1
|
Sun CL, Xu C, Itani O, Christensen EL, Vijay H, Ho J, Correa-Medina A, Klingler CB, Mathew ND, Flibotte S, Humphreys IR, Rubalcaba DD, Ritter AE, Desbois M, Grill B, Crowder CM. Biased regulation of protein synthesis and hypoxic death by a conditional raptor mutation. Curr Biol 2025:S0960-9822(25)00504-4. [PMID: 40339571 DOI: 10.1016/j.cub.2025.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/24/2025] [Accepted: 04/15/2025] [Indexed: 05/10/2025]
Abstract
Mechanistic target of rapamycin (mTOR) functions in mTOR complex 1 (mTORC1) with raptor to match metazoan metabolism to available nutrients to regulate multiple cellular, physiological, and pathological processes. Hypoxic cellular injury is influenced by the mTORC1 pathway, but whether its activity promotes or prevents injury is unclear, and which mTORC1-regulated mechanisms control hypoxic injury are obscure. Here, we report the discovery of a hypoxia-resistant, temperature-sensitive raptor mutant in an unbiased forward mutagenesis screen in C. elegans. This raptor mutant is both hypoxia resistant and long lived at intermediate temperatures, while unable to develop at higher temperatures. Temperature-shift experiments show that the conditional hypoxia resistance can be induced in the raptor mutant immediately prior to the hypoxic insult. At these intermediate temperatures, the raptor mutation selectively reduces protein synthesis without affecting autophagy, and epistasis experiments implicate mTOR-targeted translation regulators as components of the hypoxia resistance mechanism. Using the conditional developmental arrest phenotype in a selection for suppressors of raptor loss of function, we isolated multiple second-site raptor missense mutants, whose mutated residue is predicted to interact with RagA, a raptor-binding protein. These suppressor mutations restore normal protein synthesis, hypoxic sensitivity, and lifespan and thereby implicate raptor-RagA interactions as critical to these biological processes.
Collapse
Affiliation(s)
- Chun-Ling Sun
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Cong Xu
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Omar Itani
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Elyse L Christensen
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Harshitha Vijay
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Jessica Ho
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Abraham Correa-Medina
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Christian B Klingler
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Neal D Mathew
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Stephane Flibotte
- Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Ian R Humphreys
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Box 357350, Seattle, WA 98105, USA; Institute for Protein Design, University of Washington, 3946 W Stevens Way NE, Box 351655, Seattle, WA 98105, USA
| | - Diego Delgadillo Rubalcaba
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Alison E Ritter
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Muriel Desbois
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA; Departments of Pediatrics and Pharmacology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - C Michael Crowder
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Box 355065, 3720 15th Avenue NE, Seattle, WA 98105, USA.
| |
Collapse
|
2
|
Lessenger AT, Skotheim JM, Swaffer MP, Feldman JL. Somatic polyploidy supports biosynthesis and tissue function by increasing transcriptional output. J Cell Biol 2025; 224:e202403154. [PMID: 39652010 PMCID: PMC11627111 DOI: 10.1083/jcb.202403154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/27/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Cell size and biosynthetic capacity generally increase with increased DNA content. Somatic polyploidy has therefore been proposed to be an adaptive strategy to increase cell size in specialized tissues with high biosynthetic demands. However, if and how DNA concentration limits cellular biosynthesis in vivo is not well understood. Here, we show that polyploidy in the Caenorhabditis elegans intestine is critical for cell growth and yolk biosynthesis, a central role of this organ. Artificially lowering the DNA/cytoplasm ratio by reducing polyploidization in the intestine gave rise to smaller cells with dilute mRNA. Highly expressed transcripts were more sensitive to this mRNA dilution, whereas lowly expressed genes were partially compensated-in part by loading more RNA Polymerase II on the remaining genomes. Polyploidy-deficient animals produced fewer and slower-growing offspring, consistent with reduced synthesis of highly expressed yolk proteins. DNA-dilute cells had normal total protein concentration, which we propose is achieved by increasing the expression of translational machinery at the expense of specialized, cell-type-specific proteins.
Collapse
Affiliation(s)
| | - Jan M. Skotheim
- Department of Biology, Stanford University, Stanford, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Mathew P. Swaffer
- Department of Biology, Stanford University, Stanford, CA, USA
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
3
|
Verma AK, Roy B, Dwivedi Y. Decoding the molecular script of 2'-O-ribomethylation: Implications across CNS disorders. Heliyon 2024; 10:e39036. [PMID: 39524798 PMCID: PMC11550049 DOI: 10.1016/j.heliyon.2024.e39036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Emerging evidence underscores the critical role of impaired mRNA translation in various neurobiological conditions. Ribosomal RNA (rRNA), essential for protein synthesis, undergoes crucial post-transcriptional modifications such as 2'-O-ribose methylation, pseudouridylation, and base modifications. These modifications, particularly 2'-O-ribose methylation is vital for stabilizing rRNA structures and optimizing translation efficiency by regulating RNA integrity and its interactions with proteins. Concentrated in key regions like decoding sites and the peptidyl transferase center, dysregulation of these modifications can disrupt ribosomal function, contributing to the pathogenesis of diverse neurological conditions, including mental health disorders, developmental abnormalities, and neurodegenerative diseases. Mechanistically, 2'-O-ribose methylation involves interactions between small nucleolar RNAs (snoRNAs), snoRNPs, and fibrillarin, forming a complex regulatory network crucial for maintaining ribosomal integrity and function. Recent research highlights the association of defective ribosome biogenesis with a spectrum of CNS disorders, emphasizing the importance of understanding rRNA mechanisms in disease pathology. This review focuses on the pivotal role of 2'-O-ribose methylation in shaping ribosomal function and its potential implications for unraveling the pathophysiology of CNS disorders. Insights gained from studying these RNA modifications could pave the way for new therapeutic strategies targeting ribosomal dysfunction and associated neuropathological conditions, advancing precision medicine and therapeutic interventions.
Collapse
Affiliation(s)
- Anuj K. Verma
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
4
|
Zhang X, Li W, Sun S, Liu Y. Advances in the structure and function of the nucleolar protein fibrillarin. Front Cell Dev Biol 2024; 12:1494631. [PMID: 39605984 PMCID: PMC11599257 DOI: 10.3389/fcell.2024.1494631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Fibrillarin (FBL) is a highly conserved and well-researched nucleolar protein found in eukaryotes. Its presence was first identified in 1985 through protein immunoblotting analyses using antisera from patients with autoimmune scleroderma. Through immunoelectron microscopy, FBL was shown to be localized in the dense fibrillar component of the nucleolus, leading to the term "fibrillarin". The FBL protein is composed of 321 amino acids and contains two significant functional domains: the GAR domain and the methyltransferase domain. It is expressed in the nucleolus of eukaryotes. This makes FBL one of the most studied nucleolar proteins. While methylation is not essential for cell survival, the FBL gene is crucial for eukaryotic cells, underscoring the importance of investigating additional functions that do not rely on FBL methylation. This review will primarily examine the protein structural domains of FBL and its classic methyltransferase activity. Additionally, our review will examine the importance of the eukaryote-specific GAR structural domain of FBL in regulating intracellular phase separation. Furthermore, this paper analyzes recent developments in the utilization of FBL in the study of pathogen infections and cancer research over the past decade.
Collapse
Affiliation(s)
- Xue Zhang
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Wenxin Li
- Department of Hepatobiliary and pancreatic, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Shulan Sun
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yefu Liu
- Department of Hepatobiliary and pancreatic, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
5
|
Lessenger AT, Swaffer MP, Skotheim JM, Feldman JL. Somatic polyploidy supports biosynthesis and tissue function by increasing transcriptional output. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586714. [PMID: 38585999 PMCID: PMC10996643 DOI: 10.1101/2024.03.25.586714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Cell size and biosynthetic capacity generally increase with increased DNA content. Polyploidy has therefore been proposed to be an adaptive strategy to increase cell size in specialized tissues with high biosynthetic demands. However, if and how DNA concentration limits cellular biosynthesis in vivo is not well understood, and the impacts of polyploidy in non-disease states is not well studied. Here, we show that polyploidy in the C. elegans intestine is critical for cell growth and yolk biosynthesis, a central role of this organ. Artificially lowering the DNA/cytoplasm ratio by reducing polyploidization in the intestine gave rise to smaller cells with more dilute mRNA. Highly-expressed transcripts were more sensitive to this mRNA dilution, whereas lowly-expressed genes were partially compensated - in part by loading more RNA Polymerase II on the remaining genomes. DNA-dilute cells had normal total protein concentration, which we propose is achieved by increasing production of translational machinery at the expense of specialized, cell-type specific proteins.
Collapse
|
6
|
Sharifi S, Chaudhari P, Martirosyan A, Eberhardt AO, Witt F, Gollowitzer A, Lange L, Woitzat Y, Okoli EM, Li H, Rahnis N, Kirkpatrick J, Werz O, Ori A, Koeberle A, Bierhoff H, Ermolaeva M. Reducing the metabolic burden of rRNA synthesis promotes healthy longevity in Caenorhabditis elegans. Nat Commun 2024; 15:1702. [PMID: 38402241 PMCID: PMC10894287 DOI: 10.1038/s41467-024-46037-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 02/12/2024] [Indexed: 02/26/2024] Open
Abstract
Ribosome biogenesis is initiated by RNA polymerase I (Pol I)-mediated synthesis of pre-ribosomal RNA (pre-rRNA). Pol I activity was previously linked to longevity, but the underlying mechanisms were not studied beyond effects on nucleolar structure and protein translation. Here we use multi-omics and functional tests to show that curtailment of Pol I activity remodels the lipidome and preserves mitochondrial function to promote longevity in Caenorhabditis elegans. Reduced pre-rRNA synthesis improves energy homeostasis and metabolic plasticity also in human primary cells. Conversely, the enhancement of pre-rRNA synthesis boosts growth and neuromuscular performance of young nematodes at the cost of accelerated metabolic decline, mitochondrial stress and premature aging. Moreover, restriction of Pol I activity extends lifespan more potently than direct repression of protein synthesis, and confers geroprotection even when initiated late in life, showcasing this intervention as an effective longevity and metabolic health treatment not limited by aging.
Collapse
Affiliation(s)
- Samim Sharifi
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, Jena, 07745, Germany
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
- Matter Bio, Inc., Brooklyn, NY, 11237, USA
| | - Prerana Chaudhari
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Asya Martirosyan
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Alexander Otto Eberhardt
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, Jena, 07745, Germany
| | - Finja Witt
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - André Gollowitzer
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Lisa Lange
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, Jena, 07745, Germany
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Yvonne Woitzat
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | | | - Huahui Li
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, PR China
| | - Norman Rahnis
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Joanna Kirkpatrick
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
- Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Holger Bierhoff
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, Jena, 07745, Germany.
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany.
| | - Maria Ermolaeva
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
7
|
Chatterjee S, Ganguly A, Bhattacharyya D. Reprogramming nucleolar size by genetic perturbation of the extranuclear Rab GTPases Ypt6 and Ypt32. FEBS Lett 2024; 598:283-301. [PMID: 37994551 DOI: 10.1002/1873-3468.14776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/24/2023]
Abstract
Reprogramming organelle size has been proposed as a potential therapeutic approach. However, there have been few reports of nucleolar size reprogramming. We addressed this question in Saccharomyces cerevisiae by studying mutants having opposite effects on the nucleolar size. Mutations in genes involved in nuclear functions (KAR3, CIN8, and PRP45) led to enlarged nuclei/nucleoli, whereas mutations in secretory pathway family genes, namely the Rab-GTPases YPT6 and YPT32, reduced nucleolar size. When combined with mutations leading to enlarged nuclei/nucleoli, the YPT6 or YPT32 mutants can effectively reprogram the nuclear/nucleolar size almost back to normal. Our results further indicate that null mutation of YPT6 causes secretory stress that indirectly influences nuclear localization of Maf1, the negative regulator of RNA Polymerase III, which might reduce the nucleolar size by inhibiting nucleolar transcript enrichment.
Collapse
Affiliation(s)
- Shreosi Chatterjee
- Department of Cell and Tumor Biology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
| | - Abira Ganguly
- Department of Cell and Tumor Biology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
| | - Dibyendu Bhattacharyya
- Department of Cell and Tumor Biology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Mu Y, Han J, Wu M, Li Z, DU K, Wei Y, Wu M, Huang J. Fibrillarin promotes homologous recombination repair by facilitating the recruitment of recombinase RAD51 to DNA damage sites. J Zhejiang Univ Sci B 2023; 24:1165-1173. [PMID: 38057273 PMCID: PMC10710916 DOI: 10.1631/jzus.b2300518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/10/2023] [Indexed: 12/08/2023]
Abstract
Eukaryotic organisms constantly face a wide range of internal and external factors that cause damage to their DNA. Failure to accurately and efficiently repair these DNA lesions can result in genomic instability and the development of tumors (Canela et al., 2017). Among the various forms of DNA damage, DNA double-strand breaks (DSBs) are particularly harmful. Two major pathways, non-homologous end joining (NHEJ) and homologous recombination (HR), are primarily responsible for repairing DSBs (Katsuki et al., 2020; Li and Yuan, 2021; Zhang and Gong, 2021; Xiang et al., 2023). NHEJ is an error-prone repair mechanism that simply joins the broken ends together (Blunt et al., 1995; Hartley et al., 1995). In contrast, HR is a precise repair process. It involves multiple proteins in eukaryotic cells, with the RAD51 recombinase being the key player, which is analogous to bacterial recombinase A (RecA) (Shinohara et al., 1992). The central event in HR is the formation of RAD51-single-stranded DNA (ssDNA) nucleoprotein filaments that facilitate homology search and DNA strand invasion, ultimately leading to the initiation of repair synthesis (Miné et al., 2007; Hilario et al., 2009; Ma et al., 2017).
Collapse
Affiliation(s)
- Yanhua Mu
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jinhua Han
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, China
| | - Mingjie Wu
- Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zongfang Li
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ke DU
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yameng Wei
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Mengjie Wu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China. ,
| | - Jun Huang
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, China.
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
9
|
Costa DS, Kenny-Ganzert IW, Chi Q, Park K, Kelley LC, Garde A, Matus DQ, Park J, Yogev S, Goldstein B, Gibney TV, Pani AM, Sherwood DR. The Caenorhabditis elegans anchor cell transcriptome: ribosome biogenesis drives cell invasion through basement membrane. Development 2023; 150:dev201570. [PMID: 37039075 PMCID: PMC10259517 DOI: 10.1242/dev.201570] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/27/2023] [Indexed: 04/12/2023]
Abstract
Cell invasion through basement membrane (BM) barriers is important in development, immune function and cancer progression. As invasion through BM is often stochastic, capturing gene expression profiles of actively invading cells in vivo remains elusive. Using the stereotyped timing of Caenorhabditis elegans anchor cell (AC) invasion, we generated an AC transcriptome during BM breaching. Through a focused RNAi screen of transcriptionally enriched genes, we identified new invasion regulators, including translationally controlled tumor protein (TCTP). We also discovered gene enrichment of ribosomal proteins. AC-specific RNAi, endogenous ribosome labeling and ribosome biogenesis analysis revealed that a burst of ribosome production occurs shortly after AC specification, which drives the translation of proteins mediating BM removal. Ribosomes also enrich near the AC endoplasmic reticulum (ER) Sec61 translocon and the endomembrane system expands before invasion. We show that AC invasion is sensitive to ER stress, indicating a heightened requirement for translation of ER-trafficked proteins. These studies reveal key roles for ribosome biogenesis and endomembrane expansion in cell invasion through BM and establish the AC transcriptome as a resource to identify mechanisms underlying BM transmigration.
Collapse
Affiliation(s)
- Daniel S. Costa
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27708, USA
| | | | - Qiuyi Chi
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Kieop Park
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Laura C. Kelley
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Aastha Garde
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
| | - David Q. Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Junhyun Park
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shaul Yogev
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Theresa V. Gibney
- Department of Biology, University of Virginia, Charlottesville, VA 29903, USA
| | - Ariel M. Pani
- Department of Biology, University of Virginia, Charlottesville, VA 29903, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 29904, USA
| | - David R. Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| |
Collapse
|
10
|
Nucleophagy delays aging and preserves germline immortality. NATURE AGING 2022; 3:34-46. [PMID: 37118512 PMCID: PMC10154226 DOI: 10.1038/s43587-022-00327-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
AbstractMarked alterations in nuclear ultrastructure are a universal hallmark of aging, progeroid syndromes and other age-related pathologies. Here we show that autophagy of nuclear proteins is an important determinant of fertility and aging. Impairment of nucleophagy diminishes stress resistance, germline immortality and longevity. We found that the nematode Caenorhabditis elegans nuclear envelope anchor protein, nuclear anchorage protein 1 (ANC-1) and its mammalian ortholog nesprin-2 are cleared out by autophagy and restrict nucleolar size, a biomarker of aging. We further uncovered a germline immortality assurance mechanism, which involves nucleolar degradation at the most proximal oocyte by ANC-1 and key autophagic components. Perturbation of this clearance pathway causes tumor-like structures in C. elegans, and genetic ablation of nesprin-2 causes ovarian carcinomas in mice. Thus, autophagic recycling of nuclear components is a conserved soma longevity and germline immortality mechanism that promotes youthfulness and delays aging under conditions of stress.
Collapse
|
11
|
Kumar AV, Kang T, Thakurta TG, Ng C, Rogers AN, Larsen MR, Lapierre LR. Exportin 1 modulates life span by regulating nucleolar dynamics via the autophagy protein LGG-1/GABARAP. SCIENCE ADVANCES 2022; 8:eabj1604. [PMID: 35363528 PMCID: PMC10938577 DOI: 10.1126/sciadv.abj1604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Altered nucleolar and ribosomal dynamics are key hallmarks of aging, but their regulation remains unclear. Building on the knowledge that the conserved nuclear export receptor Exportin 1 (XPO-1/XPO1) modulates proteostasis and life span, we systematically analyzed the impact of nuclear export on protein metabolism. Using transcriptomic and subcellular proteomic analyses in nematodes, we demonstrate that XPO-1 modulates the nucleocytoplasmic distribution of key proteins involved in nucleolar dynamics and ribosome function, including fibrillarin (FIB-1/FBL) and RPL-11 (RPL11). Silencing xpo-1 led to marked reduction in global translation, which was accompanied by decreased nucleolar size and lower fibrillarin levels. A targeted screen of known proteostatic mediators revealed that the autophagy protein LGG-1/GABARAP modulates nucleolar size by regulating RPL-11 levels, linking specific protein degradation to ribosome metabolism. Together, our study reveals that nucleolar size and life span are regulated by LGG-1/GABARAP via ribosome protein surveillance.
Collapse
Affiliation(s)
- Anita V. Kumar
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting St., Providence, RI 02912, USA
| | - Taewook Kang
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Tara G. Thakurta
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting St., Providence, RI 02912, USA
| | - Celeste Ng
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting St., Providence, RI 02912, USA
| | - Aric N. Rogers
- MDI Biological Laboratory, 159 Old Bar Harbor Rd., Salisbury Cove, ME 04672, USA
| | - Martin R. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Louis R. Lapierre
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting St., Providence, RI 02912, USA
| |
Collapse
|
12
|
Konstantinidis G, Tavernarakis N. Autophagy of the Nucleus in Health and Disease. Front Cell Dev Biol 2022; 9:814955. [PMID: 35047516 PMCID: PMC8762222 DOI: 10.3389/fcell.2021.814955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/06/2021] [Indexed: 12/27/2022] Open
Abstract
Nucleophagy is an organelle-selective subtype of autophagy that targets nuclear material for degradation. The macroautophagic delivery of micronuclei to the vacuole, together with the nucleus-vacuole junction-dependent microautophagic degradation of nuclear material, were first observed in yeast. Nuclear pore complexes and ribosomal DNA are typically excluded during conventional macronucleophagy and micronucleophagy, indicating that degradation of nuclear cargo is tightly regulated. In mammals, similarly to other autophagy subtypes, nucleophagy is crucial for cellular differentiation and development, in addition to enabling cells to respond to various nuclear insults and cell cycle perturbations. A common denominator of all nucleophagic processes characterized in diverse organisms is the dependence on the core autophagic machinery. Here, we survey recent studies investigating the autophagic processing of nuclear components. We discuss nucleophagic events in the context of pathology, such as neurodegeneration, cancer, DNA damage, and ageing.
Collapse
Affiliation(s)
- Georgios Konstantinidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece.,Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
13
|
Kumar AV, Lapierre LR. Location, location, location: subcellular protein partitioning in proteostasis and aging. Biophys Rev 2021; 13:931-941. [PMID: 35047088 PMCID: PMC8724496 DOI: 10.1007/s12551-021-00890-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/01/2021] [Indexed: 12/25/2022] Open
Abstract
Somatic maintenance and cell survival rely on proper protein homeostasis to ensure reliable functions across the cell and to prevent proteome collapse. Maintaining protein folding and solubility is central to proteostasis and is coordinated by protein synthesis, chaperoning, and degradation capacities. An emerging aspect that influences proteostasis is the dynamic protein partitioning across different subcellular structures and compartments. Here, we review recent literature related to nucleocytoplasmic partitioning of proteins, nuclear and cytoplasmic quality control mechanisms, and their impact on the development of age-related diseases. We also highlight new points of entry to modulate spatially-regulated proteostatic mechanisms to delay aging.
Collapse
Affiliation(s)
- Anita V. Kumar
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912 USA
| | - Louis R. Lapierre
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912 USA
| |
Collapse
|
14
|
Zhang X, Harding BW, Aggad D, Courtine D, Chen JX, Pujol N, Ewbank JJ. Antagonistic fungal enterotoxins intersect at multiple levels with host innate immune defences. PLoS Genet 2021; 17:e1009600. [PMID: 34166401 PMCID: PMC8263066 DOI: 10.1371/journal.pgen.1009600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/07/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
Animals and plants need to defend themselves from pathogen attack. Their defences drive innovation in virulence mechanisms, leading to never-ending cycles of co-evolution in both hosts and pathogens. A full understanding of host immunity therefore requires examination of pathogen virulence strategies. Here, we take advantage of the well-studied innate immune system of Caenorhabditis elegans to dissect the action of two virulence factors from its natural fungal pathogen Drechmeria coniospora. We show that these two enterotoxins have strikingly different effects when expressed individually in the nematode epidermis. One is able to interfere with diverse aspects of host cell biology, altering vesicle trafficking and preventing the key STAT-like transcription factor STA-2 from activating defensive antimicrobial peptide gene expression. The second increases STA-2 levels in the nucleus, modifies the nucleolus, and, potentially as a consequence of a host surveillance mechanism, causes increased defence gene expression. Our results highlight the remarkably complex and potentially antagonistic mechanisms that come into play in the interaction between co-evolved hosts and pathogens.
Collapse
Affiliation(s)
- Xing Zhang
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Benjamin W. Harding
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Dina Aggad
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Damien Courtine
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | | | - Nathalie Pujol
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Jonathan J. Ewbank
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
15
|
Peng HH, Wu CY, Hsiao YC, Martel J, Ke PY, Chiu CY, Liau JC, Chang IT, Su YH, Ko YF, Young JD, Ojcius DM. Ganoderma lucidum stimulates autophagy-dependent longevity pathways in Caenorhabditis elegans and human cells. Aging (Albany NY) 2021; 13:13474-13495. [PMID: 34091442 PMCID: PMC8202889 DOI: 10.18632/aging.203068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/29/2021] [Indexed: 12/24/2022]
Abstract
The medicinal fungus Ganoderma lucidum is used as a dietary supplement and health tonic, but whether it affects longevity remains unclear. We show here that a water extract of G. lucidum mycelium extends lifespan of the nematode Caenorhabditis elegans. The G. lucidum extract reduces the level of fibrillarin (FIB-1), a nucleolar protein that correlates inversely with longevity in various organisms. Furthermore, G. lucidum treatment increases expression of the autophagosomal protein marker LGG-1, and lifespan extension is abrogated in mutant C. elegans strains that lack atg-18, daf-16, or sir-2.1, indicating that autophagy and stress resistance pathways are required to extend lifespan. In cultured human cells, G. lucidum increases concentrations of the LGG-1 ortholog LC3 and reduces levels of phosphorylated mTOR, a known inhibitor of autophagy. Notably, low molecular weight compounds (<10 kDa) isolated from the G. lucidum water extract prolong lifespan of C. elegans and the same compounds induce autophagy in human cells. These results suggest that G. lucidum can increase longevity by inducing autophagy and stress resistance.
Collapse
Affiliation(s)
- Hsin-Hsin Peng
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan.,Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Cheng-Yeu Wu
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan
| | - Yuan-Chao Hsiao
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Po-Yuan Ke
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chen-Yaw Chiu
- Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City, Taiwan
| | | | - I-Te Chang
- Chang Gung Biotechnology Corporation, Taipei, Taiwan
| | - Yu-Hsiu Su
- Chang Gung Biotechnology Corporation, Taipei, Taiwan
| | - Yun-Fei Ko
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City, Taiwan.,Chang Gung Biotechnology Corporation, Taipei, Taiwan
| | - John D Young
- Chang Gung Biotechnology Corporation, Taipei, Taiwan
| | - David M Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA 94103, USA
| |
Collapse
|
16
|
Connacher RP, Goldstrohm AC. Molecular and biological functions of TRIM-NHL RNA-binding proteins. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1620. [PMID: 32738036 PMCID: PMC7855385 DOI: 10.1002/wrna.1620] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 01/02/2023]
Abstract
The TRIM-NHL family of proteins shares a conserved domain architecture and play crucial roles in stem cell biology, fertility, and development. This review synthesizes new insights that have revolutionized our understanding of the molecular and biological functions of TRIM-NHL proteins. Multiple TRIM-NHLs have been shown to bind specific RNA sequences and structures. X-ray crystal structures of TRIM-NHL proteins in complex with RNA ligands reveal versatile modes of RNA recognition by the NHL domain. Functional and genetic analyses show that TRIM-NHL RNA-binding proteins negatively regulate the protein expression from the target mRNAs that they bind. This repressive activity plays a crucial role in controlling stem cell fate in the developing brain and differentiating germline. To highlight these paradigms, we focus on several of the most-extensively studied TRIM-NHL proteins, specifically Drosophila and vertebrate TRIM71, among others. Brat is essential for development and regulates key target mRNAs to control differentiation of germline and neural stem cells. TRIM71 is also required for development and promotes stem cell proliferation while antagonizing differentiation. Moreover, TRIM71 can be utilized to help reprogram fibroblasts into induced pluripotent stem cells. Recently discovered mutations in TRIM71 cause the neurodevelopmental disease congenital hydrocephalus and emphasize the importance of its RNA-binding function in brain development. Further relevance of TRIM71 to disease pathogenesis comes from evidence linking it to several types of cancer, including liver and testicular cancer. Collectively, these advances demonstrate a primary role for TRIM-NHL proteins in the post-transcriptional regulation of gene expression in crucial biological processes. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Regulation RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Robert P. Connacher
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA 55455
| | - Aaron C. Goldstrohm
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA 55455
| |
Collapse
|
17
|
Itani OA, Zhong X, Tang X, Scott BA, Yan JY, Flibotte S, Lim Y, Hsieh AC, Bruce JE, Van Gilst M, Crowder CM. Coordinate Regulation of Ribosome and tRNA Biogenesis Controls Hypoxic Injury and Translation. Curr Biol 2020; 31:128-137.e5. [PMID: 33157031 DOI: 10.1016/j.cub.2020.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/21/2020] [Accepted: 10/01/2020] [Indexed: 01/01/2023]
Abstract
The translation machinery is composed of a myriad of proteins and RNAs whose levels must be coordinated to efficiently produce proteins without wasting energy or substrate. However, protein synthesis is clearly not always perfectly tuned to its environment, as disruption of translation machinery components can lengthen lifespan and stress survival. While much has been learned from bacteria and yeast about translational regulation, much less is known in metazoans. In a screen for mutations protecting C. elegans from hypoxic stress, we isolated multiple genes impacting protein synthesis: a ribosomal RNA helicase gene, tRNA biosynthesis genes, and a gene controlling amino acid availability. To define better the mechanisms by which these genes impact protein synthesis, we performed a second screen for suppressors of the conditional developmental arrest phenotype of the RNA helicase mutant and identified genes involved in ribosome biogenesis. Surprisingly, these suppressor mutations restored normal hypoxic sensitivity and protein synthesis to the tRNA biogenesis mutants, but not to the mutant reducing amino acid uptake. Proteomic analysis demonstrated that reduced tRNA biosynthetic activity produces a selective homeostatic reduction in ribosomal subunits, thereby offering a mechanism for the suppression results. Our study uncovers an unrecognized higher-order-translation regulatory mechanism in a metazoan whereby ribosome biogenesis genes communicate with genes controlling tRNA abundance matching the global rate of protein synthesis with available resources.
Collapse
Affiliation(s)
- Omar A Itani
- Department of Anesthesiology and Pain Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-6540, USA; Mitochondria and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98105, USA
| | - Xuefei Zhong
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA
| | - Xiaoting Tang
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA
| | - Barbara A Scott
- Department of Anesthesiology and Pain Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-6540, USA; Mitochondria and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98105, USA
| | - Jun Yi Yan
- Department of Anesthesiology and Pain Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-6540, USA; Mitochondria and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98105, USA; Department of Anesthesiology, Central Hospital of Changdian, Dandong, Liaoning 118214, China
| | - Stephane Flibotte
- Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall Vancouver, BC V6T 1Z3, Canada
| | - Yiting Lim
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA
| | - Andrew C Hsieh
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA; Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA; Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-6420, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA
| | - Marc Van Gilst
- Department of Anesthesiology and Pain Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-6540, USA; Mitochondria and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98105, USA
| | - C Michael Crowder
- Department of Anesthesiology and Pain Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-6540, USA; Mitochondria and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98105, USA; Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA.
| |
Collapse
|
18
|
Wang Y, Weng C, Chen X, Zhou X, Huang X, Yan Y, Zhu C. CDE-1 suppresses the production of risiRNA by coupling polyuridylation and degradation of rRNA. BMC Biol 2020; 18:115. [PMID: 32887607 PMCID: PMC7472701 DOI: 10.1186/s12915-020-00850-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/17/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Modification of RNAs, particularly at the terminals, is critical for various essential cell processes; for example, uridylation is implicated in tumorigenesis, proliferation, stem cell maintenance, and immune defense against viruses and retrotransposons. Ribosomal RNAs can be regulated by antisense ribosomal siRNAs (risiRNAs), which downregulate pre-rRNAs through the nuclear RNAi pathway in Caenorhabditis elegans. However, the biogenesis and regulation of risiRNAs remain obscure. Previously, we showed that 26S rRNAs are uridylated at the 3'-ends by an unknown terminal polyuridylation polymerase before the rRNAs are degraded by a 3' to 5' exoribonuclease SUSI-1(ceDIS3L2). RESULTS Here, we found that CDE-1, one of the three C.elegans polyuridylation polymerases (PUPs), is specifically involved in suppressing risiRNA production. CDE-1 localizes to perinuclear granules in the germline and uridylates Argonaute-associated 22G-RNAs, 26S, and 5.8S rRNAs at the 3'-ends. Immunoprecipitation followed by mass spectrometry (IP-MS) revealed that CDE-1 interacts with SUSI-1(ceDIS3L2). Consistent with these results, both CDE-1 and SUSI-1(ceDIS3L2) are required for the inheritance of RNAi. CONCLUSIONS This work identified a rRNA surveillance machinery of rRNAs that couples terminal polyuridylation and degradation.
Collapse
Affiliation(s)
- Yun Wang
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China.
- School of Bioengineering, Huainan Normal University, Huainan, 232038, Anhui, People's Republic of China.
| | - Chenchun Weng
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Xiangyang Chen
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Xufei Zhou
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Xinya Huang
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Yonghong Yan
- National Institute of Biological Sciences, Beijing, 102206, People's Republic of China
| | - Chengming Zhu
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| |
Collapse
|
19
|
Bo Otto F, Thumm M. Nucleophagy-Implications for Microautophagy and Health. Int J Mol Sci 2020; 21:ijms21124506. [PMID: 32599961 PMCID: PMC7352367 DOI: 10.3390/ijms21124506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Nucleophagy, the selective subtype of autophagy that targets nuclear material for autophagic degradation, was not only shown to be a model system for the study of selective macroautophagy, but also for elucidating the role of the core autophagic machinery within microautophagy. Nucleophagy also emerged as a system associated with a variety of disease conditions including cancer, neurodegeneration and ageing. Nucleophagic processes are part of natural cell development, but also act as a response to various stress conditions. Upon releasing small portions of nuclear material, micronuclei, the autophagic machinery transfers these micronuclei to the vacuole for subsequent degradation. Despite sharing many cargos and requiring the core autophagic machinery, recent investigations revealed the aspects that set macro- and micronucleophagy apart. Central to the discrepancies found between macro- and micronucleophagy is the nucleus vacuole junction, a large membrane contact site formed between nucleus and vacuole. Exclusion of nuclear pore complexes from the junction and its exclusive degradation by micronucleophagy reveal compositional differences in cargo. Regarding their shared reliance on the core autophagic machinery, micronucleophagy does not involve normal autophagosome biogenesis observed for macronucleophagy, but instead maintains a unique role in overall microautophagy, with the autophagic machinery accumulating at the neck of budding vesicles.
Collapse
|
20
|
Chen PH, Chen YT, Chu TY, Ma TH, Wu MH, Lin HH, Chang YS, Tan BCM, Lo SJ. Nucleolar control by a non-apoptotic p53-caspases-deubiquitinylase axis promotes resistance to bacterial infection. FASEB J 2020; 34:1107-1121. [PMID: 31914708 DOI: 10.1096/fj.201901959r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/02/2019] [Accepted: 10/15/2019] [Indexed: 11/11/2022]
Abstract
The nucleolus is best known for its cellular role in regulating ribosome production and growth. More recently, an unanticipated role for the nucleolus in innate immunity has recently emerged whereby downregulation of fibrillarin and nucleolar contraction confers pathogen resistance across taxa. The mechanism of this downregulation, however, remains obscure. Here we report that rather than fibrillarin itself being the proximal factor in this pathway, the key player is a fibrillarin-stabilizing deubiquitinylase USP-33. This was discovered by a candidate-gene search of Caenorhabditis elegans in which CED-3 caspase was revealed to execute targeted cleavage of USP-33, thus destabilizing fibrillarin. We also showed that cep-1 and ced-3 mutant worms altered nucleolar size and decreased antimicrobial peptide gene, spp-1, expression rendering susceptibility to bacterial infection. These phenotypes were reversed by usp-33 knockdown, thus linking the CEP-1-CED-3-USP-33 pathway with nucleolar control and resistance to bacterial infection in worms. Parallel experiments with the human analogs of caspases and USP36 revealed similar roles in coordinating these two processes. In summary, our work outlined a conserved cascade that connects cell death signaling to nucleolar control and innate immune response.
Collapse
Affiliation(s)
- Po-Hsiang Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Tung Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tai-Ying Chu
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Tian-Hsiang Ma
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Hsuan Wu
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsi-Hsien Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Sun Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Bertrand Chin-Ming Tan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Szecheng J Lo
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
21
|
Nuclear Scaling Is Coordinated among Individual Nuclei in Multinucleated Muscle Fibers. Dev Cell 2019; 49:48-62.e3. [PMID: 30905770 DOI: 10.1016/j.devcel.2019.02.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/28/2018] [Accepted: 02/22/2019] [Indexed: 12/22/2022]
Abstract
Optimal cell performance depends on cell size and the appropriate relative size, i.e., scaling, of the nucleus. How nuclear scaling is regulated and contributes to cell function is poorly understood, especially in skeletal muscle fibers, which are among the largest cells, containing hundreds of nuclei. Here, we present a Drosophila in vivo system to analyze nuclear scaling in whole multinucleated muscle fibers, genetically manipulate individual components, and assess muscle function. Despite precise global coordination, we find that individual nuclei within a myofiber establish different local scaling relationships by adjusting their size and synthetic activity in correlation with positional or spatial cues. While myonuclei exhibit compensatory potential, even minor changes in global nuclear size scaling correlate with reduced muscle function. Our study provides the first comprehensive approach to unraveling the intrinsic regulation of size in multinucleated muscle fibers. These insights to muscle cell biology will accelerate the development of interventions for muscle diseases.
Collapse
|
22
|
Davis GM, Tu S, Anderson JW, Colson RN, Gunzburg MJ, Francisco MA, Ray D, Shrubsole SP, Sobotka JA, Seroussi U, Lao RX, Maity T, Wu MZ, McJunkin K, Morris QD, Hughes TR, Wilce JA, Claycomb JM, Weng Z, Boag PR. The TRIM-NHL protein NHL-2 is a co-factor in the nuclear and somatic RNAi pathways in C. e legans. eLife 2018; 7:35478. [PMID: 30575518 PMCID: PMC6351104 DOI: 10.7554/elife.35478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 12/20/2018] [Indexed: 12/26/2022] Open
Abstract
Proper regulation of germline gene expression is essential for fertility and maintaining species integrity. In the C. elegans germline, a diverse repertoire of regulatory pathways promote the expression of endogenous germline genes and limit the expression of deleterious transcripts to maintain genome homeostasis. Here we show that the conserved TRIM-NHL protein, NHL-2, plays an essential role in the C. elegans germline, modulating germline chromatin and meiotic chromosome organization. We uncover a role for NHL-2 as a co-factor in both positively (CSR-1) and negatively (HRDE-1) acting germline 22G-small RNA pathways and the somatic nuclear RNAi pathway. Furthermore, we demonstrate that NHL-2 is a bona fide RNA binding protein and, along with RNA-seq data point to a small RNA independent role for NHL-2 in regulating transcripts at the level of RNA stability. Collectively, our data implicate NHL-2 as an essential hub of gene regulatory activity in both the germline and soma.
Collapse
Affiliation(s)
- Gregory M Davis
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia.,School of Health and Life Sciences, Federation University, Victoria, Australia
| | - Shikui Tu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, United States
| | - Joshua Wt Anderson
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Rhys N Colson
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Menachem J Gunzburg
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | | | - Debashish Ray
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Sean P Shrubsole
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Julia A Sobotka
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Uri Seroussi
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Robert X Lao
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Tuhin Maity
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Monica Z Wu
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Quaid D Morris
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Timothy R Hughes
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jacqueline A Wilce
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, United States
| | - Peter R Boag
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| |
Collapse
|
23
|
Ma TH, Chen PH, Tan BCM, Lo SJ. Size scaling of nucleolus in Caenorhabditis elegans embryos. Biomed J 2018; 41:333-336. [PMID: 30580798 PMCID: PMC6306298 DOI: 10.1016/j.bj.2018.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/20/2018] [Accepted: 07/31/2018] [Indexed: 11/13/2022] Open
Abstract
Nucleolus is viewed as a plurifunctional center in the cell, tightly linked to ribosome biosynthesis. As a non-membranous structure, how the size of nucleolus is determined is a long outstanding question, and the possibility of “direct size scaling to the nucleus” was raised by genetic studies in fission yeast. Here, we used the model organism Caenorhabditis elegans to test this hypothesis in multi-cellular organisms. We depleted ani-2, ima-3, or C27D9.1 by RNAi feeding, which altered embryo sizes to different extents in ncl-1 mutant worms. DIC imaging provided evidence that in size-altering embryo nucleolar size decreases in small cells and increases in large cells. Furthermore, analyses of nucleolar size in four blastomeres (ABa, ABp, EMS, and P2) within the same embryo of ncl-1 mutants consistently demonstrated the correspondence between cell and nucleolar sizes – the small cells (EMS and P2) have smaller nucleoli in comparison to the large cells (ABa).
Collapse
Affiliation(s)
- Tian-Hsiang Ma
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Hsiang Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Bertrand Chin-Ming Tan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linlou, Taoyuan, Taiwan; Research Center for Emerging Viral Infections, Chang Gung Memorial Hospital at Linlou, Taoyuan, Taiwan.
| | - Szecheng J Lo
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
24
|
Abstract
Cells must make careful use of the resources available to them. A key area of cellular regulation involves the biogenesis of ribosomes. Transcriptional regulation of ribosome biogenesis factor genes through alterations in histone acetylation has been well studied. This work identifies a post-transcriptional mechanism of ribosome biogenesis regulation by Puf protein control of mRNA stability. Puf proteins are eukaryotic mRNA binding proteins that play regulatory roles in mRNA degradation and translation via association with specific conserved elements in the 3' untranslated region (UTR) of target mRNAs and with degradation and translation factors. We demonstrate that several ribosome biogenesis factor mRNAs in Saccharomyces cerevisiae containing a canonical Puf4p element in their 3' UTRs are destabilized by Puf2p, Puf4, and Puf5p, yet stabilized by Puf1p and Puf3p. In the absence of all Puf proteins, these ribosome biogenesis mRNAs are destabilized by a secondary mechanism involving the same 3' UTR element. Unlike other targets of Puf4p regulation, the decay of these transcripts is not altered by carbon source. Overexpression of Puf4p results in delayed ribosomal RNA processing and altered ribosomal subunit trafficking. These results represent a novel role for Puf proteins in yeast as regulators of ribosome biogenesis transcript stability.
Collapse
Affiliation(s)
- Anthony D Fischer
- a Department of Biology , University of Missouri-St. Louis , St. Louis , MO , USA
| | - Wendy M Olivas
- a Department of Biology , University of Missouri-St. Louis , St. Louis , MO , USA
| |
Collapse
|
25
|
Tiku V, Kew C, Mehrotra P, Ganesan R, Robinson N, Antebi A. Nucleolar fibrillarin is an evolutionarily conserved regulator of bacterial pathogen resistance. Nat Commun 2018; 9:3607. [PMID: 30190478 PMCID: PMC6127302 DOI: 10.1038/s41467-018-06051-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 07/19/2018] [Indexed: 02/04/2023] Open
Abstract
Innate immunity is the first line of defense against infections. Pathways regulating innate responses can also modulate other processes, including stress resistance and longevity. Increasing evidence suggests a role for the nucleolus in regulating cellular processes implicated in health and disease. Here we show the highly conserved nucleolar protein, fibrillarin, is a vital factor regulating pathogen resistance. Fibrillarin knockdown enhances resistance in C. elegans against bacterial pathogens, higher levels of fibrillarin induce susceptibility to infection. Pathogenic infection reduces nucleolar size, ribsosomal RNA, and fibrillarin levels. Genetic epistasis reveals fibrillarin functions independently of the major innate immunity mediators, suggesting novel mechanisms of pathogen resistance. Bacterial infection also reduces nucleolar size and fibrillarin levels in mammalian cells. Fibrillarin knockdown prior to infection increases intracellular bacterial clearance, reduces inflammation, and enhances cell survival. Collectively, these findings reveal an evolutionarily conserved role of fibrillarin in infection resistance and suggest the nucleolus as a focal point in innate immune responses.
Collapse
Affiliation(s)
- Varnesh Tiku
- Max Planck Institute for Biology of Ageing, Joseph Stelzmann Strasse 9b, 50931, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674, Cologne, Germany.,Department of Infectious Diseases, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Chun Kew
- Max Planck Institute for Biology of Ageing, Joseph Stelzmann Strasse 9b, 50931, Cologne, Germany
| | - Parul Mehrotra
- Max Planck Institute for Biology of Ageing, Joseph Stelzmann Strasse 9b, 50931, Cologne, Germany.,VIB-Center for Inflammation Research, VIB - Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Raja Ganesan
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674, Cologne, Germany.,Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, 50674, Cologne, Germany
| | - Nirmal Robinson
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674, Cologne, Germany. .,Centre for Cancer Biology, University of South Australia, HB11-35 UniSA CRI Building, North Terrace, 5001, Adelaide, Australia.
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Joseph Stelzmann Strasse 9b, 50931, Cologne, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674, Cologne, Germany.
| |
Collapse
|
26
|
Shubina MY, Musinova YR, Sheval EV. Proliferation, cancer, and aging-novel functions of the nucleolar methyltransferase fibrillarin? Cell Biol Int 2018; 42:1463-1466. [PMID: 30080298 DOI: 10.1002/cbin.11044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/29/2018] [Indexed: 01/28/2023]
Abstract
Fibrillarin is an essential nucleolar protein that catalyzes the 2'-O-methylation of ribosomal RNAs. Recently, experimental data have begun to accumulate that suggest that fibrillarin can influence various cellular processes, development of pathological processes, and even aging. The exact mechanism by which fibrillarin can influence these processes has not been found, but some experimental data indicate that up- or downregulation of fibrillarin can modify the ribosome structure and, thus, causе an alteration in relative efficiency with which various mRNAs are translated. Here, we discuss recent studies on the potential roles of fibrillarin in the regulation of cell proliferation, cancer progression, and aging.
Collapse
Affiliation(s)
- Maria Y Shubina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Yana R Musinova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Eugene V Sheval
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, 119991, Moscow, Russia.,LIA 1066 French-Russian Joint Cancer Research Laboratory, 94805, Villejuif, France
| |
Collapse
|
27
|
Recent Molecular Genetic Explorations of Caenorhabditis elegans MicroRNAs. Genetics 2018; 209:651-673. [PMID: 29967059 PMCID: PMC6028246 DOI: 10.1534/genetics.118.300291] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs are small, noncoding RNAs that regulate gene expression at the post-transcriptional level in essentially all aspects of Caenorhabditis elegans biology. More than 140 genes that encode microRNAs in C. elegans regulate development, behavior, metabolism, and responses to physiological and environmental changes. Genetic analysis of C. elegans microRNA genes continues to enhance our fundamental understanding of how microRNAs are integrated into broader gene regulatory networks to control diverse biological processes, including growth, cell division, cell fate determination, behavior, longevity, and stress responses. As many of these microRNA sequences and the related processing machinery are conserved over nearly a billion years of animal phylogeny, the assignment of their functions via worm genetics may inform the functions of their orthologs in other animals, including humans. In vivo investigations are especially important for microRNAs because in silico extrapolation of their functions using mRNA target prediction programs can easily assign microRNAs to incorrect genetic pathways. At this mezzanine level of microRNA bioinformatic sophistication, genetic analysis continues to be the gold standard for pathway assignments.
Collapse
|
28
|
West SM, Mecenas D, Gutwein M, Aristizábal-Corrales D, Piano F, Gunsalus KC. Developmental dynamics of gene expression and alternative polyadenylation in the Caenorhabditis elegans germline. Genome Biol 2018; 19:8. [PMID: 29368663 PMCID: PMC5784609 DOI: 10.1186/s13059-017-1369-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 12/03/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The 3' untranslated regions (UTRs) of mRNAs play a major role in post-transcriptional regulation of gene expression. Selection of transcript cleavage and polyadenylation sites is a dynamic process that produces multiple transcript isoforms for the same gene within and across different cell types. Using LITE-Seq, a new quantitative method to capture transcript 3' ends expressed in vivo, we have characterized sex- and cell type-specific transcriptome-wide changes in gene expression and 3'UTR diversity in Caenorhabditis elegans germline cells undergoing proliferation and differentiation. RESULTS We show that nearly half of germline transcripts are alternatively polyadenylated, that differential regulation of endogenous 3'UTR variants is common, and that alternative isoforms direct distinct spatiotemporal protein expression patterns in vivo. Dynamic expression profiling also reveals temporal regulation of X-linked gene expression, selective stabilization of transcripts, and strong evidence for a novel developmental program that promotes nucleolar dissolution in oocytes. We show that the RNA-binding protein NCL-1/Brat is a posttranscriptional regulator of numerous ribosome-related transcripts that acts through specific U-rich binding motifs to down-regulate mRNAs encoding ribosomal protein subunits, rRNA processing factors, and tRNA synthetases. CONCLUSIONS These results highlight the pervasive nature and functional potential of patterned gene and isoform expression during early animal development.
Collapse
Affiliation(s)
- Sean M West
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, 10012, USA
| | - Desirea Mecenas
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, 10012, USA
| | - Michelle Gutwein
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, 10012, USA
| | - David Aristizábal-Corrales
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, 10012, USA
| | - Fabio Piano
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, 10012, USA.
- Center for Genomics & Systems Biology, NYU Abu Dhabi, P.O. Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates.
| | - Kristin C Gunsalus
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, 10012, USA.
- Center for Genomics & Systems Biology, NYU Abu Dhabi, P.O. Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
29
|
Tiku V, Jain C, Raz Y, Nakamura S, Heestand B, Liu W, Späth M, Suchiman HED, Müller RU, Slagboom PE, Partridge L, Antebi A. Small nucleoli are a cellular hallmark of longevity. Nat Commun 2017; 8:16083. [PMID: 28853436 PMCID: PMC5582349 DOI: 10.1038/ncomms16083] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/26/2017] [Indexed: 12/21/2022] Open
Abstract
Animal lifespan is regulated by conserved metabolic signalling pathways and specific transcription factors, but whether these pathways affect common downstream mechanisms remains largely elusive. Here we show that NCL-1/TRIM2/Brat tumour suppressor extends lifespan and limits nucleolar size in the major C. elegans longevity pathways, as part of a convergent mechanism focused on the nucleolus. Long-lived animals representing distinct longevity pathways exhibit small nucleoli, and decreased expression of rRNA, ribosomal proteins, and the nucleolar protein fibrillarin, dependent on NCL-1. Knockdown of fibrillarin also reduces nucleolar size and extends lifespan. Among wildtype C. elegans, individual nucleolar size varies, but is highly predictive for longevity. Long-lived dietary restricted fruit flies and insulin-like-peptide mutants exhibit small nucleoli and fibrillarin expression, as do long-lived dietary restricted and IRS1 knockout mice. Furthermore, human muscle biopsies from individuals who underwent modest dietary restriction coupled with exercise also display small nucleoli. We suggest that small nucleoli are a cellular hallmark of longevity and metabolic health conserved across taxa. Animal lifespan is plastic and is regulated by conserved signalling pathways. Here, Tiku et al. show that longevity-enhancing mutations or interventions are associated with reduced nucleolar size in worms, flies, mice and humans, and that nucleolar size can predict life-expectancy in individual worms.
Collapse
Affiliation(s)
- Varnesh Tiku
- Max Planck Institute for Biology of Ageing, Joseph Stelzmann Strasse 9b, 50931 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany
| | - Chirag Jain
- Max Planck Institute for Biology of Ageing, Joseph Stelzmann Strasse 9b, 50931 Cologne, Germany
| | - Yotam Raz
- Section of Molecular Epidemiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Bree Heestand
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Wei Liu
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Martin Späth
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany
| | - H Eka D Suchiman
- Section of Molecular Epidemiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Roman-Ulrich Müller
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany.,Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, 50674 Cologne, Germany
| | - P Eline Slagboom
- Section of Molecular Epidemiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Joseph Stelzmann Strasse 9b, 50931 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Joseph Stelzmann Strasse 9b, 50931 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
30
|
Abstract
The nucleolus is a distinct compartment of the nucleus responsible for ribosome biogenesis. Mis-regulation of nucleolar functions and of the cellular translation machinery has been associated with disease, in particular with many types of cancer. Indeed, many tumor suppressors (p53, Rb, PTEN, PICT1, BRCA1) and proto-oncogenes (MYC, NPM) play a direct role in the nucleolus, and interact with the RNA polymerase I transcription machinery and the nucleolar stress response. We have identified Dicer and the RNA interference pathway as having an essential role in the nucleolus of quiescent Schizosaccharomyces pombe cells, distinct from pericentromeric silencing, by controlling RNA polymerase I release. We propose that this novel function is evolutionarily conserved and may contribute to the tumorigenic pre-disposition of DICER1 mutations in mammals.
Collapse
Affiliation(s)
- Benjamin Roche
- a Martienssen Lab, Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA
| | - Benoît Arcangioli
- b Genome Dynamics Unit, UMR 3525 CNRS, Institut Pasteur , Paris , France
| | - Rob Martienssen
- a Martienssen Lab, Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA.,c Howard Hughes Medical Institute, Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA
| |
Collapse
|
31
|
Zhou X, Chen X, Wang Y, Feng X, Guang S. A new layer of rRNA regulation by small interference RNAs and the nuclear RNAi pathway. RNA Biol 2017. [PMID: 28640690 DOI: 10.1080/15476286.2017.1341034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Ribosome biogenesis drives cell growth and proliferation, but mechanisms that modulate this process remain poorly understood. For a long time, small rRNA sequences have been widely treated as non-specific degradation products and neglected as garbage sequences. Recently, we identified a new class of antisense ribosomal siRNAs (risiRNAs) that downregulate pre-rRNA through the nuclear RNAi pathway in C. elegans. risiRNAs exhibit sequence characteristics similar to 22G RNA while complement to 18S and 26S rRNA. risiRNAs elicit the translocation of the nuclear Argonaute protein NRDE-3 from the cytoplasm to nucleus and nucleolus, in which the risiRNA/NRDE complex binds to pre-rRNA and silences rRNA expression. Interestingly, when C. elegans is exposed to environmental stimuli, such as cold shock and ultraviolet illumination, risiRNAs accumulate and further turn on the nuclear RNAi-mediated gene silencing pathway. risiRNA may act in a quality control mechanism of rRNA homeostasis. When the exoribonuclease SUSI-1(ceDis3L2) is mutated, risiRNAs are dramatically increased. In this Point of View article, we will summarize our understanding of the small antisense ribosomal siRNAs in a variety of organisms, especially C. elegans, and their possible roles in the quality control mechanism of rRNA homeostasis.
Collapse
Affiliation(s)
- Xufei Zhou
- a School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China , Hefei , Anhui , P.R. China
| | - Xiangyang Chen
- a School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China , Hefei , Anhui , P.R. China
| | - Yun Wang
- a School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China , Hefei , Anhui , P.R. China
| | - Xuezhu Feng
- a School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China , Hefei , Anhui , P.R. China
| | - Shouhong Guang
- a School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China , Hefei , Anhui , P.R. China
| |
Collapse
|
32
|
Identification and characterization of roles for Puf1 and Puf2 proteins in the yeast response to high calcium. Sci Rep 2017; 7:3037. [PMID: 28596535 PMCID: PMC5465220 DOI: 10.1038/s41598-017-02873-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
Members of the yeast family of PUF proteins bind unique subsets of mRNA targets that encode proteins with common functions. They therefore became a paradigm for post-transcriptional gene control. To provide new insights into the roles of the seemingly redundant Puf1 and Puf2 members, we monitored the growth rates of their deletions under many different stress conditions. A differential effect was observed at high CaCl2 concentrations, whereby puf1Δ growth was affected much more than puf2Δ, and inhibition was exacerbated in puf1Δpuf2Δ double knockout. Transcriptome analyses upon CaCl2 application for short and long terms defined the transcriptional response to CaCl2 and revealed distinct expression changes for the deletions. Intriguingly, mRNAs known to be bound by Puf1 or Puf2 were affected mainly in the double knockout. We focused on the cell wall regulator Zeo1 and observed that puf1Δpuf2Δ fails to maintain low levels of its mRNA. Complementarily, puf1Δpuf2Δ growth defect in CaCl2 was repaired upon further deletion of the Zeo1 gene. Thus, these proteins probably regulate the cell-wall integrity pathway by regulating Zeo1 post-transcriptionally. This work sheds new light on the roles of Puf proteins during the cellular response to environmental stress.
Collapse
|
33
|
Zhou X, Feng X, Mao H, Li M, Xu F, Hu K, Guang S. RdRP-synthesized antisense ribosomal siRNAs silence pre-rRNA via the nuclear RNAi pathway. Nat Struct Mol Biol 2017; 24:258-269. [DOI: 10.1038/nsmb.3376] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 01/10/2017] [Indexed: 12/27/2022]
|
34
|
Cohen-Fix O, Askjaer P. Cell Biology of the Caenorhabditis elegans Nucleus. Genetics 2017; 205:25-59. [PMID: 28049702 PMCID: PMC5216270 DOI: 10.1534/genetics.116.197160] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/09/2016] [Indexed: 12/25/2022] Open
Abstract
Studies on the Caenorhabditis elegans nucleus have provided fascinating insight to the organization and activities of eukaryotic cells. Being the organelle that holds the genetic blueprint of the cell, the nucleus is critical for basically every aspect of cell biology. The stereotypical development of C. elegans from a one cell-stage embryo to a fertile hermaphrodite with 959 somatic nuclei has allowed the identification of mutants with specific alterations in gene expression programs, nuclear morphology, or nuclear positioning. Moreover, the early C. elegans embryo is an excellent model to dissect the mitotic processes of nuclear disassembly and reformation with high spatiotemporal resolution. We review here several features of the C. elegans nucleus, including its composition, structure, and dynamics. We also discuss the spatial organization of chromatin and regulation of gene expression and how this depends on tight control of nucleocytoplasmic transport. Finally, the extensive connections of the nucleus with the cytoskeleton and their implications during development are described. Most processes of the C. elegans nucleus are evolutionarily conserved, highlighting the relevance of this powerful and versatile model organism to human biology.
Collapse
Affiliation(s)
- Orna Cohen-Fix
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Peter Askjaer
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucia/Universidad Pablo de Olavide, 41013 Seville, Spain
| |
Collapse
|
35
|
Ma TH, Lee LW, Lee CC, Yi YH, Chan SP, Tan BCM, Lo SJ. Genetic control of nucleolar size: An evolutionary perspective. Nucleus 2016; 7:112-20. [PMID: 27003693 DOI: 10.1080/19491034.2016.1166322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Exploiting a C. elegans mutant (ncl-1) exhibiting nucleolar abnormalities, we recently identified the let-7/ncl-1/fib-1 genetic cascade underlying proper rRNA abundance and nucleolar size. These 3 factors, let-7 (a miRNA), NCL-1 (a member of the TRIM-NHL family), and fibrillarin (a nucleolar methyltransferase), are evolutionarily conserved across metazoans. In this article, we provide several lines of bioinformatic evidence showing that human and Drosophila homologues of C. elegans NCL-1, TRIM-71 and Brat, respectively, likely act as translational suppressors of fibrillarin. Moreover, since their 3'-UTRs contain putative target sites, they may also be under the control of the let-7 miRNA. We hypothesize that let-7, TRIM and fibrillarin contribute activities in concert, and constitute a conserved network controlling nucleolar size in eukaryotes. We provide an in-depth literature review of various molecular pathways, including the let-7/ncl-1/fib-1 genetic cascade, implicated in the regulation of nucleolar size.
Collapse
Affiliation(s)
- Tian-Hsiang Ma
- a Department of Biomedical Sciences, College of Medicine , Chang Gung University , TaoYuan , Taiwan.,b Graduate Institute of Biomedical Sciences , College of Medicine , Chang Gung University , TaoYuan , Taiwan
| | - Li-Wei Lee
- a Department of Biomedical Sciences, College of Medicine , Chang Gung University , TaoYuan , Taiwan.,c Molecular Medicine Research Center , College of Medicine , Chang Gung University , TaoYuan , Taiwan
| | - Chi-Chang Lee
- d Institute of Chemistry , Academia Sinica , Taipei , Taiwan
| | - Yung-Hsiang Yi
- a Department of Biomedical Sciences, College of Medicine , Chang Gung University , TaoYuan , Taiwan.,c Molecular Medicine Research Center , College of Medicine , Chang Gung University , TaoYuan , Taiwan
| | - Shih-Peng Chan
- e Graduate Institute of Microbiology , College of Medicine , National Taiwan University , Taipei , Taiwan
| | - Bertrand Chin-Ming Tan
- a Department of Biomedical Sciences, College of Medicine , Chang Gung University , TaoYuan , Taiwan.,b Graduate Institute of Biomedical Sciences , College of Medicine , Chang Gung University , TaoYuan , Taiwan.,c Molecular Medicine Research Center , College of Medicine , Chang Gung University , TaoYuan , Taiwan
| | - Szecheng J Lo
- a Department of Biomedical Sciences, College of Medicine , Chang Gung University , TaoYuan , Taiwan.,b Graduate Institute of Biomedical Sciences , College of Medicine , Chang Gung University , TaoYuan , Taiwan.,c Molecular Medicine Research Center , College of Medicine , Chang Gung University , TaoYuan , Taiwan
| |
Collapse
|