1
|
Mosquera S, Ginésy M, Bocos-Asenjo IT, Amin H, Diez-Hermano S, Diez JJ, Niño-Sánchez J. Spray-induced gene silencing to control plant pathogenic fungi: A step-by-step guide. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:801-825. [PMID: 39912551 DOI: 10.1111/jipb.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025]
Abstract
RNA interference (RNAi)-based control technologies are gaining popularity as potential alternatives to synthetic fungicides in the ongoing effort to manage plant pathogenic fungi. Among these methods, spray-induced gene silencing (SIGS) emerges as particularly promising due to its convenience and feasibility for development. This approach is a new technology for plant disease management, in which double-stranded RNAs (dsRNAs) targeting essential or virulence genes are applied to plants or plant products and subsequently absorbed by plant pathogens, triggering a gene silencing effect and the inhibition of the infection process. Spray-induced gene silencing has demonstrated efficacy in laboratory settings against various fungal pathogens. However, as research progressed from the laboratory to the greenhouse and field environments, novel challenges arose, such as ensuring the stability of dsRNAs and their effective delivery to fungal targets. Here, we provide a practical guide to SIGS for the control of plant pathogenic fungi. This guide outlines the essential steps and considerations needed for designing and assessing dsRNA molecules. It also addresses key challenges inherent to SIGS, including delivery and stability of dsRNA molecules, and how nanoencapsulation of dsRNAs can aid in overcoming these obstacles. Additionally, the guide underscores existing knowledge gaps that warrant further research and aims to provide assistance to researchers, especially those new to the field, encouraging the advancement of SIGS for the control of a broad range of fungal pathogens.
Collapse
Affiliation(s)
- Sandra Mosquera
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Mireille Ginésy
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Irene Teresa Bocos-Asenjo
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Huma Amin
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Sergio Diez-Hermano
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Julio Javier Diez
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Jonatan Niño-Sánchez
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| |
Collapse
|
2
|
Huang J, Larmore CJ, Priest SJ, Xu Z, Dietrich FS, Yadav V, Magwene PM, Sun S, Heitman J. Distinct evolutionary trajectories following loss of RNA interference in Cryptococcus neoformans. Proc Natl Acad Sci U S A 2024; 121:e2416656121. [PMID: 39536081 PMCID: PMC11588098 DOI: 10.1073/pnas.2416656121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
While increased mutation rates typically have negative consequences in multicellular organisms, hypermutation can be advantageous for microbes adapting to the environment. Previously, we identified two hypermutator Cryptococcus neoformans clinical isolates that rapidly develop drug resistance due to transposition of a retrotransposon, Cnl1. Cnl1-mediated hypermutation is caused by a nonsense mutation in a gene encoding an RNA interference (RNAi) component, ZNF3, combined with a tremendous transposon burden. To elucidate adaptive mechanisms following RNAi loss, two bioinformatic pipelines were developed to identify RNAi loss-of-function (LOF) mutations in a collection of 387 sequenced C. neoformans isolates. Remarkably, several RNAi-loss isolates were identified that are not hypermutators and have not accumulated transposons. To test whether these RNAi LOF mutations can cause hypermutation, the mutations were introduced into a nonhypermutator strain with a high transposon burden, which resulted in a hypermutator phenotype. To further investigate whether RNAi-loss isolates can become hypermutators, in vitro passaging was performed. Although no hypermutators were found in two C. neoformans RNAi-loss strains after short-term passage, hypermutation was observed in a passaged Cryptococcus deneoformans strain with an increased transposon burden. Consistent with a two-step evolution, when an RNAi-loss isolate was crossed with an isolate containing a high Cnl1 burden, F1 hypermutator progeny inheriting a high transposon burden were identified. In addition to Cnl1 transpositions, insertions of a gigantic DNA transposon KDZ1 (~11 kb) contributed to hypermutation in the progeny. Our results suggest that RNAi loss is relatively common (7/387, ~1.8%) and enables distinct evolutionary trajectories: hypermutation following transposon accumulation or survival without hypermutation.
Collapse
Affiliation(s)
- Jun Huang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Connor J. Larmore
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Shelby J. Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Ziyan Xu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Fred S. Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | | | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| |
Collapse
|
3
|
Huang J, Larmore CJ, Priest SJ, Xu Z, Dietrich FS, Yadav V, Magwene PM, Sun S, Heitman J. Distinct evolutionary trajectories following loss of RNA interference in Cryptococcus neoformans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608186. [PMID: 39185155 PMCID: PMC11343200 DOI: 10.1101/2024.08.15.608186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
While increased mutation rates typically have negative consequences in multicellular organisms, hypermutation can be advantageous for microbes adapting to the environment. Previously, we identified two hypermutator Cryptococcus neoformans clinical isolates that rapidly develop drug resistance due to transposition of a retrotransposon, Cnl1. Cnl1-mediated hypermutation is caused by a nonsense mutation in the gene encoding a novel RNAi component, Znf3, combined with a tremendous transposon burden. To elucidate adaptative mechanisms following RNAi loss, two bioinformatic pipelines were developed to identify RNAi loss-of-function mutations in a collection of 387 sequenced C. neoformans isolates. Remarkably, several RNAi-loss isolates were identified that are not hypermutators and have not accumulated transposons. To test if these RNAi loss-of-function mutations can cause hypermutation, the mutations were introduced into a non-hypermutator strain with a high transposon burden, which resulted in a hypermutator phenotype. To further investigate if RNAi-loss isolates can become hypermutators, in vitro passaging was performed. Although no hypermutators were found in two C. neoformans RNAi-loss strains after short-term passage, hypermutation was observed in a passaged C. deneoformans strain with increased transposon burden. Consistent with a two-step evolution, when an RNAi-loss isolate was crossed with an isolate containing a high Cnl1 burden, F1 hypermutator progeny inheriting a high transposon burden were identified. In addition to Cnl1 transpositions, insertions of a novel gigantic DNA transposon KDZ1 (~11 kb), contributed to hypermutation in the progeny. Our results suggest that RNAi loss is relatively common (7/387, ~1.8%) and enables distinct evolutionary trajectories: hypermutation following transposon accumulation or survival without hypermutation.
Collapse
Affiliation(s)
- Jun Huang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Connor J. Larmore
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Shelby J. Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ziyan Xu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Fred S. Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Paul M. Magwene
- Department of Biology, Duke University, Durham, NC 27710, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
4
|
Coelho MA, David-Palma M, Shea T, Bowers K, McGinley-Smith S, Mohammad AW, Gnirke A, Yurkov AM, Nowrousian M, Sun S, Cuomo CA, Heitman J. Comparative genomics of the closely related fungal genera Cryptococcus and Kwoniella reveals karyotype dynamics and suggests evolutionary mechanisms of pathogenesis. PLoS Biol 2024; 22:e3002682. [PMID: 38843310 PMCID: PMC11185503 DOI: 10.1371/journal.pbio.3002682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/18/2024] [Accepted: 05/17/2024] [Indexed: 06/19/2024] Open
Abstract
In exploring the evolutionary trajectories of both pathogenesis and karyotype dynamics in fungi, we conducted a large-scale comparative genomic analysis spanning the Cryptococcus genus, encompassing both global human fungal pathogens and nonpathogenic species, and related species from the sister genus Kwoniella. Chromosome-level genome assemblies were generated for multiple species, covering virtually all known diversity within these genera. Although Cryptococcus and Kwoniella have comparable genome sizes (about 19.2 and 22.9 Mb) and similar gene content, hinting at preadaptive pathogenic potential, our analysis found evidence of gene gain (via horizontal gene transfer) and gene loss in pathogenic Cryptococcus species, which might represent evolutionary signatures of pathogenic development. Genome analysis also revealed a significant variation in chromosome number and structure between the 2 genera. By combining synteny analysis and experimental centromere validation, we found that most Cryptococcus species have 14 chromosomes, whereas most Kwoniella species have fewer (11, 8, 5, or even as few as 3). Reduced chromosome number in Kwoniella is associated with formation of giant chromosomes (up to 18 Mb) through repeated chromosome fusion events, each marked by a pericentric inversion and centromere loss. While similar chromosome inversion-fusion patterns were observed in all Kwoniella species with fewer than 14 chromosomes, no such pattern was detected in Cryptococcus. Instead, Cryptococcus species with less than 14 chromosomes showed reductions primarily through rearrangements associated with the loss of repeat-rich centromeres. Additionally, Cryptococcus genomes exhibited frequent interchromosomal translocations, including intercentromeric recombination facilitated by transposons shared between centromeres. Overall, our findings advance our understanding of genetic changes possibly associated with pathogenicity in Cryptococcus and provide a foundation to elucidate mechanisms of centromere loss and chromosome fusion driving distinct karyotypes in closely related fungal species, including prominent global human pathogens.
Collapse
Affiliation(s)
- Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Terrance Shea
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Katharine Bowers
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sage McGinley-Smith
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Arman W. Mohammad
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Andreas Gnirke
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Andrey M. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Christina A. Cuomo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
5
|
Iracane E, Arias-Sardá C, Maufrais C, Ene IV, d’Enfert C, Buscaino A. Identification of an active RNAi pathway in Candida albicans. Proc Natl Acad Sci U S A 2024; 121:e2315926121. [PMID: 38625945 PMCID: PMC11047096 DOI: 10.1073/pnas.2315926121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/08/2024] [Indexed: 04/18/2024] Open
Abstract
RNA interference (RNAi) is a fundamental regulatory pathway with a wide range of functions, including regulation of gene expression and maintenance of genome stability. Although RNAi is widespread in the fungal kingdom, well-known species, such as the model yeast Saccharomyces cerevisiae, have lost the RNAi pathway. Until now evidence has been lacking for a fully functional RNAi pathway in Candida albicans, a human fungal pathogen considered critically important by the World Health Organization. Here, we demonstrated that the widely used C. albicans reference strain (SC5314) contains an inactivating missense mutation in the gene encoding for the central RNAi component Argonaute. In contrast, most other C. albicans isolates contain a canonical Argonaute protein predicted to be functional and RNAi-active. Indeed, using high-throughput small and long RNA sequencing combined with seamless CRISPR/Cas9-based gene editing, we demonstrate that an active C. albicans RNAi machinery represses expression of subtelomeric gene families. Thus, an intact and functional RNAi pathway exists in C. albicans, highlighting the importance of using multiple reference strains when studying this dangerous pathogen.
Collapse
Affiliation(s)
- Elise Iracane
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, CanterburyCT2 7NZ, United Kingdom
| | - Cristina Arias-Sardá
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, CanterburyCT2 7NZ, United Kingdom
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, Bioinformatic Hub, ParisF-75015, France
| | - Iuliana V. Ene
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, ParisF-75015, France
| | - Christophe d’Enfert
- Institut Pasteur, Université Paris Cité, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement USC2019, Fungal Biology and Pathogenicity Unit, ParisF-75015, France
| | - Alessia Buscaino
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, CanterburyCT2 7NZ, United Kingdom
| |
Collapse
|
6
|
Yadav V, Mohan R, Sun S, Heitman J. Calcineurin contributes to RNAi-mediated transgene silencing and small interfering RNA production in the human fungal pathogen Cryptococcus neoformans. Genetics 2024; 226:iyae010. [PMID: 38279937 PMCID: PMC10917508 DOI: 10.1093/genetics/iyae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 07/27/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024] Open
Abstract
Adaptation to external environmental challenges at the cellular level requires rapid responses and involves relay of information to the nucleus to drive key gene expression changes through downstream transcription factors. Here, we describe an alternative route of adaptation through a direct role for cellular signaling components in governing gene expression via RNA interference-mediated small RNA production. Calcium-calcineurin signaling is a highly conserved signaling cascade that plays central roles in stress adaptation and virulence of eukaryotic pathogens, including the human fungal pathogen Cryptococcus neoformans. Upon activation in C. neoformans, calcineurin localizes to P-bodies, membraneless organelles that are also the site for RNA processing. Here, we studied the role of calcineurin and its substrates in RNAi-mediated transgene silencing. Our results reveal that calcineurin regulates both the onset and the reversion of transgene silencing. We found that some calcineurin substrates that localize to P-bodies also regulate transgene silencing but in opposing directions. Small RNA sequencing in mutants lacking calcineurin or its targets revealed a role for calcineurin in small RNA production. Interestingly, the impact of calcineurin and its substrates was found to be different in genome-wide analysis, suggesting that calcineurin may regulate small RNA production in C. neoformans through additional pathways. Overall, these findings define a mechanism by which signaling machinery induced by external stimuli can directly alter gene expression to accelerate adaptative responses and contribute to genome defense.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Riya Mohan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
7
|
Yadav V, Mohan R, Sun S, Heitman J. Calcineurin contributes to RNAi-mediated transgene silencing and small interfering RNA production in the human fungal pathogen Cryptococcus neoformans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.25.550548. [PMID: 37546757 PMCID: PMC10402008 DOI: 10.1101/2023.07.25.550548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Adaptation to external environmental challenges at the cellular level requires rapid responses and involves relay of information to the nucleus to drive key gene expression changes through downstream transcription factors. Here, we describe an alternative route of adaptation through a direct role for cellular signaling components in governing gene expression via RNA interference-mediated small RNA production. Calcium-calcineurin signaling is a highly conserved signaling cascade that plays central roles in stress adaptation and virulence of eukaryotic pathogens, including the human fungal pathogen Cryptococcus neoformans. Upon activation in C. neoformans, calcineurin localizes to P-bodies, membrane-less organelles that are also the site for RNA processing. Here, we studied the role of calcineurin and its substrates in RNAi-mediated transgene silencing. Our results reveal that calcineurin regulates both the onset and the reversion of transgene silencing. We found that some calcineurin substrates that localize to P-bodies also regulate transgene silencing but in opposing directions. Small RNA sequencing in mutants lacking calcineurin or its targets revealed a role for calcineurin in small RNA production. Interestingly, the impact of calcineurin and its substrates was found to be different in genome-wide analysis, suggesting that calcineurin may regulate small RNA production in C. neoformans through additional pathways. Overall, these findings define a mechanism by which signaling machinery induced by external stimuli can directly alter gene expression to accelerate adaptative responses and contribute to genome defense.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Riya Mohan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
8
|
Coelho MA, David-Palma M, Shea T, Bowers K, McGinley-Smith S, Mohammad AW, Gnirke A, Yurkov AM, Nowrousian M, Sun S, Cuomo CA, Heitman J. Comparative genomics of Cryptococcus and Kwoniella reveals pathogenesis evolution and contrasting karyotype dynamics via intercentromeric recombination or chromosome fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.27.573464. [PMID: 38234769 PMCID: PMC10793447 DOI: 10.1101/2023.12.27.573464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
A large-scale comparative genomic analysis was conducted for the global human fungal pathogens within the Cryptococcus genus, compared to non-pathogenic Cryptococcus species, and related species from the sister genus Kwoniella. Chromosome-level genome assemblies were generated for multiple species of both genera, resulting in a dataset encompassing virtually all of their known diversity. Although Cryptococcus and Kwoniella have comparable genome sizes (about 19.2 and 22.9 Mb) and similar gene content, hinting at pre-adaptive pathogenic potential, our analysis found evidence in pathogenic Cryptococcus species of specific examples of gene gain (via horizontal gene transfer) and gene loss, which might represent evolutionary signatures of pathogenic development. Genome analysis also revealed a significant variation in chromosome number and structure between the two genera. By combining synteny analysis and experimental centromere validation, we found that most Cryptococcus species have 14 chromosomes, whereas most Kwoniella species have fewer (11, 8, 5 or even as few as 3). Reduced chromosome number in Kwoniella is associated with formation of giant chromosomes (up to 18 Mb) through repeated chromosome fusion events, each marked by a pericentric inversion and centromere loss. While similar chromosome inversion-fusion patterns were observed in all Kwoniella species with fewer than 14 chromosomes, no such pattern was detected in Cryptococcus. Instead, Cryptococcus species with less than 14 chromosomes, underwent chromosome reductions primarily through rearrangements associated with the loss of repeat-rich centromeres. Additionally, Cryptococcus genomes exhibited frequent interchromosomal translocations, including intercentromeric recombination facilitated by transposons shared between centromeres. Taken together, our findings advance our understanding of genomic changes possibly associated with pathogenicity in Cryptococcus and provide a foundation to elucidate mechanisms of centromere loss and chromosome fusion driving distinct karyotypes in closely related fungal species, including prominent global human pathogens.
Collapse
Affiliation(s)
- Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Terrance Shea
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Katharine Bowers
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | | | - Andreas Gnirke
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Andrey M. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
9
|
Tyczewska A, Grzywacz K. tRNA-derived fragments as new players in regulatory processes in yeast. Yeast 2023; 40:283-289. [PMID: 36385711 DOI: 10.1002/yea.3829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 08/08/2023] Open
Abstract
For a very long time, RNA molecules were treated as transistory molecules, by which the genetic information flows from DNA to proteins; the model proposed in the 1960s accepted that proteins are both the products and the regulators of gene expression. Since then, thousands of reports proved that RNAs should be thought about as the factors that do control gene expression. The pervasive transcription has been reported in many eukaryotic organisms, illustrating a highly interwoven transcriptome organization that includes hundreds of previously unknown noncoding RNAs. The key roles of noncoding RNAs (microRNAs and small interfering RNAs) in gene expression regulation are no longer surprising, as are new classes of noncoding RNAs constantly being discovered. Transfer RNAs (tRNAs) are the second most abundant type of RNAs in the cell. Advances in high-throughput sequencing technologies exposed the existence of functional, regulatory tRNA-derived RNA fragments (tRFs), generated from precursor and mature tRNAs. These tRF molecules have been found to play central roles during stress and different pathological conditions. Herein, we present the critical assessment of the discoveries made in the field of tRNA-derived fragments in the past 15 years in various pathogenic and nonpathogenic yeast species.
Collapse
Affiliation(s)
- Agata Tyczewska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Kamilla Grzywacz
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
10
|
ZNF3 regulates proliferation, migration and invasion through MMP1 and TWIST in colorectal cancer. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1889-1896. [PMID: 36789689 PMCID: PMC10157515 DOI: 10.3724/abbs.2022187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a malignant tumor with a high incidence and mortality worldwide. Currently, the underlying molecular mechanisms of CRC are still unclear. Zinc finger protein 3 (ZNF3) is a zinc-finger transcription factor that has been reported as a candidate for breast cancer prognosis, suggesting its involvement in the regulation of tumorigenesis. However, the association between ZNF3 and CRC remains unknown. To investigate the role of ZNF3 in CRC, we first analyze the correlation between ZNF3 expression and CRC, and the results demonstrate that ZNF3 is highly expressed in CRC tissue and cells, which is associated with the age of CRC patients. In vitro studies show that ZNF3 overexpression promotes CRC cell migration. Compared to control cells, knockdown of ZNF3 markedly suppresses CRC cell proliferation, migration and invasion and promotes G0/G1 phase cell cycle arrest. The expressions of the EMT-related markers TWIST and MMP1 are significantly decreased when ZNF3 is silenced. Additionally, overexpression of MMP1 and TWIST exacerbates CRC cell proliferation, accelerates the S phase cell cycle in ZNF3-knockdown SW480 cells, and increases cell migration and invasion through Transwell chambers. These data suggest that ZNF3 is involved in cellular proliferation, migration and invasion by regulating MMP1 and TWIST in CRC cells.
Collapse
|
11
|
Similar Characteristics of siRNAs of Plant Viruses Which Replicate in Plant and Fungal Hosts. BIOLOGY 2022; 11:biology11111672. [PMID: 36421386 PMCID: PMC9687825 DOI: 10.3390/biology11111672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary RNA silencing in fungi was shown to confer antiviral defense against plant viruses. In this study, using high-throughput sequencing and bioinformatic analyses, we showed that small interfering RNAs (siRNAs) of cucumber mosaic virus and tobacco mosaic virus (TMV) which replicated in phytopathogenic fungi Rhizoctonia solani and Fusarium graminearum had similarities with viral siRNAs produced in plant hosts in regard to the size distributions, proportion of plus and minus senses, and nucleotide preference for the 5′ termini. Additionally, our results also determined that both F. graminearum DCL1 and DCL2 were involved in the production of TMV siRNAs. Thus, the fungal RNA silencing machineries have adaptive capabilities to recognize and process the genome of invading plant viruses. Abstract RNA silencing is a host innate antiviral mechanism which acts via the synthesis of viral-derived small interfering RNAs (vsiRNAs). We have previously reported the infection of phytopathogenic fungi by plant viruses such as cucumber mosaic virus (CMV) and tobacco mosaic virus (TMV). Furthermore, fungal RNA silencing was shown to suppress plant virus accumulation, but the characteristics of plant vsiRNAs associated with the antiviral response in this nonconventional host remain unknown. Using high-throughput sequencing, we characterized vsiRNA profiles in two plant RNA virus–fungal host pathosystems: CMV infection in phytopathogenic fungus Rhizoctonia solani and TMV infection in phytopathogenic fungus Fusarium graminearum. The relative abundances of CMV and TMV siRNAs in the respective fungal hosts were much lower than those in the respective experimental plant hosts, Nicotiana benthamiana and Nicotiana tabacum. However, CMV and TMV siRNAs in fungi had similar characteristics to those in plants, particularly in their size distributions, proportion of plus and minus senses, and nucleotide preference for the 5′ termini of vsiRNAs. The abundance of TMV siRNAs largely decreased in F. graminearum mutants with a deletion in either dicer-like 1 (dcl1) or dcl2 genes which encode key proteins for the production of siRNAs and antiviral responses. However, deletion of both dcl1 and dcl2 restored TMV siRNA accumulation in F. graminearum, indicating the production of dcl-independent siRNAs with no antiviral function in the absence of the dcl1 and dcl2 genes. Our results suggest that fungal RNA silencing recognizes and processes the invading plant RNA virus genome in a similar way as in plants.
Collapse
|
12
|
Priest SJ, Yadav V, Roth C, Dahlmann TA, Kück U, Magwene PM, Heitman J. Uncontrolled transposition following RNAi loss causes hypermutation and antifungal drug resistance in clinical isolates of Cryptococcus neoformans. Nat Microbiol 2022; 7:1239-1251. [PMID: 35918426 PMCID: PMC10840647 DOI: 10.1038/s41564-022-01183-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 06/23/2022] [Indexed: 02/07/2023]
Abstract
Cryptococcus neoformans infections cause approximately 15% of AIDS-related deaths owing to a combination of limited antifungal therapies and drug resistance. A collection of clinical and environmental C. neoformans isolates were assayed for increased mutation rates via fluctuation analysis, and we identified two hypermutator C. neoformans clinical isolates with increased mutation rates when exposed to the combination of rapamycin and FK506. Sequencing of drug target genes found that Cnl1 transposon insertions conferred the majority of resistance to rapamycin and FK506 and could also independently cause resistance to 5-fluoroorotic acid and the clinically relevant antifungal 5-flucytosine. Whole-genome sequencing revealed both hypermutator genomes harbour a nonsense mutation in the RNA-interference component ZNF3 and hundreds of Cnl1 elements organized into massive subtelomeric arrays on each of the fourteen chromosomes. Quantitative trait locus mapping in 28 progeny derived from a cross between a hypermutator and wild-type identified a locus associated with hypermutation that included znf3. CRISPR editing of the znf3 nonsense mutation abolished hypermutation and restored small-interfering-RNA production. We conclude that hypermutation and drug resistance in these clinical isolates result from RNA-interference loss and accumulation of Cnl1 elements.
Collapse
Affiliation(s)
- Shelby J Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Cullen Roth
- Department of Biology, Duke University, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Tim A Dahlmann
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Ulrich Kück
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | | | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
13
|
Bruch A, Kelani AA, Blango MG. RNA-based therapeutics to treat human fungal infections. Trends Microbiol 2022; 30:411-420. [PMID: 34635448 PMCID: PMC8498853 DOI: 10.1016/j.tim.2021.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023]
Abstract
In recent decades, RNA-based therapeutics have transitioned from a near impossibility to a compelling treatment alternative for genetic disorders and infectious diseases. The mRNA vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are truly groundbreaking, and new adaptations are already being proposed to fight other microbes. Unfortunately, the potential of RNA-based therapeutics to treat human fungal infections has remained mostly absent from the conversation, despite the fact that invasive fungal infections kill as many per year as tuberculosis and even more than malaria. Here, we argue that RNA-based therapeutics should be investigated for the treatment of human fungal infections and discuss several major roadblocks and potential circumventions that may allow for the realization of RNA-based therapies against human fungal pathogens.
Collapse
Affiliation(s)
- Alexander Bruch
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Abdulrahman A. Kelani
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Matthew G. Blango
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Jena, Germany,Correspondence:
| |
Collapse
|
14
|
Schotanus K, Yadav V, Heitman J. Epigenetic dynamics of centromeres and neocentromeres in Cryptococcus deuterogattii. PLoS Genet 2021; 17:e1009743. [PMID: 34464380 PMCID: PMC8407549 DOI: 10.1371/journal.pgen.1009743] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/26/2021] [Indexed: 11/25/2022] Open
Abstract
Deletion of native centromeres in the human fungal pathogen Cryptococcus deuterogattii leads to neocentromere formation. Native centromeres span truncated transposable elements, while neocentromeres do not and instead span actively expressed genes. To explore the epigenetic organization of neocentromeres, we analyzed the distribution of the heterochromatic histone modification H3K9me2, 5mC DNA methylation and the euchromatin mark H3K4me2. Native centromeres are enriched for both H3K9me2 and 5mC DNA methylation marks and are devoid of H3K4me2, while neocentromeres do not exhibit any of these features. Neocentromeres in cen10Δ mutants are unstable and chromosome-chromosome fusions occur. After chromosome fusion, the neocentromere is inactivated and the native centromere of the chromosome fusion partner remains as the sole, active centromere. In the present study, the active centromere of a fused chromosome was deleted to investigate if epigenetic memory promoted the re-activation of the inactive neocentromere. Our results show that the inactive neocentromere is not re-activated and instead a novel neocentromere forms directly adjacent to the deleted centromere of the fused chromosome. To study the impact of transcription on centromere stability, the actively expressed URA5 gene was introduced into the CENP-A bound regions of a native centromere. The introduction of the URA5 gene led to a loss of CENP-A from the native centromere, and a neocentromere formed adjacent to the native centromere location. Remarkably, the inactive, native centromere remained enriched for heterochromatin, yet the integrated gene was expressed and devoid of H3K9me2. A cumulative analysis of multiple CENP-A distribution profiles revealed centromere drift in C. deuterogattii, a previously unreported phenomenon in fungi. The CENP-A-binding shifted within the ORF-free regions and showed a possible association with a truncated transposable element. Taken together, our findings reveal that neocentromeres in C. deuterogattii are highly unstable and are not marked with an epigenetic memory, distinguishing them from native centromeres. Linear eukaryotic chromosomes require a specific chromosomal region, the centromere, where the macromolecular kinetochore protein complex assembles. In most organisms, centromeres are located in gene-free, repeat-rich chromosomal regions and may or may not be associated with heterochromatic epigenetic marks. We report that the native centromeres of the human fungal pathogen Cryptococcus deuterogattii are enriched with heterochromatin marks. Deleting a centromere in C. deuterogattii results in formation of neocentromeres that span genes. In some cases, neocentromeres are unstable leading to chromosome-chromosome fusions and neocentromere inactivation. These neocentromeres, unlike native centromeres, lack any of the tested heterochromatic marks or any epigenetic memory. We also found that neocentromere formation can be triggered not only by deletion of the native centromere but also by disrupting its function via insertion of a gene. These results show that neocentromere dynamics in this fungal pathogen are unique among organisms studied so far. Our results also revealed key differences between epigenetics of native centromeres between C. deuterogattii and its sister species, C. neoformans. These finding provide an opportunity to test and study the evolution of centromeres, as well as neocentromeres, in this species complex and how it might contribute to their genome evolution.
Collapse
Affiliation(s)
- Klaas Schotanus
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Vikas Yadav
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
15
|
Gröhs Ferrareze PA, Maufrais C, Silva Araujo Streit R, Priest SJ, Cuomo CA, Heitman J, Staats CC, Janbon G. Application of an optimized annotation pipeline to the Cryptococcus deuterogattii genome reveals dynamic primary metabolic gene clusters and genomic impact of RNAi loss. G3-GENES GENOMES GENETICS 2021; 11:6080769. [PMID: 33585873 PMCID: PMC8022950 DOI: 10.1093/g3journal/jkaa070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022]
Abstract
Evaluating the quality of a de novo annotation of a complex fungal genome based on RNA-seq data remains a challenge. In this study, we sequentially optimized a Cufflinks-CodingQuary-based bioinformatics pipeline fed with RNA-seq data using the manually annotated model pathogenic yeasts Cryptococcus neoformans and Cryptococcus deneoformans as test cases. Our results show that the quality of the annotation is sensitive to the quantity of RNA-seq data used and that the best quality is obtained with 5–10 million reads per RNA-seq replicate. We also showed that the number of introns predicted is an excellent a priori indicator of the quality of the final de novo annotation. We then used this pipeline to annotate the genome of the RNAi-deficient species Cryptococcus deuterogattii strain R265 using RNA-seq data. Dynamic transcriptome analysis revealed that intron retention is more prominent in C. deuterogattii than in the other RNAi-proficient species C. neoformans and C. deneoformans. In contrast, we observed that antisense transcription was not higher in C. deuterogattii than in the two other Cryptococcus species. Comparative gene content analysis identified 21 clusters enriched in transcription factors and transporters that have been lost. Interestingly, analysis of the subtelomeric regions in these three annotated species identified a similar gene enrichment, reminiscent of the structure of primary metabolic clusters. Our data suggest that there is active exchange between subtelomeric regions, and that other chromosomal regions might participate in adaptive diversification of Cryptococcus metabolite assimilation potential.
Collapse
Affiliation(s)
- Patrícia Aline Gröhs Ferrareze
- Département de Mycologie, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, F-75015 Paris, France.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 15005, Brazil
| | - Corinne Maufrais
- Département de Mycologie, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, F-75015 Paris, France.,Département Biologie Computationnelle, Institut Pasteur, HUB Bioinformatique et Biostatistique, C3BI, USR 3756 IP CNRS, F-75015 Paris, France
| | - Rodrigo Silva Araujo Streit
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 15005, Brazil
| | - Shelby J Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Charley Christian Staats
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 15005, Brazil
| | - Guilhem Janbon
- Département de Mycologie, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, F-75015 Paris, France
| |
Collapse
|
16
|
Zhao Y, Lin X. Cryptococcus neoformans: Sex, morphogenesis, and virulence. INFECTION GENETICS AND EVOLUTION 2021; 89:104731. [PMID: 33497839 DOI: 10.1016/j.meegid.2021.104731] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/23/2022]
Abstract
Cryptococcus neoformans is a dimorphic fungus that causes lethal meningoencephalitis mainly in immunocompromised individuals. Different morphotypes enable this environmental fungus and opportunistic pathogen to adapt to different natural niches and exhibit different levels of pathogenicity in various hosts. It is well-recognized that C. neoformans undergoes bisexual or unisexual reproduction in vitro to generate genotypic, morphotypic, and phenotypic diversity, which augments its ability for adaptation. However, if and how sexual reproduction and the meiotic machinery exert any direct impact on the infection process is unclear. This review summarizes recent discoveries on the regulation of cryptococcal life cycle and morphogenesis, and how they impact cryptococcal pathogenicity. The potential role of the meiotic machinery on ploidy regulation during cryptococcal infection is also discussed. This review aims to stimulate further investigation on links between fungal morphogenesis, sexual reproduction, and virulence.
Collapse
Affiliation(s)
- Youbao Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
17
|
Analysis of tRNA-derived RNA fragments (tRFs) in Cryptococcus spp.: RNAi-independent generation and possible compensatory effects in a RNAi-deficient genotype. Fungal Biol 2021; 125:389-399. [PMID: 33910680 DOI: 10.1016/j.funbio.2020.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/30/2020] [Accepted: 12/18/2020] [Indexed: 01/03/2023]
Abstract
Small RNAs (sRNAs) are key factors in the regulation of gene expression. Recently, a new class of regulatory sRNAs derived from tRNAs was described, the tRNA-derived RNA fragments (tRFs). Such RNAs range in length from 14 to 30 nucleotides and are produced from both mature and primary tRNA transcripts, with very specific cleavage sites along the tRNA sequence. Although several mechanisms have been proposed for how tRFs mediate regulation of gene expression, the exact mechanism of tRF biogenesis and its dependency upon the RNAi pathway remain unclear. Cryptococcus gattii and Cryptococcus neoformans are basidiomycetous yeasts and important human pathogens. While C. neoformans is RNAi proficient, C. gattii VGII has lost essential RNAi genes. Here, we sought to identify the tRF production profile in C. gattii VGII and C. neoformans in order to assess the RNAi-dependency of tRF production in these fungal species. We developed a RNA-sequencing-based tRF prediction workflow designed to improve the currently available prediction tools. Using this methodology, we were able to identify tRFs in both organisms. Despite the loss of the RNAi pathway, C. gattii VGII displayed a number of identified tRFs that did not differ significantly from those observed in C. neoformans. The analysis of predicted tRF targets revealed that a higher number of targets was found for C. gattii VGII tRFs compared to C. neoformans tRFs. These results support the idea that tRFs are at least partially independent of the canonical RNAi machinery, raising questions about possible compensatory roles of alternative regulatory RNAs in the absence of a functional RNAi pathway.
Collapse
|
18
|
Lax C, Tahiri G, Patiño-Medina JA, Cánovas-Márquez JT, Pérez-Ruiz JA, Osorio-Concepción M, Navarro E, Calo S. The Evolutionary Significance of RNAi in the Fungal Kingdom. Int J Mol Sci 2020; 21:E9348. [PMID: 33302447 PMCID: PMC7763443 DOI: 10.3390/ijms21249348] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
RNA interference (RNAi) was discovered at the end of last millennium, changing the way scientists understood regulation of gene expression. Within the following two decades, a variety of different RNAi mechanisms were found in eukaryotes, reflecting the evolutive diversity that RNAi entails. The essential silencing mechanism consists of an RNase III enzyme called Dicer that cleaves double-stranded RNA (dsRNA) generating small interfering RNAs (siRNAs), a hallmark of RNAi. These siRNAs are loaded into the RNA-induced silencing complex (RISC) triggering the cleavage of complementary messenger RNAs by the Argonaute protein, the main component of the complex. Consequently, the expression of target genes is silenced. This mechanism has been thoroughly studied in fungi due to their proximity to the animal phylum and the conservation of the RNAi mechanism from lower to higher eukaryotes. However, the role and even the presence of RNAi differ across the fungal kingdom, as it has evolved adapting to the particularities and needs of each species. Fungi have exploited RNAi to regulate a variety of cell activities as different as defense against exogenous and potentially harmful DNA, genome integrity, development, drug tolerance, or virulence. This pathway has offered versatility to fungi through evolution, favoring the enormous diversity this kingdom comprises.
Collapse
Affiliation(s)
- Carlos Lax
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - Ghizlane Tahiri
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - José Alberto Patiño-Medina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán CP 58030, Mexico;
| | - José T. Cánovas-Márquez
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - José A. Pérez-Ruiz
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - Macario Osorio-Concepción
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - Eusebio Navarro
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (C.L.); (G.T.); (J.T.C.-M.); (J.A.P.-R.); (M.O.-C.); (E.N.)
| | - Silvia Calo
- School of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, 51033 Santiago de los Caballeros, Dominican Republic
| |
Collapse
|
19
|
Role of Non-coding RNAs in Fungal Pathogenesis and Antifungal Drug Responses. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020. [DOI: 10.1007/s40588-020-00151-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Purpose of Review
Non-coding RNAs (ncRNAs), including regulatory small RNAs (sRNAs) and long non-coding RNAs (lncRNAs), constitute a significant part of eukaryotic genomes; however, their roles in fungi are just starting to emerge. ncRNAs have been shown to regulate gene expression in response to varying environmental conditions (like stress) and response to chemicals, including antifungal drugs. In this review, I highlighted recent studies focusing on the functional roles of ncRNAs in pathogenic fungi.
Recent Findings
Emerging evidence suggests sRNAs (small RNAs) and lncRNAs (long non-coding RNAs) play an important role in fungal pathogenesis and antifungal drug response. Their roles include posttranscriptional gene silencing, histone modification, and chromatin remodeling. Fungal pathogens utilize RNA interference (RNAi) mechanisms to regulate pathogenesis-related genes and can also transfer sRNAs inside the host to suppress host immunity genes to increase virulence. Hosts can also transfer sRNAs to induce RNAi in fungal pathogens to reduce virulence. Additionally, sRNAs and lncRNAs also regulate gene expression in response to antifungal drugs increasing resistance (and possibly tolerance) to drugs.
Summary
Herein, I discuss what is known about ncRNAs in fungal pathogenesis and antifungal drug responses. Advancements in genomic technologies will help identify the ncRNA repertoire in fungal pathogens, and functional studies will elucidate their mechanisms. This will advance our understanding of host-fungal interactions and potentially help develop better treatment strategies.
Collapse
|
20
|
Li YH, Liu TB. Zinc Finger Proteins in the Human Fungal Pathogen Cryptococcus neoformans. Int J Mol Sci 2020; 21:ijms21041361. [PMID: 32085473 PMCID: PMC7072944 DOI: 10.3390/ijms21041361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/17/2022] Open
Abstract
Zinc is one of the essential trace elements in eukaryotes and it is a critical structural component of a large number of proteins. Zinc finger proteins (ZNFs) are zinc-finger domain-containing proteins stabilized by bound zinc ions and they form the most abundant proteins, serving extraordinarily diverse biological functions. In recent years, many ZNFs have been identified and characterized in the human fungal pathogen Cryptococcus neoformans, a fungal pathogen causing fatal meningitis mainly in immunocompromised individuals. It has been shown that ZNFs play important roles in the morphological development, differentiation, and virulence of C. neoformans. In this review, we, first, briefly introduce the ZNFs and their classification. Then, we explain the identification and classification of the ZNFs in C. neoformans. Next, we focus on the biological role of the ZNFs functionally characterized so far in the sexual reproduction, virulence factor production, ion homeostasis, pathogenesis, and stress resistance in C. neoformans. We also discuss the perspectives on future function studies of ZNFs in C. neoformans.
Collapse
Affiliation(s)
- Yuan-Hong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Tong-Bao Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
- Correspondence: ; Tel.: +86-23-6825-1088
| |
Collapse
|
21
|
Liu X, Zhang Y, Liu H, Jiao X, Zhang Q, Zhang S, Zhao ZK. RNA interference in the oleaginous yeast Rhodosporidium toruloides. FEMS Yeast Res 2019; 19:5462653. [PMID: 30985887 DOI: 10.1093/femsyr/foz031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/13/2019] [Indexed: 01/21/2023] Open
Abstract
The red yeast Rhodosporidium toruloides is an excellent microbial host for production of carotenoids, neutral lipids and valuable enzymes. In recent years, genetic tools for gene expression and gene disruption have been developed for this red yeast. However, methods remain limited in terms of fine-tuning gene expression. In this study, we first demonstrated successful implementation of RNA interference (RNAi) in R. toruloides NP11, which was applied to down-regulate the expression of autophagy related gene 8 (ATG8), and fatty acid synthase genes (FAS1 and FAS2), respectively. Compared with the control strain, RNAi-engineered strains showed a silencing efficiency ranging from 11% to 92%. The RNAi approach described here ensures selective inhibition of the target gene expression, and should expand our capacity in the genetic manipulation of R. toruloides for both fundamental research and advanced cell factory development.
Collapse
Affiliation(s)
- Xiangjian Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China.,Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| | - Yue Zhang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hongdi Liu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| | - Xiang Jiao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| | - Qi Zhang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| | - Sufang Zhang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| | - Zongbao Kent Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| |
Collapse
|
22
|
Sun S, Coelho MA, David-Palma M, Priest SJ, Heitman J. The Evolution of Sexual Reproduction and the Mating-Type Locus: Links to Pathogenesis of Cryptococcus Human Pathogenic Fungi. Annu Rev Genet 2019; 53:417-444. [PMID: 31537103 PMCID: PMC7025156 DOI: 10.1146/annurev-genet-120116-024755] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cryptococcus species utilize a variety of sexual reproduction mechanisms, which generate genetic diversity, purge deleterious mutations, and contribute to their ability to occupy myriad environmental niches and exhibit a range of pathogenic potential. The bisexual and unisexual cycles of pathogenic Cryptococcus species are stimulated by properties associated with their environmental niches and proceed through well-characterized signaling pathways and corresponding morphological changes. Genes governing mating are encoded by the mating-type (MAT) loci and influence pathogenesis, population dynamics, and lineage divergence in Cryptococcus. MAT has undergone significant evolutionary changes within the Cryptococcus genus, including transition from the ancestral tetrapolar state in nonpathogenic species to a bipolar mating system in pathogenic species, as well as several internal reconfigurations. Owing to the variety of established sexual reproduction mechanisms and the robust characterization of the evolution of mating and MAT in this genus, Cryptococcus species provide key insights into the evolution of sexual reproduction.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Marco A Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Shelby J Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| |
Collapse
|
23
|
Lin J, Zhao Y, Ferraro AR, Yang E, Lewis ZA, Lin X. Transcription factor Znf2 coordinates with the chromatin remodeling SWI/SNF complex to regulate cryptococcal cellular differentiation. Commun Biol 2019; 2:412. [PMID: 31754642 PMCID: PMC6856107 DOI: 10.1038/s42003-019-0665-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Cellular differentiation is instructed by developmental regulators in coordination with chromatin remodeling complexes. Much information about their coordination comes from studies in the model ascomycetous yeasts. It is not clear, however, what kind of information that can be extrapolated to species of other phyla in Kingdom Fungi. In the basidiomycete Cryptococcus neoformans, the transcription factor Znf2 controls yeast-to-hypha differentiation. Through a forward genetic screen, we identified the basidiomycete-specific factor Brf1. We discovered Brf1 works together with Snf5 in the SWI/SNF chromatin remodeling complex in concert with existent Znf2 to execute cellular differentiation. We demonstrated that SWI/SNF assists Znf2 in opening the promoter regions of hyphal specific genes, including the ZNF2 gene itself. This complex also supports Znf2 to fully associate with its target regions. Importantly, our findings revealed key differences in composition and biological function of the SWI/SNF complex in the two major phyla of Kingdom Fungi.
Collapse
Affiliation(s)
- Jianfeng Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602 USA
| | - Youbao Zhao
- Department of Microbiology, University of Georgia, Athens, GA 30602 USA
| | - Aileen R. Ferraro
- Department of Microbiology, University of Georgia, Athens, GA 30602 USA
| | - Ence Yang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 100191 Beijing, China
| | - Zachary A. Lewis
- Department of Microbiology, University of Georgia, Athens, GA 30602 USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602 USA
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602 USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602 USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
24
|
Abstract
Cryptococcus neoformans is a ubiquitous environmental fungus and an opportunistic pathogen that causes fatal cryptococcal meningitis. Advances in genomics, genetics, and cellular and molecular biology of C. neoformans have dramatically improved our understanding of this important pathogen, rendering it a model organism to study eukaryotic biology and microbial pathogenesis. In light of recent progress, we describe in this review the life cycle of C. neoformans with a special emphasis on the regulation of the yeast-to-hypha transition and different modes of sexual reproduction, in addition to the impacts of the life cycle on cryptococcal populations and pathogenesis.
Collapse
Affiliation(s)
- Youbao Zhao
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| | - Jianfeng Lin
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| | - Yumeng Fan
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, Georgia 30602; , , ,
| |
Collapse
|
25
|
Heitman J. E Pluribus Unum: The Fungal Kingdom as a Rosetta Stone for Biology and Medicine. Genetics 2019; 213:1-7. [PMID: 31488591 PMCID: PMC6727799 DOI: 10.1534/genetics.119.302537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
THE Genetics Society of America's (GSA's) Edward Novitski Prize recognizes a single experimental accomplishment or a body of work in which an exceptional level of creativity, and intellectual ingenuity, has been used to design and execute scientific experiments to solve a difficult problem in genetics. The 2019 recipient is Joseph Heitman, who is recognized for his work on fungal pathogens of humans and for ingenious experiments using yeast to identify the molecular targets of widely used immunosuppressive drugs. The latter work, part of Heitman's postdoctoral research, proved to be a seminal contribution to the discovery of the conserved Target of Rapamycin (TOR) pathway. In his own research group, a recurring theme has been the linking of fundamental insights in fungal biology to medically important problems. His studies have included defining fungal mating-type loci, including their evolution and links to virulence, and illustrating convergent transitions from outcrossing to inbreeding in fungal pathogens of plants and animals. He has led efforts to establish new genetic and genomic methods for studying pathogenesis in Cryptococcus species. Heitman's group also discovered unisexual reproduction, a novel mode of fungal reproduction with implications for pathogen evolution and the origins of sexual reproduction.
Collapse
Affiliation(s)
- Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
26
|
Genetic and genomic evolution of sexual reproduction: echoes from LECA to the fungal kingdom. Curr Opin Genet Dev 2019; 58-59:70-75. [PMID: 31473482 DOI: 10.1016/j.gde.2019.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/28/2019] [Accepted: 07/16/2019] [Indexed: 12/30/2022]
Abstract
Sexual reproduction is vastly diverse and yet highly conserved across the eukaryotic domain. This ubiquity suggests that the last eukaryotic common ancestor (LECA) was sexual. It is hypothesized that several critical processes in sexual reproduction, including cell fusion and meiosis, were acquired during the evolution from the first eukaryotic common ancestor (FECA) to the sexual LECA. However, it is challenging to delineate the exact origin and evolution of sexual reproduction given that both FECA and LECA are extinct. Studies of diverse eukaryotes have helped to shed light on this sexual evolutionary trajectory, revealing that a primordial sexual ploidy cycle likely involved endoreplication followed by concerted chromosome loss and that cell-cell fusion, meiosis, and sex determination later arose to shape modern sexual reproduction. Despite the general conservation of sexual reproduction processes throughout eukaryotes, modern sexual cycles are immensely diverse and complex. This diversity and complexity has become readily apparent in the fungal kingdom with the recent rapid expansion of whole-genome sequencing. This abundance of data, the variety of genetic tools available to manipulate and characterize fungi, and the thorough characterization of many fungal sexual cycles make the fungal kingdom an excellent forum, in which to study the conservation and diversification of sexual reproduction.
Collapse
|
27
|
Chang Z, Yadav V, Lee SC, Heitman J. Epigenetic mechanisms of drug resistance in fungi. Fungal Genet Biol 2019; 132:103253. [PMID: 31325489 DOI: 10.1016/j.fgb.2019.103253] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/30/2022]
Abstract
The emergence of drug-resistant fungi poses a continuously increasing threat to human health. Despite advances in preventive care and diagnostics, resistant fungi continue to cause significant mortality, especially in immunocompromised patients. Therapeutic resources are further limited by current usage of only four major classes of antifungal drugs. Resistance against these drugs has already been observed in pathogenic fungi requiring the development of much needed newer antifungal drugs. Epigenetic changes such as DNA or chromatin modifications alter gene expression levels in response to certain stimuli, including interaction with the host in the case of fungal pathogens. These changes can confer resistance to drugs by altering the expression of target genes or genes encoding drug efflux pumps. Multiple pathogens share many of these epigenetic pathways; thus, targeting epigenetic pathways might also identify drug target candidates for the development of broad-spectrum antifungal drugs. In this review, we discuss the importance of epigenetic pathways in mediating drug resistance in fungi as well as in the development of anti-fungal drugs.
Collapse
Affiliation(s)
- Zanetta Chang
- Department of Molecular Genetics and Microbiology, Duke University, Duke University Medical Center, Durham, NC 27710, USA
| | - Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University, Duke University Medical Center, Durham, NC 27710, USA
| | - Soo Chan Lee
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
28
|
Muñoz M, Camargo M, Ramírez JD. Estimating the Intra-taxa Diversity, Population Genetic Structure, and Evolutionary Pathways of Cryptococcus neoformans and Cryptococcus gattii. Front Genet 2018; 9:148. [PMID: 29740480 PMCID: PMC5928140 DOI: 10.3389/fgene.2018.00148] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022] Open
Abstract
Members of the Cryptococcus complex, includes Cryptococcus neoformans (most common fungal infection of the brain) and Cryptococcus gattii (high-impact emerging pathogen worldwide). Currently, the fungal multilocus sequence typing database (Fungal MLST Database) constitutes a valuable data repository of the genes used for molecular typing of these pathogens. We analyzed the data available in the Fungal MLST Database for seven housekeeping genes, with the aim to evaluate its contribution in the description of intra-taxa diversity, population genetic structure, and evolutionary patterns. Although the Fungal MLST Database has a greater number of reports for C. neoformans (n = 487) than for C. gattii (n = 344), similar results were obtained for both species in terms of allelic diversity. Phylogenetic reconstructions revealed grouping by molecular type in both species and allowed us to propose differences in evolutionary patterns (gradualism in the case of C. neoformans and punctuated evolution in the case of C. gattii). In addition, C. neoformans showed a population genetic structure consisting of 37 clonal complexes (CCs; CC1 being predominant), high crosslinking [without sequence type (ST) grouping by molecular type], marked divergence events in phylogenetic analysis, and few introgression events (mainly between VNI and VNIV). By contrast, C. gattii showed 50 CCs (with greater homogeneity in ST number by CC) and clustering by molecular type with marked crosslinking events in phylogenetic networks being less evident. Understanding relationships at the molecular level for species of the Cryptococcus complex, based on the sequences of the housekeeping genes, provides information for describing the evolutionary history of these emerging pathogens.
Collapse
Affiliation(s)
- Marina Muñoz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
- Centro de Tecnología en Salud (CETESA), Upqua SAS, Bogotá, Colombia
- Posgrado Interfacultades Doctorado en Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Milena Camargo
- Centro de Tecnología en Salud (CETESA), Upqua SAS, Bogotá, Colombia
- Departamento de Biología Molecular e Inmunología, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia
- Doctorado en Ciencias Biomédicas y Biológicas, Universidad del Rosario, Bogotá, Colombia
| | - Juan D. Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
29
|
Abstract
The “centromere paradox” refers to rapidly evolving and highly diverse centromere DNA sequences even in closely related eukaryotes. However, factors contributing to this rapid divergence are largely unknown. Here, we identified large regional, LTR retrotransposon-rich centromeres in a group of human fungal pathogens belonging to the Cryptococcus species complex. We provide evidence that loss-of-functional RNAi machinery and possibly cytosine DNA methylation trigger instability of the genome by activation of centromeric retrotransposons presumably suppressed by RNAi. We propose that RNAi, together with cytosine DNA methylation, serves as a critical determinant that maintains repetitive transposon-rich centromere structures. This study explores the direct link between RNAi and centromere structure evolution. The centromere DNA locus on a eukaryotic chromosome facilitates faithful chromosome segregation. Despite performing such a conserved function, centromere DNA sequence as well as the organization of sequence elements is rapidly evolving in all forms of eukaryotes. The driving force that facilitates centromere evolution remains an enigma. Here, we studied the evolution of centromeres in closely related species in the fungal phylum of Basidiomycota. Using ChIP-seq analysis of conserved inner kinetochore proteins, we identified centromeres in three closely related Cryptococcus species: two of which are RNAi-proficient, while the other lost functional RNAi. We find that the centromeres in the RNAi-deficient species are significantly shorter than those of the two RNAi-proficient species. While centromeres are LTR retrotransposon-rich in all cases, the RNAi-deficient species lost all full-length retroelements from its centromeres. In addition, centromeres in RNAi-proficient species are associated with a significantly higher level of cytosine DNA modifications compared with those of RNAi-deficient species. Furthermore, when an RNAi-proficient Cryptococcus species and its RNAi-deficient mutants were passaged under similar conditions, the centromere length was found to be occasionally shortened in RNAi mutants. In silico analysis of predicted centromeres in a group of closely related Ustilago species, also belonging to the Basidiomycota, were found to have undergone a similar transition in the centromere length in an RNAi-dependent fashion. Based on the correlation found in two independent basidiomycetous species complexes, we present evidence suggesting that the loss of RNAi and cytosine DNA methylation triggered transposon attrition, which resulted in shortening of centromere length during evolution.
Collapse
|
30
|
Billmyre RB, Clancey SA, Heitman J. Natural mismatch repair mutations mediate phenotypic diversity and drug resistance in Cryptococcus deuterogattii. eLife 2017; 6. [PMID: 28948913 PMCID: PMC5614558 DOI: 10.7554/elife.28802] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/25/2017] [Indexed: 12/14/2022] Open
Abstract
Pathogenic microbes confront an evolutionary conflict between the pressure to maintain genome stability and the need to adapt to mounting external stresses. Bacteria often respond with elevated mutation rates, but little evidence exists of stable eukaryotic hypermutators in nature. Whole genome resequencing of the human fungal pathogen Cryptococcus deuterogattii identified an outbreak lineage characterized by a nonsense mutation in the mismatch repair component MSH2. This defect results in a moderate mutation rate increase in typical genes, and a larger increase in genes containing homopolymer runs. This allows facile inactivation of genes with coding homopolymer runs including FRR1, which encodes the target of the immunosuppresive antifungal drugs FK506 and rapamycin. Our study identifies a eukaryotic hypermutator lineage spread over two continents and suggests that pathogenic eukaryotic microbes may experience similar selection pressures on mutation rate as bacterial pathogens, particularly during long periods of clonal growth or while expanding into new environments. As humans, we often think of genetic mutations as being bad. Over the past several decades we have seen health warnings issued on a variety of environmental exposures, from cigarettes to tanning beds, and with good reason because they cause mutations. For multicellular organisms like humans, these mutations are strongly associated with cancer. But in bacteria, this is not true. In fact, the rate at which mutations occur sometimes increases to help bacteria cope with stressful environments. Unlike bacteria, humans are eukaryotes – the name given to organisms whose cells contain different compartments separated by membranes, such as the nucleus of the cell. For years, we have assumed that eukaryotic microbes, like fungi and parasites, act more like humans than like bacteria because work in budding yeast (another eukaryote) has suggested this to be the case. However, recent work in disease-causing fungi has shown that, much like bacteria, elevated mutation rates may help them to respond to stress. This could also enable fungi to become resistant to drugs used to treat fungal infections. Cryptococcus deuterogattii is a fungus that causes human diseases including meningoencephalitis and a lung infection called pulmonary cryptococcosis. An ongoing outbreak of the fungus began in the Pacific Northwest of Canada in the late 1990s and emerged in the United States in 2006/2007. Among isolates closely related to those fungi causing the outbreak, three were found that appear to have a specific mutation in their DNA mismatch repair pathway, meaning that they may also experience a higher mutation rate. These strains are also less able to cause disease than others. Billmyre et al. now demonstrate experimentally that all three isolates have a specific DNA mismatch repair defect, and show that these fungi experience elevated mutation rates, resulting in what is known as a hypermutator state. Furthermore, whole genome sequencing and phylogenetic analysis showed that these hypermutator strains are derived from the outbreak-causing fungi, and that their reduced ability to cause disease is likely a result of accumulating mutations and the loss of the ability to grow at the higher temperatures found in the human body. Fungal infections are difficult to treat, in part because there are a limited number of available drugs. Elevated mutation rates will likely increase how often and how rapidly fungi develop resistance to these drugs. Understanding how commonly fungi exhibit a hypermutator state that could impact the development of drug resistance will therefore be important for treating patients with fungal infections, which account for millions of infections and hundreds of thousands of deaths annually worldwide.
Collapse
Affiliation(s)
- R Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Duke University Medical Center, Durham, United States
| | - Shelly Applen Clancey
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Duke University Medical Center, Durham, United States
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Duke University Medical Center, Durham, United States
| |
Collapse
|
31
|
Affiliation(s)
- R. Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
32
|
Abstract
RNA interference (RNAi) is a mechanism conserved in eukaryotes, including fungi, that represses gene expression by means of small noncoding RNAs (sRNAs) of about 20 to 30 nucleotides. Its discovery is one of the most important scientific breakthroughs of the past 20 years, and it has revolutionized our perception of the functioning of the cell. Initially described and characterized in Neurospora crassa, the RNAi is widespread in fungi, suggesting that it plays important functions in the fungal kingdom. Several RNAi-related mechanisms for maintenance of genome integrity, particularly protection against exogenous nucleic acids such as mobile elements, have been described in several fungi, suggesting that this is the main function of RNAi in the fungal kingdom. However, an increasing number of fungal sRNAs with regulatory functions generated by specific RNAi pathways have been identified. Several mechanistic aspects of the biogenesis of these sRNAs are known, but their function in fungal development and physiology is scarce, except for remarkable examples such as Mucor circinelloides, in which specific sRNAs clearly regulate responses to environmental and endogenous signals. Despite the retention of RNAi in most species, some fungal groups and species lack an active RNAi mechanism, suggesting that its loss may provide some selective advantage. This article summarizes the current understanding of RNAi functions in the fungal kingdom.
Collapse
|
33
|
Hagen F, Lumbsch HT, Arsic Arsenijevic V, Badali H, Bertout S, Billmyre RB, Bragulat MR, Cabañes FJ, Carbia M, Chakrabarti A, Chaturvedi S, Chaturvedi V, Chen M, Chowdhary A, Colom MF, Cornely OA, Crous PW, Cuétara MS, Diaz MR, Espinel-Ingroff A, Fakhim H, Falk R, Fang W, Herkert PF, Ferrer Rodríguez C, Fraser JA, Gené J, Guarro J, Idnurm A, Illnait-Zaragozi MT, Khan Z, Khayhan K, Kolecka A, Kurtzman CP, Lagrou K, Liao W, Linares C, Meis JF, Nielsen K, Nyazika TK, Pan W, Pekmezovic M, Polacheck I, Posteraro B, de Queiroz Telles F, Romeo O, Sánchez M, Sampaio A, Sanguinetti M, Sriburee P, Sugita T, Taj-Aldeen SJ, Takashima M, Taylor JW, Theelen B, Tomazin R, Verweij PE, Wahyuningsih R, Wang P, Boekhout T. Importance of Resolving Fungal Nomenclature: the Case of Multiple Pathogenic Species in the Cryptococcus Genus. mSphere 2017; 2:e00238-17. [PMID: 28875175 PMCID: PMC5577652 DOI: 10.1128/msphere.00238-17] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cryptococcosis is a major fungal disease caused by members of the Cryptococcus gattii and Cryptococcus neoformans species complexes. After more than 15 years of molecular genetic and phenotypic studies and much debate, a proposal for a taxonomic revision was made. The two varieties within C. neoformans were raised to species level, and the same was done for five genotypes within C. gattii. In a recent perspective (K. J. Kwon-Chung et al., mSphere 2:e00357-16, 2017, https://doi.org/10.1128/mSphere.00357-16), it was argued that this taxonomic proposal was premature and without consensus in the community. Although the authors of the perspective recognized the existence of genetic diversity, they preferred the use of the informal nomenclature "C. neoformans species complex" and "C. gattii species complex." Here we highlight the advantage of recognizing these seven species, as ignoring these species will impede deciphering further biologically and clinically relevant differences between them, which may in turn delay future clinical advances.
Collapse
Affiliation(s)
- Ferry Hagen
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | | | | | - Hamid Badali
- Department of Medical Mycology and Parasitology/Invasive Fungi Research Center (IFRC), Mazandaran University of Medical Sciences, Sari, Iran
| | - Sebastien Bertout
- Unité Mixte Internationale Recherches Translationnelles sur l’Infection à VIH et les Maladies Infectieuses, Laboratoire de Parasitologie et Mycologie Médicale, UFR Pharmacie, Université Montpellier, Montpellier, France
| | - R. Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - M. Rosa Bragulat
- Veterinary Mycology Group, Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - F. Javier Cabañes
- Veterinary Mycology Group, Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Mauricio Carbia
- Departamento de Parasitología y Micología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sudha Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Vishnu Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Min Chen
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | | | - Oliver A. Cornely
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Department I for Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Center for Clinical Trials, University Hospital Cologne, Cologne, Germany
| | - Pedro W. Crous
- Phytopathology Research, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Maria S. Cuétara
- Department of Microbiology, Hospital Severo Ochoa, Madrid, Spain
| | - Mara R. Diaz
- University of Miami, NSF NIEHS Oceans and Human Health Center, Miami, Florida, USA
- Rosentiel School of Marine and Atmospheric Science, Division of Marine Biology and Fisheries, University of Miami, Miami, Florida, USA
| | | | - Hamed Fakhim
- Department of Medical Parasitology and Mycology/Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Rama Falk
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
- Department of Fisheries and Aquaculture, Ministry of Agriculture and Rural Development, Nir-David, Israel
| | - Wenjie Fang
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Patricia F. Herkert
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Parana, Curitiba, Brazil
| | | | - James A. Fraser
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Josepa Gené
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Josep Guarro
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Alexander Idnurm
- School of BioSciences, BioSciences 2, University of Melbourne, Melbourne, Australia
| | | | - Ziauddin Khan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Kantarawee Khayhan
- Department of Microbiology and Parasitology, Faculty of Medical Sciences, University of Phayao, Phayao, Thailand
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Anna Kolecka
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Cletus P. Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois, USA
| | - Katrien Lagrou
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Wanqing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Carlos Linares
- Medical School, Universidad Miguel Hernández, Alicante, Spain
| | - Jacques F. Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tinashe K. Nyazika
- Department of Medical Microbiology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
- Malawi-Liverpool-Wellcome Trust, College of Medicine, University of Malawi, Blantyre, Malawi
- School of Tropical Medicine, Liverpool, United Kingdom
| | - Weihua Pan
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | - Itzhack Polacheck
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Brunella Posteraro
- Institute of Public Health (Section of Hygiene), Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Flavio de Queiroz Telles
- Department of Communitarian Health, Hospital de Clínicas, Federal University of Parana, Curitiba, Brazil
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | - Manuel Sánchez
- Medical School, Universidad Miguel Hernández, Alicante, Spain
| | - Ana Sampaio
- Centro de Investigação e de Tecnologias Agro-ambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta dos Prados, Vila Real, Portugal
| | - Maurizio Sanguinetti
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Pojana Sriburee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Noshio, Kiyose, Tokyo, Japan
| | - Saad J. Taj-Aldeen
- Mycology Unit, Microbiology Division, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Masako Takashima
- Japan Collection of Microorganisms, RIKEN BioResource Center, Koyadai, Tsukuba, Ibaraki, Japan
| | - John W. Taylor
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Bart Theelen
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Rok Tomazin
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Paul E. Verweij
- Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Retno Wahyuningsih
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Parasitology, School of Medicine, Universitas Kristen Indonesia, Jakarta, Indonesia
| | - Ping Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Teun Boekhout
- Institute of Biodiversity and Ecosystems Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| |
Collapse
|
34
|
Torres-Martínez S, Ruiz-Vázquez RM. The RNAi Universe in Fungi: A Varied Landscape of Small RNAs and Biological Functions. Annu Rev Microbiol 2017; 71:371-391. [PMID: 28657888 DOI: 10.1146/annurev-micro-090816-093352] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA interference (RNAi) is a conserved eukaryotic mechanism that uses small RNA molecules to suppress gene expression through sequence-specific messenger RNA degradation, translational repression, or transcriptional inhibition. In filamentous fungi, the protective function of RNAi in the maintenance of genome integrity is well known. However, knowledge of the regulatory role of RNAi in fungi has had to wait until the recent identification of different endogenous small RNA classes, which are generated by distinct RNAi pathways. In addition, RNAi research on new fungal models has uncovered the role of small RNAs and RNAi pathways in the regulation of diverse biological functions. In this review, we give an up-to-date overview of the different classes of small RNAs and RNAi pathways in fungi and their roles in the defense of genome integrity and regulation of fungal physiology and development, as well as in the interaction of fungi with biotic and abiotic environments.
Collapse
|
35
|
Clutterbuck AJ. Genomic CG dinucleotide deficiencies associated with transposable element hypermutation in Basidiomycetes, some lower fungi, a moss and a clubmoss. Fungal Genet Biol 2017; 104:16-28. [PMID: 28438577 DOI: 10.1016/j.fgb.2017.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/10/2017] [Accepted: 04/17/2017] [Indexed: 12/15/2022]
Abstract
Many Basidiomycete genomes include substantial fractions that are deficient in CG dinucleotides, in extreme cases amounting to 70% of the genome. CG deficiency is variable and correlates with genome size and, more closely, with transposable element (TE) content. Many species have limited CG deficiency; it is therefore likely that there are other mechanisms that can control TE proliferation. Examination of TEs confirms that C-to-T transition mutations in CG dinucleotides may comprise a conspicuous proportion of differences between paired elements, however transition/transversion ratios are never as high as those due to RIP in some Ascomycetes, suggesting that repeat-associated CG mutation is not totally pervasive. This has allowed gene family expansion in Basidiomycetes, although CG transition differences are often prominent in paired gene family members, and are evidently responsible for destruction of some copies. A few lower fungal genomes exhibit similar evidence of repeat-associated CG mutation, as do the genomes of the two lower plants Physcomitrella patens and Selaginella moellendorffii, in both of which mutation parallels published methylation of CHG as well as CG nucleotides. In Basidiomycete DNA methylation has been reported to be largely confined to CG dinucleotides in repetitive DNA, but while methylation and mutation are evidently associated, it is not clear which is cause and which effect.
Collapse
Affiliation(s)
- A John Clutterbuck
- Wolfson Link Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| |
Collapse
|
36
|
Ferrareze PAG, Streit RSA, Dos Santos FM, Schrank A, Kmetzsch L, Vainstein MH, Staats CC. sRNAs as possible regulators of retrotransposon activity in Cryptococcus gattii VGII. BMC Genomics 2017; 18:294. [PMID: 28403818 PMCID: PMC5389150 DOI: 10.1186/s12864-017-3688-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/06/2017] [Indexed: 01/31/2023] Open
Abstract
Background The absence of Argonaute genes in the fungal pathogen Cryptococcus gattii R265 and other VGII strains indicates that yeasts of this genotype cannot have a functional RNAi pathway, an evolutionarily conserved gene silencing mechanism performed by small RNAs. The success of the R265 strain as a pathogen that caused the Pacific Northwest and Vancouver Island outbreaks may imply that RNAi machinery loss could be beneficial under certain circumstances during evolution. As a result, a hypermutant phenotype would be created with high rates of genome retrotransposition, for instance. This study therefore aimed to evaluate in silicio the effect of retrotransposons and their control mechanisms by small RNAs on genomic stability and synteny loss of C. gattii R265 through retrotransposons sequence comparison and orthology analysis with other 16 C. gattii genomic sequences available. Results Retrotransposon mining identified a higher sequence count to VGI genotype compared to VGII, VGIII, and VGIV. However, despite the lower retrotransposon number, VGII exhibited increased synteny loss and genome rearrangement events. RNA-Seq analysis indicated highly expressed retrotransposons as well as sRNA production. Conclusions Genome rearrangement and synteny loss may suggest a greater retrotransposon mobilization caused by RNAi pathway absence, but the effective presence of sRNAs that matches retrotransposon sequences means that an alternative retrotransposon silencing mechanism could be active in genomic integrity maintenance of C. gattii VGII strains. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3688-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patrícia Aline Gröhs Ferrareze
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970, Porto Alegre, RS, Brazil
| | - Rodrigo Silva Araujo Streit
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Francine Melise Dos Santos
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970, Porto Alegre, RS, Brazil
| | - Augusto Schrank
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970, Porto Alegre, RS, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Livia Kmetzsch
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970, Porto Alegre, RS, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marilene Henning Vainstein
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970, Porto Alegre, RS, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Charley Christian Staats
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970, Porto Alegre, RS, Brazil. .,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|