1
|
Rudgalvyte M, Hu Z, Kressler D, Dengjel J, Glauser DA. Antagonist actions of CMK-1/CaMKI and TAX-6/calcineurin along the C. elegans thermal avoidance circuit orchestrate adaptation of nociceptive response to repeated stimuli. eLife 2025; 14:RP103497. [PMID: 40305390 PMCID: PMC12043318 DOI: 10.7554/elife.103497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Thermal nociception in Caenorhabditis elegans is regulated by the Ca²+/calmodulin-dependent protein kinase CMK-1, but its downstream effectors have remained unclear. Here, we combined in vitro kinase assays with mass-spectrometry-based phosphoproteomics to identify hundreds of CMK-1 substrates, including the calcineurin A subunit TAX-6, phosphorylated within its conserved regulatory domain. Genetic and pharmacological analyses reveal multiple antagonistic interactions between CMK-1 and calcineurin signaling in modulating both naive thermal responsiveness and adaptation to repeated noxious stimuli. Cell-specific manipulations indicate that CMK-1 acts in AFD and ASER thermo-sensory neurons, while TAX-6 functions in FLP thermo-sensory neurons and downstream interneurons. Since CMK-1 and TAX-6 act in distinct cell types, the phosphorylation observed in vitro might not directly underlie the behavioral phenotype. Instead, the opposing effects seem to arise from their distributed roles within the sensory circuit. Overall, our study provides (1) a resource of candidate CMK-1 targets for further dissecting CaM kinase signaling and (2) evidence of a previously unrecognized, circuit-level antagonism between CMK-1 and calcineurin pathways. These findings highlight a complex interplay of signaling modules that modulate thermal nociception and adaptation, offering new insights into potentially conserved mechanisms that shape nociceptive plasticity and pain (de)sensitization in more complex nervous systems.
Collapse
Affiliation(s)
| | - Zehan Hu
- Department of Biology, University of FribourgFribourgSwitzerland
| | - Dieter Kressler
- Department of Biology, University of FribourgFribourgSwitzerland
- Metabolomics and Proteomics Platform (MAPP), Department of Biology, University of FribourgFribourgSwitzerland
| | - Jörn Dengjel
- Department of Biology, University of FribourgFribourgSwitzerland
| | | |
Collapse
|
2
|
Rennich BJ, Luth ES, Hofer J, Juo P. Low-Density Lipoprotein Receptor LRP-2 regulates GLR-1 glutamate receptors and glutamatergic behavior in C. elegans. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000837. [PMID: 37179968 PMCID: PMC10172966 DOI: 10.17912/micropub.biology.000837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
We identified the Low-Density Lipoprotein (LDL) Receptor Related Protein-2 (LRP-2) in a RNAi screen for genes that regulate glutamatergic behavior in C. elegans . lrp-2 loss-of-function mutants have defects in glutamatergic mechanosensory nose-touch behavior and suppress increased spontaneous reversals induced by GLR-1(A/T), a constitutively-active form of the AMPA-type glutamate receptor GLR-1. Total and surface levels of GLR-1 are increased throughout the ventral nerve cord of lrp-2 mutants suggesting that LRP-2 promotes glutamatergic signaling by regulating some aspect of GLR-1 trafficking, localization or function.
Collapse
Affiliation(s)
- Bethany J Rennich
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
- Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111
| | - Eric S Luth
- Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111
- Biology, Simmons University, Boston, MA 02115
| | - Julia Hofer
- Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111
| | - Peter Juo
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
- Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111
- Correspondence to: Peter Juo (
)
| |
Collapse
|
3
|
Batool S, Akhter B, Zaidi J, Visser F, Petrie G, Hill M, Syed NI. Neuronal Menin Overexpression Rescues Learning and Memory Phenotype in CA1-Specific α7 nAChRs KD Mice. Cells 2021; 10:3286. [PMID: 34943798 PMCID: PMC8699470 DOI: 10.3390/cells10123286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 01/08/2023] Open
Abstract
The perturbation of nicotinic cholinergic receptors is thought to underlie many neurodegenerative and neuropsychiatric disorders, such as Alzheimer's and schizophrenia. We previously identified that the tumor suppressor gene, MEN1, regulates both the expression and synaptic targeting of α7 nAChRs in the mouse hippocampal neurons in vitro. Here we sought to determine whether the α7 nAChRs gene expression reciprocally regulates the expression of menin, the protein encoded by the MEN1 gene, and if this interplay impacts learning and memory. We demonstrate here that α7 nAChRs knockdown (KD) both in in vitro and in vivo, initially upregulated and then subsequently downregulated menin expression. Exogenous expression of menin using an AAV transduction approach rescued α7 nAChRs KD mediated functional and behavioral deficits specifically in hippocampal (CA1) neurons. These effects involved the modulation of the α7 nAChR subunit expression and functional clustering at the synaptic sites. Our data thus demonstrates a novel and important interplay between the MEN1 gene and the α7 nAChRs in regulating hippocampal-dependent learning and memory.
Collapse
Affiliation(s)
- Shadab Batool
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (S.B.); (B.A.); (F.V.); (G.P.); (M.H.)
- Department of Neuroscience, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Basma Akhter
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (S.B.); (B.A.); (F.V.); (G.P.); (M.H.)
| | - Jawwad Zaidi
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Frank Visser
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (S.B.); (B.A.); (F.V.); (G.P.); (M.H.)
| | - Gavin Petrie
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (S.B.); (B.A.); (F.V.); (G.P.); (M.H.)
- Department of Neuroscience, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Matthew Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (S.B.); (B.A.); (F.V.); (G.P.); (M.H.)
| | - Naweed I. Syed
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
4
|
Ippolito D, Thapliyal S, Glauser DA. Ca 2+/CaM binding to CaMKI promotes IMA-3 importin binding and nuclear translocation in sensory neurons to control behavioral adaptation. eLife 2021; 10:71443. [PMID: 34766550 PMCID: PMC8635976 DOI: 10.7554/elife.71443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/11/2021] [Indexed: 12/29/2022] Open
Abstract
Sensory and behavioral plasticity are essential for animals to thrive in changing environments. As key effectors of intracellular calcium signaling, Ca2+/calmodulin-dependent protein kinases (CaMKs) can bridge neural activation with the many regulatory processes needed to orchestrate sensory adaptation, including by relaying signals to the nucleus. Here, we elucidate the molecular mechanism controlling the cell activation-dependent nuclear translocation of CMK-1, the Caenorhabditis elegans ortholog of mammalian CaMKI/IV, in thermosensory neurons in vivo. We show that an intracellular Ca2+ concentration elevation is necessary and sufficient to favor CMK-1 nuclear import. The binding of Ca2+/CaM to CMK-1 increases its affinity for IMA-3 importin, causing a redistribution with a relatively slow kinetics, matching the timescale of sensory adaptation. Furthermore, we show that this mechanism enables the encoding of opposite nuclear signals in neuron types with opposite calcium-responses and that it is essential for experience-dependent behavioral plasticity and gene transcription control in vivo. Since CaMKI/IV are conserved regulators of adaptable behaviors, similar mechanisms could exist in other organisms and for other sensory modalities.
Collapse
Affiliation(s)
- Domenica Ippolito
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Saurabh Thapliyal
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
5
|
CREB mediates the C. elegans dauer polyphenism through direct and cell-autonomous regulation of TGF-β expression. PLoS Genet 2021; 17:e1009678. [PMID: 34260587 PMCID: PMC8312985 DOI: 10.1371/journal.pgen.1009678] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 07/26/2021] [Accepted: 06/23/2021] [Indexed: 11/19/2022] Open
Abstract
Animals can adapt to dynamic environmental conditions by modulating their developmental programs. Understanding the genetic architecture and molecular mechanisms underlying developmental plasticity in response to changing environments is an important and emerging area of research. Here, we show a novel role of cAMP response element binding protein (CREB)-encoding crh-1 gene in developmental polyphenism of C. elegans. Under conditions that promote normal development in wild-type animals, crh-1 mutants inappropriately form transient pre-dauer (L2d) larvae and express the L2d marker gene. L2d formation in crh-1 mutants is specifically induced by the ascaroside pheromone ascr#5 (asc-ωC3; C3), and crh-1 functions autonomously in the ascr#5-sensing ASI neurons to inhibit L2d formation. Moreover, we find that CRH-1 directly binds upstream of the daf-7 TGF-β locus and promotes its expression in the ASI neurons. Taken together, these results provide new insight into how animals alter their developmental programs in response to environmental changes.
Collapse
|
6
|
Park L, Luth ES, Jones K, Hofer J, Nguyen I, Watters KE, Juo P. The Snail transcription factor CES-1 regulates glutamatergic behavior in C. elegans. PLoS One 2021; 16:e0245587. [PMID: 33529210 PMCID: PMC7853468 DOI: 10.1371/journal.pone.0245587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/04/2021] [Indexed: 11/18/2022] Open
Abstract
Regulation of AMPA-type glutamate receptor (AMPAR) expression and function alters synaptic strength and is a major mechanism underlying synaptic plasticity. Although transcription is required for some forms of synaptic plasticity, the transcription factors that regulate AMPA receptor expression and signaling are incompletely understood. Here, we identify the Snail family transcription factor ces-1 in an RNAi screen for conserved transcription factors that regulate glutamatergic behavior in C. elegans. ces-1 was originally discovered as a selective cell death regulator of neuro-secretory motor neuron (NSM) and I2 interneuron sister cells in C. elegans, and has almost exclusively been studied in the NSM cell lineage. We found that ces-1 loss-of-function mutants have defects in two glutamatergic behaviors dependent on the C. elegans AMPA receptor GLR-1, the mechanosensory nose-touch response and spontaneous locomotion reversals. In contrast, ces-1 gain-of-function mutants exhibit increased spontaneous reversals, and these are dependent on glr-1 consistent with these genes acting in the same pathway. ces-1 mutants have wild type cholinergic neuromuscular junction function, suggesting that they do not have a general defect in synaptic transmission or muscle function. The effect of ces-1 mutation on glutamatergic behaviors is not due to ectopic cell death of ASH sensory neurons or GLR-1-expressing neurons that mediate one or both of these behaviors, nor due to an indirect effect on NSM sister cell deaths. Rescue experiments suggest that ces-1 may act, in part, in GLR-1-expressing neurons to regulate glutamatergic behaviors. Interestingly, ces-1 mutants suppress the increased reversal frequencies stimulated by a constitutively-active form of GLR-1. However, expression of glr-1 mRNA or GFP-tagged GLR-1 was not decreased in ces-1 mutants suggesting that ces-1 likely promotes GLR-1 function. This study identifies a novel role for ces-1 in regulating glutamatergic behavior that appears to be independent of its canonical role in regulating cell death in the NSM cell lineage.
Collapse
Affiliation(s)
- Lidia Park
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Cell, Developmental and Molecular Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Eric S. Luth
- Department of Biology, Simmons University, Boston, Massachusetts, United States of America
| | - Kelsey Jones
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Julia Hofer
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Irene Nguyen
- Department of Biology, Simmons University, Boston, Massachusetts, United States of America
| | - Katherine E. Watters
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Peter Juo
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
7
|
Hodul M, Ganji R, Dahlberg CL, Raman M, Juo P. The WD40-repeat protein WDR-48 promotes the stability of the deubiquitinating enzyme USP-46 by inhibiting its ubiquitination and degradation. J Biol Chem 2020; 295:11776-11788. [PMID: 32587090 DOI: 10.1074/jbc.ra120.014590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/22/2020] [Indexed: 01/11/2023] Open
Abstract
Ubiquitination is a reversible post-translational modification that has emerged as a critical regulator of synapse development and function. However, the mechanisms that regulate the deubiquitinating enzymes (DUBs) responsible for the removal of ubiquitin from target proteins are poorly understood. We have previously shown that the DUB ubiquitin-specific protease 46 (USP-46) removes ubiquitin from the glutamate receptor GLR-1 and regulates its trafficking and degradation in Caenorhabditis elegans We found that the WD40-repeat proteins WDR-20 and WDR-48 bind and stimulate the catalytic activity of USP-46. Here, we identified another mechanism by which WDR-48 regulates USP-46. We found that increased expression of WDR-48, but not WDR-20, promotes USP-46 abundance in mammalian cells in culture and in C. elegans neurons in vivo Inhibition of the proteasome increased USP-46 abundance, and this effect was nonadditive with increased WDR-48 expression. We found that USP-46 is ubiquitinated and that expression of WDR-48 reduces the levels of ubiquitin-USP-46 conjugates and increases the t 1/2 of USP-46. A point-mutated WDR-48 variant that disrupts binding to USP-46 was unable to promote USP-46 abundance in vivo Finally, siRNA-mediated knockdown of wdr48 destabilizes USP46 in mammalian cells. Together, these results support a model in which WDR-48 binds and stabilizes USP-46 protein levels by preventing the ubiquitination and degradation of USP-46 in the proteasome. Given that a large number of USPs interact with WDR proteins, we propose that stabilization of DUBs by their interacting WDR proteins may be a conserved and widely used mechanism that controls DUB availability and function.
Collapse
Affiliation(s)
- Molly Hodul
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Rakesh Ganji
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Caroline L Dahlberg
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA.,Department of Biology, Western Washington University, Bellingham, Washington, USA
| | - Malavika Raman
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Peter Juo
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA .,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
8
|
da Silveira TL, Machado ML, Arantes LP, Zamberlan DC, Cordeiro LM, Obetine FBB, da Silva AF, Tassi CL, Soares FAA. Guanosine Prevents against Glutamatergic Excitotoxicity in C. elegans. Neuroscience 2019; 414:265-272. [PMID: 31306683 DOI: 10.1016/j.neuroscience.2019.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 02/08/2023]
Abstract
Glutamatergic neurotransmission is present in most mammalian excitatory synapses and plays a key role in central nervous system homeostasis. When over-activated, it can induce excitotoxicity, which is present in several neuropathologies. The nucleoside guanosine (GUO) is a guanine-based purine known to have neuroprotective effects by modulating glutamatergic system during glutamate excitotoxicity in mammals. However, GUO action in Caenorhabditis elegans, as well as on C. elegans glutamatergic excitotoxicity model, is not known. The GUO effects on behavioral parameters in Wild Type (WT) and knockouts worms for glutamate transporters (GLT-3, GLT-1), glutamate vesicular transporter (EAT-4), and NMDA and non-NMDA receptors were used to evaluate the GUO modulatory effects. The GUO tested concentrations did not alter the animals' development, but GUO reduced pharyngeal pumps in WT animals in a dose-dependent manner. The same effect was observed in pharyngeal pumps, when the animals were treated with 4 mM of GUO in glr-1, nmr-1 and eat-4, but not in glt-3 and glt-3;glt-1 knockouts. The double mutant glt-3; glt-1 for GluTs had decreased body bends and an increased number of reversions. This effect was reverted after treatment with GUO. Furthermore, GUO did not alter the sensory response in worms with altered glutamatergic signaling. Thus, GUO seems to modulate the worm's glutamatergic system in situations of exacerbated glutamatergic signaling, which are represented by knockout strains to glutamate transporters. However, in WT animals, GUO appears to reinforce glutamatergic signaling in specific neurons. Our findings indicate that C. elegans strains are useful models to study new compounds that could be used in glutamate-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Tássia Limana da Silveira
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Marina Lopes Machado
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Leticia Priscilla Arantes
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Daniele Coradini Zamberlan
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Larissa Marafiga Cordeiro
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Fabiane Bicca Baptista Obetine
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Aline Franzen da Silva
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Cintia Letícia Tassi
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Felix Alexandre Antunes Soares
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
9
|
Feldmann KG, Chowdhury A, Becker JL, McAlpin N, Ahmed T, Haider S, Richard Xia JX, Diaz K, Mehta MG, Mano I. Non-canonical activation of CREB mediates neuroprotection in a Caenorhabditis elegans model of excitotoxic necrosis. J Neurochem 2018; 148:531-549. [PMID: 30447010 DOI: 10.1111/jnc.14629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/26/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
Excitotoxicity, caused by exaggerated neuronal stimulation by Glutamate (Glu), is a major cause of neurodegeneration in brain ischemia. While we know that neurodegeneration is triggered by overstimulation of Glu-receptors (GluRs), the subsequent mechanisms that lead to cellular demise remain controversial. Surprisingly, signaling downstream of GluRs can also activate neuroprotective pathways. The strongest evidence involves activation of the transcription factor cAMP response element-binding protein (CREB), widely recognized for its importance in synaptic plasticity. Canonical views describe CREB as a phosphorylation-triggered transcription factor, where transcriptional activation involves CREB phosphorylation and association with CREB-binding protein. However, given CREB's ubiquitous cross-tissue expression, the multitude of cascades leading to CREB phosphorylation, and its ability to regulate thousands of genes, it remains unclear how CREB exerts closely tailored, differential neuroprotective responses in excitotoxicity. A non-canonical, alternative cascade for activation of CREB-mediated transcription involves the CREB co-factor cAMP-regulated transcriptional co-activator (CRTC), and may be independent of CREB phosphorylation. To identify cascades that activate CREB in excitotoxicity we used a Caenorhabditis elegans model of neurodegeneration by excitotoxic necrosis. We demonstrated that CREB's neuroprotective effect was conserved, and seemed most effective in neurons with moderate Glu exposure. We found that factors mediating canonical CREB activation were not involved. Instead, phosphorylation-independent CREB activation in nematode excitotoxic necrosis hinged on CRTC. CREB-mediated transcription that depends on CRTC, but not on CREB phosphorylation, might lead to expression of a specific subset of neuroprotective genes. Elucidating conserved mechanisms of excitotoxicity-specific CREB activation can help us focus on core neuroprotective programs in excitotoxicity. Cover Image for this issue: doi: 10.1111/jnc.14494.
Collapse
Affiliation(s)
- K Genevieve Feldmann
- Department of Molecular, Cellular and Biomedical Sciences, CDI Cluster on Neural Development and Repair, The CUNY School of Medicine, City College (CCNY), The City University of New York (CUNY), New York City, New York, USA.,The CUNY Neuroscience Collaborative PhD Program, CUNY Graduate Center, New York City, New York, USA
| | - Ayesha Chowdhury
- Department of Molecular, Cellular and Biomedical Sciences, CDI Cluster on Neural Development and Repair, The CUNY School of Medicine, City College (CCNY), The City University of New York (CUNY), New York City, New York, USA.,The CUNY Neuroscience Collaborative PhD Program, CUNY Graduate Center, New York City, New York, USA
| | - Jessica L Becker
- Undergraduate Program in Biology, CCNY, CUNY, New York City, New York, USA
| | - N'Gina McAlpin
- Undergraduate Program in Biology, CCNY, CUNY, New York City, New York, USA
| | - Taqwa Ahmed
- The Sophie Davis BS/MD program, CUNY School of Medicine, New York City, New York, USA
| | - Syed Haider
- Undergraduate Program in Biology, CCNY, CUNY, New York City, New York, USA
| | - Jian X Richard Xia
- The Sophie Davis BS/MD program, CUNY School of Medicine, New York City, New York, USA
| | - Karina Diaz
- The Sophie Davis BS/MD program, CUNY School of Medicine, New York City, New York, USA
| | - Monal G Mehta
- Robert Wood Johnson Medical School, Rutgers - The State University of New Jersey, Piscataway, New Jersey, USA
| | - Itzhak Mano
- Department of Molecular, Cellular and Biomedical Sciences, CDI Cluster on Neural Development and Repair, The CUNY School of Medicine, City College (CCNY), The City University of New York (CUNY), New York City, New York, USA.,The CUNY Neuroscience Collaborative PhD Program, CUNY Graduate Center, New York City, New York, USA.,The Sophie Davis BS/MD program, CUNY School of Medicine, New York City, New York, USA
| |
Collapse
|
10
|
Ardiel EL, McDiarmid TA, Timbers TA, Lee KCY, Safaei J, Pelech SL, Rankin CH. Insights into the roles of CMK-1 and OGT-1 in interstimulus interval-dependent habituation in Caenorhabditis elegans. Proc Biol Sci 2018; 285:rspb.2018.2084. [PMID: 30429311 DOI: 10.1098/rspb.2018.2084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/25/2018] [Indexed: 12/19/2022] Open
Abstract
Habituation is a ubiquitous form of non-associative learning observed as a decrement in responding to repeated stimulation that cannot be explained by sensory adaptation or motor fatigue. One of the defining characteristics of habituation is its sensitivity to the rate at which training stimuli are presented-animals habituate faster in response to more rapid stimulation. The molecular mechanisms underlying this interstimulus interval (ISI)-dependent characteristic of habituation remain unknown. In this article, we use behavioural neurogenetic and bioinformatic analyses in the nematode Caenorhabiditis elegans to identify the first molecules that modulate habituation in an ISI-dependent manner. We show that the Caenorhabditis elegans orthologues of Ca2+/calmodulin-dependent kinases CaMK1/4, CMK-1 and O-linked N-acetylglucosamine (O-GlcNAc) transferase, OGT-1, both function in primary sensory neurons to inhibit habituation at short ISIs and promote it at long ISIs. In addition, both cmk-1 and ogt-1 mutants display a rare mechanosensory hyper-responsive phenotype (i.e. larger mechanosensory responses than wild-type). Overall, our work identifies two conserved genes that function in sensory neurons to modulate habituation in an ISI-dependent manner, providing the first insights into the molecular mechanisms underlying the universally observed phenomenon that habituation has different properties when stimuli are delivered at different rates.
Collapse
Affiliation(s)
- Evan L Ardiel
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2B5
| | - Troy A McDiarmid
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2B5
| | - Tiffany A Timbers
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2B5
| | - Kirsten C Y Lee
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2B5
| | - Javad Safaei
- Department of Computer Science, University of British Columbia, 2366 Main Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Steven L Pelech
- Department of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, British Columbia, Canada V5Z 1M9.,Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, British Columbia, Canada V6P 6T3
| | - Catharine H Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2B5 .,Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
11
|
Nematodes avoid and are killed by Bacillus mycoides-produced styrene. J Invertebr Pathol 2018; 159:129-136. [PMID: 30268676 DOI: 10.1016/j.jip.2018.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 01/20/2023]
Abstract
Root-knot nematodes are obligate parasites that feed on plant roots and cause serious crop losses worldwide. Bacillus species (Bacilliaceae) can produce nematicidal metabolites and have shown good potential for biological control of nematodes. In this study, Bacillus mycoides strain R2 isolated from rhizosphere soil of tomato plants exhibited high nematicidal activity against the free-living nematode Caenorhabditis elegans and the root-knot nematode Meloidogyne incognita. In a pot experiment, control efficiency of B. mycoides R2 on M. incognita was as high as 90.94%. The nematicidal compound was isolated and identified as styrene. The median lethal concentration of styrene against M. incognita was 4.55 μg/ml (m/v). The volatile styrene caused avoidance and killed nematodes primarily by the olfactory neuron and G protein signal pathway. C. elegans detected styrene with the AWB neuron; the signal was then transmitted to the downstream G protein coupled receptors CHE-3, DOP-3, and STR-2. Then signal activated G protein GPA-3 and GPA-7. The signal was then transmitted to ion channels (CNGs channel and TRPV channel), causing calcium ion internal flow and a stress response towards the increased concentration of intracellular calcium. Styrene should be registered as a nematode repellent and biocontrol agent for protection of crops against root-knot nematode attack.
Collapse
|
12
|
Lim JP, Fehlauer H, Das A, Saro G, Glauser DA, Brunet A, Goodman MB. Loss of CaMKI Function Disrupts Salt Aversive Learning in C. elegans. J Neurosci 2018; 38:6114-6129. [PMID: 29875264 PMCID: PMC6031575 DOI: 10.1523/jneurosci.1611-17.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 04/16/2018] [Accepted: 05/25/2018] [Indexed: 11/21/2022] Open
Abstract
The ability to adapt behavior to environmental fluctuations is critical for survival of organisms ranging from invertebrates to mammals. Caenorhabditis elegans can learn to avoid sodium chloride when it is paired with starvation. This behavior may help animals avoid areas without food. Although some genes have been implicated in this salt-aversive learning behavior, critical genetic components, and the neural circuit in which they act, remain elusive. Here, we show that the sole worm ortholog of mammalian CaMKI/IV, CMK-1, is essential for salt-aversive learning behavior in C. elegans hermaphrodites. We find that CMK-1 acts in the primary salt-sensing ASE neurons to regulate this behavior. By characterizing the intracellular calcium dynamics in ASE neurons using microfluidics, we find that loss of cmk-1 has subtle effects on sensory-evoked calcium responses in ASE axons and their modulation by salt conditioning. Our study implicates the expression of the conserved CaMKI/CMK-1 in chemosensory neurons as a regulator of behavioral plasticity to environmental salt in C. elegansSIGNIFICANCE STATEMENT Like other animals, the nematode Caenorhabditis elegans depends on salt for survival and navigates toward high concentrations of this essential mineral. In addition to its role as an essential nutrient, salt also causes osmotic stress at high concentrations. A growing body of evidence indicates that C. elegans balances the requirement for salt with the danger it presents through a process called salt-aversive learning. We show that this behavior depends on expression of a calcium/calmodulin-dependent kinase, CMK-1, in the ASE salt-sensing neurons. Our study identifies CMK-1 and salt-sensitive chemosensory neurons as key factors in this form of behavioral plasticity.
Collapse
Affiliation(s)
- Jana P Lim
- Neurosciences Graduate Program
- Department of Genetics
- Department of Molecular and Cellular Physiology
| | | | | | - Gabriella Saro
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | | | - Anne Brunet
- Neurosciences Graduate Program,
- Department of Genetics
- Glenn Center for the Biology of Aging at Stanford University, Stanford, California 94305, and
| | - Miriam B Goodman
- Neurosciences Graduate Program,
- Department of Molecular and Cellular Physiology
| |
Collapse
|