1
|
Dumont A, Mendiboure N, Savocco J, Anani L, Moreau P, Thierry A, Modolo L, Jost D, Piazza A. Mechanism of homology search expansion during recombinational DNA break repair in Saccharomyces cerevisiae. Mol Cell 2024; 84:3237-3253.e6. [PMID: 39178861 DOI: 10.1016/j.molcel.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/26/2024] [Accepted: 08/02/2024] [Indexed: 08/26/2024]
Abstract
Homology search is a central step of DNA double-strand break (DSB) repair by homologous recombination (HR). How it operates in cells remains elusive. We developed a Hi-C-based methodology to map single-stranded DNA (ssDNA) contacts genome-wide in S. cerevisiae, which revealed two main homology search phases. Initial search conducted by short Rad51-ssDNA nucleoprotein filaments (NPFs) is confined in cis by cohesin-mediated chromatin loop folding. Progressive growth of stiff NPFs enables exploration of distant genomic sites. Long-range resection drives this transition from local to genome-wide search by increasing the probability of assembling extensive NPFs. DSB end-tethering promotes coordinated search by opposite NPFs. Finally, an autonomous genetic element on chromosome III engages the NPF, which stimulates homology search in its vicinity. This work reveals the mechanism of the progressive expansion of homology search that is orchestrated by chromatin organizers, long-range resection, end-tethering, and specialized genetic elements and that exploits the stiff NPF structure conferred by Rad51 oligomerization.
Collapse
Affiliation(s)
- Agnès Dumont
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Nicolas Mendiboure
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Jérôme Savocco
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Loqmen Anani
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Pierrick Moreau
- Unité Régulation spatiale des génomes, Institut Pasteur, CNRS UMR3525, 75015 Paris, France
| | - Agnès Thierry
- Unité Régulation spatiale des génomes, Institut Pasteur, CNRS UMR3525, 75015 Paris, France
| | - Laurent Modolo
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Daniel Jost
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Aurèle Piazza
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France.
| |
Collapse
|
2
|
Pai CC, Durley SC, Cheng WC, Chiang NY, Peters J, Kasparek T, Blaikley E, Wee BY, Walker C, Kearsey SE, Buffa F, Murray JM, Humphrey TC. Homologous recombination suppresses transgenerational DNA end resection and chromosomal instability in fission yeast. Nucleic Acids Res 2023; 51:3205-3222. [PMID: 36951111 PMCID: PMC10123110 DOI: 10.1093/nar/gkad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/24/2023] Open
Abstract
Chromosomal instability (CIN) drives cell-to-cell heterogeneity, and the development of genetic diseases, including cancer. Impaired homologous recombination (HR) has been implicated as a major driver of CIN, however, the underlying mechanism remains unclear. Using a fission yeast model system, we establish a common role for HR genes in suppressing DNA double-strand break (DSB)-induced CIN. Further, we show that an unrepaired single-ended DSB arising from failed HR repair or telomere loss is a potent driver of widespread CIN. Inherited chromosomes carrying a single-ended DSB are subject to cycles of DNA replication and extensive end-processing across successive cell divisions. These cycles are enabled by Cullin 3-mediated Chk1 loss and checkpoint adaptation. Subsequent propagation of unstable chromosomes carrying a single-ended DSB continues until transgenerational end-resection leads to fold-back inversion of single-stranded centromeric repeats and to stable chromosomal rearrangements, typically isochromosomes, or to chromosomal loss. These findings reveal a mechanism by which HR genes suppress CIN and how DNA breaks that persist through mitotic divisions propagate cell-to-cell heterogeneity in the resultant progeny.
Collapse
Affiliation(s)
- Chen-Chun Pai
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Samuel C Durley
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Wei-Chen Cheng
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Nien-Yi Chiang
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Jennifer Peters
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Torben Kasparek
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Elizabeth Blaikley
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Boon-Yu Wee
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Carol Walker
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Stephen E Kearsey
- Department of Biology, University of Oxford, Zoology Research and Administration Building, Mansfield Road, Oxford OX1 3SZ, UK
| | - Francesca Buffa
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Johanne M Murray
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, SussexBN1 9RQ, UK
| | - Timothy C Humphrey
- MRC Oxford Institute for Radiation Oncology & Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
3
|
De Falco M, De Felice M. Take a Break to Repair: A Dip in the World of Double-Strand Break Repair Mechanisms Pointing the Gaze on Archaea. Int J Mol Sci 2021; 22:ijms222413296. [PMID: 34948099 PMCID: PMC8708640 DOI: 10.3390/ijms222413296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
All organisms have evolved many DNA repair pathways to counteract the different types of DNA damages. The detection of DNA damage leads to distinct cellular responses that bring about cell cycle arrest and the induction of DNA repair mechanisms. In particular, DNA double-strand breaks (DSBs) are extremely toxic for cell survival, that is why cells use specific mechanisms of DNA repair in order to maintain genome stability. The choice among the repair pathways is mainly linked to the cell cycle phases. Indeed, if it occurs in an inappropriate cellular context, it may cause genome rearrangements, giving rise to many types of human diseases, from developmental disorders to cancer. Here, we analyze the most recent remarks about the main pathways of DSB repair with the focus on homologous recombination. A thorough knowledge in DNA repair mechanisms is pivotal for identifying the most accurate treatments in human diseases.
Collapse
|
4
|
Ahmad S, Côté V, Cheng X, Bourriquen G, Sapountzi V, Altaf M, Côté J. Antagonistic relationship of NuA4 with the non-homologous end-joining machinery at DNA damage sites. PLoS Genet 2021; 17:e1009816. [PMID: 34543274 PMCID: PMC8483352 DOI: 10.1371/journal.pgen.1009816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 09/30/2021] [Accepted: 09/09/2021] [Indexed: 11/19/2022] Open
Abstract
The NuA4 histone acetyltransferase complex, apart from its known role in gene regulation, has also been directly implicated in the repair of DNA double-strand breaks (DSBs), favoring homologous recombination (HR) in S/G2 during the cell cycle. Here, we investigate the antagonistic relationship of NuA4 with non-homologous end joining (NHEJ) factors. We show that budding yeast Rad9, the 53BP1 ortholog, can inhibit NuA4 acetyltransferase activity when bound to chromatin in vitro. While we previously reported that NuA4 is recruited at DSBs during the S/G2 phase, we can also detect its recruitment in G1 when genes for Rad9 and NHEJ factors Yku80 and Nej1 are mutated. This is accompanied with the binding of single-strand DNA binding protein RPA and Rad52, indicating DNA end resection in G1 as well as recruitment of the HR machinery. This NuA4 recruitment to DSBs in G1 depends on Mre11-Rad50-Xrs2 (MRX) and Lcd1/Ddc2 and is linked to the hyper-resection phenotype of NHEJ mutants. It also implicates NuA4 in the resection-based single-strand annealing (SSA) repair pathway along Rad52. Interestingly, we identified two novel non-histone acetylation targets of NuA4, Nej1 and Yku80. Acetyl-mimicking mutant of Nej1 inhibits repair of DNA breaks by NHEJ, decreases its interaction with other core NHEJ factors such as Yku80 and Lif1 and favors end resection. Altogether, these results establish a strong reciprocal antagonistic regulatory function of NuA4 and NHEJ factors in repair pathway choice and suggests a role of NuA4 in alternative repair mechanisms in situations where some DNA-end resection can occur in G1. DNA double-strand breaks (DSBs) are one of the most harmful form of DNA damage. Cells employ two major repair pathways to resolve DSBs: Homologous Recombination (HR) and Non-Homologous End Joining (NHEJ). Here we wanted to dissect further the role played by the NuA4 (Nucleosome acetyltransferase of histone H4) complex in the repair of DSBs. Budding yeast NuA4 complex, like its mammalian homolog TIP60 complex, has been shown to favor repair by HR. Here, we show that indeed budding yeast NuA4 and components of the NHEJ repair pathway share an antagonistic relationship. Deletion of NHEJ components enables increased recruitment of NuA4 in the vicinity of DSBs, possible through two independent mechanisms, where NuA4 favors the end resection process which implicates it in repair by single-strand annealing (SSA), an alternate homology-based repair pathway. Additionally, we also present two NHEJ core components as new targets of NuA4 acetyltransferase activity and suggest that these acetylation events can disassemble the NHEJ repair complex from DSBs, favoring repair by HR. Our study demonstrates the importance of NuA4 in the modulation of DSB repair pathway choice.
Collapse
Affiliation(s)
- Salar Ahmad
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Canada
| | - Valérie Côté
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Canada
| | - Xue Cheng
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Canada
| | - Gaëlle Bourriquen
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Canada
| | - Vasileia Sapountzi
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Canada
| | - Mohammed Altaf
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Canada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Canada
- * E-mail:
| |
Collapse
|
5
|
Pham N, Yan Z, Yu Y, Faria Afreen M, Malkova A, Haber JE, Ira G. Mechanisms restraining break-induced replication at two-ended DNA double-strand breaks. EMBO J 2021; 40:e104847. [PMID: 33844333 DOI: 10.15252/embj.2020104847] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/09/2022] Open
Abstract
DNA synthesis during homologous recombination is highly mutagenic and prone to template switches. Two-ended DNA double-strand breaks (DSBs) are usually repaired by gene conversion with a short patch of DNA synthesis, thus limiting the mutation load to the vicinity of the DSB. Single-ended DSBs are repaired by break-induced replication (BIR), which involves extensive and mutagenic DNA synthesis spanning up to hundreds of kilobases. It remains unknown how mutagenic BIR is suppressed at two-ended DSBs. Here, we demonstrate that BIR is suppressed at two-ended DSBs by proteins coordinating the usage of two ends of a DSB: (i) ssDNA annealing proteins Rad52 and Rad59 that promote second end capture, (ii) D-loop unwinding helicase Mph1, and (iii) Mre11-Rad50-Xrs2 complex that promotes synchronous resection of two ends of a DSB. Finally, BIR is also suppressed when Sir2 silences a normally heterochromatic repair template. All of these proteins are particularly important for limiting BIR when recombination occurs between short repetitive sequences, emphasizing the significance of these mechanisms for species carrying many repetitive elements such as humans.
Collapse
Affiliation(s)
- Nhung Pham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Zhenxin Yan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yang Yu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mosammat Faria Afreen
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Waltham, MA, USA
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - James E Haber
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Waltham, MA, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Mitochondrial genome stability in human: understanding the role of DNA repair pathways. Biochem J 2021; 478:1179-1197. [DOI: 10.1042/bcj20200920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/17/2022]
Abstract
Mitochondria are semiautonomous organelles in eukaryotic cells and possess their own genome that replicates independently. Mitochondria play a major role in oxidative phosphorylation due to which its genome is frequently exposed to oxidative stress. Factors including ionizing radiation, radiomimetic drugs and replication fork stalling can also result in different types of mutations in mitochondrial DNA (mtDNA) leading to genome fragility. Mitochondria from myopathies, dystonia, cancer patient samples show frequent mtDNA mutations such as point mutations, insertions and large-scale deletions that could account for mitochondria-associated disease pathogenesis. The mechanism by which such mutations arise following exposure to various DNA-damaging agents is not well understood. One of the well-studied repair pathways in mitochondria is base excision repair. Other repair pathways such as mismatch repair, homologous recombination and microhomology-mediated end joining have also been reported. Interestingly, nucleotide excision repair and classical nonhomologous DNA end joining are not detected in mitochondria. In this review, we summarize the potential causes of mitochondrial genome fragility, their implications as well as various DNA repair pathways that operate in mitochondria.
Collapse
|
7
|
Cheblal A, Challa K, Seeber A, Shimada K, Yoshida H, Ferreira HC, Amitai A, Gasser SM. DNA Damage-Induced Nucleosome Depletion Enhances Homology Search Independently of Local Break Movement. Mol Cell 2020; 80:311-326.e4. [PMID: 32970994 DOI: 10.1016/j.molcel.2020.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 01/02/2023]
Abstract
To determine whether double-strand break (DSB) mobility enhances the physical search for an ectopic template during homology-directed repair (HDR), we tested the effects of factors that control chromatin dynamics, including cohesin loading and kinetochore anchoring. The former but not the latter is altered in response to DSBs. Loss of the nonhistone high-mobility group protein Nhp6 reduces histone occupancy and increases chromatin movement, decompaction, and ectopic HDR. The loss of nucleosome remodeler INO80-C did the opposite. To see whether enhanced HDR depends on DSB mobility or the global chromatin response, we tested the ubiquitin ligase mutant uls1Δ, which selectively impairs local but not global movement in response to a DSB. Strand invasion occurs in uls1Δ cells with wild-type kinetics, arguing that global histone depletion rather than DSB movement is rate limiting for HDR. Impaired break movement in uls1Δ correlates with elevated MRX and cohesin loading, despite normal resection and checkpoint activation.
Collapse
Affiliation(s)
- Anaïs Cheblal
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, 4056 Basel, Switzerland
| | - Kiran Challa
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Present address: Center for Advanced Imaging, Northwest Building, 52 Oxford St, Suite 147, Harvard University, Cambridge, MA 02138, USA
| | - Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Haruka Yoshida
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Helder C Ferreira
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Assaf Amitai
- Department of Chemical Engineering, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, 4056 Basel, Switzerland.
| |
Collapse
|
8
|
Abstract
Maintaining the integrity of the genome in the face of DNA damage is crucial to ensure the survival of the cell and normal development. DNA lesions and repair occur in the context of the chromatin fiber, whose 3D organization and movements in the restricted volume of the nucleus are under intense scrutiny. Here, we highlight work from our and other labs that addresses how the dynamic organization of the chromatin fiber affects the repair of damaged DNA and how, conversely, DNA damage and repair affect the structure and dynamics of chromatin in the budding yeast nucleus.
Collapse
Affiliation(s)
- Emmanuelle Fabre
- a Equipe Biologie et Dynamique des Chromosomes , Institut Universitaire d'Hématologie, Hôpital St. Louis , Paris , France.,b CNRS, UMR 7212 INSERM U944, IUH, Université Paris Diderot Sorbonne Paris Cité , Paris , France
| | - Christophe Zimmer
- c Institut Pasteur, Unité Imagerie et Modélisation , 25 rue du Docteur Roux, 75015 , Paris , France.,d UMR 3691, CNRS; C3BI, USR 3756, IP CNRS , Paris , France
| |
Collapse
|
9
|
Nenarokova A, Záhonová K, Krasilnikova M, Gahura O, McCulloch R, Zíková A, Yurchenko V, Lukeš J. Causes and Effects of Loss of Classical Nonhomologous End Joining Pathway in Parasitic Eukaryotes. mBio 2019; 10:e01541-19. [PMID: 31311886 PMCID: PMC6635534 DOI: 10.1128/mbio.01541-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 01/22/2023] Open
Abstract
We report frequent losses of components of the classical nonhomologous end joining pathway (C-NHEJ), one of the main eukaryotic tools for end joining repair of DNA double-strand breaks, in several lineages of parasitic protists. Moreover, we have identified a single lineage among trypanosomatid flagellates that has lost Ku70 and Ku80, the core C-NHEJ components, and accumulated numerous insertions in many protein-coding genes. We propose a correlation between these two phenomena and discuss the possible impact of the C-NHEJ loss on genome evolution and transition to the parasitic lifestyle.IMPORTANCE Parasites tend to evolve small and compact genomes, generally endowed with a high mutation rate, compared with those of their free-living relatives. However, the mechanisms by which they achieve these features, independently in unrelated lineages, remain largely unknown. We argue that the loss of the classical nonhomologous end joining pathway components may be one of the crucial steps responsible for characteristic features of parasite genomes.
Collapse
Affiliation(s)
- Anna Nenarokova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| | - Marija Krasilnikova
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Richard McCulloch
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Vyacheslav Yurchenko
- Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow, Russia
- Life Science Research Centre and Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
10
|
Moving forward one step back at a time: reversibility during homologous recombination. Curr Genet 2019; 65:1333-1340. [PMID: 31123771 DOI: 10.1007/s00294-019-00995-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
Abstract
DNA double-strand breaks are genotoxic lesions whose repair can be templated off an intact DNA duplex through the conserved homologous recombination (HR) pathway. Because it mainly consists of a succession of non-covalent associations of molecules, HR is intrinsically reversible. Reversibility serves as an integral property of HR, exploited and tuned at various stages throughout the pathway with anti- and pro-recombinogenic consequences. Here, we focus on the reversibility of displacement loops (D-loops), a central DNA joint molecule intermediate whose dynamics and regulation have recently been physically probed in somatic S. cerevisiae cells. From homology search to repair completion, we discuss putative roles of D-loop reversibility in repair fidelity and outcome.
Collapse
|
11
|
Frequency of DNA end joining in trans is not determined by the predamage spatial proximity of double-strand breaks in yeast. Proc Natl Acad Sci U S A 2019; 116:9481-9490. [PMID: 31019070 DOI: 10.1073/pnas.1818595116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
DNA double-strand breaks (DSBs) are serious genomic insults that can lead to chromosomal rearrangements if repaired incorrectly. To gain insight into the nuclear mechanisms contributing to these rearrangements, we developed an assay in yeast to measure cis (same site) vs. trans (different site) repair for the majority process of precise nonhomologous end joining (NHEJ). In the assay, the HO endonuclease gene is placed between two HO cut sites such that HO expression is self-terminated upon induction. We further placed an additional cut site in various genomic loci such that NHEJ in trans led to expression of a LEU2 reporter gene. Consistent with prior reports, cis NHEJ was more efficient than trans NHEJ. However, unlike homologous recombination, where spatial distance between a single DSB and donor locus was previously shown to correlate with repair efficiency, trans NHEJ frequency remained essentially constant regardless of the position of the two DSB loci, even when they were on the same chromosome or when two trans repair events were put in competition. Repair of similar DSBs via single-strand annealing of short terminal direct repeats showed substantially higher repair efficiency and trans repair frequency, but still without a strong correlation of trans repair to genomic position. Our results support a model in which yeast cells mobilize, and perhaps compartmentalize, multiple DSBs in a manner that no longer reflects the predamage position of two broken loci.
Collapse
|
12
|
Bordelet H, Dubrana K. Keep moving and stay in a good shape to find your homologous recombination partner. Curr Genet 2019; 65:29-39. [PMID: 30097675 PMCID: PMC6342867 DOI: 10.1007/s00294-018-0873-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 01/02/2023]
Abstract
Genomic DNA is constantly exposed to damage. Among the lesion in DNA, double-strand breaks (DSB), because they disrupt the two strands of the DNA double helix, are the more dangerous. DSB are repaired through two evolutionary conserved mechanisms: Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR). Whereas NHEJ simply reseals the double helix with no or minimal processing, HR necessitates the formation of a 3'ssDNA through the processing of DSB ends by the resection machinery and relies on the recognition and pairing of this 3'ssDNA tails with an intact homologous sequence. Despite years of active research on HR, the manner by which the two homologous sequences find each other in the crowded nucleus, and how this modulates HR efficiency, only recently emerges. Here, we review recent advances in our understanding of the factors limiting the search of a homologous sequence during HR.
Collapse
Affiliation(s)
- Hélène Bordelet
- Laboratoire Instabilité et Organisation Nucléaire, iRCM, IBFJ, DRF, CEA. 2 INSERM, U967. 3 Université Paris Diderot et Paris Saclay, UMR967, Fontenay-aux-roses, 92265, France
| | - Karine Dubrana
- Laboratoire Instabilité et Organisation Nucléaire, iRCM, IBFJ, DRF, CEA. 2 INSERM, U967. 3 Université Paris Diderot et Paris Saclay, UMR967, Fontenay-aux-roses, 92265, France.
| |
Collapse
|
13
|
Ramakrishnan S, Kockler Z, Evans R, Downing BD, Malkova A. Single-strand annealing between inverted DNA repeats: Pathway choice, participating proteins, and genome destabilizing consequences. PLoS Genet 2018; 14:e1007543. [PMID: 30091972 PMCID: PMC6103520 DOI: 10.1371/journal.pgen.1007543] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/21/2018] [Accepted: 07/06/2018] [Indexed: 11/19/2022] Open
Abstract
Double strand DNA breaks (DSBs) are dangerous events that can result from various causes including environmental assaults or the collapse of DNA replication. While the efficient and precise repair of DSBs is essential for cell survival, faulty repair can lead to genetic instability, making the choice of DSB repair an important step. Here we report that inverted DNA repeats (IRs) placed near a DSB can channel its repair from an accurate pathway that leads to gene conversion to instead a break-induced replication (BIR) pathway that leads to genetic instabilities. The effect of IRs is explained by their ability to form unusual DNA structures when present in ssDNA that is formed by DSB resection. We demonstrate that IRs can form two types of unusual DNA structures, and the choice between these structures depends on the length of the spacer separating IRs. In particular, IRs separated by a long (1-kb) spacer are predominantly involved in inter-molecular single-strand annealing (SSA) leading to the formation of inverted dimers; IRs separated by a short (12-bp) spacer participate in intra-molecular SSA, leading to the formation of fold-back (FB) structures. Both of these structures interfere with an accurate DSB repair by gene conversion and channel DSB repair into BIR, which promotes genomic destabilization. We also report that different protein complexes participate in the processing of FBs containing short (12-bp) versus long (1-kb) ssDNA loops. Specifically, FBs with short loops are processed by the MRX-Sae2 complex, whereas the Rad1-Rad10 complex is responsible for the processing of long loops. Overall, our studies uncover the mechanisms of genomic destabilization resulting from re-routing DSB repair into unusual pathways by IRs. Given the high abundance of IRs in the human genome, our findings may contribute to the understanding of IR-mediated genomic destabilization associated with human disease. Efficient and accurate repair of double-strand DNA breaks (DSBs), resulting from the exposure of cells to ionizing radiation or various chemicals, is crucial for cell survival. Conversely, faulty DSB repair can generate genomic instability that can lead to birth defects or cancer in humans. Here we demonstrate that inverted DNA repeats (IRs) placed in the vicinity of a DSB, interfere with the accurate repair of DSBs and promote genomic rearrangements and chromosome loss. This results from annealing between inverted repeats, located either in different DNA molecules or in the same molecule. In addition, we describe a new role for the Rad1-Rad10 protein complex in processing fold-back (FB) structures formed by intra-molecular annealing involving IRs separated by long spacers. In contrast, FBs with short spacers are processed by the Mre11-Rad50-Xrs2/-Sae2 complex. Overall, we describe several pathways of DSB promoted interaction between IRs that can lead to genomic instability. Given the large number of IRs in the human genome, our findings are relevant to the mechanisms driving genomic destabilization in humans contributing to the development of cancer and other diseases.
Collapse
Affiliation(s)
- Sreejith Ramakrishnan
- Department of Biology, University of Iowa, Iowa City, IA, United States of America
- Indiana University Purdue University Indianapolis, Indianapolis, IN, United States of America
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Zachary Kockler
- Department of Biology, University of Iowa, Iowa City, IA, United States of America
| | - Robert Evans
- Indiana University Purdue University Indianapolis, Indianapolis, IN, United States of America
| | - Brandon D. Downing
- Indiana University Purdue University Indianapolis, Indianapolis, IN, United States of America
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA, United States of America
- Indiana University Purdue University Indianapolis, Indianapolis, IN, United States of America
- * E-mail:
| |
Collapse
|
14
|
Dahal S, Dubey S, Raghavan SC. Homologous recombination-mediated repair of DNA double-strand breaks operates in mammalian mitochondria. Cell Mol Life Sci 2018; 75:1641-1655. [PMID: 29116362 PMCID: PMC11105789 DOI: 10.1007/s00018-017-2702-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
Abstract
Mitochondrial DNA is frequently exposed to oxidative damage, as compared to nuclear DNA. Previously, we have shown that while microhomology-mediated end joining can account for DNA deletions in mitochondria, classical nonhomologous DNA end joining, the predominant double-strand break (DSB) repair pathway in nucleus, is undetectable. In the present study, we investigated the presence of homologous recombination (HR) in mitochondria to maintain its genomic integrity. Biochemical studies revealed that HR-mediated repair of DSBs is more efficient in the mitochondria of testes as compared to that of brain, kidney and spleen. Interestingly, a significant increase in the efficiency of HR was observed when a DSB was introduced. Analyses of the clones suggest that most of the recombinants were generated through reciprocal exchange, while ~ 30% of recombinants were due to gene conversion in testicular extracts. Colocalization and immunoblotting studies showed the presence of RAD51 and MRN complex proteins in the mitochondria and immunodepletion of MRE11, RAD51 or NIBRIN suppressed the HR-mediated repair. Thus, our results reveal importance of homologous recombination in the maintenance of mitochondrial genome stability.
Collapse
Affiliation(s)
- Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Shubham Dubey
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India.
| |
Collapse
|
15
|
Abstract
The repair of chromosomal double-strand breaks (DSBs) by homologous recombination is essential to maintain genome integrity. The key step in DSB repair is the RecA/Rad51-mediated process to match sequences at the broken end to homologous donor sequences that can be used as a template to repair the lesion. Here, in reviewing research about DSB repair, I consider the many factors that appear to play important roles in the successful search for homology by several homologous recombination mechanisms. See also the video abstract here: https://youtu.be/vm7-X5uIzS8.
Collapse
Affiliation(s)
- James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| |
Collapse
|
16
|
Break-induced replication promotes formation of lethal joint molecules dissolved by Srs2. Nat Commun 2017; 8:1790. [PMID: 29176630 PMCID: PMC5702615 DOI: 10.1038/s41467-017-01987-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/27/2017] [Indexed: 12/20/2022] Open
Abstract
Break-induced replication (BIR) is a DNA double-strand break repair pathway that leads to genomic instabilities similar to those observed in cancer. BIR proceeds by a migrating bubble where asynchrony between leading and lagging strand synthesis leads to accumulation of long single-stranded DNA (ssDNA). It remains unknown how this ssDNA is prevented from unscheduled pairing with the template, which can lead to genomic instability. Here, we propose that uncontrolled Rad51 binding to this ssDNA promotes formation of toxic joint molecules that are counteracted by Srs2. First, Srs2 dislodges Rad51 from ssDNA preventing promiscuous strand invasions. Second, it dismantles toxic intermediates that have already formed. Rare survivors in the absence of Srs2 rely on structure-specific endonucleases, Mus81 and Yen1, that resolve toxic joint-molecules. Overall, we uncover a new feature of BIR and propose that tight control of ssDNA accumulated during this process is essential to prevent its channeling into toxic structures threatening cell viability. Break-induced replication (BIR) is a double-strand break repair pathway that can lead to genomic instability. Here the authors show that the absence of Srs2 helicase during BIR leads to uncontrolled binding of Rad51 to single-stranded DNA, which promotes the formation of toxic intermediates that need to be resolved by Mus81 or Yen1.
Collapse
|
17
|
Batté A, Brocas C, Bordelet H, Hocher A, Ruault M, Adjiri A, Taddei A, Dubrana K. Recombination at subtelomeres is regulated by physical distance, double-strand break resection and chromatin status. EMBO J 2017; 36:2609-2625. [PMID: 28754657 DOI: 10.15252/embj.201796631] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 11/09/2022] Open
Abstract
Homologous recombination (HR) is a conserved mechanism that repairs broken chromosomes via intact homologous sequences. How different genomic, chromatin and subnuclear contexts influence HR efficiency and outcome is poorly understood. We developed an assay to assess HR outcome by gene conversion (GC) and break-induced replication (BIR), and discovered that subtelomeric double-stranded breaks (DSBs) are preferentially repaired by BIR despite the presence of flanking homologous sequences. Overexpression of a silencing-deficient SIR3 mutant led to active grouping of telomeres and specifically increased the GC efficiency between subtelomeres. Thus, physical distance limits GC at subtelomeres. However, the repair efficiency between reciprocal intrachromosomal and subtelomeric sequences varies up to 15-fold, depending on the location of the DSB, indicating that spatial proximity is not the only limiting factor for HR EXO1 deletion limited the resection at subtelomeric DSBs and improved GC efficiency. The presence of repressive chromatin at subtelomeric DSBs also favoured recombination, by counteracting EXO1-mediated resection. Thus, repressive chromatin promotes HR at subtelomeric DSBs by limiting DSB resection and protecting against genetic information loss.
Collapse
Affiliation(s)
- Amandine Batté
- Institute of Molecular and Cellular Radiobiology, CEA/DRF, Fontenay-aux-Roses cedex, France.,Inserm U967, Fontenay-aux-Roses cedex, France.,Université Paris-Diderot et Université Paris-Sud, UMR967, Fontenay-aux-Roses cedex, France
| | - Clémentine Brocas
- Institute of Molecular and Cellular Radiobiology, CEA/DRF, Fontenay-aux-Roses cedex, France.,Inserm U967, Fontenay-aux-Roses cedex, France.,Université Paris-Diderot et Université Paris-Sud, UMR967, Fontenay-aux-Roses cedex, France
| | - Hélène Bordelet
- Institute of Molecular and Cellular Radiobiology, CEA/DRF, Fontenay-aux-Roses cedex, France.,Inserm U967, Fontenay-aux-Roses cedex, France.,Université Paris-Diderot et Université Paris-Sud, UMR967, Fontenay-aux-Roses cedex, France
| | - Antoine Hocher
- Institut Curie, PSL Research University, CNRS, UMR3664, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris, France
| | - Myriam Ruault
- Institut Curie, PSL Research University, CNRS, UMR3664, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris, France
| | - Adouda Adjiri
- Institut Curie, PSL Research University, CNRS, UMR3664, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris, France
| | - Angela Taddei
- Institut Curie, PSL Research University, CNRS, UMR3664, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris, France
| | - Karine Dubrana
- Institute of Molecular and Cellular Radiobiology, CEA/DRF, Fontenay-aux-Roses cedex, France .,Inserm U967, Fontenay-aux-Roses cedex, France.,Université Paris-Diderot et Université Paris-Sud, UMR967, Fontenay-aux-Roses cedex, France
| |
Collapse
|
18
|
Abstract
The instability of microsatellite DNA repeats is responsible for at least 40 neurodegenerative diseases. Recently, Mirkin and co-workers presented a novel mechanism for microsatellite expansions based on break-induced replication (BIR) at sites of microsatellite-induced replication stalling and fork collapse. The BIR model aims to explain single-step, large expansions of CAG/CTG trinucleotide repeats in dividing cells. BIR has been characterized extensively in Saccharomyces cerevisiae as a mechanism to repair broken DNA replication forks (single-ended DSBs) and degraded telomeric DNA. However, the structural footprints of BIR-like DSB repair have been recognized in human genomic instability and tied to the etiology of diverse developmental diseases; thus, the implications of the paper by Kim et al. (Kim JC, Harris ST, Dinter T, Shah KA, et al., Nat Struct Mol Biol 24: 55-60) extend beyond trinucleotide repeat expansion in yeast and microsatellite instability in human neurological disorders. Significantly, insight into BIR-like repair can explain certain pathways of complex genome rearrangements (CGRs) initiated at non-B form microsatellite DNA in human cancers.
Collapse
Affiliation(s)
- Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
19
|
Abstract
Double-strand breaks (DSBs) pose a severe challenge to genome integrity; consequently, cells have developed efficient mechanisms to repair DSBs through several pathways of homologous recombination and other nonhomologous end-joining processes. Much of our understanding of these pathways has come from the analysis of site-specific DSBs created by the HO endonuclease in the budding yeast Saccharomyces cerevisiae. I was fortunate to get in on the ground floor of analyzing the fate of synchronously induced DSBs through the study of what I coined "in vivo biochemistry." I have had the remarkable good fortune to profit from the development of new techniques that have permitted an ever more detailed dissection of these repair mechanisms, which are described here.
Collapse
Affiliation(s)
- James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02453;
| |
Collapse
|
20
|
Sgs1 and Mph1 Helicases Enforce the Recombination Execution Checkpoint During DNA Double-Strand Break Repair in Saccharomyces cerevisiae. Genetics 2016; 203:667-75. [PMID: 27075725 DOI: 10.1534/genetics.115.184317] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 03/29/2016] [Indexed: 11/18/2022] Open
Abstract
We have previously shown that a recombination execution checkpoint (REC) regulates the choice of the homologous recombination pathway used to repair a given DNA double-strand break (DSB) based on the homology status of the DSB ends. If the two DSB ends are synapsed with closely-positioned and correctly-oriented homologous donors, repair proceeds rapidly by the gene conversion (GC) pathway. If, however, homology to only one of the ends is present, or if homologies to the two ends are situated far away from each other or in the wrong orientation, REC blocks the rapid initiation of new DNA synthesis from the synapsed end(s) and repair is carried out by the break-induced replication (BIR) machinery after a long pause. Here we report that the simultaneous deletion of two 3'→5' helicases, Sgs1 and Mph1, largely abolishes the REC-mediated lag normally observed during the repair of large gaps and BIR substrates, which now get repaired nearly as rapidly and efficiently as GC substrates. Deletion of SGS1 and MPH1 also produces a nearly additive increase in the efficiency of both BIR and long gap repair; this increase is epistatic to that seen upon Rad51 overexpression. However, Rad51 overexpression fails to mimic the acceleration in repair kinetics that is produced by sgs1Δ mph1Δ double deletion.
Collapse
|