1
|
Carpinteyro-Ponce J, Machado CA. The Complex Landscape of Structural Divergence Between the Drosophila pseudoobscura and D. persimilis Genomes. Genome Biol Evol 2024; 16:evae047. [PMID: 38482945 PMCID: PMC10980976 DOI: 10.1093/gbe/evae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Structural genomic variants are key drivers of phenotypic evolution. They can span hundreds to millions of base pairs and can thus affect large numbers of genetic elements. Although structural variation is quite common within and between species, its characterization depends upon the quality of genome assemblies and the proportion of repetitive elements. Using new high-quality genome assemblies, we report a complex and previously hidden landscape of structural divergence between the genomes of Drosophila persimilis and D. pseudoobscura, two classic species in speciation research, and study the relationships among structural variants, transposable elements, and gene expression divergence. The new assemblies confirm the already known fixed inversion differences between these species. Consistent with previous studies showing higher levels of nucleotide divergence between fixed inversions relative to collinear regions of the genome, we also find a significant overrepresentation of INDELs inside the inversions. We find that transposable elements accumulate in regions with low levels of recombination, and spatial correlation analyses reveal a strong association between transposable elements and structural variants. We also report a strong association between differentially expressed (DE) genes and structural variants and an overrepresentation of DE genes inside the fixed chromosomal inversions that separate this species pair. Interestingly, species-specific structural variants are overrepresented in DE genes involved in neural development, spermatogenesis, and oocyte-to-embryo transition. Overall, our results highlight the association of transposable elements with structural variants and their importance in driving evolutionary divergence.
Collapse
Affiliation(s)
| | - Carlos A Machado
- Department of Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
2
|
Ray M, Conard AM, Urban J, Mahableshwarkar P, Aguilera J, Huang A, Vaidyanathan S, Larschan E. Sex-specific splicing occurs genome-wide during early Drosophila embryogenesis. eLife 2023; 12:e87865. [PMID: 37466240 PMCID: PMC10400075 DOI: 10.7554/elife.87865] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Sex-specific splicing is an essential process that regulates sex determination and drives sexual dimorphism. Yet, how early in development widespread sex-specific transcript diversity occurs was unknown because it had yet to be studied at the genome-wide level. We use the powerful Drosophila model to show that widespread sex-specific transcript diversity occurs early in development, concurrent with zygotic genome activation. We also present a new pipeline called time2Splice to quantify changes in alternative splicing over time. Furthermore, we determine that one of the consequences of losing an essential maternally deposited pioneer factor called CLAMP (chromatin-linked adapter for MSL proteins) is altered sex-specific splicing of genes involved in diverse biological processes that drive development. Overall, we show that sex-specific differences in transcript diversity exist even at the earliest stages of development..
Collapse
Affiliation(s)
- Mukulika Ray
- MCB department, Brown UniversityProvidenceUnited States
| | | | - Jennifer Urban
- Biology department, Johns Hopkins UniversityBaltimoreUnited States
| | - Pranav Mahableshwarkar
- MCB department, Brown UniversityProvidenceUnited States
- CCMB department, Brown UniversityProvidenceUnited States
| | | | - Annie Huang
- MCB department, Brown UniversityProvidenceUnited States
| | - Smriti Vaidyanathan
- MCB department, Brown UniversityProvidenceUnited States
- CCMB department, Brown UniversityProvidenceUnited States
| | | |
Collapse
|
3
|
Pérez-Mojica JE, Enders L, Walsh J, Lau KH, Lempradl A. Continuous transcriptome analysis reveals novel patterns of early gene expression in Drosophila embryos. CELL GENOMICS 2023; 3:100265. [PMID: 36950383 PMCID: PMC10025449 DOI: 10.1016/j.xgen.2023.100265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The transformative events during early organismal development lay the foundation for body formation and long-term phenotype. The rapid progression of events and the limited material available present major barriers to studying these earliest stages of development. Herein, we report an operationally simple RNA sequencing approach for high-resolution, time-sensitive transcriptome analysis in early (≤3 h) Drosophila embryos. This method does not require embryo staging but relies on single-embryo RNA sequencing and transcriptome ordering along a developmental trajectory (pseudo-time). The resulting high-resolution, time-sensitive mRNA expression profiles reveal the exact onset of transcription and degradation for thousands of transcripts. Further, using sex-specific transcription signatures, embryos can be sexed directly, eliminating the need for Y chromosome genotyping and revealing patterns of sex-biased transcription from the beginning of zygotic transcription. Our data provide an unparalleled resolution of gene expression during early development and enhance the current understanding of early transcriptional processes.
Collapse
Affiliation(s)
- J. Eduardo Pérez-Mojica
- Department of Metabolic and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 4930, USA
| | - Lennart Enders
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Joseph Walsh
- Department of Metabolic and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 4930, USA
| | - Kin H. Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 4930, USA
| | - Adelheid Lempradl
- Department of Metabolic and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 4930, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| |
Collapse
|
4
|
Djordjevic J, Dumas Z, Robinson-Rechavi M, Schwander T, Parker DJ. Dynamics of sex-biased gene expression during development in the stick insect Timema californicum. Heredity (Edinb) 2022; 129:113-122. [PMID: 35581477 PMCID: PMC9338061 DOI: 10.1038/s41437-022-00536-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/03/2022] Open
Abstract
Sexually dimorphic phenotypes are thought to arise primarily from sex-biased gene expression during development. Major changes in developmental strategies, such as the shift from hemimetabolous to holometabolous development, are therefore expected to have profound consequences for the dynamics of sex-biased gene expression. However, no studies have previously examined sex-biased gene expression during development in hemimetabolous insects, precluding comparisons between developmental strategies. Here we characterized sex-biased gene expression at three developmental stages in a hemimetabolous stick insect (Timema californicum): hatchlings, juveniles, and adults. As expected, the proportion of sex-biased genes gradually increased during development, mirroring the gradual increase of phenotypic sexual dimorphism. Sex-biased genes identified at early developmental stages were generally consistently male- or female-biased at later stages, suggesting their importance in sexual differentiation. Additionally, we compared the dynamics of sex-biased gene expression during development in T. californicum to those of the holometabolous fly Drosophila melanogaster by reanalyzing publicly available RNA-seq data from third instar larval, pupal and adult stages. In D. melanogaster, 84% of genes were sex-biased at the adult stage (compared to only 20% in T. californicum), and sex-biased gene expression increased abruptly at the adult stage when morphological sexual dimorphism is manifested. Our findings are consistent with the prediction that the dynamics of sex-biased gene expression during development differ extensively between holometabolous and hemimetabolous insect species.
Collapse
Affiliation(s)
| | - Zoé Dumas
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tanja Schwander
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Darren James Parker
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom.
| |
Collapse
|
5
|
Chenevert M, Miller B, Karkoutli A, Rusnak A, Lott SE, Atallah J. The early embryonic transcriptome of a Hawaiian Drosophila picture-wing fly shows evidence of altered gene expression and novel gene evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:277-291. [PMID: 35322942 DOI: 10.1002/jez.b.23129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/14/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
A massive adaptive radiation on the Hawaiian archipelago has produced approximately one-quarter of the fly species in the family Drosophilidae. The Hawaiian Drosophila clade has long been recognized as a model system for the study of both the ecology of island endemics and the evolution of developmental mechanisms, but relatively few genomic and transcriptomic datasets are available for this group. We present here a differential expression analysis of the transcriptional profiles of two highly conserved embryonic stages in the Hawaiian picture-wing fly Drosophila grimshawi. When we compared our results to previously published datasets across the family Drosophilidae, we identified cases of both gains and losses of gene representation in D. grimshawi, including an apparent delay in Hox gene activation. We also found a high expression of unannotated genes. Most transcripts of unannotated genes with open reading frames do not have identified homologs in non-Hawaiian Drosophila species, although the vast majority have sequence matches in genomes of other Hawaiian picture-wing flies. Some of these unannotated genes may have arisen from noncoding sequence in the ancestor of Hawaiian flies or during the evolution of the clade. Our results suggest that both the modified use of ancestral genes and the evolution of new ones may occur in rapid radiations.
Collapse
Affiliation(s)
- Madeline Chenevert
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
- Hayward Genetics Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Bronwyn Miller
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
| | - Ahmad Karkoutli
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
- LSUHSC School of Medicine, New Orleans, Louisiana, USA
| | - Anna Rusnak
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
- Center for Biomedical Engineering, Brown University, Box A-2, Arnold Lab, Providence, Rhode Island, USA
| | - Susan E Lott
- Department of Evolution & Ecology, University of California-Davis, Davis, California, USA
| | - Joel Atallah
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
| |
Collapse
|
6
|
Cartwright EL, Lott SE. Evolved Differences in cis and trans Regulation Between the Maternal and Zygotic mRNA Complements in the Drosophila Embryo. Genetics 2020; 216:805-821. [PMID: 32928902 PMCID: PMC7648588 DOI: 10.1534/genetics.120.303626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 08/26/2020] [Indexed: 11/18/2022] Open
Abstract
How gene expression can evolve depends on the mechanisms driving gene expression. Gene expression is controlled in different ways in different developmental stages; here we ask whether different developmental stages show different patterns of regulatory evolution. To explore the mode of regulatory evolution, we used the early stages of embryonic development controlled by two different genomes, that of the mother and that of the zygote. During embryogenesis in all animals, initial developmental processes are driven entirely by maternally provided gene products deposited into the oocyte. The zygotic genome is activated later, when developmental control is handed off from maternal gene products to the zygote during the maternal-to-zygotic transition. Using hybrid crosses between sister species of Drosophila (Dsimulans, D. sechellia, and D. mauritiana) and transcriptomics, we find that the regulation of maternal transcript deposition and zygotic transcription evolve through different mechanisms. We find that patterns of transcript level inheritance in hybrids, relative to parental species, differ between maternal and zygotic transcripts, and maternal transcript levels are more likely to be conserved. Changes in transcript levels occur predominantly through differences in trans regulation for maternal genes, while changes in zygotic transcription occur through a combination of both cis and trans regulatory changes. Differences in the underlying regulatory landscape in the mother and the zygote are likely the primary determinants for how maternal and zygotic transcripts evolve.
Collapse
Affiliation(s)
- Emily L Cartwright
- Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Susan E Lott
- Department of Evolution and Ecology, University of California, Davis, California 95616
| |
Collapse
|
7
|
Liu J, Frochaux M, Gardeux V, Deplancke B, Robinson-Rechavi M. Inter-embryo gene expression variability recapitulates the hourglass pattern of evo-devo. BMC Biol 2020; 18:129. [PMID: 32950053 PMCID: PMC7502200 DOI: 10.1186/s12915-020-00842-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The evolution of embryological development has long been characterized by deep conservation. In animal development, the phylotypic stage in mid-embryogenesis is more conserved than either early or late stages among species within the same phylum. Hypotheses to explain this hourglass pattern have focused on purifying the selection of gene regulation. Here, we propose an alternative-genes are regulated in different ways at different stages and have different intrinsic capacities to respond to perturbations on gene expression. RESULTS To eliminate the influence of natural selection, we quantified the expression variability of isogenetic single embryo transcriptomes throughout fly Drosophila melanogaster embryogenesis. We found that the expression variability is lower at the phylotypic stage, supporting that the underlying regulatory architecture in this stage is more robust to stochastic variation on gene expression. We present evidence that the phylotypic stage is also robust to genetic variations on gene expression. Moreover, chromatin regulation appears to play a key role in the variation and evolution of gene expression. CONCLUSIONS We suggest that a phylum-level pattern of embryonic conservation can be explained by the intrinsic difference of gene regulatory mechanisms in different stages.
Collapse
Affiliation(s)
- Jialin Liu
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
| | - Michael Frochaux
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vincent Gardeux
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bart Deplancke
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
| |
Collapse
|
8
|
Samata M, Alexiadis A, Richard G, Georgiev P, Nuebler J, Kulkarni T, Renschler G, Basilicata MF, Zenk FL, Shvedunova M, Semplicio G, Mirny L, Iovino N, Akhtar A. Intergenerationally Maintained Histone H4 Lysine 16 Acetylation Is Instructive for Future Gene Activation. Cell 2020; 182:127-144.e23. [DOI: 10.1016/j.cell.2020.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 02/22/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
|
9
|
Wunderlich Z, Fowlkes CC, Eckenrode KB, Bragdon MDJ, Abiri A, DePace AH. Quantitative Comparison of the Anterior-Posterior Patterning System in the Embryos of Five Drosophila Species. G3 (BETHESDA, MD.) 2019; 9:2171-2182. [PMID: 31048401 PMCID: PMC6643877 DOI: 10.1534/g3.118.200953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/01/2019] [Indexed: 11/18/2022]
Abstract
Complex spatiotemporal gene expression patterns direct the development of the fertilized egg into an adult animal. Comparisons across species show that, in spite of changes in the underlying regulatory DNA sequence, developmental programs can be maintained across millions of years of evolution. Reciprocally, changes in gene expression can be used to generate morphological novelty. Distinguishing between changes in regulatory DNA that lead to changes in gene expression and those that do not is therefore a central goal of evolutionary developmental biology. Quantitative, spatially-resolved measurements of developmental gene expression patterns play a crucial role in this goal, enabling the detection of subtle phenotypic differences between species and the development of computations models that link the sequence of regulatory DNA to expression patterns. Here we report the generation of two atlases of cellular resolution gene expression measurements for the primary anterior-posterior patterning genes in Drosophila simulans and Drosophila virilis By combining these data sets with existing atlases for three other Drosophila species, we detect subtle differences in the gene expression patterns and dynamics driving the highly conserved axis patterning system and delineate inter-species differences in the embryonic morphology. These data sets will be a resource for future modeling studies of the evolution of developmental gene regulatory networks.
Collapse
Affiliation(s)
- Zeba Wunderlich
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697
| | - Charless C Fowlkes
- Department of Computer Science, University of California, Irvine, CA, 92697
| | - Kelly B Eckenrode
- Department of Systems Biology, Harvard Medical School, Boston, MA, 20115
| | - Meghan D J Bragdon
- Department of Systems Biology, Harvard Medical School, Boston, MA, 20115
| | - Arash Abiri
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697
| | - Angela H DePace
- Department of Systems Biology, Harvard Medical School, Boston, MA, 20115
| |
Collapse
|
10
|
Yang H, Jaime M, Polihronakis M, Kanegawa K, Markow T, Kaneshiro K, Oliver B. Re-annotation of eight Drosophila genomes. Life Sci Alliance 2018; 1:e201800156. [PMID: 30599046 PMCID: PMC6305970 DOI: 10.26508/lsa.201800156] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/15/2018] [Accepted: 12/16/2018] [Indexed: 12/11/2022] Open
Abstract
The sequenced genomes of the Drosophila phylogeny are a central resource for comparative work supporting the understanding of the Drosophila melanogaster non-mammalian model system. These have also facilitated evolutionary studies on the selected and random differences that distinguish the thousands of extant species of Drosophila. However, full utility has been hampered by uneven genome annotation. We have generated a large expression profile dataset for nine species of Drosophila and trained a transcriptome assembly approach on D. melanogaster that best matched the extensively curated annotation. We then applied this to the other species to add more than 10000 transcript models per species. We also developed new orthologs to facilitate cross-species comparisons. We validated the new annotation of the distantly related Drosophila grimshawi with an extensive collection of newly sequenced cDNAs. This re-annotation will facilitate understanding both the core commonalities and the species differences in this important group of model organisms, and suggests a strategy for annotating the many forthcoming genomes covering the tree of life.
Collapse
Affiliation(s)
- Haiwang Yang
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Maria Jaime
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Maxi Polihronakis
- Drosophila Species Stock Center, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kelvin Kanegawa
- Hawaiian Drosophila Research Stock Center, Pacific Biosciences Research Center, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Therese Markow
- National Laboratory of Genomics for Biodiversity (LANGEBIO), Irapuato, Guanajuato, Mexico.,Drosophila Species Stock Center, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kenneth Kaneshiro
- Hawaiian Drosophila Research Stock Center, Pacific Biosciences Research Center, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Brian Oliver
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Evolution of maternal and zygotic mRNA complements in the early Drosophila embryo. PLoS Genet 2018; 14:e1007838. [PMID: 30557299 PMCID: PMC6312346 DOI: 10.1371/journal.pgen.1007838] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 12/31/2018] [Accepted: 11/18/2018] [Indexed: 01/19/2023] Open
Abstract
The earliest stages of animal development are controlled by maternally deposited mRNA transcripts and proteins. Once the zygote is able to transcribe its own genome, maternal transcripts are degraded, in a tightly regulated process known as the maternal to zygotic transition (MZT). While this process has been well-studied within model species, we have little knowledge of how the pools of maternal and zygotic transcripts evolve. To characterize the evolutionary dynamics and functional constraints on early embryonic expression, we created a transcriptomic dataset for 14 Drosophila species spanning over 50 million years of evolution, at developmental stages before and after the MZT, and compared our results with a previously published Aedes aegypti developmental time course. We found deep conservation over 250 million years of a core set of genes transcribed only by the zygote. This select group is highly enriched in transcription factors that play critical roles in early development. However, we also identify a surprisingly high level of change in the transcripts represented at both stages over the phylogeny. While mRNA levels of genes with maternally deposited transcripts are more highly conserved than zygotic genes, those maternal transcripts that are completely degraded at the MZT vary dramatically between species. We also show that hundreds of genes have different isoform usage between the maternal and zygotic genomes. Our work suggests that maternal transcript deposition and early zygotic transcription are remarkably dynamic over evolutionary time, despite the widespread conservation of early developmental processes.
Collapse
|
12
|
Zhou L, Lim MYT, Kaur P, Saj A, Bortolamiol-Becet D, Gopal V, Tolwinski N, Tucker-Kellogg G, Okamura K. Importance of miRNA stability and alternative primary miRNA isoforms in gene regulation during Drosophila development. eLife 2018; 7:e38389. [PMID: 30024380 PMCID: PMC6066331 DOI: 10.7554/elife.38389] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/04/2018] [Indexed: 12/19/2022] Open
Abstract
Mature microRNAs (miRNAs) are processed from primary transcripts (pri-miRNAs), and their expression is controlled at transcriptional and post-transcriptional levels. However, how regulation at multiple levels achieves precise control remains elusive. Using published and new datasets, we profile a time course of mature and pri-miRNAs in Drosophila embryos and reveal the dynamics of miRNA production and degradation as well as dynamic changes in pri-miRNA isoform selection. We found that 5' nucleotides influence stability of mature miRNAs. Furthermore, distinct half-lives of miRNAs from the mir-309 cluster shape their temporal expression patterns, and the importance of rapid degradation of the miRNAs in gene regulation is detected as distinct evolutionary signatures at the target sites in the transcriptome. Finally, we show that rapid degradation of miR-3/-309 may be important for regulation of the planar cell polarity pathway component Vang. Altogether, the results suggest that complex mechanisms regulate miRNA expression to support normal development.
Collapse
Affiliation(s)
- Li Zhou
- Temasek Life Sciences LaboratorySingaporeSingapore
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Mandy Yu Theng Lim
- Temasek Life Sciences LaboratorySingaporeSingapore
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Prameet Kaur
- Division of ScienceYale-NUS CollegeSingaporeSingapore
| | - Abil Saj
- Cancer Therapeutics and Stratified OncologyGenome Institute of SingaporeSingaporeSingapore
| | | | - Vikneswaran Gopal
- Department of Statistics and Applied Probability, Faculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Nicholas Tolwinski
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingaporeSingapore
- Division of ScienceYale-NUS CollegeSingaporeSingapore
| | - Greg Tucker-Kellogg
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Katsutomo Okamura
- Temasek Life Sciences LaboratorySingaporeSingapore
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
13
|
Ma WJ, Veltsos P, Toups MA, Rodrigues N, Sermier R, Jeffries DL, Perrin N. Tissue Specificity and Dynamics of Sex-Biased Gene Expression in a Common Frog Population with Differentiated, Yet Homomorphic, Sex Chromosomes. Genes (Basel) 2018; 9:E294. [PMID: 29895802 PMCID: PMC6027210 DOI: 10.3390/genes9060294] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/04/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023] Open
Abstract
Sex-biased genes are central to the study of sexual selection, sexual antagonism, and sex chromosome evolution. We describe a comprehensive de novo assembled transcriptome in the common frog Rana temporaria based on five developmental stages and three adult tissues from both sexes, obtained from a population with karyotypically homomorphic but genetically differentiated sex chromosomes. This allows the study of sex-biased gene expression throughout development, and its effect on the rate of gene evolution while accounting for pleiotropic expression, which is known to negatively correlate with the evolutionary rate. Overall, sex-biased genes had little overlap among developmental stages and adult tissues. Late developmental stages and gonad tissues had the highest numbers of stage- or tissue-specific genes. We find that pleiotropic gene expression is a better predictor than sex bias for the evolutionary rate of genes, though it often interacts with sex bias. Although genetically differentiated, the sex chromosomes were not enriched in sex-biased genes, possibly due to a very recent arrest of XY recombination. These results extend our understanding of the developmental dynamics, tissue specificity, and genomic localization of sex-biased genes.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| | - Paris Veltsos
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, IN 47405, USA.
| | - Melissa A Toups
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Nicolas Rodrigues
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| | - Roberto Sermier
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| | - Daniel L Jeffries
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| |
Collapse
|
14
|
Effect of Larval Nutrition on Maternal mRNA Contribution to the Drosophila Egg. G3-GENES GENOMES GENETICS 2018; 8:1933-1941. [PMID: 29666195 PMCID: PMC5982822 DOI: 10.1534/g3.118.200283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Embryonic development begins under the control of maternal gene products, mRNAs and proteins that the mother deposits into the egg; the zygotic genome is activated some time later. Maternal control of early development is conserved across metazoans. Gene products contributed by mothers are critical to many early developmental processes, and set up trajectories for the rest of development. Maternal deposition of these factors is an often-overlooked aspect of parental investment. If the mother experiences challenging environmental conditions, such as poor nutrition, previous studies in Drosophila melanogaster have demonstrated a plastic response wherein these mothers may produce larger eggs to buffer the offspring against the same difficult environment. This additional investment can produce offspring that are more fit in the challenging environment. With this study, we ask whether D. melanogaster mothers who experience poor nutrition during their own development change their gene product contribution to the egg. We perform mRNA-Seq on eggs at a stage where all mRNAs are maternally derived, from mothers with different degrees of nutritional limitation. We find that nutritional limitation produces similar transcript changes at all degrees of limitation tested. Genes that have lower transcript abundance in nutritionally limited mothers are those involved in translation, which is likely one of the most energetically costly processes occurring in the early embryo. We find an increase in transcripts for transport and localization of macromolecules, and for the electron transport chain. The eggs produced by nutrition-limited mothers show a plastic response in mRNA deposition, which may better prepare the future embryo for development in a nutrition-limited environment.
Collapse
|
15
|
Affiliation(s)
- Sonja Grath
- Department of Biology II, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany; ,
| | - John Parsch
- Department of Biology II, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany; ,
| |
Collapse
|
16
|
Quispe RL, Justino EB, Vieira FN, Jaramillo ML, Rosa RD, Perazzolo LM. Transcriptional profiling of immune-related genes in Pacific white shrimp (Litopenaeus vannamei) during ontogenesis. FISH & SHELLFISH IMMUNOLOGY 2016; 58:103-107. [PMID: 27637731 DOI: 10.1016/j.fsi.2016.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
We have performed here a gene expression analysis to determine the developmental stage at the main genes involved in crustacean immune response begin to be expressed and their changes in mRNA abundance during shrimp development. By using a quantitative PCR-based approach, we have measured the mRNA abundance of 24 immune-related genes from different functional categories in twelve developmental stages ranging from fertilized eggs to larval and postlarval stages and also in juveniles. We showed for the first time that the main genes from the RNAi-based post-transcriptional pathway involved in shrimp antiviral immunity are transcribed in all developmental stages, but exhibit a diverse pattern of gene expression during shrimp ontogenesis. On the other hand, hemocyte-expressed genes mainly involved in antimicrobial defenses appeared to be transcribed in larval stages, indicating that hematopoiesis initiates early in development. Moreover, transcript levels of some genes were early detected in fertilized eggs at 0-4 h post-spawning, suggesting a maternal contribution of immune-related transcripts to shrimp progeny. Altogether, our results provide important clues regarding the ontogenesis of hemocytes as well the establishment of antiviral and antimicrobial defenses in shrimp.
Collapse
Affiliation(s)
- Ruth L Quispe
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Emily B Justino
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Felipe N Vieira
- Laboratory of Marine Shrimp, Department of Aquaculture, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Michael L Jaramillo
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Rafael D Rosa
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Luciane M Perazzolo
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
17
|
Affiliation(s)
- Lauren A. Richardson
- Public Library of Science, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Lee H, Cho DY, Whitworth C, Eisman R, Phelps M, Roote J, Kaufman T, Cook K, Russell S, Przytycka T, Oliver B. Effects of Gene Dose, Chromatin, and Network Topology on Expression in Drosophila melanogaster. PLoS Genet 2016; 12:e1006295. [PMID: 27599372 PMCID: PMC5012587 DOI: 10.1371/journal.pgen.1006295] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 08/10/2016] [Indexed: 11/18/2022] Open
Abstract
Deletions, commonly referred to as deficiencies by Drosophila geneticists, are valuable tools for mapping genes and for genetic pathway discovery via dose-dependent suppressor and enhancer screens. More recently, it has become clear that deviations from normal gene dosage are associated with multiple disorders in a range of species including humans. While we are beginning to understand some of the transcriptional effects brought about by gene dosage changes and the chromosome rearrangement breakpoints associated with them, much of this work relies on isolated examples. We have systematically examined deficiencies of the left arm of chromosome 2 and characterize gene-by-gene dosage responses that vary from collapsed expression through modest partial dosage compensation to full or even over compensation. We found negligible long-range effects of creating novel chromosome domains at deletion breakpoints, suggesting that cases of gene regulation due to altered nuclear architecture are rare. These rare cases include trans de-repression when deficiencies delete chromatin characterized as repressive in other studies. Generally, effects of breakpoints on expression are promoter proximal (~100bp) or in the gene body. Effects of deficiencies genome-wide are in genes with regulatory relationships to genes within the deleted segments, highlighting the subtle expression network defects in these sensitized genetic backgrounds.
Collapse
Affiliation(s)
- Hangnoh Lee
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dong-Yeon Cho
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cale Whitworth
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Robert Eisman
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Melissa Phelps
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - John Roote
- Department of Genetics and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Thomas Kaufman
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Kevin Cook
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Steven Russell
- Department of Genetics and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Teresa Przytycka
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brian Oliver
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
19
|
Untangling the Contributions of Sex-Specific Gene Regulation and X-Chromosome Dosage to Sex-Biased Gene Expression in Caenorhabditis elegans. Genetics 2016; 204:355-69. [PMID: 27356611 DOI: 10.1534/genetics.116.190298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/27/2016] [Indexed: 01/31/2023] Open
Abstract
Dosage compensation mechanisms equalize the level of X chromosome expression between sexes. Yet the X chromosome is often enriched for genes exhibiting sex-biased, i.e., imbalanced expression. The relationship between X chromosome dosage compensation and sex-biased gene expression remains largely unexplored. Most studies determine sex-biased gene expression without distinguishing between contributions from X chromosome copy number (dose) and the animal's sex. Here, we uncoupled X chromosome dose from sex-specific gene regulation in Caenorhabditis elegans to determine the effect of each on X expression. In early embryogenesis, when dosage compensation is not yet fully active, X chromosome dose drives the hermaphrodite-biased expression of many X-linked genes, including several genes that were shown to be responsible for hermaphrodite fate. A similar effect is seen in the C. elegans germline, where X chromosome dose contributes to higher hermaphrodite X expression, suggesting that lack of dosage compensation in the germline may have a role in supporting higher expression of X chromosomal genes with female-biased functions in the gonad. In the soma, dosage compensation effectively balances X expression between the sexes. As a result, somatic sex-biased expression is almost entirely due to sex-specific gene regulation. These results suggest that lack of dosage compensation in different tissues and developmental stages allow X chromosome copy number to contribute to sex-biased gene expression and function.
Collapse
|