2016] [Indexed: 12/30/2022]
Abstract
Animals capable of adult regeneration require specific signaling to control injury-induced cell proliferation, specification and patterning, but comparatively little is known about how the regeneration blastema assembles differentiating cells into well-structured functional tissues. Using the planarian Schmidtea mediterranea as a model, we identify β1-integrin as a crucial regulator of blastema architecture. β1-integrin(RNAi) animals formed small head blastemas with severe tissue disorganization, including ectopic neural spheroids containing differentiated neurons normally found in distinct organs. By mimicking aspects of normal brain architecture but without normal cell-type regionalization, these spheroids bore a resemblance to mammalian tissue organoids synthesized in vitro We identified one of four planarian integrin-alpha subunits inhibition of which phenocopied these effects, suggesting that a specific receptor controls brain organization through regeneration. Neoblast stem cells and progenitor cells were mislocalized in β1-integrin(RNAi) animals without significantly altered body-wide patterning. Furthermore, tissue disorganization phenotypes were most pronounced in animals undergoing brain regeneration and not homeostatic maintenance or regeneration-induced remodeling of the brain. These results suggest that integrin signaling ensures proper progenitor recruitment after injury, enabling the generation of large-scale tissue organization within the regeneration blastema.
Collapse
Affiliation(s)
- Nicolle A Bonar
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA .,Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
30
|
Grillo M, Konstantinides N, Averof M. Old questions, new models: unraveling complex organ regeneration with new experimental approaches. Curr Opin Genet Dev 2016; 40:23-31. [DOI: 10.1016/j.gde.2016.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
|
31
|
Shibata E, Yokota Y, Horita N, Kudo A, Abe G, Kawakami K, Kawakami A. Fgf signalling controls diverse aspects of fin regeneration. Development 2016; 143:2920-9. [PMID: 27402707 DOI: 10.1242/dev.140699] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/05/2016] [Indexed: 12/18/2022]
Abstract
Studies have shown that fibroblast growth factor (Fgf) signalling is necessary for appendage regeneration, but its exact function and the ligands involved during regeneration have not yet been elucidated. Here, we performed comprehensive expression analyses and identified fgf20a and fgf3/10a as major Fgf ligands in the wound epidermis and blastema, respectively. To reveal the target cells and processes of Fgf signalling, we performed a transplantation experiment of mesenchymal cells that express the dominant-negative Fgf receptor 1 (dnfgfr1) under control of the heat-shock promoter. This mosaic knockdown analysis suggested that Fgf signalling is directly required for fin ray mesenchyme to form the blastema at the early pre-blastema stage and to activate the regenerative cell proliferation at a later post-blastema stage. These results raised the possibility that the early epidermal Fgf20a and the later blastemal Fgf3/10a could be responsible for these respective processes. We demonstrated by gain-of-function analyses that Fgf20a induces the expression of distal blastema marker junbl, and that Fgf3 promotes blastema cell proliferation. Our study highlights that Fgfs in the wound epidermis and blastema have distinct functions to regulate fin regeneration cooperatively.
Collapse
Affiliation(s)
- Eri Shibata
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Yuki Yokota
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Natsumi Horita
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Akira Kudo
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Gembu Abe
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima 411-8540, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima 411-8540, Japan Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, 411-8540, Japan
| | - Atsushi Kawakami
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
32
|
Sehring IM, Jahn C, Weidinger G. Zebrafish fin and heart: what's special about regeneration? Curr Opin Genet Dev 2016; 40:48-56. [PMID: 27351724 DOI: 10.1016/j.gde.2016.05.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 05/22/2016] [Indexed: 01/01/2023]
Abstract
Many organs regenerate well in adult zebrafish, but most research has been directed toward fin and heart regeneration. Cells have been found to remain generally lineage-restricted during regeneration, and proliferative regenerative progenitors can be formed by dedifferentiation from differentiated cells. Recent studies begin to shed light on the molecular underpinnings of differences between development and regeneration. Retinoic acid, BMP and NF-κB signaling are emerging as regulators of cellular dedifferentiation. Reactive oxygen species promote regeneration, and the dynamics of ROS signaling might help explain differences between wound healing and regeneration. Finally, the heart has been added to those organs that require a nerve supply to regenerate, and a trade-off between regeneration and tumor suppression has been proposed to help explain why mammals regenerate poorly.
Collapse
Affiliation(s)
- Ivonne M Sehring
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Christopher Jahn
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|