1
|
Royo M, Joseph-Mullol B, Sandoval S, Moliné T, Solé C, Cortés-Hernández J. Integrative miRNA-mRNA profiling uncovers mechanisms of belimumab action in systemic lupus erythematosus. Front Immunol 2025; 16:1553971. [PMID: 40160819 PMCID: PMC11949941 DOI: 10.3389/fimmu.2025.1553971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder driven by autoreactive B cells and characterized by the production of pathogenic autoantibodies. Belimumab, an anti-BAFF monoclonal antibody, has demonstrated efficacy in reducing disease activity and corticosteroid use in SLE patients, although responses remain variable. B-cell activating factor (BAFF) is essential for B cell survival and autoantibody production, positioning it as a key target in SLE pathogenesis. MicroRNAs (miRNAs), critical regulators of gene expression and immune homeostasis, have an emerging role in SLE pathophysiology. However, their regulation in response to anti-BAFF therapies, such as belimumab, remains unexplored. This study investigates miRNA-mRNA interactions in T cells, B cells, and myeloid cells from SLE patients before and after belimumab treatment. A total of 79 miRNAs associated with treatment response and 525 miRNA-gene interactions were identified. Validation in 18 SLE responders revealed significant changes in miRNA expression in T and myeloid cells, but not in B cells. Belimumab was found to modulate B cell development by regulating genes such as BLNK, BANK1, and MEF2C, as well as the CD40/CD40L axis. In T cells, miRNAs influenced interferon signaling and inflammatory cytokines via NF-κB activation. Changes in myeloid cells, characterized by the downregulation of KLF13, CCL5, and IL4, appear to be secondary to T cell modulation. These findings provide novel insights into the miRNA-mediated regulatory networks underlying belimumab's immunomodulatory effects in SLE. Further research is required to validate these findings and through in vitro experiments to better understand the role of miRNAs in guiding treatment responses.
Collapse
Affiliation(s)
- Maria Royo
- Rheumatology Research Group, Lupus Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Blanca Joseph-Mullol
- Rheumatology Research Group, Lupus Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sebastian Sandoval
- Rheumatology Research Group, Lupus Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Teresa Moliné
- Department of Pathology, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Solé
- Rheumatology Research Group, Lupus Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josefina Cortés-Hernández
- Rheumatology Research Group, Lupus Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Andresen AMS, Taylor RS, Grimholt U, Daniels RR, Sun J, Dobie R, Henderson NC, Martin SAM, Macqueen DJ, Fosse JH. Mapping the cellular landscape of Atlantic salmon head kidney by single cell and single nucleus transcriptomics. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109357. [PMID: 38181891 DOI: 10.1016/j.fsi.2024.109357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
Single-cell transcriptomics is the current gold standard for global gene expression profiling, not only in mammals and model species, but also in non-model fish species. This is a rapidly expanding field, creating a deeper understanding of tissue heterogeneity and the distinct functions of individual cells, making it possible to explore the complexities of immunology and gene expression on a highly resolved level. In this study, we compared two single cell transcriptomic approaches to investigate cellular heterogeneity within the head kidney of healthy farmed Atlantic salmon (Salmo salar). We compared 14,149 cell transcriptomes assayed by single cell RNA-seq (scRNA-seq) with 18,067 nuclei transcriptomes captured by single nucleus RNA-Seq (snRNA-seq). Both approaches detected eight major cell populations in common: granulocytes, heamatopoietic stem cells, erythrocytes, mononuclear phagocytes, thrombocytes, B cells, NK-like cells, and T cells. Four additional cell types, endothelial, epithelial, interrenal, and mesenchymal cells, were detected in the snRNA-seq dataset, but appeared to be lost during preparation of the single cell suspension submitted for scRNA-seq library generation. We identified additional heterogeneity and subpopulations within the B cells, T cells, and endothelial cells, and revealed developmental trajectories of heamatopoietic stem cells into differentiated granulocyte and mononuclear phagocyte populations. Gene expression profiles of B cell subtypes revealed distinct IgM and IgT-skewed resting B cell lineages and provided insights into the regulation of B cell lymphopoiesis. The analysis revealed eleven T cell sub-populations, displaying a level of T cell heterogeneity in salmon head kidney comparable to that observed in mammals, including distinct subsets of cd4/cd8-negative T cells, such as tcrγ positive, progenitor-like, and cytotoxic cells. Although snRNA-seq and scRNA-seq were both useful to resolve cell type-specific expression in the Atlantic salmon head kidney, the snRNA-seq pipeline was overall more robust in identifying several cell types and subpopulations. While scRNA-seq displayed higher levels of ribosomal and mitochondrial genes, snRNA-seq captured more transcription factor genes. However, only scRNA-seq-generated data was useful for cell trajectory inference within the myeloid lineage. In conclusion, this study systematically outlines the relative merits of scRNA-seq and snRNA-seq in Atlantic salmon, enhances understanding of teleost immune cell lineages, and provides a comprehensive list of markers for identifying major cell populations in the head kidney with significant immune relevance.
Collapse
Affiliation(s)
| | - Richard S Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Jianxuan Sun
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Ross Dobie
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, United Kingdom; MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Samuel A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
| | | |
Collapse
|
3
|
Lambo S, Trinh DL, Ries RE, Jin D, Setiadi A, Ng M, Leblanc VG, Loken MR, Brodersen LE, Dai F, Pardo LM, Ma X, Vercauteren SM, Meshinchi S, Marra MA. A longitudinal single-cell atlas of treatment response in pediatric AML. Cancer Cell 2023; 41:2117-2135.e12. [PMID: 37977148 DOI: 10.1016/j.ccell.2023.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/15/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
Pediatric acute myeloid leukemia (pAML) is characterized by heterogeneous cellular composition, driver alterations and prognosis. Characterization of this heterogeneity and how it affects treatment response remains understudied in pediatric patients. We used single-cell RNA sequencing and single-cell ATAC sequencing to profile 28 patients representing different pAML subtypes at diagnosis, remission and relapse. At diagnosis, cellular composition differed between genetic subgroups. Upon relapse, cellular hierarchies transitioned toward a more primitive state regardless of subtype. Primitive cells in the relapsed tumor were distinct compared to cells at diagnosis, with under-representation of myeloid transcriptional programs and over-representation of other lineage programs. In some patients, this was accompanied by the appearance of a B-lymphoid-like hierarchy. Our data thus reveal the emergence of apparent subtype-specific plasticity upon treatment and inform on potentially targetable processes.
Collapse
Affiliation(s)
- Sander Lambo
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Diane L Trinh
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Dan Jin
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Audi Setiadi
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pathology & Laboratory Medicine, Division of Hematopathology, Children's and Women's Health Centre of British Columbia, Vancouver, BC, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michelle Ng
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada; Department of Medical Genetics and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Veronique G Leblanc
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | | | | | - Fangyan Dai
- Hematologics, Incorporated, Seattle, WA, USA
| | | | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Suzanne M Vercauteren
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pathology & Laboratory Medicine, Division of Hematopathology, Children's and Women's Health Centre of British Columbia, Vancouver, BC, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada; Department of Medical Genetics and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
4
|
Khan DMIO, Karmaus PWF, Bach A, Crawford RB, Kaminski NE. An in vitro model of human hematopoiesis identifies a regulatory role for the aryl hydrocarbon receptor. Blood Adv 2023; 7:6253-6265. [PMID: 37477592 PMCID: PMC10589788 DOI: 10.1182/bloodadvances.2023010169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/22/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
In vitro models to study simultaneous development of different human immune cells and hematopoietic lineages are lacking. We identified and characterized, using single-cell methods, an in vitro stromal cell-free culture system of human hematopoietic stem and progenitor cell (HSPC) differentiation that allows concurrent development of multiple immune cell lineages. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor influencing many biological processes in diverse cell types. Using this in vitro model, we found that AHR activation by the highly specific AHR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin, drives differentiation of human umbilical cord blood-derived CD34+ HSPCs toward monocytes and granulocytes with a significant decrease in lymphoid and megakaryocyte lineage specification that may lead to reduced immune competence. To our knowledge, we also discovered for the first time, using single-cell modalities, that AHR activation decreased the expression of BCL11A and IRF8 in progenitor cells, which are critical genes involved in hematopoietic lineage specification processes at both transcriptomic and protein levels. Our in vitro model of hematopoiesis, coupled with single-cell tools, therefore allows for a better understanding of the role played by AHR in modulating hematopoietic differentiation.
Collapse
Affiliation(s)
- D M Isha Olive Khan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI
| | - Peer W. F. Karmaus
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI
- National Institute of Environmental Health Sciences, Durham, NC
| | - Anthony Bach
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI
| | - Robert B. Crawford
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI
| | - Norbert E. Kaminski
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI
| |
Collapse
|
5
|
Ehm P, Rietow R, Wegner W, Bußmann L, Kriegs M, Dierck K, Horn S, Streichert T, Horstmann M, Jücker M. SHIP1 Is Present but Strongly Downregulated in T-ALL, and after Restoration Suppresses Leukemia Growth in a T-ALL Xenotransplantation Mouse Model. Cells 2023; 12:1798. [PMID: 37443832 PMCID: PMC10341211 DOI: 10.3390/cells12131798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cause of cancer-related death in children. Despite significantly increased chances of cure, especially for high-risk ALL patients, it still represents a poor prognosis for a substantial fraction of patients. Misregulated proteins in central switching points of the cellular signaling pathways represent potentially important therapeutic targets. Recently, the inositol phosphatase SHIP1 (SH2-containing inositol 5-phosphatase) has been considered as a tumor suppressor in leukemia. SHIP1 serves as an important negative regulator of the PI3K/AKT signaling pathway, which is frequently constitutively activated in primary T-ALL. In contrast to other reports, we show for the first time that SHIP1 has not been lost in T-ALL cells, but is strongly downregulated. Reduced expression of SHIP1 leads to an increased activation of the PI3K/AKT signaling pathway. SHIP1-mRNA expression is frequently reduced in primary T-ALL samples, which is recapitulated by the decrease in SHIP1 expression at the protein level in seven out of eight available T-ALL patient samples. In addition, we investigated the change in the activity profile of tyrosine and serine/threonine kinases after the restoration of SHIP1 expression in Jurkat T-ALL cells. The tyrosine kinase receptor subfamilies of NTRK and PDGFR, which are upregulated in T-ALL subgroups with low SHIP1 expression, are significantly disabled after SHIP1 reconstitution. Lentiviral-mediated reconstitution of SHIP1 expression in Jurkat cells points to a decreased cellular proliferation upon transplantation into NSG mice in comparison to the control cohort. Together, our findings will help to elucidate the complex network of cell signaling proteins, further support a functional role for SHIP1 as tumor suppressor in T-ALL and, much more importantly, show that full-length SHIP1 is expressed in T-ALL samples.
Collapse
Affiliation(s)
- Patrick Ehm
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg and Department of Pediatric Oncology and Hematology, University Medical Center, 20246 Hamburg, Germany
| | - Ruth Rietow
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg and Department of Pediatric Oncology and Hematology, University Medical Center, 20246 Hamburg, Germany
| | - Wiebke Wegner
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Lara Bußmann
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- UCCH Kinomics Core Facility, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Malte Kriegs
- UCCH Kinomics Core Facility, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Center for Oncology, Clinic for Radiation Therapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kevin Dierck
- Research Institute Children’s Cancer Center Hamburg, Hamburg and Department of Pediatric Oncology and Hematology, University Medical Center, 20246 Hamburg, Germany
| | - Stefan Horn
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Thomas Streichert
- Institute for Clinical Chemistry, University Hospital Köln, 50937 Cologne, Germany
| | - Martin Horstmann
- Research Institute Children’s Cancer Center Hamburg, Hamburg and Department of Pediatric Oncology and Hematology, University Medical Center, 20246 Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
6
|
Smits JG, Arts JA, Frölich S, Snabel RR, Heuts BM, Martens JH, van Heeringen SJ, Zhou H. scANANSE gene regulatory network and motif analysis of single-cell clusters. F1000Res 2023; 12:243. [PMID: 38116584 PMCID: PMC10728588 DOI: 10.12688/f1000research.130530.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2023] [Indexed: 12/21/2023] Open
Abstract
The recent development of single-cell techniques is essential to unravel complex biological systems. By measuring the transcriptome and the accessible genome on a single-cell level, cellular heterogeneity in a biological environment can be deciphered. Transcription factors act as key regulators activating and repressing downstream target genes, and together they constitute gene regulatory networks that govern cell morphology and identity. Dissecting these gene regulatory networks is crucial for understanding molecular mechanisms and disease, especially within highly complex biological systems. The gene regulatory network analysis software ANANSE and the motif enrichment software GimmeMotifs were both developed to analyse bulk datasets. We developed scANANSE, a software pipeline for gene regulatory network analysis and motif enrichment using single-cell RNA and ATAC datasets. The scANANSE pipeline can be run from either R or Python. First, it exports data from standard single-cell objects. Next, it automatically runs multiple comparisons of cell cluster data. Finally, it imports the results back to the single-cell object, where the result can be further visualised, integrated, and interpreted. Here, we demonstrate our scANANSE pipeline on a publicly available PBMC multi-omics dataset. It identifies well-known cell type-specific hematopoietic factors. Importantly, we also demonstrated that scANANSE combined with GimmeMotifs is able to predict transcription factors with both activating and repressing roles in gene regulation.
Collapse
Affiliation(s)
- Jos G.A. Smits
- Molecular Developmental Biology, Radboud University, Nijmegen, Gelderland, The Netherlands
| | - Julian A. Arts
- Molecular Developmental Biology, Radboud University, Nijmegen, Gelderland, The Netherlands
| | - Siebren Frölich
- Molecular Developmental Biology, Radboud University, Nijmegen, Gelderland, The Netherlands
| | - Rebecca R. Snabel
- Molecular Developmental Biology, Radboud University, Nijmegen, Gelderland, The Netherlands
| | - Branco M.H. Heuts
- Molecular Biology, Radboud University, Nijmegen, Gelderland, The Netherlands
| | - Joost H.A. Martens
- Molecular Biology, Radboud University, Nijmegen, Gelderland, The Netherlands
| | - Simon J. van Heeringen
- Molecular Developmental Biology, Radboud University, Nijmegen, Gelderland, The Netherlands
| | - Huiqing Zhou
- Molecular Developmental Biology, Radboud University, Nijmegen, Gelderland, The Netherlands
- Human Genetics, Radboud University Medical Centre, Nijmegen, Gelderland, The Netherlands
| |
Collapse
|
7
|
Odaira K, Yasuda T, Okada K, Shimooka T, Kojima Y, Noura M, Tamura S, Kurahashi S, Iwamoto E, Sanada M, Matsumura I, Miyazaki Y, Kojima T, Kiyoi H, Tsuzuki S, Hayakawa F. Functional inhibition of MEF2 by C/EBP is a possible mechanism of leukemia development by CEBP-IGH fusion gene. Cancer Sci 2023; 114:781-792. [PMID: 36341510 PMCID: PMC9986073 DOI: 10.1111/cas.15641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
CEBPA-IGH, a fusion gene of the immunoglobulin heavy-chain locus (IGH) and the CCAAT enhancer-binding protein α (C/EBPα) gene, is recurrently found in B-ALL cases and causes aberrant expression of C/EBPα, a master regulator of granulocyte differentiation, in B cells. Forced expression of C/EBPα in B cells was reported to cause loss of B-cell identity due to the inhibition of Pax5, a master regulator of B-cell differentiation; however, it is not known whether the same mechanism is applicable for B-ALL development by CEBPA-IGH. It is known that a full-length isoform of C/EBPα, p42, promotes myeloid differentiation, whereas its N-terminal truncated isoform, p30, inhibits myeloid differentiation through the inhibition of p42; however, the differential role between p42 and p30 in ALL development has not been clarified. In the present study, we examined the effect of the expression of p42 and p30 in B cells by performing RNA-seq of mRNA from LCL stably transfected with p42 or p30. Unexpectedly, suppression of PAX5 target genes was barely observed. Instead, both isoforms suppressed the target genes of MEF2 family members (MEF2s), other regulators of B-cell differentiation. Similarly, MEF2s target genes rather than PAX5 target genes were suppressed in CEBP-IGH-positive ALL (n = 8) compared with other B-ALL (n = 315). Furthermore, binding of both isoforms to MEF2s target genes and the reduction of surrounding histone acetylation were observed in ChIP-qPCR. Our data suggest that the inhibition of MEF2s by C/EBPα plays a role in the development of CEBPA-IGH-positive ALL and that both isoforms work co-operatively to achieve it.
Collapse
Affiliation(s)
- Koya Odaira
- Department of Integrated Health Sciences, Division of Cellular and Genetic Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahiko Yasuda
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Kentaro Okada
- Department of Integrated Health Sciences, Division of Cellular and Genetic Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takuya Shimooka
- Department of Integrated Health Sciences, Division of Cellular and Genetic Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukino Kojima
- Department of Integrated Health Sciences, Division of Cellular and Genetic Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mina Noura
- Department of Integrated Health Sciences, Division of Cellular and Genetic Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shogo Tamura
- Department of Integrated Health Sciences, Division of Cellular and Genetic Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shingo Kurahashi
- Division of Hematology and Oncology, Toyohashi Municipal Hospital, Toyohashi, Japan
| | - Eisuke Iwamoto
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Masashi Sanada
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Kindai University School of Medicine, Osaka, Japan
| | - Yasushi Miyazaki
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Tetsuhito Kojima
- Department of Integrated Health Sciences, Division of Cellular and Genetic Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Aichi Health Promotion Foundation, Nagoya, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Fumihiko Hayakawa
- Department of Integrated Health Sciences, Division of Cellular and Genetic Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
8
|
EBF1 is continuously required for stabilizing local chromatin accessibility in pro-B cells. Proc Natl Acad Sci U S A 2022; 119:e2210595119. [PMID: 36409886 PMCID: PMC9860308 DOI: 10.1073/pnas.2210595119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The establishment of de novo chromatin accessibility in lymphoid progenitors requires the "pioneering" function of transcription factor (TF) early B cell factor 1 (EBF1), which binds to naïve chromatin and induces accessibility by recruiting the BRG1 chromatin remodeler subunit. However, it remains unclear whether the function of EBF1 is continuously required for stabilizing local chromatin accessibility. To this end, we replaced EBF1 by EBF1-FKBPF36V in pro-B cells, allowing the rapid degradation by adding the degradation TAG13 (dTAG13) dimerizer. EBF1 degradation results in a loss of genome-wide EBF1 occupancy and EBF1-targeted BRG1 binding. Chromatin accessibility was rapidly diminished at EBF1-binding sites with a preference for sites whose occupancy requires the pioneering activity of the C-terminal domain of EBF1. Diminished chromatin accessibility correlated with altered gene expression. Thus, continuous activity of EBF1 is required for the stable maintenance of the transcriptional and epigenetic state of pro-B cells.
Collapse
|
9
|
A p38α-BLIMP1 signalling pathway is essential for plasma cell differentiation. Nat Commun 2022; 13:7321. [PMID: 36443297 PMCID: PMC9703440 DOI: 10.1038/s41467-022-34969-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
Plasma cells (PC) are antibody-secreting cells and terminal effectors in humoral responses. PCs differentiate directly from activated B cells in response to T cell-independent (TI) antigens or from germinal center B (GCB) cells in T cell-dependent (TD) antigen-induced humoral responses, both of which pathways are essentially regulated by the transcription factor BLIMP1. The p38 mitogen-activated protein kinase isoforms have already been implicated in B cell development, but the precise role of p38α in B cell differentiation is still largely unknown. Here we show that PC differentiation and antibody responses are severely impaired in mice with B cell-specific deletion of p38α, while B cell development and the GCB cell response are spared. By utilizing a Blimp1 reporter mouse model, we show that p38α-deficiency results in decreased BLIMP1 expression. p38α-driven BLIMP1 up-regulation is required for both TI and TD PCs differentiation. By combining CRISPR/Cas9 screening and other approaches, we identify TCF3, TCF4 and IRF4 as downstream effectors of p38α to control PC differentiation via Blimp1 transcription. This study thus identifies an important signalling pathway underpinning PC differentiation upstream of BLIMP1, and points to a highly specialized and non-redundant role for p38α among p38 isoforms.
Collapse
|
10
|
Bayer M, Boller S, Ramamoothy S, Zolotarev N, Cauchy P, Iwanami N, Mittler G, Boehm T, Grosschedl R. Tnpo3 enables EBF1 function in conditions of antagonistic Notch signaling. Genes Dev 2022; 36:901-915. [PMID: 36167471 PMCID: PMC9575695 DOI: 10.1101/gad.349696.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/02/2022] [Indexed: 02/03/2023]
Abstract
Transcription factor EBF1 (early B cell factor 1) acts as a key regulator of B cell specification. The transcriptional network in which EBF1 operates has been extensively studied; however, the regulation of EBF1 function remains poorly defined. By mass spectrometric analysis of proteins associated with endogenous EBF1 in pro-B cells, we identified the nuclear import receptor Transportin-3 (Tnpo3) and found that it interacts with the immunoglobulin-like fold domain of EBF1. We delineated glutamic acid 271 of EBF1 as a critical residue for the association with Tnpo3. EBF1E271A showed normal nuclear localization; however, it had an impaired B cell programming ability in conditions of Notch signaling, as determined by retroviral transduction of Ebf1 -/- progenitors. By RNA-seq analysis of EBF1E271A-expressing progenitors, we found an up-regulation of T lineage determinants and down-regulation of early B genes, although similar chromatin binding of EBF1E271A and EBF1wt was detected in pro-B cells expressing activated Notch1. B lineage-specific inactivation of Tnpo3 in mice resulted in a block of early B cell differentiation, accompanied by a down-regulation of B lineage genes and up-regulation of T and NK lineage genes. Taken together, our observations suggest that Tnpo3 ensures B cell programming by EBF1 in nonpermissive conditions.
Collapse
Affiliation(s)
- Marc Bayer
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Sören Boller
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Senthilkumar Ramamoothy
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Nikolay Zolotarev
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Pierre Cauchy
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Norimasa Iwanami
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Gerhard Mittler
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany
| | - Rudolf Grosschedl
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| |
Collapse
|
11
|
Azagra A, Meler A, de Barrios O, Tomás-Daza L, Collazo O, Monterde B, Obiols M, Rovirosa L, Vila-Casadesús M, Cabrera-Pasadas M, Gusi-Vives M, Graf T, Varela I, Sardina JL, Javierre BM, Parra M. The HDAC7-TET2 epigenetic axis is essential during early B lymphocyte development. Nucleic Acids Res 2022; 50:8471-8490. [PMID: 35904805 PMCID: PMC9410891 DOI: 10.1093/nar/gkac619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022] Open
Abstract
Correct B cell identity at each stage of cellular differentiation during B lymphocyte development is critically dependent on a tightly controlled epigenomic landscape. We previously identified HDAC7 as an essential regulator of early B cell development and its absence leads to a drastic block at the pro-B to pre-B cell transition. More recently, we demonstrated that HDAC7 loss in pro-B-ALL in infants associates with a worse prognosis. Here we delineate the molecular mechanisms by which HDAC7 modulates early B cell development. We find that HDAC7 deficiency drives global chromatin de-condensation, histone marks deposition and deregulates other epigenetic regulators and mobile elements. Specifically, the absence of HDAC7 induces TET2 expression, which promotes DNA 5-hydroxymethylation and chromatin de-condensation. HDAC7 deficiency also results in the aberrant expression of microRNAs and LINE-1 transposable elements. These findings shed light on the mechanisms by which HDAC7 loss or misregulation may lead to B cell–based hematological malignancies.
Collapse
Affiliation(s)
- Alba Azagra
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain.,Cellular Differentiation Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via 199, 08908 L'Hospitalet, Barcelona, Spain
| | - Ainara Meler
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain.,Cellular Differentiation Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via 199, 08908 L'Hospitalet, Barcelona, Spain
| | - Oriol de Barrios
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain.,Cellular Differentiation Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via 199, 08908 L'Hospitalet, Barcelona, Spain
| | - Laureano Tomás-Daza
- 3D Chromatin Organization Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain.,Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Olga Collazo
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain.,Cellular Differentiation Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via 199, 08908 L'Hospitalet, Barcelona, Spain
| | - Beatriz Monterde
- Instituto de Biomedicina y Biotecnología de Cantabria. Universidad de Cantabria-CSIC. 39011 Santander, Spain
| | - Mireia Obiols
- Epigenetic Control of Haematopoiesis Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - Llorenç Rovirosa
- 3D Chromatin Organization Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - Maria Vila-Casadesús
- Centre for Genomic Regulation (CRG), PRBB Building, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Mónica Cabrera-Pasadas
- 3D Chromatin Organization Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain.,Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Mar Gusi-Vives
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - Thomas Graf
- Centre for Genomic Regulation (CRG), PRBB Building, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria. Universidad de Cantabria-CSIC. 39011 Santander, Spain
| | - José Luis Sardina
- Epigenetic Control of Haematopoiesis Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - Biola M Javierre
- 3D Chromatin Organization Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - Maribel Parra
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain.,Cellular Differentiation Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via 199, 08908 L'Hospitalet, Barcelona, Spain
| |
Collapse
|
12
|
Tang H, Li Y, Wang S, Ji J, Zhu X, Bao Y, Huang C, Luo Y, Huang L, Gao Y, Wei C, Liu J, Fang X, Sun L, Ouyang K. IPR-mediated Ca signaling controls B cell proliferation through metabolic reprogramming. iScience 2022; 25:104209. [PMID: 35494252 PMCID: PMC9046235 DOI: 10.1016/j.isci.2022.104209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/05/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Huayuan Tang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Corresponding author
| | - Yali Li
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Shijia Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jing Ji
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xiangbin Zhu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yutong Bao
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Can Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Ye Luo
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yan Gao
- Department of Cardiovascular Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen Shekou People’s Hospital, Shenzhen, China
| | - Chaoliang Wei
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Xi Fang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lu Sun
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Corresponding author
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Corresponding author
| |
Collapse
|
13
|
Two novel high-risk adult B-cell acute lymphoblastic leukemia subtypes with high expression of CDX2 and IDH1/2 mutations. Blood 2021; 139:1850-1862. [PMID: 34695176 DOI: 10.1182/blood.2021011921] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022] Open
Abstract
The genetic basis of leukemogenesis in adults with B-cell acute lymphoblastic leukemia (B-ALL) is largely unclear and its clinical outcome remains unsatisfactory. This study aimed to advance the understanding of biological characteristics, improve disease stratification, and identify molecular targets of adult B-ALL. Adolescents and young adults (AYA; 15-39 years old, n = 193) and adults (40-64 years old, n = 161) with Philadelphia chromosome-negative B-ALL were included in this study. Integrated transcriptomic and genetic analyses were used to classify the cohort into defined subtypes. Of the 323 cases included in the RNA sequencing analysis, 278 (86.1%) were classified into 18 subtypes. The ZNF384 subtype (22.6%) was the most prevalent, with two novel subtypes (CDX2-high and IDH1/2-mut) identified among cases not assigned to the established subtypes. The CDX2-high subtype (3.4%) was characterized by high expression of CDX2 and recurrent gain of chromosome 1q. The IDH1/2-mut subtype (1.9%) was defined by IDH1 R132C or IDH2 R140Q mutations with specific transcriptional and high-methylation profiles. Both subtypes showed poor prognosis and were considered inferior prognostic factors independent of clinical parameters. Comparison with a previously reported pediatric B-ALL cohort (n = 1003) showed that the frequencies of these subtypes were significantly higher in AYA/adults than in children. We delineated the genetic and transcriptomic landscape of adult B-ALL and identified two novel subtypes that predict poor disease outcomes. Our findings highlight the age-dependent distribution of subtypes, which partially accounts for the prognostic differences between adult and pediatric B-ALL.
Collapse
|
14
|
Wang Q, Liang J, Hu X, Gu S, Xu Q, Yan J. Early B-cell factors involve in the tumorigenesis and predict the overall survival of gastric cancer. Biosci Rep 2021; 41:228969. [PMID: 34100918 PMCID: PMC8239495 DOI: 10.1042/bsr20210055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is a heavy health burden around the world, which is the fifth most frequent tumor and leads to the third most common cancer-related deaths. It is urgent to identify prognostic markers as the guideline for personalized treatment and follow-up. We accessed the prognostic value of Early B-cell factors (EBFs) in GC. A total of 415 GC tissues and 34 normal tissues from The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD) cohort, 616 external patients from GSE15459, GSE22377, GSE51105, GSE62245 were enrolled for analysis. Univariate and multivariate Cox regression analyses were employed to evaluate the sole and integrative prognostic value of EBFs, respectively. Genetic alterations, DNA methylation of EBFs were also evaluated, as well as the involved signaling pathways. We revealed that increased EBFs associated with the poor prognosis of GC patients, the prognostic model was established in TCGA-STAD cohort, and validated in Gene Expression Omnibus (GEO) cohorts, with effectiveness in both HER2 positive and negative patients. DNA methylation was involved in the impact on prognosis. Cell cycle, immune-associated, and MAPK pathways were influenced by EBFs. Anti-CTLA4 immunotherapy is more suitable for EBFs determining high-risk groups, but not anti-PD-1/PD-L1 therapy. 5-Fluorouracil, methotrexate, vorinostat are suitable to inhibit the function of EBFs. Our new findings provide novel insight into the prediction of prognosis and clinical treatment of GC patients based on EBFs.
Collapse
Affiliation(s)
- Qing Wang
- Department of Biliary-Pancreatic Minimally Invasive Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jiahong Liang
- Department of Biliary-Pancreatic Minimally Invasive Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xianyu Hu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Songgang Gu
- Department of Biliary-Pancreatic Minimally Invasive Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qiaodong Xu
- Department of Biliary-Pancreatic Minimally Invasive Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jiang Yan
- Department of Biliary-Pancreatic Minimally Invasive Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
- Correspondence: Jiang Yan ()
| |
Collapse
|
15
|
Di Giorgio E, Wang L, Xiong Y, Christensen LM, Akimova T, Han R, Samanta A, Trevisanut M, Brancolini C, Beier UH, Hancock WW. A Biological Circuit Involving Mef2c, Mef2d, and Hdac9 Controls the Immunosuppressive Functions of CD4+Foxp3+ T-Regulatory Cells. Front Immunol 2021; 12:703632. [PMID: 34290714 PMCID: PMC8287581 DOI: 10.3389/fimmu.2021.703632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
The Mads/Mef2 (Mef2a/b/c/d) family of transcription factors (TFs) regulates differentiation of muscle cells, neurons and hematopoietic cells. By functioning in physiological feedback loops, Mef2 TFs promote the transcription of their repressor, Hdac9, thereby providing temporal control of Mef2-driven differentiation. Disruption of this feedback is associated with the development of various pathologic states, including cancer. Beside their direct involvement in oncogenesis, Mef2 TFs indirectly control tumor progression by regulating antitumor immunity. We recently reported that in CD4+CD25+Foxp3+ T-regulatory (Treg) cells, Mef2d is required for the acquisition of an effector Treg (eTreg) phenotype and for the activation of an epigenetic program that suppresses the anti-tumor immune responses of conventional T and B cells. We now report that as with Mef2d, the deletion of Mef2c in Tregs switches off the expression of Il10 and Icos and leads to enhanced antitumor immunity in syngeneic models of lung cancer. Mechanistically, Mef2c does not directly bind the regulatory elements of Icos and Il10, but its loss-of-function in Tregs induces the expression of the transcriptional repressor, Hdac9. As a consequence, Mef2d, the more abundant member of the Mef2 family, is converted by Hdac9 into a transcriptional repressor on these loci. This leads to the impairment of Treg suppressive properties in vivo and to enhanced anti-cancer immunity. These data further highlight the central role played by the Mef2/Hdac9 axis in the regulation of CD4+Foxp3+ Treg function and adds a new level of complexity to the analysis and study of Treg biology.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Medicine, University of Udine, Udine, Italy
| | - Liqing Wang
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yan Xiong
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Institute of Hepatobiliary Diseases of Wuhan University, Transplant Centre of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Lanette M Christensen
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Tatiana Akimova
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Rongxiang Han
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Arabinda Samanta
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Matteo Trevisanut
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Ulf H Beier
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
16
|
Xue F, Tian J, Yu C, Du H, Guo L. Type I interferon response-related microglial Mef2c deregulation at the onset of Alzheimer's pathology in 5×FAD mice. Neurobiol Dis 2021; 152:105272. [PMID: 33540048 PMCID: PMC7956132 DOI: 10.1016/j.nbd.2021.105272] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/15/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder with multifactorial etiology. The role of microglia in the pathogenesis of AD has been increasingly recognized in recent years; however, the detailed mechanisms shaping microglial phenotypes in AD-relevant pathological settings remain largely unresolved. Myocyte-specific enhancer factor 2C (Mef2C) is a transcription factor with versatile functions. Recent studies have attributed aging-related microglial changes to type I interferon (IFN-I)-associated Mef2C deregulation. In view of the close relationship between brain aging and AD, it is of great interest to determine microglial Mef2C changes in AD-related conditions. In this study, we have found that suppressed Mef2C nuclear translocation was an early and prominent microglial phenotype in a mouse model of brain amyloidosis (5×FAD mice), which exacerbated with age. Echoing the early Mef2C deregulation and its association with microglial activation, transcriptional data showed elicited IFN-I response in microglia from young 5×FAD mice. Amyloid beta 42 (Aβ42) in its oligomeric forms promoted Mef2C deregulation in microglia on acute organotypic brain slices with augmented microglial activation and synapse elimination via microglial phagocytosis. Importantly, these oligomeric Aβ42-mediated microglial changes were substantially attenuated by blocking IFN-I signaling. The simplest interpretation of the results is that Mef2C, concurring with activated IFN-I signaling, constitutes early microglial changes in AD-related conditions. In addition to the potential contribution of Mef2C deregulation to the development of microglial phenotypes in AD, Mef2C suppression in microglia may serve as a potential mechanistic pathway linking brain aging and AD.
Collapse
Affiliation(s)
- Feng Xue
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, KS 66045, United States; The Biological Science Department, University of Texas at Dallas, TX 75080, United States
| | - Jing Tian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, KS 66045, United States; The Biological Science Department, University of Texas at Dallas, TX 75080, United States
| | - Chunxiao Yu
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, KS 66045, United States; The Biological Science Department, University of Texas at Dallas, TX 75080, United States
| | - Heng Du
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, KS 66045, United States; Higuchi Biosciences Center, University of Kansas, KS 66045, United States; The Biological Science Department, University of Texas at Dallas, TX 75080, United States.
| | - Lan Guo
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, KS 66045, United States; Higuchi Biosciences Center, University of Kansas, KS 66045, United States; The Biological Science Department, University of Texas at Dallas, TX 75080, United States.
| |
Collapse
|
17
|
A Genetic Screen for Human Genes Suppressing FUS Induced Toxicity in Yeast. G3-GENES GENOMES GENETICS 2020; 10:1843-1852. [PMID: 32276960 PMCID: PMC7263679 DOI: 10.1534/g3.120.401164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
FUS is a nucleic acid binding protein that, when mutated, cause a subset of familial amyotrophic lateral sclerosis (ALS). Expression of FUS in yeast recapitulates several pathological features of the disease-causing mutant proteins, including nuclear to cytoplasmic translocation, formation of cytoplasmic inclusions, and cytotoxicity. Genetic screens using the yeast model of FUS have identified yeast genes and their corresponding human homologs suppressing FUS induced toxicity in yeast, neurons and animal models. To expand the search for human suppressor genes of FUS induced toxicity, we carried out a genome-scale genetic screen using a newly constructed library containing 13570 human genes cloned in an inducible yeast-expression vector. Through multiple rounds of verification, we found 37 human genes that, when overexpressed, suppress FUS induced toxicity in yeast. Human genes with DNA or RNA binding functions are overrepresented among the identified suppressor genes, supporting that perturbations of RNA metabolism is a key underlying mechanism of FUS toxicity.
Collapse
|
18
|
A novel MEF2C mutation in lymphoid neoplasm diffuse large B-cell lymphoma promotes tumorigenesis by increasing c-JUN expression. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1549-1558. [PMID: 31900516 DOI: 10.1007/s00210-019-01764-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most aggressive non-Hodgkin lymphoma (NHL), accounting for about 31% of the newly diagnosed NHL worldwide. Although approximately 60% of patients who initially received a standard R-CHOP treatment likely have a 3-year event-free survival, many patients become refractory or relapsed due to the genetic heterogeneity of this malignancy. Hence, new treatment strategies are urgently needed. MEF2C, a member of the MEF2 transcription factor family gene, plays great important roles involved in the development of various tissues and the pathogenesis of lymphoma. However, the exact functions and molecular mechanisms of MEF2C in DLBCL are not fully investigated. By Sanger sequencing, we identified a novel point mutation of MEF2C at the p.N389 site in DLBCL patient, which was further validated by several DLBCL cell lines. Intriguingly, we found that the p.N389S mutation did not influence MEF2C expression, protein stability, and subcellular distribution, but enhanced its transcriptional activity. Furthermore, we demonstrated that MEF2C p.N389S mutation promotes DLBCL cell proliferation, cellular adhesion, and tumor formation in nude mice. On mechanism, our data revealed that MEF2C p.N389S mutation increases c-JUN expression, and c-JUN regulation mediated the oncogenic function of MEF2C p.N389S mutation on DLBCL cells. Our finding may provide a significant insight into the DLBCL and a compelling therapy target for this disease treatment.
Collapse
|
19
|
MEF-2 isoforms' (A-D) roles in development and tumorigenesis. Oncotarget 2019; 10:2755-2787. [PMID: 31105874 PMCID: PMC6505634 DOI: 10.18632/oncotarget.26763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/01/2019] [Indexed: 12/29/2022] Open
Abstract
Myocyte enhancer factor (MEF)-2 plays a critical role in proliferation, differentiation, and development of various cell types in a tissue specific manner. Four isoforms of MEF-2 (A-D) differentially participate in controlling the cell fate during the developmental phases of cardiac, muscle, vascular, immune and skeletal systems. Through their associations with various cellular factors MEF-2 isoforms can trigger alterations in complex protein networks and modulate various stages of cellular differentiation, proliferation, survival and apoptosis. The role of the MEF-2 family of transcription factors in the development has been investigated in various cell types, and the evolving alterations in this family of transcription factors have resulted in a diverse and wide spectrum of disease phenotypes, ranging from cancer to infection. This review provides a comprehensive account on MEF-2 isoforms (A-D) from their respective localization, signaling, role in development and tumorigenesis as well as their association with histone deacetylases (HDACs), which can be exploited for therapeutic intervention.
Collapse
|
20
|
Hou S, Hao J, Wang YY, Zhao BB, Xiao GW, Li YQ, Liu X, Zou ZL, Yao Y, Xiong H. Retracted: EBF1 gene promotes the proliferation and inhibits the apoptosis of bone marrow CD34+ cells in patients with myelodysplastic syndrome through negative regulation of mitogen-activated protein kinase axis. J Cell Biochem 2019; 120:1407-1419. [PMID: 30335886 DOI: 10.1002/jcb.27177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/24/2018] [Indexed: 02/02/2023]
Abstract
The transcription factor, early B cell factor 1 (EBF1), plays a vital role in the lineage specification involving early B cell development and the onset of myelodysplastic syndrome (MDS). Therefore, to investigate whether or not EBF1 affects MDS as well as the transcription factor's underlying mechanism, we used CD34+ hematopoietic stem cells in bone marrow from patients with MDS. The extracted cells were then transfected with a series of EBF1, short hairpin RNA against EBF1 (shEBF1), and SB203580 (a specific mitogen-activated protein kinase [MAPK] axis inhibitor). The effects EBF1 gene and MAPK axis had on cell proliferation, apoptosis, and migration were determined by in vitro cell culturing. We made observations that involved EBF1 inhibiting the messenger RNA (mRNA) level of p38 MAPK, increasing the mRNA levels of extracellular-signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), extracellular-signal-regulated kinase 5 (ERK5), decreasing the protein expression of Bcl-2-associated X protein (Bax), and finally elevating the protein levels of B cell lymphoma/leukemia-2 (Bcl-2), stem cell factor (SCF), erythropoietin receptor (EpoR), p-ERK, p-JNK, p-ERK5, cyclin D, cyclin E, cyclin-dependent kinase 2 (CDK2), and CDK6, implying that EBF1 may very well have an inhibitory role in the MAPK axis. Another discovery found that EBF1 had a positive effect on the promotion of bone marrow CD34+ cell proliferation as well as its migration, but inhibited the apoptosis of cells. The results we obtained from this study indicated that the EBF1 gene suppresses the activation of the MAPK axis, thereby promoting both the proliferation and migration of bone marrow CD34+ cells as well as inhibiting the associating apoptosis. The effects of the EBF1 gene are likely to present a new therapeutic target in preventing the progression of MDS.
Collapse
Affiliation(s)
- Shuang Hou
- Department of Hematology, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Jie Hao
- Department of Hematology, Shanghai Jingan North Station Hospital, Shanghai, China
| | - Yan-Yu Wang
- Department of Hematology, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Bing-Bing Zhao
- Department of Hematology, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Gong-Wei Xiao
- Department of Hematology, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Yan-Qing Li
- Department of Hematology, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Xi Liu
- Department of Hematology, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Zhi-Lan Zou
- Department of Hematology, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Ye Yao
- Department of Hematology, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Hong Xiong
- Department of Hematology, Shanghai Xuhui Central Hospital, Shanghai, China
| |
Collapse
|
21
|
Ustiugova AS, Korneev KV, Kuprash DV, Afanasyeva AMA. Functional SNPs in the Human Autoimmunity-Associated Locus 17q12-21. Genes (Basel) 2019; 10:E77. [PMID: 30678091 PMCID: PMC6409600 DOI: 10.3390/genes10020077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/13/2022] Open
Abstract
Genome-wide association studies (GWASes) revealed several single-nucleotide polymorphisms (SNPs) in the human 17q12-21 locus associated with autoimmune diseases. However, follow-up studies are still needed to identify causative SNPs directly mediating autoimmune risk in the locus. We have chosen six SNPs in high linkage disequilibrium with the GWAS hits that showed the strongest evidence of causality according to association pattern and epigenetic data and assessed their functionality in a local genomic context using luciferase reporter system. We found that rs12946510, rs4795397, rs12709365, and rs8067378 influenced the reporter expression level in leukocytic cell lines. The strongest effect visible in three distinct cell types was observed for rs12946510 that is predicted to alter MEF2A/C and FOXO1 binding sites.
Collapse
Affiliation(s)
- Alina S Ustiugova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia.
| | - Kirill V Korneev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia.
| | - Dmitry V Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia.
| | - And Marina A Afanasyeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| |
Collapse
|
22
|
Di Giorgio E, Hancock WW, Brancolini C. MEF2 and the tumorigenic process, hic sunt leones. Biochim Biophys Acta Rev Cancer 2018; 1870:261-273. [PMID: 29879430 DOI: 10.1016/j.bbcan.2018.05.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 12/14/2022]
Abstract
While MEF2 transcription factors are well known to cooperate in orchestrating cell fate and adaptive responses during development and adult life, additional studies over the last decade have identified a wide spectrum of genetic alterations of MEF2 in different cancers. The consequences of these alterations, including triggering and maintaining the tumorigenic process, are not entirely clear. A deeper knowledge of the molecular pathways that regulate MEF2 expression and function, as well as the nature and consequences of MEF2 mutations are necessary to fully understand the many roles of MEF2 in malignant cells. This review discusses the current knowledge of MEF2 transcription factors in cancer.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Department of Medicine, Università degli Studi di Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Biesecker Center for Pediatric Liver Diseases, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine, P.le Kolbe 4, 33100 Udine, Italy.
| |
Collapse
|
23
|
Khosravi A, Alizadeh S, Jalili A, Shirzad R, Saki N. The impact of Mir-9 regulation in normal and malignant hematopoiesis. Oncol Rev 2018; 12:348. [PMID: 29774136 PMCID: PMC5939831 DOI: 10.4081/oncol.2018.348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/01/2018] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-9 (MiR-9) dysregulation has been observed in various cancers. Recently, MiR-9 is considered to have a part in hematopoiesis and hematologic malignancies. However, its importance in blood neoplasms is not yet well defined. Thus, this study was conducted in order to assess the significance of MiR-9 role in the development of hematologic neoplasia, prognosis, and treatment approaches. We have shown that a large number of MiR-9 targets (such as FOXOs, SIRT1, CCND1, ID2, CCNG1, Ets, and NFkB) play essential roles in leukemogenesis and that it is overexpressed in different leukemias. Our findings indicated MiR-9 downregulation in a majority of leukemias. However, its overexpression was reported in patients with dysregulated MiR-9 controlling factors (such as MLLr). Additionally, prognostic value of MiR-9 has been reported in some types of leukemia. This study generally emphasizes on the critical role of MiR-9 in hematologic malignancies as a prognostic factor and a therapeutic target.
Collapse
Affiliation(s)
- Abbas Khosravi
- Transfusion Research Center, High Institute for Research and Education in Transfusion Medi-cine, Tehran
| | - Shaban Alizadeh
- Hematology Department, Allied Medical School, Tehran University of Medical Sciences, Tehran
| | - Arsalan Jalili
- Department of Stem Cells and Developmental Biology at Cell Science Re-search Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran
| | - Reza Shirzad
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jun-dishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
24
|
Chen X, Gao B, Ponnusamy M, Lin Z, Liu J. MEF2 signaling and human diseases. Oncotarget 2017; 8:112152-112165. [PMID: 29340119 PMCID: PMC5762387 DOI: 10.18632/oncotarget.22899] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/09/2017] [Indexed: 01/01/2023] Open
Abstract
The members of myocyte Enhancer Factor 2 (MEF2) protein family was previously believed to function in the development of heart and muscle. Recent reports indicate that they are also closely associated with development and progression of many human diseases. Although their role in cancer biology is well established, the molecular mechanisms underlying their action is yet largely unknown. MEF2 family is closely associated with various signaling pathways, including Ca2+ signaling, MAP kinase signaling, Wnt signaling, PI3K/Akt signaling, etc. microRNAs also contribute to regulate the activities of MEF2. In this review, we summarize the known molecular mechanism by which MEF2 family contribute to human diseases.
Collapse
Affiliation(s)
- Xiao Chen
- School of Pharmacy, Qingdao University, Qingdao 266021, China.,Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Bing Gao
- School of Pharmacy, Qingdao University, Qingdao 266021, China.,School of Basic Medicine, Qingdao University, Qingdao 266021, China
| | - Murugavel Ponnusamy
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Zhijuan Lin
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Jia Liu
- School of Pharmacy, Qingdao University, Qingdao 266021, China.,School of Basic Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
25
|
Glaser LV, Rieger S, Thumann S, Beer S, Kuklik-Roos C, Martin DE, Maier KC, Harth-Hertle ML, Grüning B, Backofen R, Krebs S, Blum H, Zimmer R, Erhard F, Kempkes B. EBF1 binds to EBNA2 and promotes the assembly of EBNA2 chromatin complexes in B cells. PLoS Pathog 2017; 13:e1006664. [PMID: 28968461 PMCID: PMC5638620 DOI: 10.1371/journal.ppat.1006664] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 10/12/2017] [Accepted: 09/22/2017] [Indexed: 12/26/2022] Open
Abstract
Epstein-Barr virus (EBV) infection converts resting human B cells into permanently proliferating lymphoblastoid cell lines (LCLs). The Epstein-Barr virus nuclear antigen 2 (EBNA2) plays a key role in this process. It preferentially binds to B cell enhancers and establishes a specific viral and cellular gene expression program in LCLs. The cellular DNA binding factor CBF1/CSL serves as a sequence specific chromatin anchor for EBNA2. The ubiquitous expression of this highly conserved protein raises the question whether additional cellular factors might determine EBNA2 chromatin binding selectively in B cells. Here we used CBF1 deficient B cells to identify cellular genes up or downregulated by EBNA2 as well as CBF1 independent EBNA2 chromatin binding sites. Apparently, CBF1 independent EBNA2 target genes and chromatin binding sites can be identified but are less frequent than CBF1 dependent EBNA2 functions. CBF1 independent EBNA2 binding sites are highly enriched for EBF1 binding motifs. We show that EBNA2 binds to EBF1 via its N-terminal domain. CBF1 proficient and deficient B cells require EBF1 to bind to CBF1 independent binding sites. Our results identify EBF1 as a co-factor of EBNA2 which conveys B cell specificity to EBNA2. Epstein-Barr virus (EBV) infection is closely linked to cancer development. At particular risk are immunocompromised individuals like post-transplant patients which can develop B cell lymphomas. In healthy individuals EBV preferentially infects B cells and establishes a latent infection without causing apparent clinical symptoms in most cases. Upon infection, Epstein-Barr virus nuclear antigen 2 (EBNA2) initiates a B cell specific gene expression program that causes activation and proliferation of the infected cells. EBNA2 is a transcription factor well known to use a cellular protein, CBF1/CSL, as a DNA adaptor. CBF1/CSL is a sequence specific DNA binding protein robustly expressed in all tissues. Here we show that EBNA2 can form complexes with early B cell factor 1 (EBF1), a B cell specific DNA binding transcription factor, and EBF1 stabilizes EBNA2 chromatin binding. This EBNA2/EBF1 complex might serve as a novel target to develop future small molecule strategies that act as antivirals in latent B cell infection.
Collapse
Affiliation(s)
- Laura V Glaser
- Department of Gene Vectors, Helmholtz Center Munich, Munich, Germany
| | - Simone Rieger
- Department of Gene Vectors, Helmholtz Center Munich, Munich, Germany
| | - Sybille Thumann
- Department of Gene Vectors, Helmholtz Center Munich, Munich, Germany
| | - Sophie Beer
- Department of Gene Vectors, Helmholtz Center Munich, Munich, Germany
| | | | | | | | | | - Björn Grüning
- Bioinformatics, Institute for Informatics, Albert-Ludwigs-University, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics, Institute for Informatics, Albert-Ludwigs-University, Freiburg, Germany
| | - Stefan Krebs
- Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Helmut Blum
- Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Ralf Zimmer
- Teaching and Research Unit Bioinformatics, Institute of Informatics, Ludwig-Maximilians-University, Munich, Germany
| | - Florian Erhard
- Teaching and Research Unit Bioinformatics, Institute of Informatics, Ludwig-Maximilians-University, Munich, Germany
| | - Bettina Kempkes
- Department of Gene Vectors, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
26
|
Monahan K, Schieren I, Cheung J, Mumbey-Wafula A, Monuki ES, Lomvardas S. Cooperative interactions enable singular olfactory receptor expression in mouse olfactory neurons. eLife 2017; 6. [PMID: 28933695 PMCID: PMC5608512 DOI: 10.7554/elife.28620] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/28/2017] [Indexed: 12/16/2022] Open
Abstract
The monogenic and monoallelic expression of only one out of >1000 mouse olfactory receptor (ORs) genes requires the formation of large heterochromatic chromatin domains that sequester the OR gene clusters. Within these domains, intergenic transcriptional enhancers evade heterochromatic silencing and converge into interchromosomal hubs that assemble over the transcriptionally active OR. The significance of this nuclear organization in OR choice remains elusive. Here, we show that transcription factors Lhx2 and Ebf specify OR enhancers by binding in a functionally cooperative fashion to stereotypically spaced motifs that defy heterochromatin. Specific displacement of Lhx2 and Ebf from OR enhancers resulted in pervasive, long-range, and trans downregulation of OR transcription, whereas pre-assembly of a multi-enhancer hub increased the frequency of OR choice in cis. Our data provide genetic support for the requirement and sufficiency of interchromosomal interactions in singular OR choice and generate general regulatory principles for stochastic, mutually exclusive gene expression programs.
Collapse
Affiliation(s)
- Kevin Monahan
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Ira Schieren
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Jonah Cheung
- New York Structural Biology Center, New York, United States
| | - Alice Mumbey-Wafula
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Edwin S Monuki
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, United States
| | - Stavros Lomvardas
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Department of Neuroscience, Columbia University, New York, United States.,Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, United States
| |
Collapse
|
27
|
Di Giorgio E, Franforte E, Cefalù S, Rossi S, Dei Tos AP, Brenca M, Polano M, Maestro R, Paluvai H, Picco R, Brancolini C. The co-existence of transcriptional activator and transcriptional repressor MEF2 complexes influences tumor aggressiveness. PLoS Genet 2017; 13:e1006752. [PMID: 28419090 PMCID: PMC5413110 DOI: 10.1371/journal.pgen.1006752] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/02/2017] [Accepted: 04/10/2017] [Indexed: 12/18/2022] Open
Abstract
The contribution of MEF2 TFs to the tumorigenic process is still mysterious. Here we clarify that MEF2 can support both pro-oncogenic or tumor suppressive activities depending on the interaction with co-activators or co-repressors partners. Through these interactions MEF2 supervise histone modifications associated with gene activation/repression, such as H3K4 methylation and H3K27 acetylation. Critical switches for the generation of a MEF2 repressive environment are class IIa HDACs. In leiomyosarcomas (LMS), this two-faced trait of MEF2 is relevant for tumor aggressiveness. Class IIa HDACs are overexpressed in 22% of LMS, where high levels of MEF2, HDAC4 and HDAC9 inversely correlate with overall survival. The knock out of HDAC9 suppresses the transformed phenotype of LMS cells, by restoring the transcriptional proficiency of some MEF2-target loci. HDAC9 coordinates also the demethylation of H3K4me3 at the promoters of MEF2-target genes. Moreover, we show that class IIa HDACs do not bind all the regulative elements bound by MEF2. Hence, in a cell MEF2-target genes actively transcribed and strongly repressed can coexist. However, these repressed MEF2-targets are poised in terms of chromatin signature. Overall our results candidate class IIa HDACs and HDAC9 in particular, as druggable targets for a therapeutic intervention in LMS. The tumorigenic process is characterized by profound alterations of the transcriptional landscape, aimed to sustain uncontrolled cell growth, resistance to apoptosis and metastasis. The contribution of MEF2, a pleiotropic family of transcription factors, to these changes is controversial, since both pro-oncogenic and tumor-suppressive activities have been reported. To clarify this paradox, we studied the role of MEF2 in an aggressive type of soft-tissue sarcomas, the leiomyosarcomas (LMS). We found that in LMS cells MEF2 become oncogenes when in complex with class IIa HDACs. We have identified different sub-classes of MEF2-target genes and observed that HDAC9 converts MEF2 into transcriptional repressors on some, but not all, MEF2-regulated loci. This conversion correlates with the acquisition by MEF2 of oncogenic properties. We have also elucidated some epigenetic re-arrangements supervised by MEF2. In summary, our studies suggest that the paradoxical actions of MEF2 in cancer can be explained by their dual role as activators/repressors of transcription and open new possibilities for therapeutic interventions.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Department of Medical and Biological Sciences, Università degli Studi di Udine. P.le Kolbe 4-Udine Italy
| | - Elisa Franforte
- Department of Medical and Biological Sciences, Università degli Studi di Udine. P.le Kolbe 4-Udine Italy
| | - Sebastiano Cefalù
- Department of Medical and Biological Sciences, Università degli Studi di Udine. P.le Kolbe 4-Udine Italy
| | - Sabrina Rossi
- Department of Anatomical Pathology, Treviso General Hospital, Treviso, Italy
| | - Angelo Paolo Dei Tos
- Department of Anatomical Pathology, Treviso General Hospital, Treviso, Italy.,Department of Medicine, University of Padua, Padua, Italy
| | - Monica Brenca
- Experimental Oncology 1, CRO National Cancer Institute, Aviano, Italy
| | - Maurizio Polano
- Experimental Oncology 1, CRO National Cancer Institute, Aviano, Italy
| | - Roberta Maestro
- Experimental Oncology 1, CRO National Cancer Institute, Aviano, Italy
| | - Harikrishnareddy Paluvai
- Department of Medical and Biological Sciences, Università degli Studi di Udine. P.le Kolbe 4-Udine Italy
| | - Raffaella Picco
- Department of Medical and Biological Sciences, Università degli Studi di Udine. P.le Kolbe 4-Udine Italy
| | - Claudio Brancolini
- Department of Medical and Biological Sciences, Università degli Studi di Udine. P.le Kolbe 4-Udine Italy
| |
Collapse
|
28
|
Schwartz AM, Demin DE, Vorontsov IE, Kasyanov AS, Putlyaeva LV, Tatosyan KA, Kulakovskiy IV, Kuprash DV. Multiple single nucleotide polymorphisms in the first intron of the IL2RA gene affect transcription factor binding and enhancer activity. Gene 2016; 602:50-56. [PMID: 27876533 DOI: 10.1016/j.gene.2016.11.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/01/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
Abstract
IL2RA gene encodes the alpha subunit of a high-affinity receptor for interleukin-2 which is expressed by several distinct populations of lymphocytes involved in autoimmune processes. A large number of polymorphic alleles of the IL2RA locus are associated with the development of various autoimmune diseases. With bioinformatics analysis we the dissected the first intron of the IL2RA gene and selected several single nucleotide polymorphisms (SNPs) that may influence the regulation of the IL2RA gene in cell types relevant to autoimmune pathology. We described five enhancers containing the selected SNPs that stimulated activity of the IL2RA promoter in a cell-type specific manner, and tested the effect of specific SNP alleles on activity of the respective enhancers (E1 to E5, labeled according to the distance to the promoter). The E4 enhancer with minor T variant of rs61839660 SNP demonstrated reduced activity due to disrupted binding of MEF2A/C transcription factors (TFs). Neither rs706778 nor rs706779 SNPs, both associated with a number of autoimmune diseases, had any effect on the activity of the enhancer E2. However, rare variants of several SNPs (rs139767239, rs115133228, rs12722502, rs12722635) genetically linked to either rs706778 and/or rs706779 significantly influenced the activity of E1, E3 and E5 enhancers, presumably by disrupting EBF1, GABPA and ELF1 binding sites.
Collapse
Affiliation(s)
- Anton M Schwartz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Denis E Demin
- Moscow Institute of Physics and Technology, Department Molecular and Biological Physics, Moscow, Russia
| | - Ilya E Vorontsov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Artem S Kasyanov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Lidia V Putlyaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Karina A Tatosyan
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ivan V Kulakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Moscow Institute of Physics and Technology, Department Molecular and Biological Physics, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
29
|
Mitkin NA, Muratova AM, Schwartz AM, Kuprash DV. The A Allele of the Single-Nucleotide Polymorphism rs630923 Creates a Binding Site for MEF2C Resulting in Reduced CXCR5 Promoter Activity in B-Cell Lymphoblastic Cell Lines. Front Immunol 2016; 7:515. [PMID: 27909439 PMCID: PMC5112242 DOI: 10.3389/fimmu.2016.00515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/04/2016] [Indexed: 01/19/2023] Open
Abstract
Chemokine receptor CXCR5 is highly expressed in B-cells and under normal conditions is involved in their migration to specific areas of secondary lymphoid organs. B-cells are known to play an important role in various autoimmune diseases including multiple sclerosis (MS) where areas of demyelinating lesions attract B-cells by overexpressing CXCL13, the CXCR5 ligand. In this study, we aimed to determine the functional significance of single-nucleotide polymorphism rs630923 (A/C), which is located in cxcr5 gene promoter, and its common allele is associated with increased risk of MS. Using bioinformatics and pull-down assay in B-lymphoblastic cell lines, we showed that protective minor rs630923 "A" allele created functional binding site for MEF2C transcription factor. Elevated MEF2C expression in B-cells correlated with reduced activity of cxcr5 promoter containing rs630923 "A" allele. This effect that was fully neutralized by MEF2C-directed siRNA may mechanistically explain the protective role of the rs630923 minor allele in MS. Using site-directed mutagenesis of the cxcr5 gene promoter, we were unable to find any experimental evidence for the previously proposed role of NFκB transcription factors in rs630923-mediated CXCR5 promoter regulation. Thus, our results identify MEF2C as a possible mediator of protective function of the rs630923 "A" allele in MS.
Collapse
Affiliation(s)
- Nikita A. Mitkin
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alisa M. Muratova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Immunology, Lomonosov Moscow State University, Moscow, Russia
| | - Anton M. Schwartz
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V. Kuprash
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Immunology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
30
|
Azagra A, Román-González L, Collazo O, Rodríguez-Ubreva J, de Yébenes VG, Barneda-Zahonero B, Rodríguez J, Castro de Moura M, Grego-Bessa J, Fernández-Duran I, Islam ABMMK, Esteller M, Ramiro AR, Ballestar E, Parra M. In vivo conditional deletion of HDAC7 reveals its requirement to establish proper B lymphocyte identity and development. J Exp Med 2016; 213:2591-2601. [PMID: 27810920 PMCID: PMC5110011 DOI: 10.1084/jem.20150821] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/14/2016] [Indexed: 11/05/2022] Open
Abstract
The histone deacetylase HDAC7 interacts with and represses myeloid and T cell genes in pro–B cells. HDAC7 deletion blocks early B cell development and results in severe lymphopenia. Class IIa histone deacetylase (HDAC) subfamily members are tissue-specific gene repressors with crucial roles in development and differentiation processes. A prominent example is HDAC7, a class IIa HDAC that shows a lymphoid-specific expression pattern within the hematopoietic system. In this study, we explored its potential role in B cell development by generating a conditional knockout mouse model. Our study demonstrates for the first time that HDAC7 deletion dramatically blocks early B cell development and gives rise to a severe lymphopenia in peripheral organs, while also leading to pro–B cell lineage promiscuity. We find that HDAC7 represses myeloid and T lymphocyte genes in B cell progenitors through interaction with myocyte enhancer factor 2C (MEFC2). In B cell progenitors, HDAC7 is recruited to promoters and enhancers of target genes, and its absence leads to increased enrichment of histone active marks. Our results prove that HDAC7 is a bona fide transcriptional repressor essential for B cell development.
Collapse
Affiliation(s)
- Alba Azagra
- Cellular Differentiation Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, 08908 L'Hospitalet, Barcelona, Spain
| | - Lidia Román-González
- Cellular Differentiation Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, 08908 L'Hospitalet, Barcelona, Spain
| | - Olga Collazo
- Cellular Differentiation Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, 08908 L'Hospitalet, Barcelona, Spain
| | - Javier Rodríguez-Ubreva
- Chromatin and Disease Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, 08908 L'Hospitalet, Barcelona, Spain
| | - Virginia G de Yébenes
- B Cell Biology Laboratory, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Bruna Barneda-Zahonero
- Cellular Differentiation Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, 08908 L'Hospitalet, Barcelona, Spain
| | - Jairo Rodríguez
- Research and Development Department, qGenomics Laboratory, 08003 Barcelona, Spain
| | - Manuel Castro de Moura
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, 08908 L'Hospitalet, Barcelona, Spain
| | - Joaquim Grego-Bessa
- Cellular Differentiation Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, 08908 L'Hospitalet, Barcelona, Spain
| | - Irene Fernández-Duran
- Cellular Differentiation Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, 08908 L'Hospitalet, Barcelona, Spain
| | - Abul B M M K Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Manel Esteller
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, 08908 L'Hospitalet, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Almudena R Ramiro
- B Cell Biology Laboratory, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Esteban Ballestar
- Chromatin and Disease Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, 08908 L'Hospitalet, Barcelona, Spain
| | - Maribel Parra
- Cellular Differentiation Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, 08908 L'Hospitalet, Barcelona, Spain
| |
Collapse
|