1
|
Xu M, Li W, Xu R, Liu L, Wu Z, Li W, Ma C, Xue L. Gp93 safeguards tissue homeostasis by preventing ROS-JNK-mediated apoptosis. Redox Biol 2025; 81:103537. [PMID: 39965405 PMCID: PMC11875814 DOI: 10.1016/j.redox.2025.103537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
Reactive oxygen species (ROS) play a pivotal role in maintaining tissue homeostasis, yet their overabundance can impair normal cellular functions, induce cell death, and potentially lead to neurodegenerative disorders. This study identifies Drosophila Glycoprotein 93 (Gp93) as a crucial factor that safeguards tissue homeostasis and preserves normal neuronal functions by preventing ROS-induced, JNK-dependent apoptotic cell death. Firstly, loss of Gp93 induces JNK-dependent apoptosis primarily through the induction of ROS. Secondary, neuro-specific depletion of Gp93 results in ROS-JNK-mediated neurodegeneration. Thirdly, overexpression of Gp93 effectively curtails oxidative stress and neurodegeneration caused by paraquat exposure or the aging process. Furthermore, these functions of Gp93 can be substituted by its human ortholog, HSP90B1. Lastly, depletion of HSP90B1 in cultured human cells triggers ROS production, JNK activation, and apoptosis. Thus, this study not only unveils a novel physiological function of Gp93, but also provides valuable insights for understanding the physiological and pathological functions of human HSP90B1.
Collapse
Affiliation(s)
- Meng Xu
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Wanzhen Li
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Ruihong Xu
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Lixia Liu
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhihan Wu
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Wenzhe Li
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Chao Ma
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Lei Xue
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai 10th People's Hospital, 200072, Shanghai, China.
| |
Collapse
|
2
|
Wu J, Zhang J, Shu W, Feng W, Meng R, Kong L, Cao H, Jiang C, Wang S, Wu F, Wu C, Wang X. Taraxacum sinicum Kitag. (Binpu-3) root extract inhibits tumor invasion via Notch signaling in Drosophila and human breast cancer MDA-MB-231 cells. Front Pharmacol 2025; 16:1494545. [PMID: 40151788 PMCID: PMC11947688 DOI: 10.3389/fphar.2025.1494545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
Metastasis is the primary cause of death in patients with malignant tumors. Therefore, effectively controlling or reversing tumor cell growth and metastasis is crucial for treating malignant tumors. In this study, we investigated the effects and underlying mechanisms of Binpu-3 (a strain of Taraxacum sinicum Kitag., which was cultivated in slightly saline-alkali soil) on tumor invasion both in Drosophila and human breast cancer cells. High-performance liquid chromatography (HPLC) analysis revealed that caftaric, chlorogenic, caffeic, and cichoric acids in the Binpu-3 leaves and roots were significantly higher than those in the wild-type Handan strain. Binpu-3 root extract (Binpu-3RE) suppressed the invasion rate of tumor cells at 25.00 mg/mL in the Drosophila eyeful model, whereas Binpu-3 leaf extract had no obvious effect on tumor metastasis. Accordingly, we found that caffeic acid, quercetin, apigenin, and taraxasterol content in Binpu-3 roots was significantly higher than that in the leaves. In addition, ultra performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS) analysis revealed that Binpu-3RE contained various constituents, including pantothenate (0.1%), butein (0.53%), chlorogenate (0.78%), chicoric acid (1.96%), azelaic acid (0.23%), and [6]-gingerol (0.13%). In vivo, Binpu-3RE impeded ptc>scrib-IR triggered cell migration in Drosophila at an appropriate concentration, and 25.00 mg/mL was selected as the best dose to carry out follow-up mechanistic research. This dose of Binpu-3RE reduced the mRNA levels of Notch pathway key genes Delta, Serrate, Notch, Su(H), and En(spl), the expression levels of NRE-GFP (Notch activity reporter), β-integrin, and metalloproteinase-1 (MMP1) in Drosophila. Cell viability, wound healing, transwell, and Western blotting assays data implied that Binpu-3RE reduced cell growth, migration, invasion, and the expression of Notch1, Jagged1, and HES1 in human breast cancer MDA-MB-231 cells. In summary, the saline-alkali tolerant dandelion Binpu-3 used in this study was of excellent quality, and the root extract showed significant anti-tumor metastasis effects via reduction of Notch signal activity and the expression β-integrin and MMP1 proteins in Drosophila and breast cancer cells, providing a theoretical basis for the development and use of alkaline-soil dandelion herbs, and a therapeutic strategy for the clinical treatment of malignant breast cancer.
Collapse
Affiliation(s)
- Jiawei Wu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Jianbo Zhang
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Wanyu Shu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Wei Feng
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, China
| | - Ran Meng
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, China
| | - Lingyu Kong
- Oncology of Chinese and Western Medicine, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Huijuan Cao
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Chunhua Jiang
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Sitong Wang
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Fanwu Wu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Chenxi Wu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
- Hebei Key Laboratory of Medical Engineering and Integrated Utilization of Saline Alkali Land, Hebei Administration of TCM Key Laboratory of Quality Control of Salt Alkali Resistant TCM, Tangshan, China
| | - Xiuping Wang
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, China
| |
Collapse
|
3
|
Brutscher F, Basler K. Functions of Drosophila Toll/NF-κB signaling in imaginal tissue homeostasis and cancer. Front Cell Dev Biol 2025; 13:1559753. [PMID: 40143968 PMCID: PMC11936955 DOI: 10.3389/fcell.2025.1559753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
The Toll/NF-κB pathway plays a central role in patterning the Drosophila embryo and in orchestrating the innate immune response against microbial infections. Both discoveries were associated with a Nobel Prize award and led to the recognition of the Toll-like receptor pathway in mammals, which has significant implications for diseases. Recent discoveries have revealed that the Toll/NF-κB pathway also maintains epithelial homeostasis of imaginal tissues during development: local Toll/NF-κB signaling activity monitors internal cellular fitness, and precancerous mutant cells can trigger systemic Toll/NF-κB pathway activation. However, this signaling can be exploited in diseases like cancer, in which Toll/NF-κB signaling is often co-opted or subverted. Various models have been proposed to explain how Toll/NF-κB signaling contributes to different types of cancer. Here we provide an overview of the functions of Toll/NF-κB signaling in imaginal tissue homeostasis with a focus on their misuse in pathological contexts, particularly their significance for tumor formation.
Collapse
Affiliation(s)
- Fabienne Brutscher
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Xie MQ, Wang LJ, Xiao HM, Wei SJ. Regulatory networks of mRNAs and miRNAs involved in the immune response of diamondback moth, Plutella xylostella to fungal infection. BMC Genomics 2025; 26:15. [PMID: 39762741 PMCID: PMC11706182 DOI: 10.1186/s12864-024-11192-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The entomopathogenic fungus, Isaria fumosorosea, shows promise as a biological control agent in managing the diamondback moth (DBM) Plutella xylostella, a highly destructive global pest of cruciferous vegetables. To date, the miRNA-mRNA regulatory networks underlying the immune response of DBM to I. fumosorosea infection are still poorly understood. Here, we characterize the expression profiles of miRNA and mRNA, and construct the miRNA-gene regulatory network in DBM infected with I. fumosorosea. RESULTS We identified 580 differentially expressed genes (DEGs) and 55 differentially expressed miRNAs (DEMs) in I. fumosorosea-infected DBM. Among these DEGs, we found 28 immunity-related genes, which mainly include pattern recognition receptors, signal modulators, and immune effectors. Integrated analysis discovered 87 negative correlation pairs between miRNA and mRNA, involving 40 DEMs and 62 DEGs in infected DBM. Additionally, 13 miRNAs and 10 corresponding mRNAs were identified as candidate miRNA-mRNA pairs for DBM immunity against fungal infection. Gene functional enrichment analysis indicated that these miRNAs could target genes associated with various pathways, such as the immune system, infectious diseases, digestive system, endocrine system, nervous system, and signal transduction. Finally, the regulatory relationships of six miRNA-mRNA pairs were validated using quantitative reverse transcription PCR. CONCLUSIONS For the first time, we present integrated miRNA and mRNA data to elucidate the immune response of the DBM to fungal infection. Our findings enhance the understanding of the immune response of the DBM to entomopathogenic fungi infection.
Collapse
Affiliation(s)
- Mei-Qiong Xie
- College of Life Sciences and Resources and Environment, Yichun University, Yichun, 336000, China
| | - Long-Jiang Wang
- College of Chemistry and Bioengineering, Yichun University, Yichun, 336000, China.
| | - Hua-Mei Xiao
- College of Life Sciences and Resources and Environment, Yichun University, Yichun, 336000, China
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
5
|
Li Y, Xu Y, Zhang B, Wang Z, Ma L, Sun L, Wang X, Lin Y, Li JA, Wu C. Atractylodes macrocephala Koidz. and Cuscuta chinensis Lam. extract relieves insulin resistance via PI3K/Akt signalling in diabetic Drosophila. J Tradit Complement Med 2024; 14:424-434. [PMID: 39035690 PMCID: PMC11259714 DOI: 10.1016/j.jtcme.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 07/23/2024] Open
Abstract
Background and aim Type-2 diabetes mellitus (T2DM) is mainly characterized by insulin resistance (IR) induced by hyperglycaemia and insufficient insulin secretion. We employed a diabetic fly model to examine the effect and molecular mechanism of Atractylodes macrocephala Koidz. and Cuscuta chinensis Lam. (AMK-CCL) extract as traditional Chinese medicine in treating IR and T2DM. Experimental procedure The contents of the active ingredients (rhamnose, xylose, mannose, and hyperoside) in AMK-CCL extract were determined by high-performance liquid chromatography. Wild-type (Cg-GAL4/+) or diabetic (Cg > InRK1409A) Drosophila flies were divided into the control group or metformin group and AMK-CCL (0.0125, 0.025, 0.05, 0.1 g/ml) groups. Food intake, haemolymph glucose and trehalose, protein, weight, triglycerides (TAG), and glycogen were measured to assess glycolipid metabolism. Phosphatidylinositol-3-kinase (PI3K)/Akt signalling was detected using fluorescent reporters [tGPH, Drosophila forkhead box O (dFoxO)-green fluorescent protein (GFP), Glut1-GFP, 2-NBDG] in vivo. Glut1/3 mRNA levels and Akt phosphorylation levels were detected by quantitative polymerase chain reaction and western blotting, respectively, in vitro. Results AMK-CCL extract contained 0.038 % rhamnose, 0.017 % xylose, 0.69 % mannose, and 0.039 % hyperoside. AMK-CCL at 0.0125 g/mL significantly suppressed the increase in circulating glucose, and the decrease in body weight, TAG, and glycogen contents of diabetic flies. AMK-CCL improved PI3K activity, Akt phosphorylation, Glut1/3 expression, and glucose uptake in diabetic flies, and also rescued diabetes-induced dFoxO nuclear localisation. Conclusions These findings indicate that AMK-CCL extract ameliorates IR-induced diabetes via the PI3K/Akt signalling pathway, providing an experimental basis for clinical treatment.
Collapse
Affiliation(s)
- Yinghong Li
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Ye Xu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Biwei Zhang
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Zhigang Wang
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Leilei Ma
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Longyu Sun
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Xiuping Wang
- Institute of Coastal Agriculture Hebei Academy of Agriculture and Forestry Sciences, Tangshan, 063299, China
| | - Yimin Lin
- First Hospital of Qinhuangdao, 258 Wenhua Road, Qinguangdao, 066000, China
| | - Ji-an Li
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Chenxi Wu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| |
Collapse
|
6
|
Cao X, La X, Zhang B, Wang Z, Li Y, Bo Y, Chang H, Gao X, Tian C, Wu C, Li JA. Sanghuang Tongxie Formula Ameliorates Insulin Resistance in Drosophila Through Regulating PI3K/Akt Signaling. Front Pharmacol 2022; 13:874180. [PMID: 35734406 PMCID: PMC9207506 DOI: 10.3389/fphar.2022.874180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/11/2022] [Indexed: 01/10/2023] Open
Abstract
Insulin resistance (IR) is a pivotal pathological characteristic that affects the occurrence and development of type 2 diabetes mellitus (T2DM). Thus, the effective control of IR is of great significance for diabetes prevention and treatment. Traditional Chinese medicine (TCM) represents a valuable tool handed down to the world by the Chinese nation and has a long history of use for diabetes clinical therapy. In this study, we focused on a self-drafted TCM-patented formula, Sanghuang Tongxie Formula (SHTXF), which exhibits clinical efficacy in the treatment of diabetes. To explore the effect and molecular mechanism of SHTXF on IR in vivo, Drosophila melanogaster was used and a (Collagen) Cg > InRK1409A diabetic IR fly model was established. SHTXF water extract was found to contribute toward carbohydrate clearance from the circulating system by converting it into triglycerides (TAG), not glycogen, for nutrient storage. In addition, SHTXF activated phosphatidylinositol-3-kinase (PI3K) activity and improved protein kinase B (PKB, also termed Akt) phosphorylation. Finally, SHTXF promoted Drosophila Forkhead Box O (dFoxO) cytoplasmic localization and inhibited its transcriptional activity. Taken together, these findings not only highlight the positive role of SHTXF in ameliorating IR via the PI3K/Akt pathway but also provide potential drug targets and key insights for use in T2DM clinical treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chenxi Wu
- *Correspondence: Chenxi Wu, ; Ji-an Li,
| | - Ji-an Li
- *Correspondence: Chenxi Wu, ; Ji-an Li,
| |
Collapse
|
7
|
Pan Y, Li W, Deng Z, Sun Y, Ma X, Liang R, Guo X, Sun Y, Li W, Jiao R, Xue L. Myc suppresses male-male courtship in Drosophila. EMBO J 2022; 41:e109905. [PMID: 35167135 PMCID: PMC8982623 DOI: 10.15252/embj.2021109905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/03/2022] [Accepted: 01/24/2022] [Indexed: 11/09/2022] Open
Abstract
Despite strong natural selection on species, same-sex sexual attraction is widespread across animals, yet the underlying mechanisms remain elusive. Here, we report that the proto-oncogene Myc is required in dopaminergic neurons to inhibit Drosophila male-male courtship. Loss of Myc, either by mutation or neuro-specific knockdown, induced males' courtship propensity toward other males. Our genetic screen identified DOPA decarboxylase (Ddc) as a downstream target of Myc. While loss of Ddc abrogated Myc depletion-induced male-male courtship, Ddc overexpression sufficed to trigger such behavior. Furthermore, Myc-depleted males exhibited elevated dopamine level in a Ddc-dependent manner, and their male-male courtship was blocked by depleting the dopamine receptor DopR1. Moreover, Myc directly inhibits Ddc transcription by binding to a target site in the Ddc promoter, and deletion of this site by genome editing was sufficient to trigger male-male courtship. Finally, drug-mediated Myc depletion in adult neurons by GeneSwitch technique sufficed to elicit male-male courtship. Thus, this study uncovered a novel function of Myc in preventing Drosophila male-male courtship, and supports the crucial roles of genetic factors in inter-male sexual behavior.
Collapse
Affiliation(s)
- Yu Pan
- The First Rehabilitation Hospital of ShanghaiShanghai Key Laboratory of Signaling and Diseases ResearchSchool of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Wanzhen Li
- The First Rehabilitation Hospital of ShanghaiShanghai Key Laboratory of Signaling and Diseases ResearchSchool of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Zhu Deng
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
| | - Yihao Sun
- Zhuhai Precision Medical CenterGuangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| | - Xianjue Ma
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang ProvinceSchool of Life SciencesWestlake UniversityHangzhouZhejiangChina
| | - Ruijuan Liang
- The First Rehabilitation Hospital of ShanghaiShanghai Key Laboratory of Signaling and Diseases ResearchSchool of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Xiaowei Guo
- The First Rehabilitation Hospital of ShanghaiShanghai Key Laboratory of Signaling and Diseases ResearchSchool of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Ying Sun
- The First Rehabilitation Hospital of ShanghaiShanghai Key Laboratory of Signaling and Diseases ResearchSchool of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Wenzhe Li
- The First Rehabilitation Hospital of ShanghaiShanghai Key Laboratory of Signaling and Diseases ResearchSchool of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Renjie Jiao
- Sino‐French Hoffmann InstituteGuangzhou Medical UniversityGuangzhouChina
| | - Lei Xue
- The First Rehabilitation Hospital of ShanghaiShanghai Key Laboratory of Signaling and Diseases ResearchSchool of Life Science and TechnologyTongji UniversityShanghaiChina,Zhuhai Precision Medical CenterGuangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiChina
| |
Collapse
|
8
|
Zhang E, Li X. The Emerging Roles of Pellino Family in Pattern Recognition Receptor Signaling. Front Immunol 2022; 13:728794. [PMID: 35197966 PMCID: PMC8860249 DOI: 10.3389/fimmu.2022.728794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/14/2022] [Indexed: 12/03/2022] Open
Abstract
The Pellino family is a novel and well-conserved E3 ubiquitin ligase family and consists of Pellino1, Pellino2, and Pellino3. Each family member exhibits a highly conserved structure providing ubiquitin ligase activity without abrogating cell and structure-specific function. In this review, we mainly summarized the crucial roles of the Pellino family in pattern recognition receptor-related signaling pathways: IL-1R signaling, Toll-like signaling, NOD-like signaling, T-cell and B-cell signaling, and cell death-related TNFR signaling. We also summarized the current information of the Pellino family in tumorigenesis, microRNAs, and other phenotypes. Finally, we discussed the outstanding questions of the Pellino family in immunity.
Collapse
Affiliation(s)
- E Zhang
- Marine College, Shandong University, Weihai, China
| | - Xia Li
- Marine College, Shandong University, Weihai, China
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
- *Correspondence: Xia Li,
| |
Collapse
|
9
|
Ding X, Li Z, Lin G, Li W, Xue L. Toll-7 promotes tumour growth and invasion in Drosophila. Cell Prolif 2022; 55:e13188. [PMID: 35050535 PMCID: PMC8828261 DOI: 10.1111/cpr.13188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/25/2022] Open
Abstract
Objectives Drosophila melanogaster has become an excellent model organism to explore the genetic mechanisms underlying tumour progression. Here, by using well‐established Drosophila tumour models, we identified Toll‐7 as a novel regulator of tumour growth and invasion. Materials and methods Transgenic flies and genetic epistasis analysis were used. All flies were raised on a standard cornmeal and agar medium at 25°C unless otherwise indicated. Immunostaining and RT‐qPCR were performed by standard procedures. Images were taken by OLYMPUS BX51 microscope and Zeiss LSM 880 confocal microscope. Adobe Photoshop 2020 and Zeiss Zen were used to analyse the images. All results were presented in Scatter plots or Column bar graphs created by GraphPad Prism 8.0. Results Loss of Toll‐7 suppresses RasV12/lgl−/−‐induced tumour growth and invasion, as well as cell polarity disruption‐induced invasive cell migration, whereas expression of a constitutively active allele of Toll‐7 is sufficient to promote tumorous growth and cell migration. In addition, the Egr‐JNK signalling is necessary and sufficient for Toll‐7‐induced invasive cell migration. Mechanistically, Toll‐7 facilitates the endocytosis of Egr, which is known to activate JNK in the early endosomes. Moreover, Toll‐7 activates the EGFR‐Ras signalling, which cooperates with the Egr‐JNK signalling to promote Yki‐mediated cell proliferation and tissue overgrowth. Finally, Toll‐7 is necessary and sufficient for the proper maintenance of EGFR protein level. Conclusions Our findings characterized Toll‐7 as a proto‐oncogene that promotes tumour growth and invasion in Drosophila, which shed light on the pro‐tumour function of mammalian Toll‐like receptors (TLRs).
Collapse
Affiliation(s)
- Xiang Ding
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhuojie Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Gufa Lin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenzhe Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Lei Xue
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China.,Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| |
Collapse
|
10
|
Effects of Xuefu Zhuyu Decoction on Cell Migration and Ocular Tumor Invasion in Drosophila. BIOMED RESEARCH INTERNATIONAL 2020. [DOI: 10.1155/2020/5463652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Xuefu Zhuyu Decoction (XFZYD), a Traditional Chinese Medicine (TCM) decoction mainly for treating blood stasis syndrome, has been widely investigated and applied in clinic and in laboratory. XFZYD contains 11 herbs and has been identified to promoting blood circulation to remove blood stasis for cardiovascular disease. Meanwhile, blood stasis is directly related to malignant tumor according to TCM basic theory. However, the effects of XFZYD on tumor metastasis and the underlying mechanisms are still largely unknown. Here, we employed well-establishedDrosophilacell migration and tumor invasion models to explore whether XFZYD has the anticancer activity on tumor metastasisin vivo. Our work has demonstrated that XFZYD could suppress cell migration and tumor invasion at the moderate concentrations. In addition, XFZYD altered the expression of MMP1,β-integrin, and E-cadherin to impede cell migration. Moreover, XFZYD inhibited ocular tumor invasion presumably by reducing the activity of Notch signaling. Together, these evidences reveal a positive role of XFZYD in suppressing cell migration and tumor metastasis, providing the potential drug targets and key clues for cancer clinical treatment strategies.
Collapse
|
11
|
Li Z, Wu C, Ding X, Li W, Xue L. Toll signaling promotes JNK-dependent apoptosis in Drosophila. Cell Div 2020; 15:7. [PMID: 32174999 PMCID: PMC7063707 DOI: 10.1186/s13008-020-00062-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
Background Apoptosis plays pivotal roles in organ development and tissue homeostasis, with its major function to remove unhealthy cells that may compromise the fitness of the organism. Toll signaling, with the ancient evolutionary origin, regulates embryonic dorsal–ventral patterning, axon targeting and degeneration, and innate immunity. Using Drosophila as a genetic model, we characterized the role of Toll signaling in apoptotic cell death. Results We found that gain of Toll signaling is able to trigger caspase-dependent cell death in development. In addition, JNK activity is required for Toll-induced cell death. Furthermore, ectopic Toll expression induces the activation of JNK pathway. Moreover, physiological activation of Toll signaling is sufficient to produce JNK-dependent cell death. Finally, Toll signaling activates JNK-mediated cell death through promoting ROS production. Conclusions As Toll pathway has been evolutionarily conserved from Drosophila to human, this study may shed light on the mechanism of mammalian Toll-like receptors (TLRs) signaling in apoptotic cell death.
Collapse
Affiliation(s)
- Zhuojie Li
- 1Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092 China
| | - Chenxi Wu
- 1Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092 China.,2College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210 China
| | - Xiang Ding
- 1Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092 China
| | - Wenzhe Li
- 1Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092 China
| | - Lei Xue
- 1Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092 China.,3Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000 China
| |
Collapse
|
12
|
Pascoal S, Risse JE, Zhang X, Blaxter M, Cezard T, Challis RJ, Gharbi K, Hunt J, Kumar S, Langan E, Liu X, Rayner JG, Ritchie MG, Snoek BL, Trivedi U, Bailey NW. Field cricket genome reveals the footprint of recent, abrupt adaptation in the wild. Evol Lett 2019; 4:19-33. [PMID: 32055408 PMCID: PMC7006468 DOI: 10.1002/evl3.148] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/21/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
Evolutionary adaptation is generally thought to occur through incremental mutational steps, but large mutational leaps can occur during its early stages. These are challenging to study in nature due to the difficulty of observing new genetic variants as they arise and spread, but characterizing their genomic dynamics is important for understanding factors favoring rapid adaptation. Here, we report genomic consequences of recent, adaptive song loss in a Hawaiian population of field crickets (Teleogryllus oceanicus). A discrete genetic variant, flatwing, appeared and spread approximately 15 years ago. Flatwing erases sound‐producing veins on male wings. These silent flatwing males are protected from a lethal, eavesdropping parasitoid fly. We sequenced, assembled and annotated the cricket genome, produced a linkage map, and identified a flatwing quantitative trait locus covering a large region of the X chromosome. Gene expression profiling showed that flatwing is associated with extensive genome‐wide effects on embryonic gene expression. We found that flatwing male crickets express feminized chemical pheromones. This male feminizing effect, on a different sexual signaling modality, is genetically associated with the flatwing genotype. Our findings suggest that the early stages of evolutionary adaptation to extreme pressures can be accompanied by greater genomic and phenotypic disruption than previously appreciated, and highlight how abrupt adaptation might involve suites of traits that arise through pleiotropy or genomic hitchhiking.
Collapse
Affiliation(s)
- Sonia Pascoal
- Department of Zoology University of Cambridge Cambridge CB2 3EJ United Kingdom
| | - Judith E Risse
- Division of Bioinformatics, Department of Plant Sciences Wageningen University & Research Wageningen 6708 PB The Netherlands.,Animal Ecology Netherlands Institute of Ecology Wageningen 6700 AB The Netherlands
| | - Xiao Zhang
- School of Biology University of St Andrews St Andrews Fife KY16 9TH United Kingdom
| | - Mark Blaxter
- Edinburgh Genomics University of Edinburgh Edinburgh EH9 3JT United Kingdom.,Institute of Evolutionary Biology University of Edinburgh Edinburgh EH9 3JT United Kingdom
| | - Timothee Cezard
- Edinburgh Genomics University of Edinburgh Edinburgh EH9 3JT United Kingdom
| | - Richard J Challis
- Edinburgh Genomics University of Edinburgh Edinburgh EH9 3JT United Kingdom
| | - Karim Gharbi
- Edinburgh Genomics University of Edinburgh Edinburgh EH9 3JT United Kingdom.,Earlham Institute Norwich Research Park Norwich NR4 7UZ United Kingdom
| | - John Hunt
- School of Science and Health and the Hawkesbury Institute for the Environment Western Sydney University Penrith NSW 2751 Australia.,Centre for Ecology and Conservation University of Exeter Penryn TR10 9FE United Kingdom
| | - Sujai Kumar
- Edinburgh Genomics University of Edinburgh Edinburgh EH9 3JT United Kingdom
| | - Emma Langan
- Edinburgh Genomics University of Edinburgh Edinburgh EH9 3JT United Kingdom.,School of Environmental Sciences University of East Anglia Norwich NR4 7UZ United Kingdom
| | - Xuan Liu
- Centre for Genomic Research University of Liverpool Liverpool L69 7ZB United Kingdom
| | - Jack G Rayner
- School of Biology University of St Andrews St Andrews Fife KY16 9TH United Kingdom
| | - Michael G Ritchie
- School of Biology University of St Andrews St Andrews Fife KY16 9TH United Kingdom
| | - Basten L Snoek
- Theoretical Biology and Bioinformatics Utrecht University Utrecht 3584 CH The Netherlands.,Terrestrial Ecology Netherlands Institute of Ecology Wageningen 6700 AB The Netherlands
| | - Urmi Trivedi
- Edinburgh Genomics University of Edinburgh Edinburgh EH9 3JT United Kingdom
| | - Nathan W Bailey
- School of Biology University of St Andrews St Andrews Fife KY16 9TH United Kingdom
| |
Collapse
|
13
|
Sun Y, Zhang D, Li C, Huang J, Li W, Qiu Y, Mao A, Zhou M, Xue L. Lic regulates JNK-mediated cell death in Drosophila. Cell Prolif 2019; 52:e12593. [PMID: 30847993 PMCID: PMC6536442 DOI: 10.1111/cpr.12593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/01/2023] Open
Abstract
Objectives The evolutionary conserved JNK pathway plays crucial role in cell death, yet factors that modulate this signalling have not been fully disclosed. In this study, we aim to identify additional factors that regulate JNK signalling in cell death, and characterize the underlying mechanisms. Materials and Methods Drosophila were raised on standard media, and cross was carried out at 25°C. The Gal4/UAS system was used to express proteins or RNAi in a specific temporal and spatial pattern. Gene expression was revealed by GFP fluorescence, X‐gal staining or immunostaining of 3rd instar larval eye and wing discs. Cell death was visualized by acridine orange (AO) staining. Images of fly eyes and wings were taken by OLYMPUS microscopes. Results We found that licorne (lic) encoding the Drosophila MKK3 is an essential regulator of JNK‐mediated cell death. Firstly, loss of lic suppressed ectopic Egr‐triggered JNK activation and cell death in eye and wing development. Secondary, lic is necessary for loss‐of‐cell polarity‐induced, physiological JNK‐dependent cell death in wing development. Thirdly, Lic overexpression is sufficient to initiate JNK‐mediated cell death in developing eyes and wings. Furthermore, ectopic Lic activates JNK signalling by promoting JNK phosphorylation. Finally, genetic epistatic analysis confirmed that Lic acts in parallel with Hep in the Egr‐JNK pathway. Conclusions This study not only identified Lic as a novel component of the JNK signalling, but also disclosed the crucial roles and mechanism of Lic in cell death.
Collapse
Affiliation(s)
- Yihao Sun
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Di Zhang
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Chenglin Li
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Jiuhong Huang
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing, China
| | - Wenzhe Li
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yu Qiu
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Aiwu Mao
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingcheng Zhou
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Lei Xue
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| |
Collapse
|
14
|
Cheng Y, Chen D. Fruit fly research in China. J Genet Genomics 2018; 45:583-592. [PMID: 30455037 DOI: 10.1016/j.jgg.2018.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/21/2018] [Accepted: 09/29/2018] [Indexed: 11/19/2022]
Abstract
Served as a model organism over a century, fruit fly has significantly pushed forward the development of global scientific research, including in China. The high similarity in genomic features between fruit fly and human enables this tiny insect to benefit the biomedical studies of human diseases. In the past decades, Chinese biologists have used fruit fly to make numerous achievements on understanding the fundamental questions in many diverse areas of biology. Here, we review some of the recent fruit fly studies in China, and mainly focus on those studies in the fields of stem cell biology, cancer therapy and regeneration medicine, neurological disorders and epigenetics.
Collapse
Affiliation(s)
- Ying Cheng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dahua Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
15
|
Shmueli A, Shalit T, Okun E, Shohat-Ophir G. The Toll Pathway in the Central Nervous System of Flies and Mammals. Neuromolecular Med 2018; 20:419-436. [PMID: 30276585 DOI: 10.1007/s12017-018-8515-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022]
Abstract
Toll receptors, first identified to regulate embryogenesis and immune responses in the adult fly and subsequently defined as the principal sensors of infection in mammals, are increasingly appreciated for their impact on the homeostasis of the central as well as the peripheral nervous systems. Whereas in the context of immunity, the fly Toll and the mammalian TLR pathways have been researched in parallel, the expression pattern and functionality have largely been researched disparately. Herein, we provide data on the expression pattern of the Toll homologues, signaling components, and downstream effectors in ten different cell populations of the adult fly central nervous system (CNS). We have compared the expression of the different Toll pathways in the fly to the expression of TLRs in the mouse brain and discussed the implications with respect to commonalities, differences, and future perspectives.
Collapse
Affiliation(s)
- Anat Shmueli
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Tali Shalit
- The Mantoux Bioinformatics institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Eitan Okun
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel.
- The Paul Feder Laboratory on Alzheimer's Disease Research, Ramat-Gan, Israel.
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 901, room 315, Ramat-Gan, 5290000, Israel.
| | - Galit Shohat-Ophir
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
16
|
Shafeeq T, Ahmed S, Kim Y. Toll immune signal activates cellular immune response via eicosanoids. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:408-419. [PMID: 29577956 DOI: 10.1016/j.dci.2018.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
Upon immune challenge, insects recognize nonself. The recognition signal will propagate to nearby immune effectors. It is well-known that Toll signal pathway induces antimicrobial peptide (AMP) gene expression. Eicosanoids play crucial roles in mediating the recognition signal to immune effectors by enhancing humoral immune response through activation of AMP synthesis as well as cellular immune responses, suggesting a functional cross-talk between Toll and eicosanoid signals. This study tested a cross-talk between these two signals. Two signal transducing factors (MyD88 and Pelle) of Toll immune pathway were identified in Spodoptera exigua. RNA interference (RNAi) of either SeMyD88 or SePelle expression interfered with the expression of AMP genes under Toll signal pathway. Bacterial challenge induced PLA2 enzyme activity. However, RNAi of these two immune factors significantly suppressed the induction of PLA2 enzyme activity. Furthermore, RNAi treatment prevented gene expression of cellular PLA2. Inhibition of PLA2 activity reduced phenoloxidase activity and subsequent suppression in cellular immune response measured by hemocyte nodule formation. However, immunosuppression induced by RNAi of Toll signal molecules was significantly reversed by addition of arachidonic acid (AA), a catalytic product of PLA2. The addition also significantly reduced the enhanced fungal susceptibility of S. exigua treated by RNAi against two Toll signal molecules. These results indicate that there is a cross-talk between Toll and eicosanoid signals in insect immunity.
Collapse
Affiliation(s)
- Tahir Shafeeq
- Department of Plant Medicals, College of Natural Sciences, Andong National University, Andong 36729, Republic of Korea
| | - Shabbir Ahmed
- Department of Plant Medicals, College of Natural Sciences, Andong National University, Andong 36729, Republic of Korea
| | - Yonggyun Kim
- Department of Plant Medicals, College of Natural Sciences, Andong National University, Andong 36729, Republic of Korea.
| |
Collapse
|
17
|
Abstract
The proto-oncogene Myc is well known for its roles in promoting cell growth, proliferation and apoptosis. However, in this study, we found from a genetic screen that Myc inhibits, rather than promotes, cell death triggered by c-Jun N-terminal kinase (JNK) signaling in Drosophila. Firstly, expression of Drosophila Myc (dMyc) suppresses, whereas loss of dMyc enhances, ectopically activated JNK signaling-induced cell death. Secondly, dMyc impedes physiologically activated JNK pathway-mediated cell death. Thirdly, loss of dMyc triggers JNK pathway activation and JNK-dependent cell death. Finally, the mammalian cMyc gene, when expressed in Drosophila, impedes activated JNK signaling-induced cell death. Thus, besides its well-studied apoptosis promoting function, Myc also antagonizes JNK-mediated cell death in Drosophila, and this function is likely conserved from fly to human.
Collapse
Affiliation(s)
- Jiuhong Huang
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yu Feng
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xinhong Chen
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wenzhe Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Lei Xue
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
18
|
Foldi I, Anthoney N, Harrison N, Gangloff M, Verstak B, Nallasivan MP, AlAhmed S, Zhu B, Phizacklea M, Losada-Perez M, Moreira M, Gay NJ, Hidalgo A. Three-tier regulation of cell number plasticity by neurotrophins and Tolls in Drosophila. J Cell Biol 2017; 216:1421-1438. [PMID: 28373203 PMCID: PMC5412559 DOI: 10.1083/jcb.201607098] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/20/2016] [Accepted: 02/16/2017] [Indexed: 02/06/2023] Open
Abstract
A three-tier mechanism involving distinct neurotrophin family ligand forms, different Toll receptors, and different adaptors regulates both cell survival and death. This rich mechanism confers cell number plasticity and could underlie structural plasticity in the nervous system and structural integrity, homeostasis, and regeneration in wider contexts. Cell number plasticity is coupled to circuitry in the nervous system, adjusting cell mass to functional requirements. In mammals, this is achieved by neurotrophin (NT) ligands, which promote cell survival via their Trk and p75NTR receptors and cell death via p75NTR and Sortilin. Drosophila NTs (DNTs) bind Toll receptors instead to promote neuronal survival, but whether they can also regulate cell death is unknown. In this study, we show that DNTs and Tolls can switch from promoting cell survival to death in the central nervous system (CNS) via a three-tier mechanism. First, DNT cleavage patterns result in alternative signaling outcomes. Second, different Tolls can preferentially promote cell survival or death. Third, distinct adaptors downstream of Tolls can drive either apoptosis or cell survival. Toll-6 promotes cell survival via MyD88–NF-κB and cell death via Wek-Sarm-JNK. The distribution of adaptors changes in space and time and may segregate to distinct neural circuits. This novel mechanism for CNS cell plasticity may operate in wider contexts.
Collapse
Affiliation(s)
- Istvan Foldi
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Niki Anthoney
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Neale Harrison
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Monique Gangloff
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, England, UK
| | - Brett Verstak
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, England, UK
| | | | - Samaher AlAhmed
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Bangfu Zhu
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Mark Phizacklea
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Maria Losada-Perez
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Marta Moreira
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Nicholas J Gay
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, England, UK
| | - Alicia Hidalgo
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| |
Collapse
|
19
|
Abstract
The Wnt/β-catenin signaling is an evolutionarily conserved pathway that regulates a wide range of physiological functions, including embryogenesis, organ maintenance, cell proliferation and cell fate decision. Dysregulation of Wnt/β-catenin signaling has been implicated in various cancers, but its role in cell death has not yet been fully elucidated. Here we show that activation of Wg signaling induces cell death in Drosophila eyes and wings, which depends on dFoxO, a transcription factor known to be involved in cell death. In addition, dFoxO is required for ectopic and endogenous Wg signaling to regulate wing patterning. Moreover, dFoxO is necessary for activated Wg signaling-induced target genes expression. Furthermore, Arm is reciprocally required for dFoxO-induced cell death. Finally, dFoxO physically interacts with Arm both in vitro and in vivo. Thus, we have characterized a previously unknown role of dFoxO in promoting Wg signaling, and that a dFoxO-Arm complex is likely involved in their mutual functions, e.g. cell death.
Collapse
|