1
|
Lacorazza HD. Pharmacological inhibition of the MAP2K7 kinase in human disease. Front Oncol 2024; 14:1486756. [PMID: 39717752 PMCID: PMC11663940 DOI: 10.3389/fonc.2024.1486756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
The MAP2K7 signaling pathway activates the c-Jun NH2-terminal protein kinase (JNK) in response to stress signals, such as inflammatory cytokines, osmotic stress, or genomic damage. While there has been interest in inhibiting JNK due to its involvement in inflammatory processes and cancer, there is increasing focus on developing MAP2K7 inhibitors to enhance specificity when MAP2K7 activation is associated with disease progression. Despite some progress, further research is needed to fully comprehend the role of MAP2K7 in cancer and assess the potential use of kinase inhibitors in cancer therapy. This review examines the role of MAP2K7 in cancer and the development of small-molecule inhibitors.
Collapse
Affiliation(s)
- H. Daniel Lacorazza
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
2
|
Feng Y, Dong Y, Rao B, Yu Y, Su W, Zeng J, Zhao E, Chen Y, Fang S, Zhou Y, Lu J, Qiu F. A novel LINC00478 serves as a tumor suppressor in endometrial carcinoma progression. J Cancer Res Clin Oncol 2023; 149:14927-14940. [PMID: 37603104 DOI: 10.1007/s00432-023-05282-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are involved in the pathogenesis and progression of various cancers, but their roles in endometrial cancer (EC) are largely unknown. METHODS The expressions of LINC00478 and PTBP1 in EC tissues were determined by RT-qPCR. Cell counting kit-8, flow cytometry and Transwell assays were executed for detecting the roles of LINC00478 in EC cells proliferation, migration and invasion. The mouse-xenograft models were established by subcutaneous injection in vivo. The interaction between LINC00478 and PTBP1 was confirmed by RNA pull-down assay and RNA-binding protein immunoprecipitation assay. RESULTS LINC00478 was significantly down-regulated in EC tissues while compared to that in their paracancerous samples, and a higher expression level of LINC00478 was negatively correlated with clinical progress of EC patients. Functional experiments in vivo and in vitro revealed that LINC00478 overexpression could dramatically retard the proliferation of EC cells, decrease the rate of colony formation, suppress the migration and invasion abilities of EC cells in vitro and inhibit tumor growth in vivo. Mechanistically, LINC00478 regulated the expression of PTBP1, a key factor in the Warburg effect, and affected the metabolic process of EC cells. CONCLUSIONS LINC00478 acts as a tumor suppressor in EC by negatively controlling PTBP1 expression and influencing the Warburg effect, providing a potential biomarker and therapeutic target for patients with EC.
Collapse
Affiliation(s)
- Yingyi Feng
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou, 511436, People's Republic of China
| | - Yongshun Dong
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou, 511436, People's Republic of China
| | - Boqi Rao
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou, 511436, People's Republic of China
| | - Yonghui Yu
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou, 511436, People's Republic of China
| | - Wenpeng Su
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou, 511436, People's Republic of China
| | - Jie Zeng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150, People's Republic of China
| | - Eryong Zhao
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou, 510000, People's Republic of China
| | - Yongxiu Chen
- Department of Gynaecology and Obstetrics, Guangdong Women's and Children's Hospital, Guangzhou, 511400, People's Republic of China
| | - Shenying Fang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, People's Republic of China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, Suzhou, 215123, People's Republic of China
| | - Jiachun Lu
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou, 511436, People's Republic of China
| | - Fuman Qiu
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
3
|
Potential Impact of Cancer Susceptibility Genes on Lung Cancer Metastasis. JOURNAL OF ONCOLOGY 2022; 2022:1516946. [PMID: 35479964 PMCID: PMC9038395 DOI: 10.1155/2022/1516946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
Background. Studies of prognosis-related molecular markers are an important tool to uncover the mechanism of tumour metastasis. Cancer susceptibility gene testing is an important tool for genetic counselling of cancer risk. However, the impact of lung cancer susceptibility genes (LCSGs) on lung cancer metastasis and prognosis has not been well studied. Methods. The list of lung cancer susceptibility genes was retrospectively analysed and updated. After expression profiling and functional analysis, LCSG-based signatures for prognosis were identified by Cox regression and LASSO regression analyses. For translational purposes, nomograms integrating LCSGs and clinical characteristics were constructed. Results. A total of 301 LCSGs were employed for modelling. For lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), 10-gene and 7-gene signatures were created and independently validated. The LCSG-based risk score could stratify LUAD survival (univariate: hazard ratio
, 95% confidence interval
–1.103,
; multivariate:
, 95%
–1.095,
) and LUSC survival (univariate:
, 95%
−1.239,
; multivariate:
, 95%
−1.228,
). One of the processes affected by differentially expressed genes in both LUAD and LUSC was the negative regulation of epithelial cell differentiation. Conclusions. Overall, novel LCSG-based gene signatures for LUAD and LUSC were constructed. These findings could expand the understanding of the impact of LCSG expression on cancer metastasis and prognosis.
Collapse
|
4
|
Caliz AD, Vertii A, Fisch V, Yoon S, Yoo HJ, Keaney JF, Kant S. Mitogen-activated protein kinase kinase 7 in inflammatory, cancer, and neurological diseases. Front Cell Dev Biol 2022; 10:979673. [PMID: 36340039 PMCID: PMC9630596 DOI: 10.3389/fcell.2022.979673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Stress-activated mitogen-activated protein kinase kinase 7 (MKK7) is a member of the dual-specificity mitogen-activated protein kinase family. In the human body, MKK7 controls essential physiological processes, including but not limited to proliferation and differentiation in multiple tissues and organs. MKK7, along with the MKK4 pathway, has been implicated in stress-activated activities and biological events that are mediated by c-Jun N-terminal kinase (JNK) signaling. Although numerous studies have been performed to identify the role of JNK in multiple biological processes, there are limited publications that focus on dissecting the independent role of MKK7. Recent research findings have spurred testing via in vivo genetically deficient models, uncovering previously undocumented JNK-independent functions of MKK7. Here we discuss both JNK-dependent and-independent functions of MKK7 in vivo. This review summarizes the role of MKK7 in inflammation, cytokine production, cancer, and neurological diseases.
Collapse
Affiliation(s)
- Amada D Caliz
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Anastassiia Vertii
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Vijay Fisch
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Soonsang Yoon
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hyung-Jin Yoo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - John F Keaney
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Shashi Kant
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Inhibition of the MAP2K7-JNK pathway with 5Z-7-oxozeaenol induces apoptosis in T-cell acute lymphoblastic leukemia. Oncotarget 2021; 12:1787-1801. [PMID: 34504651 PMCID: PMC8416565 DOI: 10.18632/oncotarget.28040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/28/2021] [Indexed: 01/10/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive pediatric leukemia with a worse prognosis than most frequent B-cell ALL due to a high incidence of treatment failures and relapse. Our previous work showed that loss of the pioneer factor KLF4 in a NOTCH1-induced T-ALL mouse model accelerated the development of leukemia through expansion of leukemia-initiating cells and activation of the MAP2K7 pathway. Similarly, epigenetic silencing of the KLF4 gene in children with T-ALL was associated with MAP2K7 activation. Here, we showed the small molecule 5Z-7-oxozeaenol (5Z7O) induces dose-dependent cytotoxicity in a panel of T-ALL cell lines mainly through inhibition of the MAP2K7-JNK pathway, which further validates MAP2K7 as a therapeutic target. Mechanistically, 5Z7O-mediated apoptosis was caused by the downregulation of regulators of the G2/M checkpoint and the inhibition of survival pathways. The anti-leukemic capacity of 5Z7O was evaluated using leukemic cells from two mouse models of T-ALL and patient-derived xenograft cells generated using lymphoblasts from pediatric T-ALL patients. Finally, a combination of 5Z7O with dexamethasone, a drug used in frontline therapy, showed synergistic induction of cytotoxicity. In sum, we report here that MAP2K7 inhibition thwarts survival mechanisms in T-ALL cells and warrants future pre-clinical studies for high-risk and relapsed patients.
Collapse
|
6
|
Xian J, Su W, Liu L, Rao B, Lin M, Feng Y, Qiu F, Chen J, Zhou Q, Zhao Z, Lu J, Yang L. Identification of Three Circular RNA Cargoes in Serum Exosomes as Diagnostic Biomarkers of Non–Small-Cell Lung Cancer in the Chinese Population. J Mol Diagn 2020; 22:1096-1108. [DOI: 10.1016/j.jmoldx.2020.05.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 02/08/2023] Open
|
7
|
Davis PJ, Mousa SA, Lin HY. Nongenomic Actions of Thyroid Hormone: The Integrin Component. Physiol Rev 2020; 101:319-352. [PMID: 32584192 DOI: 10.1152/physrev.00038.2019] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The extracellular domain of plasma membrane integrin αvβ3 contains a cell surface receptor for thyroid hormone analogues. The receptor is largely expressed and activated in tumor cells and rapidly dividing endothelial cells. The principal ligand for this receptor is l-thyroxine (T4), usually regarded only as a prohormone for 3,5,3'-triiodo-l-thyronine (T3), the hormone analogue that expresses thyroid hormone in the cell nucleus via nuclear receptors that are unrelated structurally to integrin αvβ3. At the integrin receptor for thyroid hormone, T4 regulates cancer and endothelial cell division, tumor cell defense pathways (such as anti-apoptosis), and angiogenesis and supports metastasis, radioresistance, and chemoresistance. The molecular mechanisms involve signal transduction via mitogen-activated protein kinase and phosphatidylinositol 3-kinase, differential expression of multiple genes related to the listed cell processes, and regulation of activities of other cell surface proteins, such as vascular growth factor receptors. Tetraiodothyroacetic acid (tetrac) is derived from T4 and competes with binding of T4 to the integrin. In the absence of T4, tetrac and chemically modified tetrac also have anticancer effects that culminate in altered gene transcription. Tumor xenografts are arrested by unmodified and chemically modified tetrac. The receptor requires further characterization in terms of contributions to nonmalignant cells, such as platelets and phagocytes. The integrin αvβ3 receptor for thyroid hormone offers a large panel of cellular actions that are relevant to cancer biology and that may be regulated by tetrac derivatives.
Collapse
Affiliation(s)
- Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York; Department of Medicine, Albany Medical College, Albany, New York; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan; and Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York; Department of Medicine, Albany Medical College, Albany, New York; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan; and Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yun Lin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York; Department of Medicine, Albany Medical College, Albany, New York; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan; and Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
8
|
Hui Y, Huang Y, Ding X, Wang L. MicroRNA-152 suppresses cell proliferation and tumor growth of bladder cancer by targeting KLF5 and MKK7. ACTA ACUST UNITED AC 2019. [DOI: 10.31491/apt.2019.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Park JG, Aziz N, Cho JY. MKK7, the essential regulator of JNK signaling involved in cancer cell survival: a newly emerging anticancer therapeutic target. Ther Adv Med Oncol 2019; 11:1758835919875574. [PMID: 31579105 PMCID: PMC6759727 DOI: 10.1177/1758835919875574] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/19/2019] [Indexed: 01/02/2023] Open
Abstract
One of the mitogen-activated protein kinases (MAPKs), c-Jun NH2-terminal protein kinase (JNK) plays an important role in regulating cell fate, such as proliferation, differentiation, development, transformation, and apoptosis. Its activity is induced through the interaction of MAPK kinase kinases (MAP3Ks), MAPK kinases (MAP2Ks), and various scaffolding proteins. Because of the importance of the JNK cascade to intracellular bioactivity, many studies have been conducted to reveal its precise intracellular functions and mechanisms, but its regulatory mechanisms remain elusive. In this review, we discuss the molecular characterization, activation process, and physiological functions of mitogen-activated protein kinase kinase 7 (MKK7), the MAP2K that most specifically controls the activity of JNK. Understanding the role of MKK7/JNK signaling in physiological conditions could spark new hypotheses for targeted anticancer therapies.
Collapse
Affiliation(s)
- Jae Gwang Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| |
Collapse
|
10
|
Li X, Li X, Yin Z, Jiang M, Tian W, Tang M, Zhou B. Polymorphisms of rs4787050 and rs8045980 are associated with lung cancer risk in northeast Chinese female nonsmokers. Biomark Med 2019; 13:1119-1128. [PMID: 31512508 DOI: 10.2217/bmm-2018-0482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: We studied the association between two single-nucleotide polymorphisms (SNPs: rs4787050 and rs8045980) in RBFOX1 and lung cancer risk, and explored the interaction between the two SNPs and exposure to cooking oil fume on lung cancer risk in northeast Chinese female nonsmokers. Methods: Northeast Chinese female nonsmokers were enrolled into the study (people with lung cancer, 647; people without lung cancer, 675). All statistical analyses were performed using SPSS software. Results: The SNPs rs4787050 and rs8045980 showed a significant association with susceptibility to lung cancer. Moreover, cooking oil fume exposure was found to increase the risk of lung cancer. However, no gene-environment interactions were discovered. Conclusion: The present study revealed that rs4787050 and rs8045980 in RBFOX1 may be meaningful as a novel biomarker for lung cancer susceptibility.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Clinical Epidemiology, First Affiliated Hospital of China Medical University, Shenyang 110001, PR China.,Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Min Jiang
- Department of Clinical Epidemiology, First Affiliated Hospital of China Medical University, Shenyang 110001, PR China.,Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Wen Tian
- Department of Clinical Epidemiology, First Affiliated Hospital of China Medical University, Shenyang 110001, PR China.,Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Man Tang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China
| | - Baosen Zhou
- Department of Clinical Epidemiology, First Affiliated Hospital of China Medical University, Shenyang 110001, PR China.,Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| |
Collapse
|
11
|
Mousa SA, Glinsky GV, Lin HY, Ashur-Fabian O, Hercbergs A, Keating KA, Davis PJ. Contributions of Thyroid Hormone to Cancer Metastasis. Biomedicines 2018; 6:biomedicines6030089. [PMID: 30135398 PMCID: PMC6165185 DOI: 10.3390/biomedicines6030089] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/14/2018] [Accepted: 08/18/2018] [Indexed: 12/17/2022] Open
Abstract
Acting at a cell surface receptor on the extracellular domain of integrin αvβ3, thyroid hormone analogues regulate downstream the expression of a large panel of genes relevant to cancer cell proliferation, to cancer cell survival pathways, and to tumor-linked angiogenesis. Because αvβ3 is involved in the cancer cell metastatic process, we examine here the possibility that thyroid hormone as l-thyroxine (T4) and the thyroid hormone antagonist, tetraiodothyroacetic acid (tetrac), may respectively promote and inhibit metastasis. Actions of T4 and tetrac that are relevant to cancer metastasis include the multitude of synergistic effects on molecular levels such as expression of matrix metalloproteinase genes, angiogenesis support genes, receptor tyrosine kinase (EGFR/ERBB2) genes, specific microRNAs, the epithelial–mesenchymal transition (EMT) process; and on the cellular level are exemplified by effects on macrophages. We conclude that the thyroid hormone-αvβ3 interaction is mechanistically linked to cancer metastasis and that modified tetrac molecules have antimetastatic activity with feasible therapeutic potential.
Collapse
Affiliation(s)
- Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.
| | - Gennadi V Glinsky
- Institute of Engineering in Medicine, University of California, San Diego, CA 92093, USA.
| | - Hung-Yun Lin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- Taipei Cancer Center, Taipei Medical University, Taipei 11031 Taiwan.
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Osnat Ashur-Fabian
- Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Aleck Hercbergs
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Kelly A Keating
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.
- Department of Medicine, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
12
|
Liu L, Qiu F, Chen J, Wu D, Nong Q, Zhou Y, Lu J. Functional Polymorphism in the MSI1 Gene Promoter Confers a Decreased Risk of Lung Cancer in Chinese by Reducing MSI1 Expression. Curr Genomics 2018; 19:375-383. [PMID: 30065613 PMCID: PMC6030856 DOI: 10.2174/1389202919666171128151544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/12/2016] [Accepted: 01/29/2017] [Indexed: 12/15/2022] Open
Abstract
Background: Musashi1 (MSI1) is a characteristic stem cell marker that regulates the balance between cell self-renewal and differentiation. Evidence has identified MSI1 as a pivotal oncogenic regulator in diverse malignancies. However, little evidence uncovers the role of genetic variations of MSI1 gene in cancer etiology. Objective: The aim of this study was to investigate the association between genetic variants in the MSI1 gene and lung cancer risk. Methods: Based on a two-stage retrospective study with a total of 1559 patients with lung cancer and 1667 healthy controls, we evaluated the relevance between three putative functional SNPs in the MSI1 promoter (i.e., -2696T>C[rs7959801], -2297T>C[rs3742038] and -1081C>T[rs34570155]) and lung cancer risk. Results: We found that the SNP rs7959801T>C was significantly associated with lung cancer susceptibility. Compared to those with rs7959801TT wild-genotype, individuals with CT/CC variant genotypes exerted consistently beneficial roles in lung cancer risk in the discovery set (adjusted odd ratios [OR] = 0.67; 95% confidence interval [CI] = 0.57-0.80), and in the validation set (OR=0.69; 95%CI=0.54-0.88). Functional assays indicated that the allele transformation from T to C in rs7959801 of MSI1 gene arrestingly decreased its transcription activity in vitro. Furthermore, the expression levels of MSI1 were significantly lower in the patients with CT/CC variants than in those who were with TT genotype. Conclusion: Our findings suggested that the rs7959801T>C polymorphism in the MSI1 promoter conferred a decreased risk to lung cancer by reducing the expression of MSI1 and it may be a promising indicator for lung cancer predisposition.
Collapse
Affiliation(s)
- Lin Liu
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182, China
| | - Fuman Qiu
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182, China
| | - Jiansong Chen
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182, China
| | - Di Wu
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182, China
| | - Qingqing Nong
- Department of Environmental Health, Guangxi Medical University, 22 Shuangyong road, Nanning530021, China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, 199 Renai road, Suzhou215123, China
| | - Jiachun Lu
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou, 510182, China
| |
Collapse
|
13
|
Jiang Y, Luan Y, He D, Chen G. miR-125b expression affects tumor growth of multiple myeloma via targeting MKK7. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:8487-8494. [PMID: 31966701 PMCID: PMC6965470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/08/2017] [Indexed: 06/10/2023]
Abstract
Many miRNAs are reported to be involved in tumor development. The underlying mechanism of miRNAs driving multiple myeloma (MM) progress remains elusive. This study is to investigate the effect of miR-125b, a brain-enriched microRNA, on mitogen-activated protein kinase 7 (MKK7) in vivo. We found significantly up-regulation of miR-125b and deregulation of MKK7 in MM. The inverse correlation was further confirmed in multiple myeloma samples and cell lines. In addition, MKK7 was identified as a downstream target gene of miR-125b, which could bind to the 3' UTR of MKK7. Overexpression of miR-125b was associated with decreased MKK7 expression and miR-125b antagonisminhibited cell proliferation and clonogenicity. Taken together, our results demonstrated that MKK7 could function as an important tumor suppressor neutralized by miR-125b in MM, suggesting that miR-125b may be a novel potential molecular therapeutic target in the treatment of MM.
Collapse
Affiliation(s)
- Yanxia Jiang
- Department of Hematology, The 1st Affiliated Hospital of Nanchang UniversityJiangxi, China
| | | | - Dong He
- Department of Hematology, The 1st Affiliated Hospital of Nanchang UniversityJiangxi, China
| | - Guoan Chen
- Department of Hematology, The 1st Affiliated Hospital of Nanchang UniversityJiangxi, China
| |
Collapse
|
14
|
Jiang W, Zhu P, Zhang J, Wu Q, Li W, Liu S, Ni M, Yu M, Cao J, Li Y, Cui Y, Xia X. Polymorphisms of protamine genes contribute to male infertility susceptibility in the Chinese Han population. Oncotarget 2017; 8:61637-61645. [PMID: 28977892 PMCID: PMC5617452 DOI: 10.18632/oncotarget.18660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
Protamine (PRM) plays important roles in the packaging of DNA within the sperm nucleus. To investigate the role of PRM1/2 and transition protein 1 (TNP1) polymorphisms in male infertility, 636 infertile men and 442 healthy individuals were recruited into this case-controlled study of the Chinese Han population, using MassARRAY technology to analyze genotypes. Our analysis showed that there were no significant differences between controls and infertile cases among the five single nucleotide polymorphisms identified in PRM1, PRM2 and TNP1 [rs737008 (G/A), rs2301365 (C/A), rs2070923 (C/A), rs1646022 (C/G) and rs62180545 (A/G)]. However, we found that the PRM1 and PRM2 haplotypes GCTGC, TCGCA and TCGCC exhibited significant protective effects against male infertility compared to fertile men, while TCGGA, GCTCC and TCGGC represented significant risk factors for spermatogenesis. Our data showed that rs737008 and rs2301365 in PRM1, and rs1646022 in PRM2, were significantly associated with male infertility and that gene–gene interaction played a role in male infertility. A linkage disequilibrium plot for the five SNPs showed that rs737008 was strongly linked with both rs2301365 and rs2070923. These findings are likely to help improve our understanding of the etiology of male infertility. Further studies should include a larger number of genes and SNPs, particularly growing critical genes; such studies will help us to unravel the effect of individual genetic factors upon male infertility.
Collapse
Affiliation(s)
- Weijun Jiang
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P.R. China
| | - Peiran Zhu
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P.R. China
| | - Jing Zhang
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P.R. China
| | - Qiuyue Wu
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P.R. China
| | - Weiwei Li
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P.R. China
| | - Shuaimei Liu
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P.R. China
| | - Mengxia Ni
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P.R. China
| | - Maomao Yu
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P.R. China
| | - Jin Cao
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P.R. China
| | - Yi Li
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P.R. China
| | - Yingxia Cui
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P.R. China
| | - Xinyi Xia
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, P.R. China
| |
Collapse
|
15
|
Qiu F, Li Y, Lu X, Xie C, Nong Q, Wu D, Chen J, Yang L, Zhou Y, Lu J. Rare variant ofMAP2K7is associated with increased risk of COPD in southern and eastern Chinese. Respirology 2017; 22:691-698. [DOI: 10.1111/resp.12976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/11/2016] [Accepted: 09/29/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Fuman Qiu
- Biomedicine Research Center of The Third Affiliated Hospital of GMU, The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity; Guangzhou Medical University; Guangzhou China
| | - Yinyan Li
- Biomedicine Research Center of The Third Affiliated Hospital of GMU, The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity; Guangzhou Medical University; Guangzhou China
| | - Xiaoxiao Lu
- School of Arts and Sciences; Colby-Sawyer College; New London New Hampshire USA
| | - Chenli Xie
- Biomedicine Research Center of The Third Affiliated Hospital of GMU, The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity; Guangzhou Medical University; Guangzhou China
| | - Qingqing Nong
- Department of Environmental Health; Guangxi Medical University; Nanning China
| | - Di Wu
- Biomedicine Research Center of The Third Affiliated Hospital of GMU, The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity; Guangzhou Medical University; Guangzhou China
| | - Jiansong Chen
- Biomedicine Research Center of The Third Affiliated Hospital of GMU, The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity; Guangzhou Medical University; Guangzhou China
| | - Lei Yang
- Biomedicine Research Center of The Third Affiliated Hospital of GMU, The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity; Guangzhou Medical University; Guangzhou China
| | - Yifeng Zhou
- Department of Genetics; Medical College of Soochow University; Suzhou China
| | - Jiachun Lu
- Biomedicine Research Center of The Third Affiliated Hospital of GMU, The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity; Guangzhou Medical University; Guangzhou China
| |
Collapse
|