1
|
Joyce AW, Searle BC. Computational approaches to identify sites of phosphorylation. Proteomics 2024; 24:e2300088. [PMID: 37897210 DOI: 10.1002/pmic.202300088] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Due to their oftentimes ambiguous nature, phosphopeptide positional isomers can present challenges in bottom-up mass spectrometry-based workflows as search engine scores alone are often not enough to confidently distinguish them. Additional scoring algorithms can remedy this by providing confidence metrics in addition to these search results, reducing ambiguity. Here we describe challenges to interpreting phosphoproteomics data and review several different approaches to determine sites of phosphorylation for both data-dependent and data-independent acquisition-based workflows. Finally, we discuss open questions regarding neutral losses, gas-phase rearrangement, and false localization rate estimation experienced by both types of acquisition workflows and best practices for managing ambiguity in phosphosite determination.
Collapse
Affiliation(s)
- Alex W Joyce
- Department of Biomedical Informatics, The Ohio State University Medical Center, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Brian C Searle
- Department of Biomedical Informatics, The Ohio State University Medical Center, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Hadjicharalambous A, Whale AJ, Can G, Skehel JM, Houseley JM, Zegerman P. Checkpoint kinase interaction with DNA polymerase alpha regulates replication progression during stress. Wellcome Open Res 2023; 8:327. [PMID: 37766847 PMCID: PMC10521137 DOI: 10.12688/wellcomeopenres.19617.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 09/29/2023] Open
Abstract
Background: In eukaryotes, replication stress activates a checkpoint response, which facilitates genome duplication by stabilising the replisome. How the checkpoint kinases regulate the replisome remains poorly understood. The aim of this study is to identify new targets of checkpoint kinases within the replisome during replication stress. Methods: Here we use an unbiased biotin proximity-ligation approach in Saccharomyces cerevisiae to identify new interactors and substrates of the checkpoint kinase Rad53 in vivo. Results: From this screen, we identified the replication initiation factor Sld7 as a Rad53 substrate, and Pol1, the catalytic subunit of polymerase a, as a Rad53-interactor. We showed that CDK phosphorylation of Pol1 mediates its interaction with Rad53. Combined with other interactions between Rad53 and the replisome, this Rad53-Pol1 interaction is important for viability and replisome progression during replication stress. Conclusions: Together, we explain how the interactions of Rad53 with the replisome are controlled by both replication stress and the cell cycle, and why these interactions might be important for coordinating the stabilisation of both the leading and lagging strand machineries.
Collapse
Affiliation(s)
| | - Alex J. Whale
- Epigenetics Programme, Babraham Institute, University of Cambridge, Cambridge, England, CB22 3AT, UK
| | - Geylani Can
- Department of Biochemistry, University of Cambridge, Cambridge, England, CB2 1GA, UK
| | - J. Mark Skehel
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, London, England, CB2 0QH, UK
| | - Jonathan M. Houseley
- Epigenetics Programme, Babraham Institute, University of Cambridge, Cambridge, England, CB22 3AT, UK
| | - Philip Zegerman
- Department of Biochemistry, University of Cambridge, Cambridge, England, CB2 1GA, UK
| |
Collapse
|
3
|
The CWI Pathway: A Versatile Toolbox to Arrest Cell-Cycle Progression. J Fungi (Basel) 2021; 7:jof7121041. [PMID: 34947023 PMCID: PMC8704918 DOI: 10.3390/jof7121041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 02/02/2023] Open
Abstract
Cell-signaling pathways are essential for cells to respond and adapt to changes in their environmental conditions. The cell-wall integrity (CWI) pathway of Saccharomyces cerevisiae is activated by environmental stresses, compounds, and morphogenetic processes that compromise the cell wall, orchestrating the appropriate cellular response to cope with these adverse conditions. During cell-cycle progression, the CWI pathway is activated in periods of polarized growth, such as budding or cytokinesis, regulating cell-wall biosynthesis and the actin cytoskeleton. Importantly, accumulated evidence has indicated a reciprocal regulation of the cell-cycle regulatory system by the CWI pathway. In this paper, we describe how the CWI pathway regulates the main cell-cycle transitions in response to cell-surface perturbance to delay cell-cycle progression. In particular, it affects the Start transcriptional program and the initiation of DNA replication at the G1/S transition, and entry and progression through mitosis. We also describe the involvement of the CWI pathway in the response to genotoxic stress and its connection with the DNA integrity checkpoint, the mechanism that ensures the correct transmission of genetic material and cell survival. Thus, the CWI pathway emerges as a master brake that stops cell-cycle progression when cells are coping with distinct unfavorable conditions.
Collapse
|
4
|
Haluska C, Jin F, Wang Y. Protein phosphatase 2A (PP2A) promotes anaphase entry after DNA replication stress in budding yeast. Mol Biol Cell 2021; 32:ar36. [PMID: 34668760 PMCID: PMC8694091 DOI: 10.1091/mbc.e21-04-0222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/31/2022] Open
Abstract
DNA replication stress activates the S-phase checkpoint that arrests the cell cycle, but it is poorly understood how cells recover from this arrest. Cyclin-dependent kinase (CDK) and protein phosphatase 2A (PP2A) are key cell cycle regulators, and Cdc55 is a regulatory subunit of PP2A in budding yeast. We found that yeast cells lacking functional PP2ACdc55 showed slow growth in the presence of hydroxyurea (HU), a DNA synthesis inhibitor, without obvious viability loss. Moreover, PP2A mutants exhibited delayed anaphase entry and sustained levels of anaphase inhibitor Pds1 after HU treatment. A DNA damage checkpoint Chk1 phosphorylates and stabilizes Pds1. We show that chk1Δ and mutation of the Chk1 phosphorylation sites in Pds1 largely restored efficient anaphase entry in PP2A mutants after HU treatment. In addition, deletion of SWE1, which encodes the inhibitory kinase for CDK or mutation of the Swe1 phosphorylation site in CDK (cdc28F19), also suppressed the anaphase entry delay in PP2A mutants after HU treatment. Our genetic data suggest that Swe1/CDK acts upstream of Pds1. Surprisingly, cdc55Δ showed significant suppression to the viability loss of S-phase checkpoint mutants during DNA synthesis block. Together, our results uncover a PP2A-Swe1-CDK-Chk1-Pds1 axis that promotes recovery from DNA replication stress.
Collapse
Affiliation(s)
- Cory Haluska
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300
| | - Fengzhi Jin
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300
| | - Yanchang Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300
| |
Collapse
|
5
|
Liakopoulos D. Coupling DNA Replication and Spindle Function in Saccharomyces cerevisiae. Cells 2021; 10:cells10123359. [PMID: 34943867 PMCID: PMC8699587 DOI: 10.3390/cells10123359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 12/02/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae DNA replication and spindle assembly can overlap. Therefore, signaling mechanisms modulate spindle dynamics in order to ensure correct timing of chromosome segregation relative to genome duplication, especially when replication is incomplete or the DNA becomes damaged. This review focuses on the molecular mechanisms that coordinate DNA replication and spindle dynamics, as well as on the role of spindle-dependent forces in DNA repair. Understanding the coupling between genome duplication and spindle function in yeast cells can provide important insights into similar processes operating in other eukaryotic organisms, including humans.
Collapse
Affiliation(s)
- Dimitris Liakopoulos
- CRBM, Université de Montpellier, CNRS, 1919 Route de Mende, 34293 Montpellier, France;
- Laboratory of Biology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
- University Research Center of loannina, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
6
|
Yoblinski AR, Chung S, Robinson SB, Forester KE, Strahl BD, Dronamraju R. Catalysis-dependent and redundant roles of Dma1 and Dma2 in maintenance of genome stability in Saccharomyces cerevisiae. J Biol Chem 2021; 296:100721. [PMID: 33933452 PMCID: PMC8165551 DOI: 10.1016/j.jbc.2021.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 10/25/2022] Open
Abstract
DNA double-strand breaks (DSBs) are among the deleterious lesions that are both endogenous and exogenous in origin and are repaired by nonhomologous end joining or homologous recombination. However, the molecular mechanisms responsible for maintaining genome stability remain incompletely understood. Here, we investigate the role of two E3 ligases, Dma1 and Dma2 (homologs of human RNF8), in the maintenance of genome stability in budding yeast. Using yeast spotting assays, chromatin immunoprecipitation and plasmid and chromosomal repair assays, we establish that Dma1 and Dma2 act in a redundant and a catalysis-dependent manner in the maintenance of genome stability, as well as localize to transcribed regions of the genome and increase in abundance upon phleomycin treatment. In addition, Dma1 and Dma2 are required for the normal kinetics of histone H4 acetylation under DNA damage conditions, genetically interact with RAD9 and SAE2, and are in a complex with Rad53 and histones. Taken together, our results demonstrate the requirement of Dma1 and Dma2 in regulating DNA repair pathway choice, preferentially affecting homologous recombination over nonhomologous end joining, and open up the possibility of using these candidates in manipulating the repair pathways toward precision genome editing.
Collapse
Affiliation(s)
- Andrew R Yoblinski
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Seoyoung Chung
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Sophie B Robinson
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Kaitlyn E Forester
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Brian D Strahl
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | - Raghuvar Dronamraju
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| |
Collapse
|
7
|
Laguna-Teno F, Suarez-Diez M, Tamayo-Ramos JA. Commonalities and Differences in the Transcriptional Response of the Model Fungus Saccharomyces cerevisiae to Different Commercial Graphene Oxide Materials. Front Microbiol 2020; 11:1943. [PMID: 32849484 PMCID: PMC7431627 DOI: 10.3389/fmicb.2020.01943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/23/2020] [Indexed: 12/31/2022] Open
Abstract
Graphene oxide has become a very appealing nanomaterial during the last years for many different applications, but its possible impact in different biological systems remains unclear. Here, an assessment to understand the toxicity of different commercial graphene oxide nanomaterials on the unicellular fungal model organism Saccharomyces cerevisiae was performed. For this task, an RNA purification protocol was optimized to avoid the high nucleic acid absorption capacity of graphene oxide. The developed protocol is based on a sorbitol gradient separation process for the isolation of adequate ribonucleic acid levels (in concentration and purity) from yeast cultures exposed to the carbon derived nanomaterial. To pinpoint potential toxicity mechanisms and pathways, the transcriptome of S. cerevisiae exposed to 160 mg L-1 of monolayer graphene oxide (GO) and graphene oxide nanocolloids (GOC) was studied and compared. Both graphene oxide products induced expression changes in a common group of genes (104), many of them related to iron homeostasis, starvation and stress response, amino acid metabolism and formate catabolism. Also, a high number of genes were only differentially expressed in either GO (236) or GOC (1077) exposures, indicating that different commercial products can induce specific changes in the physiological state of the fungus.
Collapse
Affiliation(s)
- Felix Laguna-Teno
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Burgos, Spain
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | | |
Collapse
|
8
|
Khondker S, Kajjo S, Chandler-Brown D, Skotheim J, Rudner A, Ikui AE. PP2A Cdc55 dephosphorylates Pds1 and inhibits spindle elongation in S. cerevisiae. J Cell Sci 2020; 133:jcs243766. [PMID: 32591482 PMCID: PMC7406319 DOI: 10.1242/jcs.243766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/11/2020] [Indexed: 11/20/2022] Open
Abstract
PP2ACdc55 (the form of protein phosphatase 2A containing Cdc55) regulates cell cycle progression by reversing cyclin-dependent kinase (CDK)- and polo-like kinase (Cdc5)-dependent phosphorylation events. In S. cerevisiae, Cdk1 phosphorylates securin (Pds1), which facilitates Pds1 binding and inhibits separase (Esp1). During anaphase, Esp1 cleaves the cohesin subunit Scc1 and promotes spindle elongation. Here, we show that PP2ACdc55 directly dephosphorylates Pds1 both in vivo and in vitro Pds1 hyperphosphorylation in a cdc55 deletion mutant enhanced the Pds1-Esp1 interaction, which played a positive role in Pds1 nuclear accumulation and in spindle elongation. We also show that nuclear PP2ACdc55 plays a role during replication stress to inhibit spindle elongation. This pathway acted independently of the known Mec1, Swe1 or spindle assembly checkpoint (SAC) checkpoint pathways. We propose a model where Pds1 dephosphorylation by PP2ACdc55 disrupts the Pds1-Esp1 protein interaction and inhibits Pds1 nuclear accumulation, which prevents spindle elongation, a process that is elevated during replication stress.
Collapse
Affiliation(s)
- Shoily Khondker
- Biology Department, Brooklyn College, The City University of New York, Brooklyn, NY 11238, USA
- Biology Program, CUNY Graduate Center, New York, NY 10016, USA
| | - Sam Kajjo
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | | | - Jan Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Adam Rudner
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Amy E. Ikui
- Biology Department, Brooklyn College, The City University of New York, Brooklyn, NY 11238, USA
- Biology Program, CUNY Graduate Center, New York, NY 10016, USA
| |
Collapse
|
9
|
Leitao RM, Jasani A, Talavara RA, Pham A, Okobi QJ, Kellogg DR. A Conserved PP2A Regulatory Subunit Enforces Proportional Relationships Between Cell Size and Growth Rate. Genetics 2019; 213:517-528. [PMID: 31488515 PMCID: PMC6781898 DOI: 10.1534/genetics.119.301012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/10/2019] [Indexed: 11/18/2022] Open
Abstract
Cell size is proportional to growth rate. Thus, cells growing rapidly in rich nutrients can be nearly twice the size of cells growing slowly in poor nutrients. This proportional relationship appears to hold across all orders of life, yet the underlying mechanisms are unknown. In budding yeast, most growth occurs during mitosis, and the proportional relationship between cell size and growth rate is therefore enforced primarily by modulating growth in mitosis. When growth is slow, the duration of mitosis is increased to allow more time for growth, yet the amount of growth required to complete mitosis is reduced, which leads to the birth of small daughter cells. Previous studies have found that Rts1, a member of the conserved B56 family of protein phosphatase 2A regulatory subunits, works in a TORC2 signaling network that influences cell size and growth rate. However, it was unclear whether Rts1 influences cell growth and size in mitosis. Here, we show that Rts1 is required for the proportional relationship between cell size and growth rate during mitosis. Moreover, nutrients and Rts1 influence the duration and extent of growth in mitosis via Wee1 and Pds1/securin, two conserved regulators of mitotic progression. Together, the data are consistent with a model in which global signals that set growth rate also set the critical amount of growth required for cell cycle progression, which would provide a simple mechanistic explanation for the proportional relationship between cell size and growth rate.
Collapse
Affiliation(s)
- Ricardo M Leitao
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064
| | - Akshi Jasani
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064
| | - Rafael A Talavara
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064
| | - Annie Pham
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064
| | - Quincy J Okobi
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064
| | - Douglas R Kellogg
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064
| |
Collapse
|
10
|
Lanz MC, Dibitetto D, Smolka MB. DNA damage kinase signaling: checkpoint and repair at 30 years. EMBO J 2019; 38:e101801. [PMID: 31393028 PMCID: PMC6745504 DOI: 10.15252/embj.2019101801] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/03/2019] [Accepted: 07/24/2019] [Indexed: 12/27/2022] Open
Abstract
From bacteria to mammalian cells, damaged DNA is sensed and targeted by DNA repair pathways. In eukaryotes, kinases play a central role in coordinating the DNA damage response. DNA damage signaling kinases were identified over two decades ago and linked to the cell cycle checkpoint concept proposed by Weinert and Hartwell in 1988. Connections between the DNA damage signaling kinases and DNA repair were scant at first, and the initial perception was that the importance of these kinases for genome integrity was largely an indirect effect of their roles in checkpoints, DNA replication, and transcription. As more substrates of DNA damage signaling kinases were identified, it became clear that they directly regulate a wide range of DNA repair factors. Here, we review our current understanding of DNA damage signaling kinases, delineating the key substrates in budding yeast and humans. We trace the progress of the field in the last 30 years and discuss our current understanding of the major substrate regulatory mechanisms involved in checkpoint responses and DNA repair.
Collapse
Affiliation(s)
- Michael Charles Lanz
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Diego Dibitetto
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Marcus Bustamante Smolka
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| |
Collapse
|
11
|
Julius J, Peng J, McCulley A, Caridi C, Arnak R, See C, Nugent CI, Feng W, Bachant J. Inhibition of spindle extension through the yeast S phase checkpoint is coupled to replication fork stability and the integrity of centromeric DNA. Mol Biol Cell 2019; 30:2771-2789. [PMID: 31509480 PMCID: PMC6789157 DOI: 10.1091/mbc.e19-03-0156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Budding yeast treated with hydroxyurea (HU) activate the S phase checkpoint kinase Rad53, which prevents DNA replication forks from undergoing aberrant structural transitions and nuclease processing. Rad53 is also required to prevent premature extension of the mitotic spindle that assembles during a HU-extended S phase. Here we present evidence that checkpoint restraint of spindle extension is directly coupled to Rad53 control of replication fork stability. In budding yeast, centromeres are flanked by replication origins that fire in early S phase. Mutations affecting the Zn2+-finger of Dbf4, an origin activator, preferentially reduce centromere-proximal origin firing in HU, corresponding with suppression of rad53 spindle extension. Inactivating Exo1 nuclease or displacing centromeres from origins provides a similar suppression. Conversely, short-circuiting Rad53 targeting of Dbf4, Sld3, and Dun1, substrates contributing to fork stability, induces spindle extension. These results reveal spindle extension in HU-treated rad53 mutants is a consequence of replication fork catastrophes at centromeres. When such catastrophes occur, centromeres become susceptible to nucleases, disrupting kinetochore function and spindle force balancing mechanisms. At the same time, our data indicate centromere duplication is not required to stabilize S phase spindle structure, leading us to propose a model for how monopolar kinetochore-spindle attachments may contribute to spindle force balance in HU.
Collapse
Affiliation(s)
- Jeff Julius
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Jie Peng
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Andrew McCulley
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Chris Caridi
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Remigiusz Arnak
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Colby See
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Constance I Nugent
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Wenyi Feng
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Jeff Bachant
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| |
Collapse
|
12
|
Sparapani S, Bachewich C. Characterization of a novel separase-interacting protein and candidate new securin, Eip1p, in the fungal pathogen Candida albicans. Mol Biol Cell 2019; 30:2469-2489. [PMID: 31411946 PMCID: PMC6743357 DOI: 10.1091/mbc.e18-11-0696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 07/03/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Proper chromosome segregation is crucial for maintaining genomic stability and dependent on separase, a conserved and essential cohesin protease. Securins are key regulators of separases, but remain elusive in many organisms due to sequence divergence. Here, we demonstrate that the separase homologue Esp1p in the ascomycete Candida albicans, an important pathogen of humans, is essential for chromosome segregation. However, C. albicans lacks a sequence homologue of securins found in model ascomycetes. We sought a functional homologue through identifying Esp1p interacting factors. Affinity purification of Esp1p and mass spectrometry revealed Esp1p-Interacting Protein1 (Eip1p)/Orf19.955p, an uncharacterized protein specific to Candida species. Functional analyses demonstrated that Eip1p is important for chromosome segregation but not essential, and modulated in an APCCdc20-dependent manner, similar to securins. Eip1p is strongly enriched in response to methyl methanesulfate (MMS) or hydroxyurea (HU) treatment, and its depletion partially suppresses an MMS or HU-induced metaphase block. Further, Eip1p depletion reduces Mcd1p/Scc1p, a cohesin subunit and separase target. Thus, Eip1p may function as a securin. However, other defects in Eip1p-depleted cells suggest additional roles. Overall, the results introduce a candidate new securin, provide an approach for identifying these divergent proteins, reveal a putative anti-fungal therapeutic target, and highlight variations in mitotic regulation in eukaryotes.
Collapse
Affiliation(s)
- Samantha Sparapani
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | | |
Collapse
|
13
|
Ballew O, Lacefield S. The DNA damage checkpoint and the spindle position checkpoint: guardians of meiotic commitment. Curr Genet 2019; 65:1135-1140. [PMID: 31028453 DOI: 10.1007/s00294-019-00981-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022]
Abstract
Exogenous signals induce cells to enter the specialized cell division process of meiosis, which produces haploid gametes from diploid progenitor cells. Once cells initiate the meiotic divisions, it is imperative that they complete meiosis. Inappropriate exit from meiosis and entrance into mitosis can create polyploid cells and can lead to germline tumors. Saccharomyces cerevisiae cells enter meiosis when starved of nutrients but can return to mitosis if provided nutrient-rich medium before a defined commitment point. Once past the meiotic commitment point in prometaphase I, cells stay committed to meiosis even in the presence of a mitosis-inducing signal. Recent research investigated the maintenance of meiotic commitment in budding yeast and found that two checkpoints that do not normally function in meiosis I, the DNA damage checkpoint and the spindle position checkpoint, have crucial functions in maintaining meiotic commitment. Here, we review these findings and discuss how the mitosis-inducing signal of nutrient-rich medium could activate these two checkpoints in meiosis to prevent inappropriate meiotic exit.
Collapse
Affiliation(s)
- Olivia Ballew
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Soni Lacefield
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
14
|
Falquet B, Rass U. Structure-Specific Endonucleases and the Resolution of Chromosome Underreplication. Genes (Basel) 2019; 10:E232. [PMID: 30893921 PMCID: PMC6470701 DOI: 10.3390/genes10030232] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
Complete genome duplication in every cell cycle is fundamental for genome stability and cell survival. However, chromosome replication is frequently challenged by obstacles that impede DNA replication fork (RF) progression, which subsequently causes replication stress (RS). Cells have evolved pathways of RF protection and restart that mitigate the consequences of RS and promote the completion of DNA synthesis prior to mitotic chromosome segregation. If there is entry into mitosis with underreplicated chromosomes, this results in sister-chromatid entanglements, chromosome breakage and rearrangements and aneuploidy in daughter cells. Here, we focus on the resolution of persistent replication intermediates by the structure-specific endonucleases (SSEs) MUS81, SLX1-SLX4 and GEN1. Their actions and a recently discovered pathway of mitotic DNA repair synthesis have emerged as important facilitators of replication completion and sister chromatid detachment in mitosis. As RS is induced by oncogene activation and is a common feature of cancer cells, any advances in our understanding of the molecular mechanisms related to chromosome underreplication have important biomedical implications.
Collapse
Affiliation(s)
- Benoît Falquet
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
- Faculty of Natural Sciences, University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland.
| | - Ulrich Rass
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
15
|
The DNA Damage Checkpoint and the Spindle Position Checkpoint Maintain Meiotic Commitment in Saccharomyces cerevisiae. Curr Biol 2019; 29:449-460.e2. [PMID: 30686741 DOI: 10.1016/j.cub.2018.12.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/26/2018] [Accepted: 12/21/2018] [Indexed: 01/17/2023]
Abstract
During meiosis, diploid progenitor cells undergo one round of DNA replication followed by two rounds of chromosome segregation to form haploid gametes. Once cells initiate the meiotic divisions, it is imperative that they finish meiosis. A failure to maintain meiosis can result in highly aberrant polyploid cells, which could lead to oncogenesis in the germline. How cells stay committed to finishing meiosis, even in the presence of a mitosis-inducing signal, is poorly understood. We addressed this question in budding yeast, in which cells enter meiosis when starved. If nutrient-rich medium is added before a defined commitment point in mid-prometaphase I, they can return to mitosis. Cells in stages beyond the commitment point will finish meiosis, even with nutrient addition. Because checkpoints are signaling pathways known to couple cell-cycle processes with one another, we asked if checkpoints could ensure meiotic commitment. We find that two checkpoints with well-defined functions in mitosis, the DNA damage checkpoint and the spindle position checkpoint, have crucial roles in meiotic commitment. With nutrient-rich medium addition at stages beyond the commitment point, cells that are deficient in both checkpoints because they lack Rad53 and either Bub2, Bfa1, or Kin4 can return to mitotic growth and go on to form polyploid cells. The results demonstrate that the two checkpoints prevent cells from exiting meiosis in the presence of a mitosis-inducing signal. This study reveals a previously unknown function for the DNA damage checkpoint and the spindle position checkpoint in maintaining meiotic commitment.
Collapse
|
16
|
Maya Miles D, Peñate X, Sanmartín Olmo T, Jourquin F, Muñoz Centeno MC, Mendoza M, Simon MN, Chavez S, Geli V. High levels of histones promote whole-genome-duplications and trigger a Swe1 WEE1-dependent phosphorylation of Cdc28 CDK1. eLife 2018; 7:35337. [PMID: 29580382 PMCID: PMC5871333 DOI: 10.7554/elife.35337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/05/2018] [Indexed: 12/13/2022] Open
Abstract
Whole-genome duplications (WGDs) have played a central role in the evolution of genomes and constitute an important source of genome instability in cancer. Here, we show in Saccharomyces cerevisiae that abnormal accumulations of histones are sufficient to induce WGDs. Our results link these WGDs to a reduced incorporation of the histone variant H2A.Z to chromatin. Moreover, we show that high levels of histones promote Swe1WEE1 stabilisation thereby triggering the phosphorylation and inhibition of Cdc28CDK1 through a mechanism different of the canonical DNA damage response. Our results link high levels of histones to a specific type of genome instability that is quite frequently observed in cancer and uncovers a new mechanism that might be able to respond to high levels of histones.
Collapse
Affiliation(s)
- Douglas Maya Miles
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue, Marseille, France
| | - Xenia Peñate
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Trinidad Sanmartín Olmo
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Frederic Jourquin
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue, Marseille, France
| | - Maria Cruz Muñoz Centeno
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Manuel Mendoza
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Marie-Noelle Simon
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue, Marseille, France
| | - Sebastian Chavez
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Vincent Geli
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Equipe Labellisée Ligue, Marseille, France
| |
Collapse
|
17
|
Zhang Z, Ren P, Vashisht AA, Wohlschlegel JA, Quintana DG, Zeng F. Cdk1-interacting protein Cip1 is regulated by the S phase checkpoint in response to genotoxic stress. Genes Cells 2017; 22:850-860. [PMID: 28771906 DOI: 10.1111/gtc.12518] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/05/2017] [Indexed: 12/20/2022]
Abstract
In eukaryotic cells, a surveillance mechanism, the S phase checkpoint, detects and responds to insults that challenge chromosomal replication, arresting cell cycle progression and triggering appropriate events to prevent genomic instability. In the budding yeast Saccharomyces cerevisiae, Mec1/ATM/ATR, and its downstream kinase, Rad53/Chk2, mediate the response to genotoxic stress. In this study, we place Cip1, a recently identified Cdk1 inhibitor (CKI), under the regulation of Mec1 and Rad53 in response to genotoxic stress. Cip1 accumulates dramatically in a Mec1- and Rad53-dependent manner upon replication stress. This increase requires the activity of MBF, but not the transcriptional activator kinase Dun1. At the protein level, stabilization of replication stress-induced Cip1 requires continued de novo protein synthesis. In addition, Cip1 is phosphorylated at an S/TQ motif in a Mec1-dependent manner. Deletion of Cip1 affects proliferation in hydroxyurea-containing plates. Significantly, the sensitivity is increased when the dosage of the G1 cyclin CLN2 is increased, compatible to a role of Cip1 as a G1-cyclin-dependent kinase inhibitor. In all, our results place Cip1 under the S phase checkpoint response to genotoxic stress. Furthermore, Cip1 plays a significant role to preserve viability in response to insults that threaten chromosome replication.
Collapse
Affiliation(s)
- Ze Zhang
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China.,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, 071001, China
| | - Ping Ren
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autonoma de Barcelona, Bellaterra, Catalonia, 08193, Spain
| | - Ajay A Vashisht
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - David G Quintana
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autonoma de Barcelona, Bellaterra, Catalonia, 08193, Spain
| | - Fanli Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China.,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, 071001, China.,Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autonoma de Barcelona, Bellaterra, Catalonia, 08193, Spain
| |
Collapse
|
18
|
S-phase checkpoint regulations that preserve replication and chromosome integrity upon dNTP depletion. Cell Mol Life Sci 2017; 74:2361-2380. [PMID: 28220209 PMCID: PMC5487892 DOI: 10.1007/s00018-017-2474-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/29/2016] [Accepted: 01/23/2017] [Indexed: 11/18/2022]
Abstract
DNA replication stress, an important source of genomic instability, arises upon different types of DNA replication perturbations, including those that stall replication fork progression. Inhibitors of the cellular pool of deoxynucleotide triphosphates (dNTPs) slow down DNA synthesis throughout the genome. Following depletion of dNTPs, the highly conserved replication checkpoint kinase pathway, also known as the S-phase checkpoint, preserves the functionality and structure of stalled DNA replication forks and prevents chromosome fragmentation. The underlying mechanisms involve pathways extrinsic to replication forks, such as those involving regulation of the ribonucleotide reductase activity, the temporal program of origin firing, and cell cycle transitions. In addition, the S-phase checkpoint modulates the function of replisome components to promote replication integrity. This review summarizes the various functions of the replication checkpoint in promoting replication fork stability and genome integrity in the face of replication stress caused by dNTP depletion.
Collapse
|
19
|
Effects of Replication and Transcription on DNA Structure-Related Genetic Instability. Genes (Basel) 2017; 8:genes8010017. [PMID: 28067787 PMCID: PMC5295012 DOI: 10.3390/genes8010017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/21/2016] [Accepted: 12/26/2016] [Indexed: 12/20/2022] Open
Abstract
Many repetitive sequences in the human genome can adopt conformations that differ from the canonical B-DNA double helix (i.e., non-B DNA), and can impact important biological processes such as DNA replication, transcription, recombination, telomere maintenance, viral integration, transposome activation, DNA damage and repair. Thus, non-B DNA-forming sequences have been implicated in genetic instability and disease development. In this article, we discuss the interactions of non-B DNA with the replication and/or transcription machinery, particularly in disease states (e.g., tumors) that can lead to an abnormal cellular environment, and how such interactions may alter DNA replication and transcription, leading to potential conflicts at non-B DNA regions, and eventually result in genetic stability and human disease.
Collapse
|
20
|
Prevention of DNA Rereplication Through a Meiotic Recombination Checkpoint Response. G3-GENES GENOMES GENETICS 2016; 6:3869-3881. [PMID: 27678521 PMCID: PMC5144958 DOI: 10.1534/g3.116.033910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the budding yeast Saccharomyces cerevisiae, unnatural stabilization of the cyclin-dependent kinase inhibitor Sic1 during meiosis can trigger extra rounds of DNA replication. When programmed DNA double-strand breaks (DSBs) are generated but not repaired due to absence of DMC1, a pathway involving the checkpoint gene RAD17 prevents this DNA rereplication. Further genetic analysis has now revealed that prevention of DNA rereplication also requires MEC1, which encodes a protein kinase that serves as a central checkpoint regulator in several pathways including the meiotic recombination checkpoint response. Downstream of MEC1, MEK1 is required through its function to inhibit repair between sister chromatids. By contrast, meiotic recombination checkpoint effectors that regulate gene expression and cyclin-dependent kinase activity are not necessary. Phosphorylation of histone H2A, which is catalyzed by Mec1 and the related Tel1 protein kinase in response to DSBs, and can help coordinate activation of the Rad53 checkpoint protein kinase in the mitotic cell cycle, is required for the full checkpoint response. Phosphorylation sites that are targeted by Rad53 in a mitotic S phase checkpoint response are also involved, based on the behavior of cells containing mutations in the DBF4 and SLD3 DNA replication genes. However, RAD53 does not appear to be required, nor does RAD9, which encodes a mediator of Rad53, consistent with their lack of function in the recombination checkpoint pathway that prevents meiotic progression. While this response is similar to a checkpoint mechanism that inhibits initiation of DNA replication in the mitotic cell cycle, the evidence points to a new variation on DNA replication control.
Collapse
|
21
|
Reusswig KU, Zimmermann F, Galanti L, Pfander B. Robust Replication Control Is Generated by Temporal Gaps between Licensing and Firing Phases and Depends on Degradation of Firing Factor Sld2. Cell Rep 2016; 17:556-569. [DOI: 10.1016/j.celrep.2016.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 08/10/2016] [Accepted: 09/02/2016] [Indexed: 10/20/2022] Open
|
22
|
Palou R, Palou G, Quintana DG. A role for the spindle assembly checkpoint in the DNA damage response. Curr Genet 2016; 63:275-280. [PMID: 27488803 PMCID: PMC5383677 DOI: 10.1007/s00294-016-0634-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 11/28/2022]
Abstract
Spontaneous DNA damage poses a continuous threat to genomic integrity. If unchecked, genotoxic insults result in genomic instability, a hallmark of cancer cells. In eukaryotic cells a DNA Damage Response (DDR) detects and responds to genotoxic stress, acting as an anti-cancer barrier in humans. Among other actions, the DDR blocks the segregation of incompletely replicated or damaged chromosomes, thus preventing aneuploidy. In a work aimed at better understanding such S-M control, we recently showed that cells block anaphase through different control pathways. The S phase checkpoint kinase Mec1/ATR inhibits mitotic Cyclin Dependent Kinase activity through effector kinases Swe1/Wee1 and Rad53/Chk2. Cells also stabilize the levels of Pds1/securin to block sister chromatid segregation in response to DNA damage. We show here that Pds1/securin abundance is still secured when the S phase checkpoint response is fully abrogated in mec1/ATR tel1/ATM double null mutants. When such cells are exposed to genotoxic stress, Pds1/securin is stabilized in a spindle assembly checkpoint (SAC) dependent manner. Disruption of the SAC and the S phase checkpoint together, allows chromosome segregation in the presence of DNA damage or replication stress. Our results place the SAC as a part of the DDR, which appears to count on different, independent control layers to preserve genomic integrity when chromosome replication is challenged.
Collapse
Affiliation(s)
- Roger Palou
- Biophysics Unit, School of Medicine, and Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
| | - Gloria Palou
- Biophysics Unit, School of Medicine, and Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
| | - David G Quintana
- Biophysics Unit, School of Medicine, and Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, 08193, Catalonia, Spain.
| |
Collapse
|
23
|
Ren P, Malik A, Zeng F. Identification of YPL014W (Cip1) as a novel negative regulator of cyclin-dependent kinase in Saccharomyces cerevisiae. Genes Cells 2016; 21:543-52. [PMID: 27005485 DOI: 10.1111/gtc.12361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/22/2016] [Indexed: 02/06/2023]
Abstract
Cyclin-dependent kinases drive cell division cycle progression in eukaryotic cells. In the model eukaryotic organism Saccharomyces cerevisiae (budding yeast), a single cyclin-dependent kinase, Cdk1, is essential and sufficient to drive the cell cycle. Misregulated CDK activity induces unscheduled proliferation as well as genomic instability, which are hallmarks of the cancer. Here, we report a novel Cdk1-interacting protein, YPL014W, which we name Cip1 (for Cdk1-interacting protein 1). Our results show that Cip1 specifically interacts with G1 /S-phase Cln2-Cdk1 complex but not with S-phase Clb5-Cdk1 or M-phase Clb2-Cdk1 complexes. Also Cip1 phosphorylation is cell cycle regulated in a S-phase Cdk1-dependent manner. Over-expression of Cip1 blocks cell cycle progression in G1 and stabilizes the S-phase Cdk1 inhibitor Sic1 in vivo. In addition, disruption of CIP1 (cip1Δ) leads to faster G1 /S-phase transition compared to wild-type cells. Moreover, Cip1 inhibits Cln2-CDK activity both in vivo and in vitro. Our finding proves Cip1 as a novel negative regulator of cyclin-dependent kinase in S. cerevisiae.
Collapse
Affiliation(s)
- Ping Ren
- Department of Biochemistry and Molecular Biology, Biophysics Unit, School of Medicine, Universitat Autonoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Asrar Malik
- Department of Biochemistry and Molecular Biology, Biophysics Unit, School of Medicine, Universitat Autonoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Fanli Zeng
- Department of Biochemistry and Molecular Biology, Biophysics Unit, School of Medicine, Universitat Autonoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| |
Collapse
|