1
|
Lu C, Guo L, Fang B, Shi J, Zhou M. DNA Sequence Changes Resulting from Codon Optimization Affect Gene Expression in Pichia pastoris by Altering Chromatin Accessibility. J Fungi (Basel) 2025; 11:282. [PMID: 40278103 PMCID: PMC12029099 DOI: 10.3390/jof11040282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
Codon optimization is a widely employed strategy to enhance protein expression. However, it occasionally leads to unexpected transcriptional repression despite preserving amino acid sequences. This study investigates the mechanistic basis of such transcriptional attenuation by analyzing two gene candidates (0432 and Fluc) in the common expression chassis P. pastoris. Both genes experienced severe mRNA reduction following codon optimization. Evidenced by histone H3 chromatin immunoprecipitation (ChIP) and a DNase I hypersensitivity assay, gene sequences with transcriptional repression displayed elevated nucleosome occupancy and reduced chromatin accessibility. The above change was caused by an ORF sequence change independent of the promoter, since transcriptional attenuation and compromised chromatin accessibility were still observed after replacing the strong promoter PGAP with Ppor1 or Prps8b. Our findings challenge the conventional view of codon optimization as solely translation-centric, revealing its capacity to preemptively modulate transcription through chromatin accessibility. This work underscores the necessity of integrating chromatin-level considerations into synthetic gene design to avoid unintended transcriptional silencing and optimize expression outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (C.L.); (B.F.); (J.S.)
| |
Collapse
|
2
|
Shen Y, Kudla G, Oyarzún DA. Improving the generalization of protein expression models with mechanistic sequence information. Nucleic Acids Res 2025; 53:gkaf020. [PMID: 39873269 PMCID: PMC11773361 DOI: 10.1093/nar/gkaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/12/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
The growing demand for biological products drives many efforts to maximize expression of heterologous proteins. Advances in high-throughput sequencing can produce data suitable for building sequence-to-expression models with machine learning. The most accurate models have been trained on one-hot encodings, a mechanism-agnostic representation of nucleotide sequences. Moreover, studies have consistently shown that training on mechanistic sequence features leads to much poorer predictions, even with features that are known to correlate with expression, such as DNA sequence motifs, codon usage, or properties of mRNA secondary structures. However, despite their excellent local accuracy, current sequence-to-expression models can fail to generalize predictions far away from the training data. Through a comparative study across datasets in Escherichia coli and Saccharomyces cerevisiae, here we show that mechanistic sequence features can provide gains on model generalization, and thus improve their utility for predictive sequence design. We explore several strategies to integrate one-hot encodings and mechanistic features into a single predictive model, including feature stacking, ensemble model stacking, and geometric stacking, a novel architecture based on graph convolutional neural networks. Our work casts new light on mechanistic sequence features, underscoring the importance of domain-knowledge and feature engineering for accurate prediction of protein expression levels.
Collapse
Affiliation(s)
- Yuxin Shen
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JH, United Kingdom
| | - Grzegorz Kudla
- Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Diego A Oyarzún
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JH, United Kingdom
- School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, United Kingdom
| |
Collapse
|
3
|
Schumann A, Gaballa A, Yang H, Yu D, Ernst RK, Wiedmann M. Site-selective modifications by lipid A phosphoethanolamine transferases linked to colistin resistance and bacterial fitness. mSphere 2024; 9:e0073124. [PMID: 39611852 DOI: 10.1128/msphere.00731-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Genes encoding lipid A modifying phosphoethanolamine transferases (PETs) are genetically diverse and can confer resistance to colistin and antimicrobial peptides. To better understand the functional diversity of PETs, we characterized three canonical mobile colistin resistance (mcr) alleles (mcr-1, -3, -9), one intrinsic pet (eptA), and two mcr-like genes (petB, petC) in Escherichia coli. Using an isogenic expression system, we show that mcr-1 and mcr-3 confer similar phenotypes of decreased colistin susceptibility with low fitness costs. mcr-9, which is phylogenetically closely related to mcr-3, and eptA only provide fitness advantages in the presence of sub-inhibitory concentrations of colistin and significantly reduce fitness in media without colistin. PET-B and PET-C were phenotypically distinct from bonafide PETs; neither impacted colistin susceptibility nor caused considerable fitness cost. Strikingly, we found for the first time that different PETs selectively modify different phosphates of lipid A; MCR-1, MCR-3, and PET-C selectively modify the 4'-phosphate, whereas MCR-9 and EptA modify the 1-phosphate. However, 4'-phosphate modifications facilitated by MCR-1 and -3 are associated with lowered colistin susceptibility and low toxicity. Our results suggest that PETs have a wide phenotypic diversity and that increased colistin resistance is associated with specific lipid A modification patterns that have been largely unexplored thus far. IMPORTANCE Rising levels of resistance to increasing numbers of antimicrobials have led to the revival of last resort antibiotic colistin. Unfortunately, resistance to colistin is also spreading in the form of mcr genes, making it essential to (i) improve the identification of resistant bacteria to allow clinicians to prescribe effective drug regimens and (ii) develop new combination therapies effective at targeting resistant bacteria. Our results demonstrate that PETs, including MCR variants, are site-selective in Escherichia coli and that site-selectivity correlates with the level of susceptibility and fitness costs conferred by certain PETs. Site selectivity associated with a given PET may not only help predict colistin resistance phenotypes but may also provide an avenue to (i) improve drug regimens and (ii) develop new combination therapies to better combat colistin-resistant bacteria.
Collapse
Affiliation(s)
- Anna Schumann
- Department of Food Science, Cornell University, Ithaca, New York, USA
- Graduate Field of Biomedical and Biological Sciences, Cornell University, Ithaca, New York, USA
| | - Ahmed Gaballa
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Hyojik Yang
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Di Yu
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Mazumder TH, Uddin A. Understanding the nucleotide composition and patterns of codon usage in the expression of human oral cancer genes. Mutat Res 2024; 829:111880. [PMID: 39197334 DOI: 10.1016/j.mrfmmm.2024.111880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/06/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is primarily known as oral cancer (OC) that mostly occurs in mouth, lips and tongue. Mutations in some of the genes cause OC and some genes are risk factors for progression of OC. In this study, we analyzed the compositional features and pattern of codon usage in genes involved in OC using computational method as no work was reported yet. Compositional features suggested that the overall GC content was higher i.e. genes were GC rich. Effective number of codons (ENC) values ranged from 34.6 to 55.9 with a mean value of 49.03±4.22 representing low codon usage bias (CUB). Correspondence analysis (COA) suggested that the codon usage pattern was different in different genes. In genes associated with OC, highly significant correlation was observed between GC12 and GC3 (r=0.454, p<0.01) suggesting that directional mutation affected all the three codon positions. This is the first report on pattern of codon usage pattern on genes involved in OC, which not only alludes a new perspective for elucidating the mechanisms of biased usage of synonymous codons but also provide valuable clues for molecular genetic engineering.
Collapse
Affiliation(s)
| | - Arif Uddin
- Departments of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, Assam 788150, India.
| |
Collapse
|
5
|
Xiao F, Zhao Y, Wang X, Jian X. Full-length transcriptome characterization and comparative analysis of Gleditsia sinensis. BMC Genomics 2023; 24:757. [PMID: 38066414 PMCID: PMC10709882 DOI: 10.1186/s12864-023-09843-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
As an economically important tree, Gleditsia sinensis Lam. is widely planted. A lack of background genetic information on G. sinensis hinders molecular breeding. Based on PacBio single-molecule real-time (SMRT) sequencing and analysis of G. sinensis, a total of 95,183 non-redundant transcript sequences were obtained, of which 93,668 contained complete open reading frames (ORFs), 2,858 were long non-coding RNAs (LncRNAs) and 18,855 alternative splicing (AS) events were identified. Genes orthologous to different Gleditsia species pairs were identified, stress-related genes had been positively selected during the evolution. AGA, AGG, and CCA were identified as the universal optimal codon in the genus of Gleditsia. EIF5A was selected as a suitable fluorescent quantitative reference gene. 315 Cytochrome P450 monooxygenases (CYP450s) and 147 uridine diphosphate (UDP)-glycosyltransferases (UGTs) were recognized through the PacBio SMRT transcriptome. Randomized selection of GsIAA14 for cloning verified the reliability of the PacBio SMRT transcriptome assembly sequence. In conclusion, the research data lay the foundation for further analysis of the evolutionary mechanism and molecular breeding of Gleditsia.
Collapse
Affiliation(s)
- Feng Xiao
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yang Zhao
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Xiurong Wang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xueyan Jian
- School of Continuing Education, Yanbian University, Yanji, 133002, Jilin, China
| |
Collapse
|
6
|
Belcher LJ, Dewar AE, Hao C, Katz Z, Ghoul M, West SA. SOCfinder: a genomic tool for identifying social genes in bacteria. Microb Genom 2023; 9:001171. [PMID: 38117204 PMCID: PMC10763506 DOI: 10.1099/mgen.0.001171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023] Open
Abstract
Bacteria cooperate by working collaboratively to defend their colonies, share nutrients, and resist antibiotics. Nevertheless, our understanding of these remarkable behaviours primarily comes from studying a few well-characterized species. Consequently, there is a significant gap in our understanding of microbial social traits, particularly in natural environments. To address this gap, we can use bioinformatic tools to identify genes that control cooperative or otherwise social traits. Existing tools address this challenge through two approaches. One approach is to identify genes that encode extracellular proteins, which can provide benefits to neighbouring cells. An alternative approach is to predict gene function using annotation tools. However, these tools have several limitations. Not all extracellular proteins are cooperative, and not all cooperative behaviours are controlled by extracellular proteins. Furthermore, existing functional annotation methods frequently miss known cooperative genes. We introduce SOCfinder as a new tool to find bacterial genes that control cooperative or otherwise social traits. SOCfinder combines information from several methods, considering if a gene is likely to [1] code for an extracellular protein [2], have a cooperative functional annotation, or [3] be part of the biosynthesis of a cooperative secondary metabolite. We use data on two extensively-studied species (P. aeruginosa and B. subtilis) to show that SOCfinder is better at finding known cooperative genes than existing tools. We also use theory from population genetics to identify a signature of kin selection in SOCfinder cooperative genes, which is lacking in genes identified by existing tools. SOCfinder opens up a number of exciting directions for future research, and is available to download from https://github.com/lauriebelch/SOCfinder.
Collapse
Affiliation(s)
| | - Anna E. Dewar
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Chunhui Hao
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Zohar Katz
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Melanie Ghoul
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Stuart A. West
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| |
Collapse
|
7
|
Anwar AM, Khodary SM, Ahmed EA, Osama A, Ezzeldin S, Tanios A, Mahgoub S, Magdeldin S. gtAI: an improved species-specific tRNA adaptation index using the genetic algorithm. Front Mol Biosci 2023; 10:1218518. [PMID: 37469707 PMCID: PMC10352787 DOI: 10.3389/fmolb.2023.1218518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023] Open
Abstract
The tRNA adaptation index (tAI) is a translation efficiency metric that considers weighted values (S ij values) for codon-tRNA wobble interaction efficiencies. The initial implementation of the tAI had significant flaws. For instance, generated S ij weights were optimized based on gene expression in Saccharomyces cerevisiae, which is expected to vary among different species. Consequently, a species-specific approach (stAI) was developed to overcome those limitations. However, the stAI method employed a hill climbing algorithm to optimize the S ij weights, which is not ideal for obtaining the best set of S ij weights because it could struggle to find the global maximum given a complex search space, even after using different starting positions. In addition, it did not perform well in computing the tAI of fungal genomes in comparison with the original implementation. We developed a novel approach named genetic tAI (gtAI) implemented as a Python package (https://github.com/AliYoussef96/gtAI), which employs a genetic algorithm to obtain the best set of S ij weights and follows a new codon usage-based workflow that better computes the tAI of genomes from the three domains of life. The gtAI has significantly improved the correlation with the codon adaptation index (CAI) and the prediction of protein abundance (empirical data) compared to the stAI.
Collapse
Affiliation(s)
- Ali Mostafa Anwar
- Proteomics and Metabolomics Research Program, Basic Research Department, Children’s Cancer Hospital 57357 (CCHE-57357), Cairo, Egypt
| | - Saif M. Khodary
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Eman Ali Ahmed
- Proteomics and Metabolomics Research Program, Basic Research Department, Children’s Cancer Hospital 57357 (CCHE-57357), Cairo, Egypt
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Aya Osama
- Proteomics and Metabolomics Research Program, Basic Research Department, Children’s Cancer Hospital 57357 (CCHE-57357), Cairo, Egypt
| | - Shahd Ezzeldin
- Proteomics and Metabolomics Research Program, Basic Research Department, Children’s Cancer Hospital 57357 (CCHE-57357), Cairo, Egypt
| | - Anthony Tanios
- Proteomics and Metabolomics Research Program, Basic Research Department, Children’s Cancer Hospital 57357 (CCHE-57357), Cairo, Egypt
| | - Sebaey Mahgoub
- Proteomics and Metabolomics Research Program, Basic Research Department, Children’s Cancer Hospital 57357 (CCHE-57357), Cairo, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Basic Research Department, Children’s Cancer Hospital 57357 (CCHE-57357), Cairo, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
8
|
Naz S, Paritosh K, Sanyal P, Khan S, Singh Y, Varshney U, Nandicoori VK. GWAS and functional studies suggest a role for altered DNA repair in the evolution of drug resistance in Mycobacterium tuberculosis. eLife 2023; 12:75860. [PMID: 36695572 PMCID: PMC9876569 DOI: 10.7554/elife.75860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
The emergence of drug resistance in Mycobacterium tuberculosis (Mtb) is alarming and demands in-depth knowledge for timely diagnosis. We performed genome-wide association analysis using 2237 clinical strains of Mtb to identify novel genetic factors that evoke drug resistance. In addition to the known direct targets, we identified for the first time, a strong association between mutations in DNA repair genes and the multidrug-resistant phenotype. To evaluate the impact of variants identified in the clinical samples in the evolution of drug resistance, we utilized knockouts and complemented strains in Mycobacterium smegmatis and Mtb. Results show that variant mutations compromised the functions of MutY and UvrB. MutY variant showed enhanced survival compared with wild-type (Rv) when the Mtb strains were subjected to multiple rounds of ex vivo antibiotic stress. In an in vivo guinea pig infection model, the MutY variant outcompeted the wild-type strain. We show that novel variant mutations in the DNA repair genes collectively compromise their functions and contribute to better survival under antibiotic/host stress conditions.
Collapse
Affiliation(s)
- Saba Naz
- National Institute of ImmunologyNew DelhiIndia
- Centre for Cellular and Molecular BiologyHyderabadIndia
- Department of Zoology, University of DelhiDelhiIndia
| | - Kumar Paritosh
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South CampusNew DelhiIndia
| | | | - Sidra Khan
- National Institute of ImmunologyNew DelhiIndia
| | | | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
| | - Vinay Kumar Nandicoori
- National Institute of ImmunologyNew DelhiIndia
- Centre for Cellular and Molecular BiologyHyderabadIndia
| |
Collapse
|
9
|
Almutairi MM, Almotairy HM. Analysis of Heat Shock Proteins Based on Amino Acids for the Tomato Genome. Genes (Basel) 2022; 13:2014. [PMID: 36360251 PMCID: PMC9690137 DOI: 10.3390/genes13112014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 10/28/2023] Open
Abstract
This research aimed to investigate heat shock proteins in the tomato genome through the analysis of amino acids. The highest length among sequences was found in seq19 with 3534 base pairs. This seq19 was reported and contained a family of proteins known as HsfA that have a domain of transcriptional activation for tolerance to heat and other abiotic stresses. The values of the codon adaptation index (CAI) ranged from 0.80 in Seq19 to 0.65 in Seq10, based on the mRNA of heat shock proteins for tomatoes. Asparagine (AAT, AAC), aspartic acid (GAT, GAC), phenylalanine (TTT, TTC), and tyrosine (TAT, TAC) have relative synonymous codon usage (RSCU) values bigger than 0.5. In modified relative codon bias (MRCBS), the high gene expressions of the amino acids under heat stress were histidine, tryptophan, asparagine, aspartic acid, lysine, phenylalanine, isoleucine, cysteine, and threonine. RSCU values that were less than 0.5 were considered rare codons that affected the rate of translation, and thus selection could be effective by reducing the frequency of expressed genes under heat stress. The normal distribution of RSCU shows about 68% of the values drawn from the standard normal distribution were within 0.22 and -0.22 standard deviations that tend to cluster around the mean. The most critical component based on principal component analysis (PCA) was the RSCU. These findings would help plant breeders in the development of growth habits for tomatoes during breeding programs.
Collapse
Affiliation(s)
- Meshal M. Almutairi
- National Center of Agricultural Technology, Sustainability and Environment, King Abdulaziz City for Science and Technology KACST, Box 6086, Riyadh 11442, Saudi Arabia
| | | |
Collapse
|
10
|
Sophiarani Y, Chakraborty S. Comparison of compositional constraints: Nuclear genome vs plasmid genome of Pseudomonas syringae pv. tomato DC3000. J Biosci 2022. [DOI: 10.1007/s12038-022-00296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Genome-Wide Association Study of Nucleotide Variants Associated with Resistance to Nine Antimicrobials in Mycoplasma bovis. Microorganisms 2022; 10:microorganisms10071366. [PMID: 35889084 PMCID: PMC9320666 DOI: 10.3390/microorganisms10071366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022] Open
Abstract
Antimicrobial resistance (AMR) studies of Mycoplasma bovis have generally focused on specific loci versus using a genome-wide association study (GWAS) approach. A GWAS approach, using two different models, was applied to 194 Mycoplasma bovis genomes. Both a fixed effects linear model (FEM) and a linear mixed model (LMM) identified associations between nucleotide variants (NVs) and antimicrobial susceptibility testing (AST) phenotypes. The AMR phenotypes represented fluoroquinolones, tetracyclines, phenicols, and macrolides. Both models identified known and novel NVs associated (Bonferroni adjusted p < 0.05) with AMR. Fluoroquinolone resistance was associated with multiple NVs, including previously identified mutations in gyrA and parC. NVs in the 30S ribosomal protein 16S were associated with tetracycline resistance, whereas NVs in 5S rRNA, 23S rRNA, and 50S ribosomal proteins were associated with phenicol and macrolide resistance. For all antimicrobial classes, resistance was associated with NVs in genes coding for ABC transporters and other membrane proteins, tRNA-ligases, peptidases, and transposases, suggesting a NV-based multifactorial model of AMR in M. bovis. This study was the largest collection of North American M. bovis isolates used with a GWAS for the sole purpose of identifying novel and non-antimicrobial-target NVs associated with AMR.
Collapse
|
12
|
Steenwyk JL, Buida Iii TJ, Gonçalves C, Goltz DC, Morales G, Mead ME, LaBella AL, Chavez CM, Schmitz JE, Hadjifrangiskou M, Li Y, Rokas A. BioKIT: a versatile toolkit for processing and analyzing diverse types of sequence data. Genetics 2022; 221:6583183. [PMID: 35536198 PMCID: PMC9252278 DOI: 10.1093/genetics/iyac079] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/03/2022] [Indexed: 11/14/2022] Open
Abstract
Bioinformatic analysis-such as genome assembly quality assessment, alignment summary statistics, relative synonymous codon usage, file format conversion, and processing and analysis-is integrated into diverse disciplines in the biological sciences. Several command-line pieces of software have been developed to conduct some of these individual analyses, but unified toolkits that conduct all these analyses are lacking. To address this gap, we introduce BioKIT, a versatile command line toolkit that has, upon publication, 42 functions, several of which were community-sourced, that conduct routine and novel processing and analysis of genome assemblies, multiple sequence alignments, coding sequences, sequencing data, and more. To demonstrate the utility of BioKIT, we conducted a comprehensive examination of relative synonymous codon usage across 171 fungal genomes that use alternative genetic codes, showed that the novel metric of gene-wise relative synonymous codon usage can accurately estimate gene-wise codon optimization, evaluated the quality and characteristics of 901 eukaryotic genome assemblies, and calculated alignment summary statistics for 10 phylogenomic data matrices. BioKIT will be helpful in facilitating and streamlining sequence analysis workflows. BioKIT is freely available under the MIT license from GitHub (https://github.com/JLSteenwyk/BioKIT), PyPi (https://pypi.org/project/jlsteenwyk-biokit/), and the Anaconda Cloud (https://anaconda.org/jlsteenwyk/jlsteenwyk-biokit). Documentation, user tutorials, and instructions for requesting new features are available online (https://jlsteenwyk.com/BioKIT).
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN 37235, USA.,Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | | | - Carla Gonçalves
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN 37235, USA.,Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA.,Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | | | - Grace Morales
- Department of Pathology, Microbiology & Immunology, Center for Personalized Microbiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Matthew E Mead
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN 37235, USA.,Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Abigail L LaBella
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN 37235, USA.,Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Christina M Chavez
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN 37235, USA.,Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Jonathan E Schmitz
- Department of Pathology, Microbiology & Immunology, Center for Personalized Microbiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maria Hadjifrangiskou
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA.,Department of Pathology, Microbiology & Immunology, Center for Personalized Microbiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yuanning Li
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN 37235, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN 37235, USA.,Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
13
|
Mitogenome-wise codon usage pattern from comparative analysis of the first mitogenome of Blepharipa sp. (Muga uzifly) with other Oestroid flies. Sci Rep 2022; 12:7028. [PMID: 35487927 PMCID: PMC9054809 DOI: 10.1038/s41598-022-10547-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/21/2022] [Indexed: 11/08/2022] Open
Abstract
Uziflies (Family: Tachinidae) are dipteran endoparasites of sericigenous insects which cause major economic loss in the silk industry globally. Here, we are presenting the first full mitogenome of Blepharipa sp. (Acc: KY644698, 15,080 bp, A + T = 78.41%), a dipteran parasitoid of Muga silkworm (Antheraea assamensis) found in the Indian states of Assam and Meghalaya. This study has confirmed that Blepharipa sp. mitogenome gene content and arrangement is similar to other Tachinidae and Sarcophagidae flies of Oestroidea superfamily, typical of ancestral Diptera. Although, Calliphoridae and Oestridae flies have undergone tRNA translocation and insertion, forming unique intergenic spacers (IGS) and overlapping regions (OL) and a few of them (IGS, OL) have been conserved across Oestroidea flies. The Tachinidae mitogenomes exhibit more AT content and AT biased codons in their protein-coding genes (PCGs) than the Oestroidea counterpart. About 92.07% of all (3722) codons in PCGs of this new species have A/T in their 3rd codon position. The high proportion of AT and repeats in the control region (CR) affects sequence coverage, resulting in a short CR (Blepharipa sp.: 168 bp) and a smaller tachinid mitogenome. Our research unveils those genes with a high AT content had a reduced effective number of codons, leading to high codon usage bias. The neutrality test shows that natural selection has a stronger influence on codon usage bias than directed mutational pressure. This study also reveals that longer PCGs (e.g., nad5, cox1) have a higher codon usage bias than shorter PCGs (e.g., atp8, nad4l). The divergence rates increase nonlinearly as AT content at the 3rd codon position increases and higher rate of synonymous divergence than nonsynonymous divergence causes strong purifying selection. The phylogenetic analysis explains that Blepharipa sp. is well suited in the family of insectivorous tachinid maggots. It's possible that biased codon usage in the Tachinidae family reduces the effective number of codons, and purifying selection retains the core functions in their mitogenome, which could help with efficient metabolism in their endo-parasitic life style and survival strategy.
Collapse
|
14
|
Mostafa Anwar A, Khodary SM, Soudy M, Ahmed EA, Osama A, Ezzeldin S, Tanios A, Mahgoub S, Magdeldin S. WITHDRAWN: Robust method for calculating the tRNA adaptation index utilizing the genetic algorithm. Comput Struct Biotechnol J 2021. [DOI: 10.1016/j.csbj.2021.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Chevin LM, Leung C, Le Rouzic A, Uller T. Using phenotypic plasticity to understand the structure and evolution of the genotype-phenotype map. Genetica 2021; 150:209-221. [PMID: 34617196 DOI: 10.1007/s10709-021-00135-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Deciphering the genotype-phenotype map necessitates relating variation at the genetic level to variation at the phenotypic level. This endeavour is inherently limited by the availability of standing genetic variation, the rate of spontaneous mutation to novo genetic variants, and possible biases associated with induced mutagenesis. An interesting alternative is to instead rely on the environment as a source of variation. Many phenotypic traits change plastically in response to the environment, and these changes are generally underlain by changes in gene expression. Relating gene expression plasticity to the phenotypic plasticity of more integrated organismal traits thus provides useful information about which genes influence the development and expression of which traits, even in the absence of genetic variation. We here appraise the prospects and limits of such an environment-for-gene substitution for investigating the genotype-phenotype map. We review models of gene regulatory networks, and discuss the different ways in which they can incorporate the environment to mechanistically model phenotypic plasticity and its evolution. We suggest that substantial progress can be made in deciphering this genotype-environment-phenotype map, by connecting theory on gene regulatory network to empirical patterns of gene co-expression, and by more explicitly relating gene expression to the expression and development of phenotypes, both theoretically and empirically.
Collapse
Affiliation(s)
- Luis-Miguel Chevin
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France.
| | - Christelle Leung
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Arnaud Le Rouzic
- Laboratoire Évolution, Génomes, Comportement, Écologie, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Tobias Uller
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Brandis G, Granström S, Leber AT, Bartke K, Garoff L, Cao S, Huseby DL, Hughes D. Mutant RNA polymerase can reduce susceptibility to antibiotics via ppGpp-independent induction of a stringent-like response. J Antimicrob Chemother 2021; 76:606-615. [PMID: 33221850 PMCID: PMC7879142 DOI: 10.1093/jac/dkaa469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Background Mutations in RNA polymerase (RNAP) can reduce susceptibility to ciprofloxacin in Escherichia coli, but the mechanism of transcriptional reprogramming responsible is unknown. Strains carrying ciprofloxacin-resistant (CipR) rpoB mutations have reduced growth fitness and their impact on clinical resistance development is unclear. Objectives To assess the potential for CipRrpoB mutations to contribute to resistance development by estimating the number of distinct alleles. To identify fitness-compensatory mutations that ameliorate the fitness costs of CipRrpoB mutations. To understand how CipRrpoB mutations reprogramme RNAP. Methods E. coli strains carrying five different CipRrpoB alleles were evolved with selection for improved fitness and characterized for acquired mutations, relative fitness and MICCip. The effects of dksA mutations and a ppGpp0 background on growth and susceptibility phenotypes associated with CipRrpoB alleles were determined. Results The number of distinct CipRrpoB mutations was estimated to be >100. Mutations in RNAP genes and in dksA can compensate for the fitness cost of CipRrpoB mutations. Deletion of dksA reduced the MICCip for strains carrying CipRrpoB alleles. A ppGpp0 phenotype had no effect on drug susceptibility. Conclusions CipRrpoB mutations induce an ppGpp-independent stringent-like response. Approximately half of the reduction in ciprofloxacin susceptibility is caused by an increased affinity of RNAP to DksA while the other half is independent of DksA. Stringent-like response activating mutations might be the most diverse class of mutations reducing susceptibility to antibiotics.
Collapse
Affiliation(s)
- Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Box 582, Biomedical Center, Uppsala University, Sweden
| | - Susanna Granström
- Department of Medical Biochemistry and Microbiology, Box 582, Biomedical Center, Uppsala University, Sweden
| | - Anna T Leber
- Department of Medical Biochemistry and Microbiology, Box 582, Biomedical Center, Uppsala University, Sweden
| | - Katrin Bartke
- Department of Medical Biochemistry and Microbiology, Box 582, Biomedical Center, Uppsala University, Sweden
| | - Linnéa Garoff
- Department of Medical Biochemistry and Microbiology, Box 582, Biomedical Center, Uppsala University, Sweden
| | - Sha Cao
- Department of Medical Biochemistry and Microbiology, Box 582, Biomedical Center, Uppsala University, Sweden
| | - Douglas L Huseby
- Department of Medical Biochemistry and Microbiology, Box 582, Biomedical Center, Uppsala University, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Box 582, Biomedical Center, Uppsala University, Sweden
| |
Collapse
|
17
|
Yadav K, Garoff L, Huseby DL, Hughes D. Phenotypic and genetic barriers to establishment of horizontally transferred genes encoding ribosomal protection proteins. J Antimicrob Chemother 2021; 76:1441-1447. [PMID: 33655294 PMCID: PMC8120329 DOI: 10.1093/jac/dkab056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
Background Ribosomal protection proteins (RPPs) interact with bacterial ribosomes to prevent inhibition of protein synthesis by tetracycline. RPP genes have evolved from a common ancestor into at least 12 distinct classes and spread by horizontal genetic transfer into a wide range of bacteria. Many bacterial genera host RPP genes from multiple classes but tet(M) is the predominant RPP gene found in Escherichia coli. Objectives We asked whether phenotypic barriers (low-level resistance, high fitness cost) might constrain the fixation of other RPP genes in E. coli. Methods We expressed a diverse set of six different RPP genes in E. coli, including tet(M), and quantified tetracycline susceptibility and growth phenotypes as a function of expression level, and evolvability to overcome identified phenotypic barriers. Results The genes tet(M) and tet(Q) conferred high-level tetracycline resistance without reducing fitness; tet(O) and tet(W) conferred high-level resistance but significantly reduced growth fitness; tetB(P) conferred low-level resistance and while mutants conferring high-level resistance were selectable these had reduced growth fitness; otr(A) did not confer resistance and resistant mutants could not be selected. Evolution experiments suggested that codon usage patterns in tet(O) and tet(W), and transcriptional silencing associated with nucleotide composition in tetB(P), accounted for the observed phenotypic barriers. Conclusions With the exception of tet(Q), the data reveal significant phenotypic and genetic barriers to the fixation of additional RPP genes in E. coli.
Collapse
Affiliation(s)
- Kavita Yadav
- Uppsala University, Department of Medical Biochemistry and Microbiology, Biomedical Center, (Box 582), Uppsala S-75123, Sweden
| | - Linnéa Garoff
- Uppsala University, Department of Medical Biochemistry and Microbiology, Biomedical Center, (Box 582), Uppsala S-75123, Sweden
| | - Douglas L Huseby
- Uppsala University, Department of Medical Biochemistry and Microbiology, Biomedical Center, (Box 582), Uppsala S-75123, Sweden
| | - Diarmaid Hughes
- Uppsala University, Department of Medical Biochemistry and Microbiology, Biomedical Center, (Box 582), Uppsala S-75123, Sweden
| |
Collapse
|
18
|
Arias L, Martínez F, González D, Flores-Ríos R, Katz A, Tello M, Moreira S, Orellana O. Modification of Transfer RNA Levels Affects Cyclin Aggregation and the Correct Duplication of Yeast Cells. Front Microbiol 2021; 11:607693. [PMID: 33519754 PMCID: PMC7843576 DOI: 10.3389/fmicb.2020.607693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Codon usage bias (the preferential use of certain synonymous codons (optimal) over others is found at the organism level (intergenomic) within specific genomes (intragenomic) and even in certain genes. Whether it is the result of genetic drift due to GC/AT content and/or natural selection is a topic of intense debate. Preferential codons are mostly found in genes encoding highly-expressed proteins, while lowly-expressed proteins usually contain a high proportion of rare (lowly-represented) codons. While optimal codons are decoded by highly expressed tRNAs, rare codons are usually decoded by lowly-represented tRNAs. Whether rare codons play a role in controlling the expression of lowly- or temporarily-expressed proteins is an open question. In this work we approached this question using two strategies, either by replacing rare glycine codons with optimal counterparts in the gene that encodes the cell cycle protein Cdc13, or by overexpression the tRNA Gly that decodes rare codons from the fission yeast, Schizosaccharomyces pombe. While the replacement of synonymous codons severely affected cell growth, increasing tRNA levels affected the aggregation status of Cdc13 and cell division. These lead us to think that rare codons in lowly-expressed cyclin proteins are crucial for cell division, and that the overexpression of tRNA that decodes rare codons affects the expression of proteins containing these rare codons. These codons may be the result of the natural selection of codons in genes that encode lowly-expressed proteins.
Collapse
Affiliation(s)
- Loreto Arias
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fabián Martínez
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Daniela González
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rodrigo Flores-Ríos
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Assaf Katz
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mario Tello
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Sandra Moreira
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Omar Orellana
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
19
|
Dong S, Zhang L, Pang W, Zhang Y, Wang C, Li Z, Ma L, Tang W, Yang G, Song H. Comprehensive analysis of coding sequence architecture features and gene expression in Arachis duranensis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:213-222. [PMID: 33707864 PMCID: PMC7907404 DOI: 10.1007/s12298-021-00938-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 06/09/2023]
Abstract
Coding sequence (CDS) architecture affects gene expression levels in organisms. Codon optimization can increase the gene expression level. Therefore, understanding codon usage patterns has important implications for research on genetic engineering and exogenous gene expression. To date, the codon usage patterns of many model plants have been analyzed. However, the relationship between CDS architecture and gene expression in Arachis duranensis remains poorly understood. According to the results of genome sequencing, A. duranensis has many resistant genes that can be used to improve the cultivated peanut. In this study, bioinformatic approaches were used to estimate A. duranensis CDS architectures, including frequency of the optimal codon (Fop), polypeptide length and GC contents at the first (GC1), second (GC2) and third (GC3) codon positions. In addition, Arachis RNA-seq datasets were downloaded from PeanutBase. The relationships between gene expression and CDS architecture were assessed both under normal growth as well as nematode and drought stress conditions. A total of 26 codons with high frequency were identified, which preferentially ended with A or T in A. duranensis CDSs under the above-mentioned three conditions. A similar CDS architecture was found in differentially expressed genes (DEGs) under nematode and drought stresses. The GC1 content differed between DEGs and non-differentially expressed genes (NDEGs) under both drought and nematode stresses. The expression levels of DEGs were affected by different CDS architectures compared with NDEGs under drought stress. In addition, no correlation was found between differential gene expression and CDS architecture neither under nematode nor under drought stress. These results aid the understanding of gene expression in A. duranensis.
Collapse
Affiliation(s)
- Shuwei Dong
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Long Zhang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Wenhui Pang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Yongli Zhang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Chang Wang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Zhenyi Li
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Lichao Ma
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Wei Tang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Guofeng Yang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Hui Song
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
20
|
Wisotsky SR, Kosakovsky Pond SL, Shank SD, Muse SV. Synonymous Site-to-Site Substitution Rate Variation Dramatically Inflates False Positive Rates of Selection Analyses: Ignore at Your Own Peril. Mol Biol Evol 2020; 37:2430-2439. [PMID: 32068869 PMCID: PMC7403620 DOI: 10.1093/molbev/msaa037] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Most molecular evolutionary studies of natural selection maintain the decades-old assumption that synonymous substitution rate variation (SRV) across sites within genes occurs at levels that are either nonexistent or negligible. However, numerous studies challenge this assumption from a biological perspective and show that SRV is comparable in magnitude to that of nonsynonymous substitution rate variation. We evaluated the impact of this assumption on methods for inferring selection at the molecular level by incorporating SRV into an existing method (BUSTED) for detecting signatures of episodic diversifying selection in genes. Using simulated data we found that failing to account for even moderate levels of SRV in selection testing is likely to produce intolerably high false positive rates. To evaluate the effect of the SRV assumption on actual inferences we compared results of tests with and without the assumption in an empirical analysis of over 13,000 Euteleostomi (bony vertebrate) gene alignments from the Selectome database. This exercise reveals that close to 50% of positive results (i.e., evidence for selection) in empirical analyses disappear when SRV is modeled as part of the statistical analysis and are thus candidates for being false positives. The results from this work add to a growing literature establishing that tests of selection are much more sensitive to certain model assumptions than previously believed.
Collapse
Affiliation(s)
- Sadie R Wisotsky
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
| | | | - Stephen D Shank
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
| | - Spencer V Muse
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC
- Department of Statistics, North Carolina State University, Raleigh, NC
| |
Collapse
|
21
|
Zwe YH, Yuk HG. Prior exposure of agriculture cephalosporin ceftiofur impaired conjugation of bla CTX-M-65 gene-bearing plasmid in Salmonella Saintpaul. J Appl Microbiol 2020; 129:1552-1565. [PMID: 32544260 DOI: 10.1111/jam.14749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/24/2020] [Accepted: 05/29/2020] [Indexed: 11/29/2022]
Abstract
AIMS Although a link between agricultural cephalosporin use and resistance in Salmonella has been demonstrated with the drug ceftiofur, the underlying mechanism of the correlation is unclear. This study investigated the impact of ceftiofur exposure in S. Saintpaul on ceftriaxone resistance, the gene expression and the conjugative transfer of the blaCTX-M-65 gene. METHODS AND RESULTS Prior ceftiofur exposure caused a twofold increase in MIC from 1024 to 2048 µg ml-1 towards ceftriaxone and increased the enzymatic activity of BlaCTX-M-65 2·2 folds from 3·46 to 7·67 nmol nitrocefin hydrolysed min-1 . A threefold upregulation in gene expression of the blaCTX-M-65 gene was also observed. Donors exposed to ceftiofur subsequently demonstrated a 2·5-fold decrease in transfer efficiency. CONCLUSIONS Prior exposure of S. Saintpaul to ceftiofur led to increased phenotypic resistance towards ceftriaxone while its ability to spread the cephalosporin resistance through conjugation, conversely, was impaired. SIGNIFICANCE AND IMPACT OF THE STUDY Findings from this study shed light on one possible mechanism in which agricultural cephalosporin exposure in Salmonella may subsequently impact clinical treatment. The finding that cephalosporin exposure in donors may hinder the subsequent spread of resistance instead of aiding it up was counter-intuitive.
Collapse
Affiliation(s)
- Y H Zwe
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - H G Yuk
- Department of Food Science and Technology, Korea National University of Transportation, Chungbuk, Republic of Korea
| |
Collapse
|
22
|
Martínez MA, Jordan-Paiz A, Franco S, Nevot M. Synonymous genome recoding: a tool to explore microbial biology and new therapeutic strategies. Nucleic Acids Res 2020; 47:10506-10519. [PMID: 31584076 PMCID: PMC6846928 DOI: 10.1093/nar/gkz831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022] Open
Abstract
Synthetic genome recoding is a new means of generating designed organisms with altered phenotypes. Synonymous mutations introduced into the protein coding region tolerate modifications in DNA or mRNA without modifying the encoded proteins. Synonymous genome-wide recoding has allowed the synthetic generation of different small-genome viruses with modified phenotypes and biological properties. Recently, a decreased cost of chemically synthesizing DNA and improved methods for assembling DNA fragments (e.g. lambda red recombination and CRISPR-based editing) have enabled the construction of an Escherichia coli variant with a 4-Mb synthetic synonymously recoded genome with a reduced number of sense codons (n = 59) encoding the 20 canonical amino acids. Synonymous genome recoding is increasing our knowledge of microbial interactions with innate immune responses, identifying functional genome structures, and strategically ameliorating cis-inhibitory signaling sequences related to splicing, replication (in eukaryotes), and complex microbe functions, unraveling the relevance of codon usage for the temporal regulation of gene expression and the microbe mutant spectrum and adaptability. New biotechnological and therapeutic applications of this methodology can easily be envisaged. In this review, we discuss how synonymous genome recoding may impact our knowledge of microbial biology and the development of new and better therapeutic methodologies.
Collapse
Affiliation(s)
- Miguel Angel Martínez
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Ana Jordan-Paiz
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Sandra Franco
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Maria Nevot
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| |
Collapse
|
23
|
Zwe YH, Chin SF, Kohli GS, Aung KT, Yang L, Yuk HG. Whole genome sequencing (WGS) fails to detect antimicrobial resistance (AMR) from heteroresistant subpopulation of Salmonella enterica. Food Microbiol 2020; 91:103530. [PMID: 32539974 DOI: 10.1016/j.fm.2020.103530] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 03/28/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
Due to rapidly falling costs, whole genome sequencing (WGS) is becoming an essential tool in the surveillance of antimicrobial resistance (AMR) in Salmonella enterica. Although there have been many recent works evaluating the accuracy of WGS in predicting AMR from a large number of Salmonella isolates, little attention has been devoted to deciphering the underlying causes of disagreement between the WGS genotype and experimentally determined AMR phenotype. This study analyzed the genomes of six S. enterica isolates previously obtained from raw chicken which exhibited disagreements between WGS genotype and AMR phenotype. A total of five WGS false negative predictions toward ampicillin, amoxicillin/clavulanate, colistin, and fosfomycin resistance were presented in conjunction with their corresponding empirical phenotypic and/or genetic evidence of heteroresistance. A further case study highlighting the inherent limitations of WGS to detect the underlying genetic mechanisms of colistin heteroresistance was presented. These findings implicate heteroresistance as an underlying cause for false negative WGS-based AMR predictions in S. enterica and suggest that widespread use of WGS in the surveillance of AMR in food isolates might severely underestimate true resistance rates.
Collapse
Affiliation(s)
- Ye Htut Zwe
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - Seow Fong Chin
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Gurjeet Singh Kohli
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; Alfred Wegener-Institut Helmholtz-Zentrum für Polarund Meeresforschung, Bremerhaven, Germany
| | - Kyaw Thu Aung
- National Centre for Food Science, Singapore Food Agency, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore; School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hyun-Gyun Yuk
- Department of Food Science and Technology, Korea National University of Transportation, Jeungpyeong-gun, Chungbuk, Republic of Korea.
| |
Collapse
|
24
|
Chen K, Guo R, Wei C. Synonymous mutation rs2515641 affects CYP2E1 mRNA and protein expression and susceptibility to drug-induced liver injury. Pharmacogenomics 2020; 21:459-470. [PMID: 32149563 DOI: 10.2217/pgs-2019-0151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: To evaluate whether the synonymous mutant rs2515641 could affect cytochrome P450 2E1 (CYP2E1) expression and the response to acetaminophen (APAP) or triptolide (TP) treatment. Materials & methods: HepG2 cells were transfected with lentiviral vector containing either CYP2E1-1263C or CYP2E1-1263T. Some of these recombinant cells were then treated with APAP or TP. CYP2E1 gene expression was detected by PCR and western blot. Results: CYP2E1 gene expression decreased significantly both in mRNA and protein level after rs2515641 mutation, indicating that this polymorphism can affect both transcription and translation. Furthermore, rs2515641 mutation dramatically changes the response of CYP2E1 expression to APAP or TP treatment. Conclusion: Rs2515641 significantly changes CYP2E1 expression and function, which would be expected to affect drug disposition and response.
Collapse
Affiliation(s)
- Keguang Chen
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, PR China
| | - Ruichen Guo
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, PR China
| | - Chunmin Wei
- Center for Drug Evaluation, National Medical Products Administration, Beijing, PR China
| |
Collapse
|
25
|
Deng J, Li J, Ma M, Zhao P, Ming F, Lu Z, Shi J, Fan Q, Liang Q, Jia J, Li J, Zhang S, Zhang L. Co-expressing GroEL-GroES, Ssa1-Sis1 and Bip-PDI chaperones for enhanced intracellular production and partial-wall breaking improved stability of porcine growth hormone. Microb Cell Fact 2020; 19:35. [PMID: 32070347 PMCID: PMC7027120 DOI: 10.1186/s12934-020-01304-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/09/2020] [Indexed: 12/18/2022] Open
Abstract
Porcine growth hormone (pGH) is a class of peptide hormones secreted from the pituitary gland, which can significantly improve growth and feed utilization of pigs. However, it is unstable and volatile in vitro. It needs to be encapsulated in liposomes when feeding livestock, whose high cost greatly limits its application in pig industry. Therefore we attempted to express pGH as intracellular soluble protein in Pichia pastoris and feed these yeasts with partial wall-breaking for swine, which could release directly pGH in intestine tract in case of being degraded in intestinal tract with low cost. In order to improve the intracellular soluble expression of pGH protein in Pichia pastoris and stability in vitro, we optimized the pGH gene, and screened molecular chaperones from E. coli and Pichia pastoris respectively for co-expressing with pGH. In addition, we had also explored conditions of mechanical crushing and fermentation. The results showed that the expression of intracellular soluble pGH protein was significantly increased after gene optimized and co-expressed with Ssa1-Sis1 chaperone from Pichia pastoris. Meanwhile, the optimal conditions of partial wall-breaking and fermentation of Pichia pastoris were confirmed, the data showed that the intracellular expression of the optimized pGH protein co-expressed with Ssa1-Sis1 could reach 340 mg/L with optimal conditions of partial wall-breaking and fermentation. Animal experiments verified that the optimized pGH protein co-expression with Ssa1-Sis1 had the best promoting effects on the growth of piglets. Our study demonstrated that Ssa1-Sis1 could enhance the intracellular soluble expression of pGH protein in Pichia pastoris and that partial wall-breaking of yeast could prevent pGH from degradation in vitro, release targetedly in the intestine and play its biological function effectively. Our study could provide a new idea to cut the cost effectively, establishing a theoretical basis for the clinic application of unstable substances in vitro.
Collapse
Affiliation(s)
- Jinbo Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Microbiological Staff Room, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Jiaoqing Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Microbiological Staff Room, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Miaopeng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Microbiological Staff Room, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Peijing Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Microbiological Staff Room, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Feiping Ming
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Microbiological Staff Room, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Zhipeng Lu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Microbiological Staff Room, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Juqing Shi
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Microbiological Staff Room, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Qin Fan
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Microbiological Staff Room, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Qianyi Liang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Microbiological Staff Room, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Junhao Jia
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Microbiological Staff Room, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Jiayi Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Microbiological Staff Room, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Shuxia Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Microbiological Staff Room, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Linghua Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Microbiological Staff Room, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
26
|
Antibiotic resistance by high-level intrinsic suppression of a frameshift mutation in an essential gene. Proc Natl Acad Sci U S A 2020; 117:3185-3191. [PMID: 31992637 PMCID: PMC7022156 DOI: 10.1073/pnas.1919390117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Frameshift mutations have been reported in rpoB, an essential gene encoding the beta-subunit of RNA polymerase, in rifampicin-resistant clinical isolates of Mycobacterium tuberculosis. These have never been experimentally validated, and no mechanisms of action have been proposed. We show that Escherichia coli with a +1-nt frameshift mutation centrally located in rpoB is viable and highly resistant to rifampicin. Spontaneous frameshifting occurs at a high rate on a heptanucleotide sequence downstream of the mutation, with production of active protein increased to 61–71% of wild-type level by a feedback mechanism that increases translation initiation. Accordingly, apparently lethal mutations can be viable and cause clinically relevant phenotypes, a finding that has broad significance for predictions of phenotype from genotype. A fundamental feature of life is that ribosomes read the genetic code in messenger RNA (mRNA) as triplets of nucleotides in a single reading frame. Mutations that shift the reading frame generally cause gene inactivation and in essential genes cause loss of viability. Here we report and characterize a +1-nt frameshift mutation, centrally located in rpoB, an essential gene encoding the beta-subunit of RNA polymerase. Mutant Escherichia coli carrying this mutation are viable and highly resistant to rifampicin. Genetic and proteomic experiments reveal a very high rate (5%) of spontaneous frameshift suppression occurring on a heptanucleotide sequence downstream of the mutation. Production of active protein is stimulated to 61–71% of wild-type level by a feedback mechanism increasing translation initiation. The phenomenon described here could have broad significance for predictions of phenotype from genotype. Several frameshift mutations have been reported in rpoB in rifampicin-resistant clinical isolates of Mycobacterium tuberculosis (Mtb). These mutations have never been experimentally validated, and no mechanisms of action have been proposed. This work shows that frameshift mutations in rpoB can be a mutational mechanism generating antibiotic resistance. Our analysis further suggests that genetic elements supporting productive frameshifting could rapidly evolve de novo, even in essential genes.
Collapse
|
27
|
Sahoo S, Das SS, Rakshit R. Codon usage pattern and predicted gene expression in Arabidopsis thaliana. Gene 2019; 721S:100012. [PMID: 32550546 PMCID: PMC7286098 DOI: 10.1016/j.gene.2019.100012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 01/20/2023]
Abstract
The extensive research for predicting highly expressed genes in plant genome sequences has been going on for decades. The codon usage pattern of genes in Arabidopsis thaliana genome is a classical topic for plant biologists for its significance in the understanding of molecular plant biology. Here we have used a gene expression profiling methodology based on the score of modified relative codon bias (MRCBS) to elucidate expression pattern of genes in Arabidopsis thaliana. MRCBS relies exclusively on sequence features for identifying the highly expressed genes. In this study, a critical analysis of predicted highly expressed (PHE) genes in Arabidopsis thaliana has been performed using MRCBS as a numerical estimator of gene expression level. Consistent with previous other results, our study indicates that codon composition plays an important role in the regulation of gene expression. We found a systematic strong correlation between MRCBS and CAI (codon adaptation index) or other expression-measures. Additionally, MRCBS correlates well with experimental gene expression data. Our study highlights the relationship between gene expression and compositional signature in relation to codon usage bias and sets the ground for the further investigation of the evolution of the protein-coding genes in the plant genome.
Collapse
Key Words
- Arabidopsis thaliana
- CAI
- CAI, Codon adaptation index
- CP, Chloroplast Pltd CP
- Codon usage bias
- GC content
- GEO, Gene Expression Omnibus
- Gene expression
- MADS, Minichromosome maintenance1, Agamous, Deficiens and Serum response factor
- MBP, Megabase pair
- MRCBS, Score of Modified relative codon bias
- MT, Mitochondrion
- PHE genes
- PHE, Predicted Highly Expressed
- RCA, Relative Codon Adaptation
- RCB, Relative codon bias
- RCBS, Relative Codon Bias Strength
- RMA, Relative Molecular Abundance
- RP, Ribosomal protein
- SAGE, Serial Analysis of Gene Expression
- TAIR, The Arabidopsis Information Resourses
Collapse
Affiliation(s)
- Satyabrata Sahoo
- Department of Physics, Dhruba Chand Halder College, Dakshin Barasat, South 24 Parganas, W.B., India
| | - Shib Sankar Das
- Department of Mathematics, Uluberia College, Uluberia, Howrah, W.B., India
| | - Ria Rakshit
- Department of Botany, Baruipur College, South 24 Parganas, W.B., India
| |
Collapse
|
28
|
Merino N, Zhang S, Tomita M, Suzuki H. Comparative genomics of Bacteria commonly identified in the built environment. BMC Genomics 2019; 20:92. [PMID: 30691394 PMCID: PMC6350394 DOI: 10.1186/s12864-018-5389-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/18/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The microbial community of the built environment (BE) can impact the lives of people and has been studied for a variety of indoor, outdoor, underground, and extreme locations. Thus far, these microorganisms have mainly been investigated by culture-based methods or amplicon sequencing. However, both methods have limitations, complicating multi-study comparisons and limiting the knowledge gained regarding in-situ microbial lifestyles. A greater understanding of BE microorganisms can be achieved through basic information derived from the complete genome. Here, we investigate the level of diversity and genomic features (genome size, GC content, replication strand skew, and codon usage bias) from complete genomes of bacteria commonly identified in the BE, providing a first step towards understanding these bacterial lifestyles. RESULTS Here, we selected bacterial genera commonly identified in the BE (or "Common BE genomes") and compared them against other prokaryotic genera ("Other genomes"). The "Common BE genomes" were identified in various climates and in indoor, outdoor, underground, or extreme built environments. The diversity level of the 16S rRNA varied greatly between genera. The genome size, GC content and GC skew strength of the "Common BE genomes" were statistically larger than those of the "Other genomes" but were not practically significant. In contrast, the strength of selected codon usage bias (S value) was statistically higher with a large effect size in the "Common BE genomes" compared to the "Other genomes." CONCLUSION Of the four genomic features tested, the S value could play a more important role in understanding the lifestyles of bacteria living in the BE. This parameter could be indicative of bacterial growth rates, gene expression, and other factors, potentially affected by BE growth conditions (e.g., temperature, humidity, and nutrients). However, further experimental evidence, species-level BE studies, and classification by BE location is needed to define the relationship between genomic features and the lifestyles of BE bacteria more robustly.
Collapse
Affiliation(s)
- Nancy Merino
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.,Department of Earth Sciences, University of Southern California, Stauffer Hall of Science, Los Angeles, CA, 90089, USA
| | - Shu Zhang
- Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Material Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Section of Infection and Immunity, Herman Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, CA, 90089-0641, USA
| | - Masaru Tomita
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, 252-0882, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0035, Japan
| | - Haruo Suzuki
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, 252-0882, Japan. .,Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0035, Japan.
| |
Collapse
|
29
|
Comparative Genomic Analysis Reveals the Distribution, Organization, and Evolution of Metal Resistance Genes in the Genus Acidithiobacillus. Appl Environ Microbiol 2019; 85:AEM.02153-18. [PMID: 30389769 DOI: 10.1128/aem.02153-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/19/2018] [Indexed: 12/28/2022] Open
Abstract
Members of the genus Acidithiobacillus, which can adapt to extremely high concentrations of heavy metals, are universally found at acid mine drainage (AMD) sites. Here, we performed a comparative genomic analysis of 37 strains within the genus Acidithiobacillus to answer the untouched questions as to the mechanisms and the evolutionary history of metal resistance genes in Acidithiobacillus spp. The results showed that the evolutionary history of metal resistance genes in Acidithiobacillus spp. involved a combination of gene gains and losses, horizontal gene transfer (HGT), and gene duplication. Phylogenetic analyses revealed that metal resistance genes in Acidithiobacillus spp. were acquired by early HGT events from species that shared habitats with Acidithiobacillus spp., such as Acidihalobacter, Thiobacillus, Acidiferrobacter, and Thiomonas species. Multicopper oxidase genes involved in copper detoxification were lost in iron-oxidizing Acidithiobacillus ferridurans, Acidithiobacillus ferrivorans, and Acidithiobacillus ferrooxidans and were replaced by rusticyanin genes during evolution. In addition, widespread purifying selection and the predicted high expression levels emphasized the indispensable roles of metal resistance genes in the ability of Acidithiobacillus spp. to adapt to harsh environments. Altogether, the results suggested that Acidithiobacillus spp. recruited and consolidated additional novel functionalities during the adaption to challenging environments via HGT, gene duplication, and purifying selection. This study sheds light on the distribution, organization, functionality, and complex evolutionary history of metal resistance genes in Acidithiobacillus spp.IMPORTANCE Horizontal gene transfer (HGT), natural selection, and gene duplication are three main engines that drive the adaptive evolution of microbial genomes. Previous studies indicated that HGT was a main adaptive mechanism in acidophiles to cope with heavy-metal-rich environments. However, evidences of HGT in Acidithiobacillus species in response to challenging metal-rich environments and the mechanisms addressing how metal resistance genes originated and evolved in Acidithiobacillus are still lacking. The findings of this study revealed a fascinating phenomenon of putative cross-phylum HGT, suggesting that Acidithiobacillus spp. recruited and consolidated additional novel functionalities during the adaption to challenging environments via HGT, gene duplication, and purifying selection. Altogether, the insights gained in this study have improved our understanding of the metal resistance strategies of Acidithiobacillus spp.
Collapse
|
30
|
Tian J, Li Q, Chu X, Wu N. Presyncodon, a Web Server for Gene Design with the Evolutionary Information of the Expression Hosts. Int J Mol Sci 2018; 19:ijms19123872. [PMID: 30518113 PMCID: PMC6321224 DOI: 10.3390/ijms19123872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 01/05/2023] Open
Abstract
In the natural host, most of the synonymous codons of a gene have been evolutionarily selected and related to protein expression and function. However, for the design of a new gene, most of the existing codon optimization tools select the high-frequency-usage codons and neglect the contribution of the low-frequency-usage codons (rare codons) to the expression of the target gene in the host. In this study, we developed the method Presyncodon, available in a web version, to predict the gene code from a protein sequence, using built-in evolutionary information on a specific expression host. The synonymous codon-usage pattern of a peptide was studied from three genomic datasets (Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae). Machine-learning models were constructed to predict a selection of synonymous codons (low- or high-frequency-usage codon) in a gene. This method could be easily and efficiently used to design new genes from protein sequences for optimal expression in three expression hosts (E. coli, B. subtilis, and S. cerevisiae). Presyncodon is free to academic and noncommercial users; accessible at http://www.mobioinfor.cn/presyncodon_www/index.html.
Collapse
Affiliation(s)
- Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural sciences, Beijing 100081, China.
| | - Qingbin Li
- Biotechnology Research Institute, Chinese Academy of Agricultural sciences, Beijing 100081, China.
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100081, China.
| | - Xiaoyu Chu
- Biotechnology Research Institute, Chinese Academy of Agricultural sciences, Beijing 100081, China.
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural sciences, Beijing 100081, China.
| |
Collapse
|
31
|
Effect of rare codons in C-terminal of green fluorescent protein on protein production in Escherichia coli. Protein Expr Purif 2018; 149:23-30. [DOI: 10.1016/j.pep.2018.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/02/2018] [Accepted: 04/16/2018] [Indexed: 11/23/2022]
|
32
|
Mittal P, Brindle J, Stephen J, Plotkin JB, Kudla G. Codon usage influences fitness through RNA toxicity. Proc Natl Acad Sci U S A 2018; 115:8639-8644. [PMID: 30082392 PMCID: PMC6112741 DOI: 10.1073/pnas.1810022115] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Many organisms are subject to selective pressure that gives rise to unequal usage of synonymous codons, known as codon bias. To experimentally dissect the mechanisms of selection on synonymous sites, we expressed several hundred synonymous variants of the GFP gene in Escherichia coli, and used quantitative growth and viability assays to estimate bacterial fitness. Unexpectedly, we found many synonymous variants whose expression was toxic to E. coli Unlike previously studied effects of synonymous mutations, the effect that we discovered is independent of translation, but it depends on the production of toxic mRNA molecules. We identified RNA sequence determinants of toxicity and evolved suppressor strains that can tolerate the expression of toxic GFP variants. Genome sequencing of these suppressor strains revealed a cluster of promoter mutations that prevented toxicity by reducing mRNA levels. We conclude that translation-independent RNA toxicity is a previously unrecognized obstacle in bacterial gene expression.
Collapse
Affiliation(s)
- Pragya Mittal
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, United Kingdom
| | - James Brindle
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, United Kingdom
| | - Julie Stephen
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, United Kingdom
| | - Joshua B Plotkin
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Grzegorz Kudla
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, United Kingdom;
| |
Collapse
|
33
|
Seward EA, Kelly S. Selection-driven cost-efficiency optimization of transcripts modulates gene evolutionary rate in bacteria. Genome Biol 2018; 19:102. [PMID: 30064467 PMCID: PMC6066932 DOI: 10.1186/s13059-018-1480-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/11/2018] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Most amino acids are encoded by multiple synonymous codons. However, synonymous codons are not used equally, and this biased codon use varies between different organisms. It has previously been shown that both selection acting to increase codon translational efficiency and selection acting to decrease codon biosynthetic cost contribute to differences in codon bias. However, it is unknown how these two factors interact or how they affect molecular sequence evolution. RESULTS Through analysis of 1320 bacterial genomes, we show that bacterial genes are subject to multi-objective selection-driven optimization of codon use. Here, selection acts to simultaneously decrease transcript biosynthetic cost and increase transcript translational efficiency, with highly expressed genes under the greatest selection. This optimization is not simply a consequence of the more translationally efficient codons being less expensive to synthesize. Instead, we show that transfer RNA gene copy number alters the cost-efficiency trade-off of synonymous codons such that, for many species, selection acting on transcript biosynthetic cost and translational efficiency act in opposition. Finally, we show that genes highly optimized to reduce cost and increase efficiency show reduced rates of synonymous and non-synonymous mutation. CONCLUSIONS This analysis provides a simple mechanistic explanation for variation in evolutionary rate between genes that depends on selection-driven cost-efficiency optimization of the transcript. These findings reveal how optimization of resource allocation to messenger RNA synthesis is a critical factor that determines both the evolution and composition of genes.
Collapse
Affiliation(s)
- Emily A Seward
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
34
|
You M, Yang Y, Zhong C, Chen F, Wang X, Jia T, Chen Y, Zhou B, Mi Q, Zhao Q, An Z, Luo W, Xia N. Efficient mAb production in CHO cells with optimized signal peptide, codon, and UTR. Appl Microbiol Biotechnol 2018; 102:5953-5964. [PMID: 29740673 DOI: 10.1007/s00253-018-8986-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 12/17/2022]
Abstract
Antibody drugs have been used to treat a number of diseases successfully. Producing antibodies with high yield and quality is necessary for clinical applications of antibodies. For a candidate molecule, optimization of a vector to produce sufficient yield and an accurate primary structure is indispensable in the early stage of the production process development. It is especially important to maintain the fidelity of N-terminal sequence. In order to produce antibodies with a high yield and accurate N-terminal, the expression vector was systematically optimized in this study. First, the heavy chain and light chain were co-expressed in Chinese hamster ovary (CHO) cells with different signal peptides. Mass spectrometry (MS) revealed that signal peptides Esp-K, Bsp-H, and 8Hsp-H were accurately deleted from mature antibodies. Further, the yield was doubled by codon optimization and increased by 50% with the presence of untranslated regions (UTR). The combination of UTR with optimal codon and signal peptide to form an expression vector resulted in yield improvement of 150% and correct N-terminal sequences. Moreover, the main product peak was above 98% as assessed by size-exclusion chromatography (SEC). Additionally, the bioactivity of products made from optimized transient gene expression (TGE) was almost identical to the standard sample. The production efficiency and product quality from the identified TGE optimization strategy was further demonstrated through application to two other antibodies. The expression level of SGE (stable gene expression) can also be improved effectively with this optimization strategy. In conclusion, vector optimization via combination of optimized signal peptide, codon, and UTR is an alternative approach for efficient antibody production with high fidelity N-terminal sequence in CHO cells.
Collapse
Affiliation(s)
- Min You
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Yi Yang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Chuanqi Zhong
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, 361102, China
| | - Fentian Chen
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Xin Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Tianrong Jia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Yuanzhi Chen
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Bing Zhou
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Qingyu Mi
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Qinjian Zhao
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Zhiqiang An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
- Texas Therapeutics Institute, The Brown Foundation of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Wenxin Luo
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China.
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
35
|
Rojas J, Castillo G, Leiva LE, Elgamal S, Orellana O, Ibba M, Katz A. Codon usage revisited: Lack of correlation between codon usage and the number of tRNA genes in enterobacteria. Biochem Biophys Res Commun 2018; 502:450-455. [PMID: 29859934 DOI: 10.1016/j.bbrc.2018.05.168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 05/25/2018] [Indexed: 01/01/2023]
Abstract
It is widely believed that if a high number of genes are found for any tRNA in a rapidly replicating bacteria, then the cytoplasmic levels of that tRNA will be high and an open reading frame containing a higher frequency of the complementary codon will be translated faster. This idea is based on correlations between the number of tRNA genes, tRNA concentration and the frequency of codon usage observed in a limited number of strains as well as from the fact that artificially changing the number of tRNA genes alters translation efficiency and consequently the amount of properly folded protein synthesized. tRNA gene number may greatly vary in a genome due to duplications, deletions and lateral transfer which in turn would alter the levels and functionality of many proteins. Such changes are potentially deleterious for fitness and as a result it is expected that changes in tRNA gene numbers should be accompanied by a modification of the frequency of codon usage. In contrast to this model, when comparing the number of tRNA genes and the frequency of codon usage of several Salmonella enterica and Escherichia coli strains we found that changes in the number of tRNA genes are not correlated to changes in codon usage. Furthermore, these changes are not correlated with a change in the efficiency of codon translation. These results suggest that once a genome gains or loses tRNA genes, it responds by modulating the concentrations of tRNAs rather than modifying its frequency of codon usage.
Collapse
Affiliation(s)
- Joaquín Rojas
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile
| | - Gabriel Castillo
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile
| | - Lorenzo Eugenio Leiva
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile
| | - Sara Elgamal
- Department of Microbiology and The Center for RNA Biology, Ohio State University, Columbus, OH, 43210, USA
| | - Omar Orellana
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile
| | - Michael Ibba
- Department of Microbiology and The Center for RNA Biology, Ohio State University, Columbus, OH, 43210, USA
| | - Assaf Katz
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile.
| |
Collapse
|
36
|
Freire CCDM, Palmisano G, Braconi CT, Cugola FR, Russo FB, Beltrão-Braga PC, Iamarino A, Lima Neto DFD, Sall AA, Rosa-Fernandes L, Larsen MR, Zanotto PMDA. NS1 codon usage adaptation to humans in pandemic Zika virus. Mem Inst Oswaldo Cruz 2018; 113:e170385. [PMID: 29768530 PMCID: PMC5942634 DOI: 10.1590/0074-02760170385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/20/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Zika virus (ZIKV) was recognised as a zoonotic pathogen in Africa and southeastern Asia. Human infections were infrequently reported until 2007, when the first known epidemic occurred in Micronesia. After 2013, the Asian lineage of ZIKV spread along the Pacific Islands and Americas, causing severe outbreaks with millions of human infections. The recent human infections of ZIKV were also associated with severe complications, such as an increase in cases of Guillain-Barre syndrome and the emergence of congenital Zika syndrome. OBJECTIVES To better understand the recent and rapid expansion of ZIKV, as well as the presentation of novel complications, we compared the genetic differences between the African sylvatic lineage and the Asian epidemic lineage that caused the recent massive outbreaks. FINDINGS The epidemic lineages have significant codon adaptation in NS1 gene to translate these proteins in human and Aedes aegypti mosquito cells compared to the African zoonotic lineage. Accordingly, a Brazilian epidemic isolate (ZBR) produced more NS1 protein than the MR766 African lineage (ZAF) did, as indicated by proteomic data from infections of neuron progenitor cells-derived neurospheres. Although ZBR replicated more efficiently in these cells, the differences observed in the stoichiometry of ZIKV proteins were not exclusively explained by the differences in viral replication between the lineages. MAIN CONCLUSIONS Our findings suggest that natural, silent translational selection in the second half of 20th century could have improved the fitness of Asian ZIKV lineage in human and mosquito cells.
Collapse
Affiliation(s)
| | - Giuseppe Palmisano
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil
| | - Carla T Braconi
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, Laboratório de Evolução Molecular e Bioinformática, São Paulo, SP, Brasil
| | - Fernanda R Cugola
- Universidade de São Paulo, Laboratório de Células-Tronco, Departamento de Cirurgia, São Paulo, SP, Brasil
| | - Fabiele B Russo
- Universidade de São Paulo, Laboratório de Células-Tronco, Departamento de Cirurgia, São Paulo, SP, Brasil
| | - Patricia Cb Beltrão-Braga
- Universidade de São Paulo, Laboratório de Células-Tronco, Departamento de Cirurgia, São Paulo, SP, Brasil.,Universidade de São Paulo, Escola de Artes, Ciências e Humanidades, Departamento de Obstetrícia, São Paulo, SP, Brasil
| | - Atila Iamarino
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, Laboratório de Evolução Molecular e Bioinformática, São Paulo, SP, Brasil
| | - Daniel Ferreira de Lima Neto
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, Laboratório de Evolução Molecular e Bioinformática, São Paulo, SP, Brasil
| | | | - Livia Rosa-Fernandes
- University of Southern Denmark, Department of Biochemistry and Molecular Biology, Odense, Denmark
| | - Martin R Larsen
- University of Southern Denmark, Department of Biochemistry and Molecular Biology, Odense, Denmark
| | - Paolo Marinho de Andrade Zanotto
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, Laboratório de Evolução Molecular e Bioinformática, São Paulo, SP, Brasil
| |
Collapse
|
37
|
Hart A, Cortés MP, Latorre M, Martinez S. Codon usage bias reveals genomic adaptations to environmental conditions in an acidophilic consortium. PLoS One 2018; 13:e0195869. [PMID: 29742107 PMCID: PMC5942774 DOI: 10.1371/journal.pone.0195869] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/30/2018] [Indexed: 11/20/2022] Open
Abstract
The analysis of codon usage bias has been widely used to characterize different communities of microorganisms. In this context, the aim of this work was to study the codon usage bias in a natural consortium of five acidophilic bacteria used for biomining. The codon usage bias of the consortium was contrasted with genes from an alternative collection of acidophilic reference strains and metagenome samples. Results indicate that acidophilic bacteria preferentially have low codon usage bias, consistent with both their capacity to live in a wide range of habitats and their slow growth rate, a characteristic probably acquired independently from their phylogenetic relationships. In addition, the analysis showed significant differences in the unique sets of genes from the autotrophic species of the consortium in relation to other acidophilic organisms, principally in genes which code for proteins involved in metal and oxidative stress resistance. The lower values of codon usage bias obtained in this unique set of genes suggest higher transcriptional adaptation to living in extreme conditions, which was probably acquired as a measure for resisting the elevated metal conditions present in the mine.
Collapse
Affiliation(s)
- Andrew Hart
- UMI 2071 CNRS-UCHILE, Facultad de Ciencias Físicas y Matemáticas, Centro de Modelamiento Matemático, Universidad de Chile, Casilla 170, Correo 3, Santiago, Chile
| | - María Paz Cortés
- Mathomics, Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile
- Fondap-Center of Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mauricio Latorre
- Mathomics, Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile
- Fondap-Center of Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Macul, Santiago, Chile
- Universidad de O'Higgins, Instituto de Ciencias de la Ingeniería, Rancagua, Chile
- * E-mail: (ML); (SM)
| | - Servet Martinez
- Departamento de Ingeniería Matemática, UMI 2071 CNRS-UCHILE, Facultad de Ciencias Físicas y Matemáticas, Centro de Modelamiento Matemático, Universidad de Chile, Casilla 170, Correo 3, Santiago, Chile
- * E-mail: (ML); (SM)
| |
Collapse
|
38
|
Molecular cloning, codon-optimized gene expression, and bioactivity assessment of two novel fungal immunomodulatory proteins from Ganoderma applanatum in Pichia. Appl Microbiol Biotechnol 2018; 102:5483-5494. [DOI: 10.1007/s00253-018-9022-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/07/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022]
|
39
|
Yannai A, Katz S, Hershberg R. The Codon Usage of Lowly Expressed Genes Is Subject to Natural Selection. Genome Biol Evol 2018; 10:1237-1246. [PMID: 29688501 PMCID: PMC5961134 DOI: 10.1093/gbe/evy084] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2018] [Indexed: 12/21/2022] Open
Abstract
Codon usage bias affects the genomes of organisms from all kingdoms of life and results from both background substitution biases and natural selection. Natural selection on codon usage to increase translation accuracy and efficiency has long been known to affect gene sequences. Such selection is stronger on highly, compared with lowly expressed genes, resulting in higher levels of codon bias within genes with higher expression levels. Additionally, selection on translation accuracy affects more strongly codons encoding conserved amino acids, since these will more often affect protein folding and/or function. By applying tests of selection on the gene sequences of the bacterium Escherichia coli, we demonstrate that both highly and lowly expressed genes display signals of selection on codon usage. Such signals are found for both conserved and less conserved amino acid positions, even within the 10% of E. coli genes expressed at the lowest levels. We further demonstrate experimentally that single synonymous codon replacements within a lowly expressed, essential gene can carry substantial effects on bacterial fitness. Combined, our results demonstrate that even within genes expressed at relatively low levels there is substantial selection on codon usage and that single synonymous codon replacements within such genes can have a marked effect on bacterial fitness.
Collapse
Affiliation(s)
- Adi Yannai
- Rachel and Menachem Mendelovitch Evolutionary Processes of Mutation and Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sophia Katz
- Rachel and Menachem Mendelovitch Evolutionary Processes of Mutation and Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ruth Hershberg
- Rachel and Menachem Mendelovitch Evolutionary Processes of Mutation and Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
40
|
Sharma AK, Ahmed N, O'Brien EP. Determinants of translation speed are randomly distributed across transcripts resulting in a universal scaling of protein synthesis times. Phys Rev E 2018; 97:022409. [PMID: 29548178 DOI: 10.1103/physreve.97.022409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 06/08/2023]
Abstract
Ribosome profiling experiments have found greater than 100-fold variation in ribosome density along mRNA transcripts, indicating that individual codon elongation rates can vary to a similar degree. This wide range of elongation times, coupled with differences in codon usage between transcripts, suggests that the average codon translation-rate per gene can vary widely. Yet, ribosome run-off experiments have found that the average codon translation rate for different groups of transcripts in mouse stem cells is constant at 5.6 AA/s. How these seemingly contradictory results can be reconciled is the focus of this study. Here, we combine knowledge of the molecular factors shown to influence translation speed with genomic information from Escherichia coli, Saccharomyces cerevisiae and Homo sapiens to simulate the synthesis of cytosolic proteins in these organisms. The model recapitulates a near constant average translation rate, which we demonstrate arises because the molecular determinants of translation speed are distributed nearly randomly amongst most of the transcripts. Consequently, codon translation rates are also randomly distributed and fast-translating segments of a transcript are likely to be offset by equally probable slow-translating segments, resulting in similar average elongation rates for most transcripts. We also show that the codon usage bias does not significantly affect the near random distribution of codon translation rates because only about 10% of the total transcripts in an organism have high codon usage bias while the rest have little to no bias. Analysis of Ribo-Seq data and an in vivo fluorescent assay supports these conclusions.
Collapse
Affiliation(s)
- Ajeet K Sharma
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Nabeel Ahmed
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
41
|
Abstract
Genes encoding proteins that carry out essential informational tasks in the cell, in particular where multiple interaction partners are involved, are less likely to be transferable to a foreign organism. Here, we investigated the constraints on transfer of a gene encoding a highly conserved informational protein, translation elongation factor Tu (EF-Tu), by systematically replacing the endogenous tufA gene in the Escherichia coli genome with its extant and ancestral homologs. The extant homologs represented tuf variants from both near and distant homologous organisms. The ancestral homologs represented phylogenetically resurrected tuf sequences dating from 0.7 to 3.6 billion years ago (bya). Our results demonstrate that all of the foreign tuf genes are transferable to the E. coli genome, provided that an additional copy of the EF-Tu gene, tufB, remains present in the E. coli genome. However, when the tufB gene was removed, only the variants obtained from the gammaproteobacterial family (extant and ancestral) supported growth which demonstrates the limited functional interchangeability of E. coli tuf with its homologs. Relative bacterial fitness correlated with the evolutionary distance of the extant tuf homologs inserted into the E. coli genome. This reduced fitness was associated with reduced levels of EF-Tu and reduced rates of protein synthesis. Increasing the expression of tuf partially ameliorated these fitness costs. In summary, our analysis suggests that the functional conservation of protein activity, the amount of protein expressed, and its network connectivity act to constrain the successful transfer of this essential gene into foreign bacteria.IMPORTANCE Horizontal gene transfer (HGT) is a fundamental driving force in bacterial evolution. However, whether essential genes can be acquired by HGT and whether they can be acquired from distant organisms are very poorly understood. By systematically replacing tuf with ancestral homologs and homologs from distantly related organisms, we investigated the constraints on HGT of a highly conserved gene with multiple interaction partners. The ancestral homologs represented phylogenetically resurrected tuf sequences dating from 0.7 to 3.6 bya. Only variants obtained from the gammaproteobacterial family (extant and ancestral) supported growth, demonstrating the limited functional interchangeability of E. coli tuf with its homologs. Our analysis suggests that the functional conservation of protein activity, the amount of protein expressed, and its network connectivity act to constrain the successful transfer of this essential gene into foreign bacteria.
Collapse
|
42
|
Song H, Liu J, Song Q, Zhang Q, Tian P, Nan Z. Comprehensive Analysis of Codon Usage Bias in Seven Epichloë Species and Their Peramine-Coding Genes. Front Microbiol 2017; 8:1419. [PMID: 28798739 PMCID: PMC5529348 DOI: 10.3389/fmicb.2017.01419] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/13/2017] [Indexed: 11/22/2022] Open
Abstract
Codon usage bias plays an important role in shaping genomes and genes in unicellular species and multicellular species. Here, we first analyzed codon usage bias in seven Epichloë species and their peramine-coding genes. Our results showed that both natural selection and mutation pressure played a role in forming codon usage bias in seven Epichloë species. All seven Epichloë species contained a peramine-coding gene cluster. Interestingly, codon usage bias of peramine-coding genes were not affected by natural selection or mutation pressure. There were 13 codons more frequently found in Epichloë genome sequences, peramine-coding gene clusters and orthologous peramine-coding genes, all of which had a bias to end with a C nucleotide. In the seven genomes analyzed, codon usage was biased in highly expressed coding sequences (CDSs) with shorter length and higher GC content. Genes in the peramine-coding gene cluster had higher GC content at the third nucleotide position of the codon, and highly expressed genes had higher GC content at the second position. In orthologous peramine-coding CDSs, high expression level was not significantly correlated with CDS length and GC content. Analysis of selection pressure identified that the genes orthologous to peramine genes were under purifying selection. There were no differences in codon usage bias and selection pressure between peramine product genes and non-functional peramine product genes. Our results provide insights into understanding codon evolution in Epichloë species.
Collapse
Affiliation(s)
- Hui Song
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Jing Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Qiuyan Song
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Qingping Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Pei Tian
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| |
Collapse
|
43
|
Abstract
Staphylococcus aureus is known to generate small colony variants (SCVs) that are resistant to aminoglycoside antibiotics and can cause persistent and recurrent infections. The SCV phenotype is unstable, and compensatory mutations lead to restored growth, usually with loss of resistance. However, the evolution of improved growth, by mechanisms that avoid loss of antibiotic resistance, is very poorly understood. By selection with serial passaging, we isolated and characterized different classes of extragenic suppressor mutations that compensate for the slow growth of small colony variants. Compensation occurs by two distinct bypass mechanisms: (i) translational suppression of the initial SCV mutation by mutant tRNAs, ribosomal protein S5, or release factor 2 and (ii) mutations that cause the constitutive activation of the SrrAB global transcriptional regulation system. Although compensation by translational suppression increases growth rate, it also reduces antibiotic susceptibility, thus restoring a pseudo-wild-type phenotype. In contrast, an evolutionary pathway that compensates for the SCV phenotype by activation of SrrAB increases growth rate without loss of antibiotic resistance. RNA sequence analysis revealed that mutations activating the SrrAB pathway cause upregulation of genes involved in peptide transport and in the fermentation pathways of pyruvate to generate ATP and NAD+, thus explaining the increased growth. By increasing the growth rate of SCVs without the loss of aminoglycoside resistance, compensatory evolution via the SrrAB activation pathway represents a threat to effective antibiotic therapy of staphylococcal infections.IMPORTANCE Small colony variants (SCVs) of Staphylococcus aureus are a significant clinical problem, causing persistent and antibiotic-resistant infections. However, SCVs are unstable and can rapidly evolve growth-compensated mutants. Previous data suggested that growth compensation only occurred with the loss of antibiotic resistance. We have used selection with serial passaging to uncover four distinct pathways of growth compensation accessible to SCVs. Three of these paths (reversion, intragenic suppression, and translational suppression) increase growth at the expense of losing antibiotic resistance. The fourth path activates an alternative transcriptional program and allows the bacteria to produce the extra ATP required to support faster growth, without losing antibiotic resistance. The importance of this work is that it shows that drug-resistant SCVs can evolve faster growth without losing antibiotic resistance.
Collapse
|
44
|
Paulsson J, El Karoui M, Lindell M, Hughes D. The processive kinetics of gene conversion in bacteria. Mol Microbiol 2017; 104:752-760. [PMID: 28256783 PMCID: PMC5485169 DOI: 10.1111/mmi.13661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2017] [Indexed: 01/29/2023]
Abstract
Gene conversion, non-reciprocal transfer from one homologous sequence to another, is a major force in evolutionary dynamics, promoting co-evolution in gene families and maintaining similarities between repeated genes. However, the properties of the transfer - where it initiates, how far it proceeds and how the resulting conversion tracts are affected by mismatch repair - are not well understood. Here, we use the duplicate tuf genes in Salmonella as a quantitatively tractable model system for gene conversion. We selected for conversion in multiple different positions of tuf, and examined the resulting distributions of conversion tracts in mismatch repair-deficient and mismatch repair-proficient strains. A simple stochastic model accounting for the essential steps of conversion showed excellent agreement with the data for all selection points using the same value of the conversion processivity, which is the only kinetic parameter of the model. The analysis suggests that gene conversion effectively initiates uniformly at any position within a tuf gene, and proceeds with an effectively uniform conversion processivity in either direction limited by the bounds of the gene.
Collapse
Affiliation(s)
- Johan Paulsson
- Department of Systems Biology, Harvard University, Boston, MA, 02115, USA
| | - Meriem El Karoui
- Department of Systems Biology, Harvard University, Boston, MA, 02115, USA.,School of Biological Sciences, Institute of Cell Biology, The University of Edinburgh, Edinburgh, EH9 3JR, UK
| | - Monica Lindell
- Department of Medical Biochemistry and Microbiology, Box 582, Biomedical Center, Uppsala University, Uppsala, S-751 23, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Box 582, Biomedical Center, Uppsala University, Uppsala, S-751 23, Sweden
| |
Collapse
|
45
|
Wang J, Kwiatkowski M, Forster AC. Ribosomal Peptide Syntheses from Activated Substrates Reveal Rate Limitation by an Unexpected Step at the Peptidyl Site. J Am Chem Soc 2016; 138:15587-15595. [DOI: 10.1021/jacs.6b06936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jinfan Wang
- Department of Cell and Molecular
Biology, Uppsala University, Husargatan 3, Box
596, Uppsala 75124, Sweden
| | - Marek Kwiatkowski
- Department of Cell and Molecular
Biology, Uppsala University, Husargatan 3, Box
596, Uppsala 75124, Sweden
| | - Anthony C. Forster
- Department of Cell and Molecular
Biology, Uppsala University, Husargatan 3, Box
596, Uppsala 75124, Sweden
| |
Collapse
|
46
|
Analysis of codon usage patterns in Ginkgo biloba reveals codon usage tendency from A/U-ending to G/C-ending. Sci Rep 2016; 6:35927. [PMID: 27808241 PMCID: PMC5093902 DOI: 10.1038/srep35927] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/07/2016] [Indexed: 11/08/2022] Open
Abstract
As one of the most ancient tree species, the codon usage pattern analysis of Ginkgo biloba is a useful way to understand its evolutionary and genetic mechanisms. Several studies have been conducted on angiosperms, but seldom on gymnosperms. Based on RNA-Seq data of the G. biloba transcriptome, amount to 17,579 unigenes longer than 300 bp were selected and analyzed from 68,547 candidates. The codon usage pattern tended towards more frequently use of A/U-ending codons, which showed an obvious gradient progressing from gymnosperms to dicots to monocots. Meanwhile, analysis of high/low-expression unigenes revealed that high-expression unigenes tended to use G/C-ending codons together with more codon usage bias. Variation of unigenes with different functions suggested that unigenes involving in environment adaptation use G/C-ending codons more frequently with more usage bias, and these results were consistent with the conclusion that the formation of G. biloba codon usage bias was dominated by natural selection.
Collapse
|
47
|
Chlorobaculum tepidum Modulates Amino Acid Composition in Response to Energy Availability, as Revealed by a Systematic Exploration of the Energy Landscape of Phototrophic Sulfur Oxidation. Appl Environ Microbiol 2016; 82:6431-6439. [PMID: 27565613 DOI: 10.1128/aem.02111-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/17/2016] [Indexed: 12/26/2022] Open
Abstract
Microbial sulfur metabolism, particularly the formation and consumption of insoluble elemental sulfur (S0), is an important biogeochemical engine that has been harnessed for applications ranging from bioleaching and biomining to remediation of waste streams. Chlorobaculum tepidum, a low-light-adapted photoautolithotrophic sulfur-oxidizing bacterium, oxidizes multiple sulfur species and displays a preference for more reduced electron donors: sulfide > S0 > thiosulfate. To understand this preference in the context of light energy availability, an "energy landscape" of phototrophic sulfur oxidation was constructed by varying electron donor identity, light flux, and culture duration. Biomass and cellular parameters of C. tepidum cultures grown across this landscape were analyzed. From these data, a correction factor for colorimetric protein assays was developed, enabling more accurate biomass measurements for C. tepidum, as well as other organisms. C. tepidum's bulk amino acid composition correlated with energy landscape parameters, including a tendency toward less energetically expensive amino acids under reduced light flux. This correlation, paired with an observation of increased cell size and storage carbon production under electron-rich growth conditions, suggests that C. tepidum has evolved to cope with changing energy availability by tuning its proteome for energetic efficiency and storing compounds for leaner times. IMPORTANCE How microbes cope with and adapt to varying energy availability is an important factor in understanding microbial ecology and in designing efficient biotechnological processes. We explored the response of a model phototrophic organism, Chlorobaculum tepidum, across a factorial experimental design that enabled simultaneous variation and analysis of multiple growth conditions, what we term the "energy landscape." C. tepidum biomass composition shifted toward less energetically expensive amino acids at low light levels. This observation provides experimental evidence for evolved efficiencies in microbial proteomes and emphasizes the role that energy flux may play in the adaptive responses of organisms. From a practical standpoint, our data suggest that bulk biomass amino acid composition could provide a simple proxy to monitor and identify energy stress in microbial systems.
Collapse
|
48
|
Higgins NP. Species-specific supercoil dynamics of the bacterial nucleoid. Biophys Rev 2016; 8:113-121. [PMID: 28510215 PMCID: PMC5425795 DOI: 10.1007/s12551-016-0207-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/07/2016] [Indexed: 11/30/2022] Open
Abstract
Bacteria organize DNA into self-adherent conglomerates called nucleoids that are replicated, transcribed, and partitioned within the cytoplasm during growth and cell division. Three classes of proteins help condense nucleoids: (1) DNA gyrase generates diffusible negative supercoils that help compact DNA into a dynamic interwound and multiply branched structure; (2) RNA polymerase and abundant small basic nucleoid-associated proteins (NAPs) create constrained supercoils by binding, bending, and forming cooperative protein-DNA complexes; (3) a multi-protein DNA condensin organizes chromosome structure to assist sister chromosome segregation after replication. Most bacteria have four topoisomerases that participate in DNA dynamics during replication and transcription. Gyrase and topoisomerase I (Topo I) are intimately involved in transcription; Topo III and Topo IV play critical roles in decatenating and unknotting DNA during and immediately after replication. RNA polymerase generates positive (+) supercoils downstream and negative (-) supercoils upstream of highly transcribed operons. Supercoil levels vary under fast versus slow growth conditions, but what surprises many investigators is that it also varies significantly between different bacterial species. The MukFEB condensin is dispensable in the high supercoil density (σ) organism Escherichia coli but is essential in Salmonella spp. which has 15 % fewer supercoils. These observations raise two questions: (1) How do different species regulate supercoil density? (2) Why do closely related species evolve different optimal supercoil levels? Control of supercoil density in E. coli and Salmonella is largely determined by differences encoded within the gyrase subunits. Supercoil differences may arise to minimalize toxicity of mobile DNA elements in the genome.
Collapse
Affiliation(s)
- N Patrick Higgins
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, Kaul Human Genetics Bldg. 524a, Birmingham, AL, 35233, USA.
| |
Collapse
|
49
|
Hjort K, Nicoloff H, Andersson DI. Unstable tandem gene amplification generates heteroresistance (variation in resistance within a population) to colistin in Salmonella enterica. Mol Microbiol 2016; 102:274-289. [PMID: 27381382 DOI: 10.1111/mmi.13459] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 11/30/2022]
Abstract
Heteroresistance, a phenomenon where subpopulations of a bacterial isolate exhibit different susceptibilities to an antibiotic, is a growing clinical problem where the underlying genetic mechanisms in most cases remain unknown. We isolated colistin resistant mutants in Escherichia coli and Salmonella enterica serovar Typhimurium at different concentrations of colistin. Genetic analysis showed that genetically stable pmrAB point mutations were responsible for colistin resistance during selection at high drug concentrations for both species and at low concentrations for E. coli. In contrast, for S. Typhimurium mutants selected at low colistin concentrations, amplification of different large chromosomal regions conferred a heteroresistant phenotype. All amplifications included the pmrD gene, which encodes a positive regulator that up-regulates proteins that modify lipid A, and as a result increase colistin resistance. Inactivation and over-expression of the pmrD gene prevented and conferred resistance, respectively, demonstrating that the PmrD protein is required and sufficient to confer resistance. The heteroresistance phenotype is explained by the variable gene dosage of pmrD in a population, where sub-populations with different copy number of the pmrD gene show different levels of colistin resistance. We propose that variability in gene copy number of resistance genes can explain the heteroresistance observed in clinically isolated pathogenic bacteria.
Collapse
Affiliation(s)
- Karin Hjort
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Hervé Nicoloff
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
50
|
Brandis G, Bergman JM, Hughes D. Autoregulation of the tufB operon in Salmonella. Mol Microbiol 2016; 100:1004-16. [PMID: 26934594 DOI: 10.1111/mmi.13364] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2016] [Indexed: 11/27/2022]
Abstract
In Salmonella enterica and related species, translation elongation factor EF-Tu is encoded by two widely separated but near-identical genes, tufA and tufB. Two thirds of EF-Tu is expressed from tufA with the remaining one third coming from tufB. Inactivation of tufA is partly compensated by a doubling in the amount of EF-TuB but the mechanism of this up-regulation is unknown. By experimental evolution selecting for improved growth rate in a strain with an inactive tufA we selected six different noncoding or synonymous point mutations close to the tufB start codon. Based on these results we constructed a total of 161 different point mutations around the tufB start codon, as well as tufB 3'-truncations, and measured tufB expression using tufB-yfp transcriptional and translational fusions. The expression data support the presence of two competing stem-loop structures that can form in the 5'-end of the tufB mRNA. Formation of the 'closed' structure leads to Rho-dependent transcriptional termination of the tufB mRNA. We propose a model in which translational speed is used as a sensor for EF-Tu concentration and where the expression of tufB is post-transcriptionally regulated. This model describes for the first time how expression of the most abundant Salmonella protein is autoregulated.
Collapse
Affiliation(s)
- Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Box 582, SE, 75123, Uppsala, Sweden
| | - Jessica M Bergman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Box 582, SE, 75123, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Box 582, SE, 75123, Uppsala, Sweden
| |
Collapse
|