1
|
Hikmat WM, Sievers A, Hausmann M, Hildenbrand G. Peculiar k-mer Spectra Are Correlated with 3D Contact Frequencies and Breakpoint Regions in the Human Genome. Genes (Basel) 2024; 15:1247. [PMID: 39457371 PMCID: PMC11506876 DOI: 10.3390/genes15101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND It is widely accepted that the 3D chromatin organization in human cell nuclei is not random and recent investigations point towards an interactive relation of epigenetic functioning and chromatin (re-)organization. Although chromatin organization seems to be the result of self-organization of the entirety of all molecules available in the cell nucleus, a general question remains open as to what extent chromatin organization might additionally be predetermined by the DNA sequence and, if so, if there are characteristic differences that distinguish typical regions involved in dysfunction-related aberrations from normal ones, since typical DNA breakpoint regions involved in disease-related chromosome aberrations are not randomly distributed along the DNA sequence. METHODS Highly conserved k-mer patterns in intronic and intergenic regions have been reported in eukaryotic genomes. In this article, we search and analyze regions deviating from average spectra (ReDFAS) of k-mer word frequencies in the human genome. This includes all assembled regions, e.g., telomeric, centromeric, genic as well as intergenic regions. RESULTS A positive correlation between k-mer spectra and 3D contact frequencies, obtained exemplarily from given Hi-C datasets, has been found indicating a relation of ReDFAS to chromatin organization and interactions. We also searched and found correlations of known functional annotations, e.g., genes correlating with ReDFAS. Selected regions known to contain typical breakpoints on chromosomes 9 and 5 that are involved in cancer-related chromosomal aberrations appear to be enriched in ReDFAS. Since transposable elements like ALUs are often assigned as major players in 3D genome organization, we also studied their impact on our examples but could not find a correlation between ALU regions and breakpoints comparable to ReDFAS. CONCLUSIONS Our findings might show that ReDFAS are associated with instable regions of the genome and regions with many chromatin contacts which is in line with current research indicating that chromatin loop anchor points lead to genomic instability.
Collapse
Affiliation(s)
- Wisam Mohammed Hikmat
- Kirchhoff-Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany; (W.M.H.); (A.S.)
| | - Aaron Sievers
- Kirchhoff-Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany; (W.M.H.); (A.S.)
- Institute for Human Genetics, University Hospital Heidelberg, INF 366, 69117 Heidelberg, Germany
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany; (W.M.H.); (A.S.)
| | - Georg Hildenbrand
- Kirchhoff-Institute for Physics, Heidelberg University, INF 227, 69117 Heidelberg, Germany; (W.M.H.); (A.S.)
- Faculty of Engineering, University of Applied Science Aschaffenburg, Würzburger Str. 45, 63743 Aschaffenburg, Germany
| |
Collapse
|
2
|
Barbour JA, Ou T, Yang H, Fang H, Yue NC, Zhu X, Wong-Brown MW, Wong YT, Bowden NA, Wu S, Wong JWH. ERCC2 mutations alter the genomic distribution pattern of somatic mutations and are independently prognostic in bladder cancer. CELL GENOMICS 2024; 4:100627. [PMID: 39096913 PMCID: PMC11406173 DOI: 10.1016/j.xgen.2024.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/17/2024] [Accepted: 07/10/2024] [Indexed: 08/05/2024]
Abstract
Excision repair cross-complementation group 2 (ERCC2) encodes the DNA helicase xeroderma pigmentosum group D, which functions in transcription and nucleotide excision repair. Point mutations in ERCC2 are putative drivers in around 10% of bladder cancers (BLCAs) and a potential positive biomarker for cisplatin therapy response. Nevertheless, the prognostic significance directly attributed to ERCC2 mutations and its pathogenic role in genome instability remain poorly understood. We first demonstrated that mutant ERCC2 is an independent predictor of prognosis in BLCA. We then examined its impact on the somatic mutational landscape using a cohort of ERCC2 wild-type (n = 343) and mutant (n = 39) BLCA whole genomes. The genome-wide distribution of somatic mutations is significantly altered in ERCC2 mutants, including T[C>T]N enrichment, altered replication time correlations, and CTCF-cohesin binding site mutation hotspots. We leverage these alterations to develop a machine learning model for predicting pathogenic ERCC2 mutations, which may be useful to inform treatment of patients with BLCA.
Collapse
Affiliation(s)
- Jayne A Barbour
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Tong Ou
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Haocheng Yang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hu Fang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Institute of Biomedical Data, South China Hospital, Medical School, Shenzhen University, Shenzhen, China
| | - Noel C Yue
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaoqiang Zhu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Michelle W Wong-Brown
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Yuen T Wong
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - Nikola A Bowden
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Song Wu
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China; Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen, China.
| | - Jason W H Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China; Centre for PanorOmic Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
3
|
Chen W, Zeng Y, Achinger-Kawecka J, Campbell E, Jones A, Stewart A, Khoury A, Clark S. Machine learning enables pan-cancer identification of mutational hotspots at persistent CTCF binding sites. Nucleic Acids Res 2024; 52:8086-8099. [PMID: 38950902 PMCID: PMC11317138 DOI: 10.1093/nar/gkae530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 05/15/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
CCCTC-binding factor (CTCF) is an insulator protein that binds to a highly conserved DNA motif and facilitates regulation of three-dimensional (3D) nuclear architecture and transcription. CTCF binding sites (CTCF-BSs) reside in non-coding DNA and are frequently mutated in cancer. Our previous study identified a small subclass of CTCF-BSs that are resistant to CTCF knock down, termed persistent CTCF binding sites (P-CTCF-BSs). P-CTCF-BSs show high binding conservation and potentially regulate cell-type constitutive 3D chromatin architecture. Here, using ICGC sequencing data we made the striking observation that P-CTCF-BSs display a highly elevated mutation rate in breast and prostate cancer when compared to all CTCF-BSs. To address whether P-CTCF-BS mutations are also enriched in other cell-types, we developed CTCF-INSITE-a tool utilising machine learning to predict persistence based on genetic and epigenetic features of experimentally-determined P-CTCF-BSs. Notably, predicted P-CTCF-BSs also show a significantly elevated mutational burden in all 12 cancer-types tested. Enrichment was even stronger for P-CTCF-BS mutations with predicted functional impact to CTCF binding and chromatin looping. Using in vitro binding assays we validated that P-CTCF-BS cancer mutations, predicted to be disruptive, indeed reduced CTCF binding. Together this study reveals a new subclass of cancer specific CTCF-BS DNA mutations and provides insights into their importance in genome organization in a pan-cancer setting.
Collapse
Affiliation(s)
- Wenhan Chen
- Epigenetics Laboratory, Garvan Institute of Medical Research, Sydney 2010 New South Wales, Australia
| | - Yi C Zeng
- Structural Biology Laboratory, Victor Chang Cardiac Research Institute, Sydney 2010 New South Wales, Australia
- St Vincent's Clinical School, UNSW, Sydney 2010 New South Wales, Australia
| | - Joanna Achinger-Kawecka
- Epigenetics Laboratory, Garvan Institute of Medical Research, Sydney 2010 New South Wales, Australia
- St Vincent's Clinical School, UNSW, Sydney 2010 New South Wales, Australia
| | - Elyssa Campbell
- Epigenetics Laboratory, Garvan Institute of Medical Research, Sydney 2010 New South Wales, Australia
| | - Alicia K Jones
- Epigenetics Laboratory, Garvan Institute of Medical Research, Sydney 2010 New South Wales, Australia
| | - Alastair G Stewart
- Structural Biology Laboratory, Victor Chang Cardiac Research Institute, Sydney 2010 New South Wales, Australia
- St Vincent's Clinical School, UNSW, Sydney 2010 New South Wales, Australia
| | - Amanda Khoury
- Epigenetics Laboratory, Garvan Institute of Medical Research, Sydney 2010 New South Wales, Australia
- St Vincent's Clinical School, UNSW, Sydney 2010 New South Wales, Australia
| | - Susan J Clark
- Epigenetics Laboratory, Garvan Institute of Medical Research, Sydney 2010 New South Wales, Australia
- St Vincent's Clinical School, UNSW, Sydney 2010 New South Wales, Australia
| |
Collapse
|
4
|
Iñiguez-Muñoz S, Llinàs-Arias P, Ensenyat-Mendez M, Bedoya-López AF, Orozco JIJ, Cortés J, Roy A, Forsberg-Nilsson K, DiNome ML, Marzese DM. Hidden secrets of the cancer genome: unlocking the impact of non-coding mutations in gene regulatory elements. Cell Mol Life Sci 2024; 81:274. [PMID: 38902506 PMCID: PMC11335195 DOI: 10.1007/s00018-024-05314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/07/2023] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
Discoveries in the field of genomics have revealed that non-coding genomic regions are not merely "junk DNA", but rather comprise critical elements involved in gene expression. These gene regulatory elements (GREs) include enhancers, insulators, silencers, and gene promoters. Notably, new evidence shows how mutations within these regions substantially influence gene expression programs, especially in the context of cancer. Advances in high-throughput sequencing technologies have accelerated the identification of somatic and germline single nucleotide mutations in non-coding genomic regions. This review provides an overview of somatic and germline non-coding single nucleotide alterations affecting transcription factor binding sites in GREs, specifically involved in cancer biology. It also summarizes the technologies available for exploring GREs and the challenges associated with studying and characterizing non-coding single nucleotide mutations. Understanding the role of GRE alterations in cancer is essential for improving diagnostic and prognostic capabilities in the precision medicine era, leading to enhanced patient-centered clinical outcomes.
Collapse
Affiliation(s)
- Sandra Iñiguez-Muñoz
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Pere Llinàs-Arias
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Miquel Ensenyat-Mendez
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Andrés F Bedoya-López
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Javier I J Orozco
- Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Javier Cortés
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, 08017, Barcelona, Spain
- Medica Scientia Innovation Research SL (MEDSIR), 08018, Barcelona, Spain
- Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, 28670, Madrid, Spain
| | - Ananya Roy
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Maggie L DiNome
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Diego M Marzese
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain.
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
5
|
Anderson CJ, Talmane L, Luft J, Connelly J, Nicholson MD, Verburg JC, Pich O, Campbell S, Giaisi M, Wei PC, Sundaram V, Connor F, Ginno PA, Sasaki T, Gilbert DM, López-Bigas N, Semple CA, Odom DT, Aitken SJ, Taylor MS. Strand-resolved mutagenicity of DNA damage and repair. Nature 2024; 630:744-751. [PMID: 38867042 PMCID: PMC11186772 DOI: 10.1038/s41586-024-07490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 04/30/2024] [Indexed: 06/14/2024]
Abstract
DNA base damage is a major source of oncogenic mutations1. Such damage can produce strand-phased mutation patterns and multiallelic variation through the process of lesion segregation2. Here we exploited these properties to reveal how strand-asymmetric processes, such as replication and transcription, shape DNA damage and repair. Despite distinct mechanisms of leading and lagging strand replication3,4, we observe identical fidelity and damage tolerance for both strands. For small alkylation adducts of DNA, our results support a model in which the same translesion polymerase is recruited on-the-fly to both replication strands, starkly contrasting the strand asymmetric tolerance of bulky UV-induced adducts5. The accumulation of multiple distinct mutations at the site of persistent lesions provides the means to quantify the relative efficiency of repair processes genome wide and at single-base resolution. At multiple scales, we show DNA damage-induced mutations are largely shaped by the influence of DNA accessibility on repair efficiency, rather than gradients of DNA damage. Finally, we reveal specific genomic conditions that can actively drive oncogenic mutagenesis by corrupting the fidelity of nucleotide excision repair. These results provide insight into how strand-asymmetric mechanisms underlie the formation, tolerance and repair of DNA damage, thereby shaping cancer genome evolution.
Collapse
Affiliation(s)
- Craig J Anderson
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Lana Talmane
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Juliet Luft
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - John Connelly
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
- Edinburgh Pathology, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Laboratory Medicine, NHS Lothian, Edinburgh, UK
| | - Michael D Nicholson
- CRUK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jan C Verburg
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Oriol Pich
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Susan Campbell
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Marco Giaisi
- Brain Mosaicism and Tumorigenesis (B400), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pei-Chi Wei
- Brain Mosaicism and Tumorigenesis (B400), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vasavi Sundaram
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Frances Connor
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Paul A Ginno
- Division of Regulatory Genomics and Cancer Evolution (B270), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | | | - Núria López-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Colin A Semple
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Duncan T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Division of Regulatory Genomics and Cancer Evolution (B270), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Sarah J Aitken
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Martin S Taylor
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
6
|
Yao YM, Miodownik I, O’Hagan MP, Jbara M, Afek A. Deciphering the dynamic code: DNA recognition by transcription factors in the ever-changing genome. Transcription 2024; 15:114-138. [PMID: 39033307 PMCID: PMC11810102 DOI: 10.1080/21541264.2024.2379161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
Transcription factors (TFs) intricately navigate the vast genomic landscape to locate and bind specific DNA sequences for the regulation of gene expression programs. These interactions occur within a dynamic cellular environment, where both DNA and TF proteins experience continual chemical and structural perturbations, including epigenetic modifications, DNA damage, mechanical stress, and post-translational modifications (PTMs). While many of these factors impact TF-DNA binding interactions, understanding their effects remains challenging and incomplete. This review explores the existing literature on these dynamic changes and their potential impact on TF-DNA interactions.
Collapse
Affiliation(s)
- Yumi Minyi Yao
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Irina Miodownik
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Michael P. O’Hagan
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Muhammad Jbara
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Afek
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Mas-Ponte D, Supek F. Mutation rate heterogeneity at the sub-gene scale due to local DNA hypomethylation. Nucleic Acids Res 2024; 52:4393-4408. [PMID: 38587182 PMCID: PMC11077091 DOI: 10.1093/nar/gkae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
Local mutation rates in human are highly heterogeneous, with known variability at the scale of megabase-sized chromosomal domains, and, on the other extreme, at the scale of oligonucleotides. The intermediate, kilobase-scale heterogeneity in mutation risk is less well characterized. Here, by analyzing thousands of somatic genomes, we studied mutation risk gradients along gene bodies, representing a genomic scale spanning roughly 1-10 kb, hypothesizing that different mutational mechanisms are differently distributed across gene segments. The main heterogeneity concerns several kilobases at the transcription start site and further downstream into 5' ends of gene bodies; these are commonly hypomutated with several mutational signatures, most prominently the ubiquitous C > T changes at CpG dinucleotides. The width and shape of this mutational coldspot at 5' gene ends is variable across genes, and corresponds to variable interval of lowered DNA methylation depending on gene activity level and regulation. Such hypomutated loci, at 5' gene ends or elsewhere, correspond to DNA hypomethylation that can associate with various landmarks, including intragenic enhancers, Polycomb-marked regions, or chromatin loop anchor points. Tissue-specific DNA hypomethylation begets tissue-specific local hypomutation. Of note, direction of mutation risk is inverted for AID/APOBEC3 cytosine deaminase activity, whose signatures are enriched in hypomethylated regions.
Collapse
Affiliation(s)
- David Mas-Ponte
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Fran Supek
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
8
|
Friedman MJ, Wagner T, Lee H, Rosenfeld MG, Oh S. Enhancer-promoter specificity in gene transcription: molecular mechanisms and disease associations. Exp Mol Med 2024; 56:772-787. [PMID: 38658702 PMCID: PMC11058250 DOI: 10.1038/s12276-024-01233-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/26/2024] Open
Abstract
Although often located at a distance from their target gene promoters, enhancers are the primary genomic determinants of temporal and spatial transcriptional specificity in metazoans. Since the discovery of the first enhancer element in simian virus 40, there has been substantial interest in unraveling the mechanism(s) by which enhancers communicate with their partner promoters to ensure proper gene expression. These research efforts have benefited considerably from the application of increasingly sophisticated sequencing- and imaging-based approaches in conjunction with innovative (epi)genome-editing technologies; however, despite various proposed models, the principles of enhancer-promoter interaction have still not been fully elucidated. In this review, we provide an overview of recent progress in the eukaryotic gene transcription field pertaining to enhancer-promoter specificity. A better understanding of the mechanistic basis of lineage- and context-dependent enhancer-promoter engagement, along with the continued identification of functional enhancers, will provide key insights into the spatiotemporal control of gene expression that can reveal therapeutic opportunities for a range of enhancer-related diseases.
Collapse
Affiliation(s)
- Meyer J Friedman
- Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tobias Wagner
- Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Haram Lee
- College of Pharmacy Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea
| | - Michael G Rosenfeld
- Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Soohwan Oh
- College of Pharmacy Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea.
| |
Collapse
|
9
|
Arnedo-Pac C, Muiños F, Gonzalez-Perez A, Lopez-Bigas N. Hotspot propensity across mutational processes. Mol Syst Biol 2024; 20:6-27. [PMID: 38177930 PMCID: PMC10883281 DOI: 10.1038/s44320-023-00001-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 01/06/2024] Open
Abstract
The sparsity of mutations observed across tumours hinders our ability to study mutation rate variability at nucleotide resolution. To circumvent this, here we investigated the propensity of mutational processes to form mutational hotspots as a readout of their mutation rate variability at single base resolution. Mutational signatures 1 and 17 have the highest hotspot propensity (5-78 times higher than other processes). After accounting for trinucleotide mutational probabilities, sequence composition and mutational heterogeneity at 10 Kbp, most (94-95%) signature 17 hotspots remain unexplained, suggesting a significant role of local genomic features. For signature 1, the inclusion of genome-wide distribution of methylated CpG sites into models can explain most (80-100%) of the hotspot propensity. There is an increased hotspot propensity of signature 1 in normal tissues and de novo germline mutations. We demonstrate that hotspot propensity is a useful readout to assess the accuracy of mutation rate models at nucleotide resolution. This new approach and the findings derived from it open up new avenues for a range of somatic and germline studies investigating and modelling mutagenesis.
Collapse
Affiliation(s)
- Claudia Arnedo-Pac
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ferran Muiños
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
10
|
Poulsgaard GA, Sørensen SG, Juul RI, Nielsen MM, Pedersen JS. Sequence dependencies and mutation rates of localized mutational processes in cancer. Genome Med 2023; 15:63. [PMID: 37592287 PMCID: PMC10436389 DOI: 10.1186/s13073-023-01217-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Cancer mutations accumulate through replication errors and DNA damage coupled with incomplete repair. Individual mutational processes often show nucleotide sequence and functional region preferences. As a result, some sequence contexts mutate at much higher rates than others, with additional variation found between functional regions. Mutational hotspots, with recurrent mutations across cancer samples, represent genomic positions with elevated mutation rates, often caused by highly localized mutational processes. METHODS We count the 11-mer genomic sequences across the genome, and using the PCAWG set of 2583 pan-cancer whole genomes, we associate 11-mers with mutational signatures, hotspots of single nucleotide variants, and specific genomic regions. We evaluate the mutation rates of individual and combined sets of 11-mers and derive mutational sequence motifs. RESULTS We show that hotspots generally identify highly mutable sequence contexts. Using these, we show that some mutational signatures are enriched in hotspot sequence contexts, corresponding to well-defined sequence preferences for the underlying localized mutational processes. This includes signature 17b (of unknown etiology) and signatures 62 (POLE deficiency), 7a (UV), and 72 (linked to lymphomas). In some cases, the mutation rate and sequence preference increase further when focusing on certain genomic regions, such as signature 62 in transcribed regions, where the mutation rate is increased up to 9-folds over cancer type and mutational signature average. CONCLUSIONS We summarize our findings in a catalog of localized mutational processes, their sequence preferences, and their estimated mutation rates.
Collapse
Affiliation(s)
- Gustav Alexander Poulsgaard
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Simon Grund Sørensen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Randi Istrup Juul
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Morten Muhlig Nielsen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Jakob Skou Pedersen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark.
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
- Bioinformatics Research Centre (BiRC), Aarhus University, University City 81, Building 1872, 3Rd Floor, 8000, Aarhus C, Denmark.
| |
Collapse
|
11
|
Selvam K, Sivapragasam S, Poon GMK, Wyrick JJ. Detecting recurrent passenger mutations in melanoma by targeted UV damage sequencing. Nat Commun 2023; 14:2702. [PMID: 37169747 PMCID: PMC10175485 DOI: 10.1038/s41467-023-38265-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
Sequencing of melanomas has identified hundreds of recurrent mutations in both coding and non-coding DNA. These include a number of well-characterized oncogenic driver mutations, such as coding mutations in the BRAF and NRAS oncogenes, and non-coding mutations in the promoter of telomerase reverse transcriptase (TERT). However, the molecular etiology and significance of most of these mutations is unknown. Here, we use a new method known as CPD-capture-seq to map UV-induced cyclobutane pyrimidine dimers (CPDs) with high sequencing depth and single nucleotide resolution at sites of recurrent mutations in melanoma. Our data reveal that many previously identified drivers and other recurrent mutations in melanoma occur at CPD hotspots in UV-irradiated melanocytes, often associated with an overlapping binding site of an E26 transformation-specific (ETS) transcription factor. In contrast, recurrent mutations in the promoters of a number of known or suspected cancer genes are not associated with elevated CPD levels. Our data indicate that a subset of recurrent protein-coding mutations are also likely caused by ETS-induced CPD hotspots. This analysis indicates that ETS proteins profoundly shape the mutation landscape of melanoma and reveals a method for distinguishing potential driver mutations from passenger mutations whose recurrence is due to elevated UV damage.
Collapse
Affiliation(s)
- Kathiresan Selvam
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Smitha Sivapragasam
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Gregory M K Poon
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA.
- Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
12
|
Castro-Mondragon JA, Aure M, Lingjærde O, Langerød A, Martens JWM, Børresen-Dale AL, Kristensen V, Mathelier A. Cis-regulatory mutations associate with transcriptional and post-transcriptional deregulation of gene regulatory programs in cancers. Nucleic Acids Res 2022; 50:12131-12148. [PMID: 36477895 PMCID: PMC9757053 DOI: 10.1093/nar/gkac1143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Most cancer alterations occur in the noncoding portion of the human genome, where regulatory regions control gene expression. The discovery of noncoding mutations altering the cells' regulatory programs has been limited to few examples with high recurrence or high functional impact. Here, we show that transcription factor binding sites (TFBSs) have similar mutation loads to those in protein-coding exons. By combining cancer somatic mutations in TFBSs and expression data for protein-coding and miRNA genes, we evaluate the combined effects of transcriptional and post-transcriptional alterations on the regulatory programs in cancers. The analysis of seven TCGA cohorts culminates with the identification of protein-coding and miRNA genes linked to mutations at TFBSs that are associated with a cascading trans-effect deregulation on the cells' regulatory programs. Our analyses of cis-regulatory mutations associated with miRNAs recurrently predict 12 mature miRNAs (derived from 7 precursors) associated with the deregulation of their target gene networks. The predictions are enriched for cancer-associated protein-coding and miRNA genes and highlight cis-regulatory mutations associated with the dysregulation of key pathways associated with carcinogenesis. By combining transcriptional and post-transcriptional regulation of gene expression, our method predicts cis-regulatory mutations related to the dysregulation of key gene regulatory networks in cancer patients.
Collapse
Affiliation(s)
- Jaime A Castro-Mondragon
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Miriam Ragle Aure
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ole Christian Lingjærde
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Gaustadalléen 23 B, N-0373 Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute for Clinical Medicine, University of Oslo, Ullernchausseen 70, N-0372 Oslo, Norway
| | - Anita Langerød
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
| | - John W M Martens
- Erasmus MC Cancer Institute and Cancer Genomics Netherlands, University Medical Center Rotterdam, Department of Medical Oncology, 3015GD Rotterdam, The Netherlands
| | - Anne-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
| | - Vessela N Kristensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Anthony Mathelier
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
13
|
Gridina M, Fishman V. Multilevel view on chromatin architecture alterations in cancer. Front Genet 2022; 13:1059617. [PMID: 36468037 PMCID: PMC9715599 DOI: 10.3389/fgene.2022.1059617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/31/2022] [Indexed: 12/25/2023] Open
Abstract
Chromosomes inside the nucleus are not located in the form of linear molecules. Instead, there is a complex multilevel genome folding that includes nucleosomes packaging, formation of chromatin loops, domains, compartments, and finally, chromosomal territories. Proper spatial organization play an essential role for the correct functioning of the genome, and is therefore dynamically changed during development or disease. Here we discuss how the organization of the cancer cell genome differs from the healthy genome at various levels. A better understanding of how malignization affects genome organization and long-range gene regulation will help to reveal the molecular mechanisms underlying cancer development and evolution.
Collapse
Affiliation(s)
- Maria Gridina
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | |
Collapse
|
14
|
Dehingia B, Milewska M, Janowski M, Pękowska A. CTCF shapes chromatin structure and gene expression in health and disease. EMBO Rep 2022; 23:e55146. [PMID: 35993175 PMCID: PMC9442299 DOI: 10.15252/embr.202255146] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
CCCTC-binding factor (CTCF) is an eleven zinc finger (ZF), multivalent transcriptional regulator, that recognizes numerous motifs thanks to the deployment of distinct combinations of its ZFs. The great majority of the ~50,000 genomic locations bound by the CTCF protein in a given cell type is intergenic, and a fraction of these sites overlaps with transcriptional enhancers. Furthermore, a proportion of the regions bound by CTCF intersect genes and promoters. This suggests multiple ways in which CTCF may impact gene expression. At promoters, CTCF can directly affect transcription. At more distal sites, CTCF may orchestrate interactions between regulatory elements and help separate eu- and heterochromatic areas in the genome, exerting a chromatin barrier function. In this review, we outline how CTCF contributes to the regulation of the three-dimensional structure of chromatin and the formation of chromatin domains. We discuss how CTCF binding and architectural functions are regulated. We examine the literature implicating CTCF in controlling gene expression in development and disease both by acting as an insulator and a factor facilitating regulatory elements to efficiently interact with each other in the nuclear space.
Collapse
Affiliation(s)
- Bondita Dehingia
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Małgorzata Milewska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Marcin Janowski
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| |
Collapse
|
15
|
Dubois F, Sidiropoulos N, Weischenfeldt J, Beroukhim R. Structural variations in cancer and the 3D genome. Nat Rev Cancer 2022; 22:533-546. [PMID: 35764888 PMCID: PMC10423586 DOI: 10.1038/s41568-022-00488-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 12/21/2022]
Abstract
Structural variations (SVs) affect more of the cancer genome than any other type of somatic genetic alteration but difficulties in detecting and interpreting them have limited our understanding. Clinical cancer sequencing also increasingly aims to detect SVs, leading to a widespread necessity to interpret their biological and clinical relevance. Recently, analyses of large whole-genome sequencing data sets revealed features that impact rates of SVs across the genome in different cancers. A striking feature has been the extent to which, in both their generation and their influence on the selective fitness of cancer cells, SVs are more specific to individual cancer types than other genetic alterations such as single-nucleotide variants. This Perspective discusses how the folding of the 3D genome, and differences in its folding across cell types, affect observed SV rates in different cancer types as well as how SVs can impact cancer cell fitness.
Collapse
Affiliation(s)
- Frank Dubois
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nikos Sidiropoulos
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
| | - Joachim Weischenfeldt
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Rameen Beroukhim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
16
|
Segueni J, Noordermeer D. CTCF: a misguided jack-of-all-trades in cancer cells. Comput Struct Biotechnol J 2022; 20:2685-2698. [PMID: 35685367 PMCID: PMC9166472 DOI: 10.1016/j.csbj.2022.05.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/13/2022] Open
Abstract
The emergence and progression of cancers is accompanied by a dysregulation of transcriptional programs. The three-dimensional (3D) organization of the human genome has emerged as an important multi-level mediator of gene transcription and regulation. In cancer cells, this organization can be restructured, providing a framework for the deregulation of gene activity. The CTCF protein, initially identified as the product from a tumor suppressor gene, is a jack-of-all-trades for the formation of 3D genome organization in normal cells. Here, we summarize how CTCF is involved in the multi-level organization of the human genome and we discuss emerging insights into how perturbed CTCF function and DNA binding causes the activation of oncogenes in cancer cells, mostly through a process of enhancer hijacking. Moreover, we highlight non-canonical functions of CTCF that can be relevant for the emergence of cancers as well. Finally, we provide guidelines for the computational identification of perturbed CTCF binding and reorganized 3D genome structure in cancer cells.
Collapse
|
17
|
Duan M, Sivapragasam S, Antony JS, Ulibarri J, Hinz JM, Poon GMK, Wyrick JJ, Mao P. High-resolution mapping demonstrates inhibition of DNA excision repair by transcription factors. eLife 2022; 11:73943. [PMID: 35289750 PMCID: PMC8970589 DOI: 10.7554/elife.73943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
DNA base damage arises frequently in living cells and needs to be removed by base excision repair (BER) to prevent mutagenesis and genome instability. Both the formation and repair of base damage occur in chromatin and are conceivably affected by DNA-binding proteins such as transcription factors (TFs). However, to what extent TF binding affects base damage distribution and BER in cells is unclear. Here, we used a genome-wide damage mapping method, N-methylpurine-sequencing (NMP-seq), and characterized alkylation damage distribution and BER at TF binding sites in yeast cells treated with the alkylating agent methyl methanesulfonate (MMS). Our data show that alkylation damage formation was mainly suppressed at the binding sites of yeast TFs ARS binding factor 1 (Abf1) and rDNA enhancer binding protein 1 (Reb1), but individual hotspots with elevated damage levels were also found. Additionally, Abf1 and Reb1 binding strongly inhibits BER in vivo and in vitro, causing slow repair both within the core motif and its adjacent DNA. Repair of ultraviolet (UV) damage by nucleotide excision repair (NER) was also inhibited by TF binding. Interestingly, TF binding inhibits a larger DNA region for NER relative to BER. The observed effects are caused by the TF–DNA interaction, because damage formation and BER can be restored by depletion of Abf1 or Reb1 protein from the nucleus. Thus, our data reveal that TF binding significantly modulates alkylation base damage formation and inhibits repair by the BER pathway. The interplay between base damage formation and BER may play an important role in affecting mutation frequency in gene regulatory regions.
Collapse
Affiliation(s)
- Mingrui Duan
- Department of Internal Medicine, University of New Mexico, Albuquerque, United States
| | - Smitha Sivapragasam
- School of Molecular Biosciences, Washington State University, Pullman, United States
| | - Jacob S Antony
- School of Molecular Biosciences, Washington State University, Pullman, United States
| | - Jenna Ulibarri
- Department of Internal Medicine, University of New Mexico, Albuquerque, United States
| | - John M Hinz
- School of Molecular Biosciences, Washington State University, Pullman, United States
| | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, United States
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, United States
| | - Peng Mao
- Department of Internal Medicine, University of New Mexico, Albuquerque, United States
| |
Collapse
|
18
|
Kim S, Hwang S. G-Quadruplex Matters in Tissue-Specific Tumorigenesis by BRCA1 Deficiency. Genes (Basel) 2022; 13:genes13030391. [PMID: 35327946 PMCID: PMC8948836 DOI: 10.3390/genes13030391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
How and why distinct genetic alterations, such as BRCA1 mutation, promote tumorigenesis in certain tissues, but not others, remain an important issue in cancer research. The underlying mechanisms may reveal tissue-specific therapeutic vulnerabilities. Although the roles of BRCA1, such as DNA damage repair and stalled fork stabilization, obviously contribute to tumor suppression, these ubiquitously important functions cannot explain tissue-specific tumorigenesis by BRCA1 mutations. Recent advances in our understanding of the cancer genome and fundamental cellular processes on DNA, such as transcription and DNA replication, have provided new insights regarding BRCA1-associated tumorigenesis, suggesting that G-quadruplex (G4) plays a critical role. In this review, we summarize the importance of G4 structures in mutagenesis of the cancer genome and cell type-specific gene regulation, and discuss a recently revealed molecular mechanism of G4/base excision repair (BER)-mediated transcriptional activation. The latter adequately explains the correlation between the accumulation of unresolved transcriptional regulatory G4s and multi-level genomic alterations observed in BRCA1-associated tumors. In summary, tissue-specific tumorigenesis by BRCA1 deficiency can be explained by cell type-specific levels of transcriptional regulatory G4s and the role of BRCA1 in resolving it. This mechanism would provide an integrated understanding of the initiation and development of BRCA1-associated tumors.
Collapse
Affiliation(s)
- Sanghyun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Sungnam 13488, Korea;
| | - Sohyun Hwang
- Department of Biomedical Science, College of Life Science, CHA University, Sungnam 13488, Korea;
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Sungnam 13496, Korea
- Correspondence:
| |
Collapse
|
19
|
Johnson KS, Hussein S, Chakraborty P, Muruganantham A, Mikhail S, Gonzalez G, Song S, Jolly MK, Toneff MJ, Benton ML, Lin YC, Taube JH. CTCF Expression and Dynamic Motif Accessibility Modulates Epithelial-Mesenchymal Gene Expression. Cancers (Basel) 2022; 14:cancers14010209. [PMID: 35008373 PMCID: PMC8750563 DOI: 10.3390/cancers14010209] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) and its reversal, mesenchymal-epithelial transition (MET) drive tissue reorganization critical for early development. In carcinomas, processing through EMT, MET, or partial states promotes migration, invasion, dormancy, and metastatic colonization. As a reversible process, EMT is inherently regulated at epigenetic and epigenomic levels. To understand the epigenomic nature of reversible EMT and its partial states, we characterized chromatin accessibility dynamics, transcriptomic output, protein expression, and cellular phenotypes during stepwise reversible EMT. We find that the chromatin insulating protein machinery, including CTCF, is suppressed and re-expressed, coincident with broad alterations in chromatin accessibility, during EMT/MET, and is lower in triple-negative breast cancer cell lines with EMT features. Through an analysis of chromatin accessibility using ATAC-seq, we identify that early phases of EMT are characterized by enrichment for AP-1 family member binding motifs, but also by a diminished enrichment for CTCF binding motifs. Through a loss-of-function analysis, we demonstrate that the suppression of CTCF alters cellular plasticity, strengthening the epithelial phenotype via the upregulation of epithelial markers E-cadherin/CDH1 and downregulation of N-cadherin/CDH2. Conversely, the upregulation of CTCF leads to the upregulation of EMT gene expression and an increase in mesenchymal traits. These findings are indicative of a role of CTCF in regulating epithelial-mesenchymal plasticity and gene expression.
Collapse
Affiliation(s)
- Kelsey S. Johnson
- Department of Biology, Baylor University, Waco, TX 76706, USA; (K.S.J.); (A.M.); (S.M.); (G.G.); (S.S.)
| | - Shaimaa Hussein
- Baylor Institute for Immunology Research, Baylor Scott & White, Dallas, TX 75246, USA; (S.H.); (Y.C.L.)
| | - Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (P.C.); (M.K.J.)
| | - Arvind Muruganantham
- Department of Biology, Baylor University, Waco, TX 76706, USA; (K.S.J.); (A.M.); (S.M.); (G.G.); (S.S.)
| | - Sheridan Mikhail
- Department of Biology, Baylor University, Waco, TX 76706, USA; (K.S.J.); (A.M.); (S.M.); (G.G.); (S.S.)
| | - Giovanny Gonzalez
- Department of Biology, Baylor University, Waco, TX 76706, USA; (K.S.J.); (A.M.); (S.M.); (G.G.); (S.S.)
| | - Shuxuan Song
- Department of Biology, Baylor University, Waco, TX 76706, USA; (K.S.J.); (A.M.); (S.M.); (G.G.); (S.S.)
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (P.C.); (M.K.J.)
| | | | | | - Yin C. Lin
- Baylor Institute for Immunology Research, Baylor Scott & White, Dallas, TX 75246, USA; (S.H.); (Y.C.L.)
| | - Joseph H. Taube
- Department of Biology, Baylor University, Waco, TX 76706, USA; (K.S.J.); (A.M.); (S.M.); (G.G.); (S.S.)
- Dan L. Duncan Cancer Center, Houston, TX 76706, USA
- Correspondence:
| |
Collapse
|
20
|
Thompson SRL, Lee DK, Lachance MA, Smith DR. Mutational Effects of Mobile Introns on the Mitochondrial Genomes of Metschnikowia Yeasts. Front Genet 2021; 12:785218. [PMID: 34804133 PMCID: PMC8601654 DOI: 10.3389/fgene.2021.785218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022] Open
Abstract
It has been argued that DNA repair by homologous recombination in the context of endonuclease-mediated cleavage can cause mutations. To better understand this phenomenon, we examined homologous recombination following endonuclease cleavage in a native genomic context: the movement of self-splicing introns in the mitochondrial genomes of Metschnikowia yeasts. Self-splicing mitochondrial introns are mobile elements, which can copy and paste themselves at specific insertion sites in mitochondrial DNA using a homing endonuclease in conjunction with homologous recombination. Here, we explore the mutational effects of self-splicing introns by comparing sequence variation within the intron-rich cox1 and cob genes from 71 strains (belonging to 40 species) from the yeast genus Metschnikowia. We observed a higher density of single nucleotide polymorphisms around self-splicing-intron insertion sites. Given what is currently known about the movement of organelle introns, it is likely that their mutational effects result from the high binding affinity of endonucleases and their interference with repair machinery during homologous recombination (or, alternatively, via gene conversion occurring during the intron insertion process). These findings suggest that there are fitness costs to harbouring self-splicing, mobile introns and will help us better understand the risks associated with modern biotechnologies that use endonuclease-mediated homologous recombination, such as CRISPR-Cas9 gene editing.
Collapse
Affiliation(s)
- Scout R L Thompson
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Dong Kyung Lee
- Department of Biology, University of Western Ontario, London, ON, Canada
| | | | - David Roy Smith
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
21
|
Kaiser VB, Talmane L, Kumar Y, Semple F, MacLennan M, FitzPatrick DR, Taylor MS, Semple CA. Mutational bias in spermatogonia impacts the anatomy of regulatory sites in the human genome. Genome Res 2021; 31:1994-2007. [PMID: 34417209 PMCID: PMC8559717 DOI: 10.1101/gr.275407.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/19/2021] [Indexed: 12/03/2022]
Abstract
Mutation in the germline is the ultimate source of genetic variation, but little is known about the influence of germline chromatin structure on mutational processes. Using ATAC-seq, we profile the open chromatin landscape of human spermatogonia, the most proliferative cell type of the germline, identifying transcription factor binding sites (TFBSs) and PRDM9 binding sites, a subset of which will initiate meiotic recombination. We observe an increase in rare structural variant (SV) breakpoints at PRDM9-bound sites, implicating meiotic recombination in the generation of structural variation. Many germline TFBSs, such as NRF1, are also associated with increased rates of SV breakpoints, apparently independent of recombination. Singleton short insertions (≥5 bp) are highly enriched at TFBSs, particularly at sites bound by testis active TFs, and their rates correlate with those of structural variant breakpoints. Short insertions often duplicate the TFBS motif, leading to clustering of motif sites near regulatory regions in this male-driven evolutionary process. Increased mutation loads at germline TFBSs disproportionately affect neural enhancers with activity in spermatogonia, potentially altering neurodevelopmental regulatory architecture. Local chromatin structure in spermatogonia is thus pervasive in shaping both evolution and disease.
Collapse
Affiliation(s)
- Vera B Kaiser
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Lana Talmane
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Yatendra Kumar
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Fiona Semple
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Marie MacLennan
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - David R FitzPatrick
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Martin S Taylor
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Colin A Semple
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
22
|
Sivapragasam S, Stark B, Albrecht AV, Bohm KA, Mao P, Emehiser RG, Roberts SA, Hrdlicka PJ, Poon GMK, Wyrick JJ. CTCF binding modulates UV damage formation to promote mutation hot spots in melanoma. EMBO J 2021; 40:e107795. [PMID: 34487363 DOI: 10.15252/embj.2021107795] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/29/2022] Open
Abstract
Somatic mutations in DNA-binding sites for CCCTC-binding factor (CTCF) are significantly elevated in many cancers. Prior analysis has suggested that elevated mutation rates at CTCF-binding sites in skin cancers are a consequence of the CTCF-cohesin complex inhibiting repair of UV damage. Here, we show that CTCF binding modulates the formation of UV damage to induce mutation hot spots. Analysis of genome-wide CPD-seq data in UV-irradiated human cells indicates that formation of UV-induced cyclobutane pyrimidine dimers (CPDs) is primarily suppressed by CTCF binding but elevated at specific locations within the CTCF motif. Locations of CPD hot spots in the CTCF-binding motif coincide with mutation hot spots in melanoma. A similar pattern of damage formation is observed at CTCF-binding sites in vitro, indicating that UV damage modulation is a direct consequence of CTCF binding. We show that CTCF interacts with binding sites containing UV damage and inhibits repair by a model repair enzyme in vitro. Structural analysis and molecular dynamic simulations reveal the molecular mechanism for how CTCF binding modulates CPD formation.
Collapse
Affiliation(s)
- Smitha Sivapragasam
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Bastian Stark
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | | | - Kaitlynne A Bohm
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Peng Mao
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA.,Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | | | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | | | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, GA, USA.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA.,Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| |
Collapse
|
23
|
An Epigenetic Perspective on Intra-Tumour Heterogeneity: Novel Insights and New Challenges from Multiple Fields. Cancers (Basel) 2021; 13:cancers13194969. [PMID: 34638453 PMCID: PMC8508087 DOI: 10.3390/cancers13194969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Although research on cancer biology in recent decades has unveiled the main genetic perturbations driving the onset of tumorigenesis, we are still far from properly treating this disease without the occurrence of drug resistance and metastatic burden. This achievement is hampered by the onset of intra-tumour heterogeneity (ITH), which increases cancer cell fitness and plasticity, thereby fostering cell adaptation to foreign environments and stimuli. In this review, we discuss the contribution of the epigenetic factors in sustaining ITH and their interplay with the tumour microenvironment. We also highlight the recent technological advancements that are contributing to defining the epigenetic mechanisms governing tumour heterogeneity at the single-cell level. Abstract Cancer is a group of heterogeneous diseases that results from the occurrence of genetic alterations combined with epigenetic changes and environmental stimuli that increase cancer cell plasticity. Indeed, multiple cancer cell populations coexist within the same tumour, favouring cancer progression and metastatic dissemination as well as drug resistance, thereby representing a major obstacle for treatment. Epigenetic changes contribute to the onset of intra-tumour heterogeneity (ITH) as they facilitate cell adaptation to perturbation of the tumour microenvironment. Despite being its central role, the intrinsic multi-layered and reversible epigenetic pattern limits the possibility to uniquely determine its contribution to ITH. In this review, we first describe the major epigenetic mechanisms involved in tumourigenesis and then discuss how single-cell-based approaches contribute to dissecting the key role of epigenetic changes in tumour heterogeneity. Furthermore, we highlight the importance of dissecting the interplay between genetics, epigenetics, and tumour microenvironments to decipher the molecular mechanisms governing tumour progression and drug resistance.
Collapse
|
24
|
Abstract
Tumour formation involves random mutagenic events and positive evolutionary selection acting on a subset of such events, referred to as driver mutations. A decade of careful surveying of tumour DNA using exome-based analyses has revealed a multitude of protein-coding somatic driver mutations, some of which are clinically actionable. Today, a transition towards whole-genome analysis is well under way, technically enabling the discovery of potential driver mutations occurring outside protein-coding sequences. Mutations are abundant in this vast non-coding space, which is more than 50 times larger than the coding exome, but reliable identification of selection signals in non-coding DNA remains a challenge. In this Review, we discuss recent findings in the field, where the emerging landscape is one in which non-coding driver mutations appear to be relatively infrequent. Nevertheless, we highlight several notable discoveries. We consider possible reasons for the relative absence of non-coding driver events, as well as the difficulties associated with detecting signals of positive selection in non-coding DNA.
Collapse
Affiliation(s)
- Kerryn Elliott
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
25
|
Lee CA, Abd-Rabbo D, Reimand J. Functional and genetic determinants of mutation rate variability in regulatory elements of cancer genomes. Genome Biol 2021; 22:133. [PMID: 33941236 PMCID: PMC8091793 DOI: 10.1186/s13059-021-02318-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Background Cancer genomes are shaped by mutational processes with complex spatial variation at multiple scales. Entire classes of regulatory elements are affected by local variations in mutation frequency. However, the underlying mechanisms with functional and genetic determinants remain poorly understood. Results We characterise the mutational landscape of 1.3 million gene-regulatory and chromatin architectural elements in 2419 whole cancer genomes with transcriptional and pathway activity, functional conservation and recurrent driver events. We develop RM2, a statistical model that quantifies mutational enrichment or depletion in classes of genomic elements through genetic, trinucleotide and megabase-scale effects. We report a map of localised mutational processes affecting CTCF binding sites, transcription start sites (TSS) and tissue-specific open-chromatin regions. Increased mutation frequency in TSSs associates with mRNA abundance in most cancer types, while open-chromatin regions are generally enriched in mutations. We identify ~ 10,000 CTCF binding sites with core DNA motifs and constitutive binding in 66 cell types that represent focal points of mutagenesis. We detect site-specific mutational signature enrichments, such as SBS40 in open-chromatin regions in prostate cancer and SBS17b in CTCF binding sites in gastrointestinal cancers. Candidate drivers of localised mutagenesis are also apparent: BRAF mutations associate with mutational enrichments at CTCF binding sites in melanoma, and ARID1A mutations with TSS-specific mutagenesis in pancreatic cancer. Conclusions Our method and catalogue of localised mutational processes provide novel perspectives to cancer genome evolution, mutagenesis, DNA repair and driver gene discovery. The functional and genetic correlates of mutational processes suggest mechanistic hypotheses for future studies.
Collapse
Affiliation(s)
- Christian A Lee
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Diala Abd-Rabbo
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Jüri Reimand
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
26
|
Gulino A, Stamoulakatou E, Piro RM. MutViz 2.0: visual analysis of somatic mutations and the impact of mutational signatures on selected genomic regions. NAR Cancer 2021; 3:zcab012. [PMID: 34316703 PMCID: PMC8210215 DOI: 10.1093/narcan/zcab012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/24/2021] [Accepted: 03/12/2021] [Indexed: 01/28/2023] Open
Abstract
Patterns of somatic single nucleotide variants observed in human cancers vary widely between different tumor types. They depend not only on the activity of diverse mutational processes, such as exposure to ultraviolet light and the deamination of methylated cytosines, but largely also on the sequence content of different genomic regions on which these processes act. With MutViz (http://gmql.eu/mutviz/), we have presented a user-friendly web tool for the identification of mutation enrichments that offers preloaded mutations from public datasets for a variety of cancer types, well organized within an effective database architecture. Somatic mutation patterns can be visually and statistically analyzed within arbitrary sets of small, user-provided genomic regions, such as promoters or collections of transcription factor binding sites. Here, we present MutViz 2.0, a largely extended and consolidated version of the tool: we took into account the immediate (trinucleotide) sequence context of mutations, improved the representation of clinical annotation of tumor samples and devised a method for signature refitting on limited genomic regions to infer the contribution of individual mutational processes to the mutation patterns observed in these regions. We described both the features of MutViz 2.0, concentrating on the novelties, and the substantial re-engineering of the cloud-based architecture.
Collapse
Affiliation(s)
- Andrea Gulino
- Correspondence may also be addressed to Andrea Gulino. Tel: +39 02 2399 3538;
| | - Eirini Stamoulakatou
- Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Via Ponzio 34/5, 20133 Milan, Italy
| | - Rosario M Piro
- To whom correspondence should be addressed. Tel: +39 02 2399 3538; Fax: +39 02 2399 3411;
| |
Collapse
|
27
|
Gong H, Yang Y, Zhang S, Li M, Zhang X. Application of Hi-C and other omics data analysis in human cancer and cell differentiation research. Comput Struct Biotechnol J 2021; 19:2070-2083. [PMID: 33995903 PMCID: PMC8086027 DOI: 10.1016/j.csbj.2021.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
With the development of 3C (chromosome conformation capture) and its derivative technology Hi-C (High-throughput chromosome conformation capture) research, the study of the spatial structure of the genomic sequence in the nucleus helps researchers understand the functions of biological processes such as gene transcription, replication, repair, and regulation. In this paper, we first introduce the research background and purpose of Hi-C data visualization analysis. After that, we discuss the Hi-C data analysis methods from genome 3D structure, A/B compartment, TADs (topologically associated domain), and loop detection. We also discuss how to apply genome visualization technologies to the identification of chromosome feature structures. We continue with a review of correlation analysis differences among multi-omics data, and how to apply Hi-C and other omics data analysis into cancer and cell differentiation research. Finally, we summarize the various problems in joint analyses based on Hi-C and other multi-omics data. We believe this review can help researchers better understand the progress and applications of 3D genome technology.
Collapse
Affiliation(s)
- Haiyan Gong
- Department of Computer Science and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing 100083, China
- Shunde Graduate School of University of Science and Technology Beijing, Foshan 528000, China
| | - Yi Yang
- Department of Computer Science and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Sichen Zhang
- Department of Computer Science and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Minghong Li
- Department of Computer Science and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaotong Zhang
- Department of Computer Science and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing 100083, China
- Shunde Graduate School of University of Science and Technology Beijing, Foshan 528000, China
| |
Collapse
|
28
|
Kubo N, Ishii H, Xiong X, Bianco S, Meitinger F, Hu R, Hocker JD, Conte M, Gorkin D, Yu M, Li B, Dixon JR, Hu M, Nicodemi M, Zhao H, Ren B. Promoter-proximal CTCF binding promotes distal enhancer-dependent gene activation. Nat Struct Mol Biol 2021; 28:152-161. [PMID: 33398174 PMCID: PMC7913465 DOI: 10.1038/s41594-020-00539-5] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/06/2020] [Indexed: 01/28/2023]
Abstract
The CCCTC-binding factor (CTCF) works together with the cohesin complex to drive the formation of chromatin loops and topologically associating domains, but its role in gene regulation has not been fully defined. Here, we investigated the effects of acute CTCF loss on chromatin architecture and transcriptional programs in mouse embryonic stem cells undergoing differentiation to neural precursor cells. We identified CTCF-dependent enhancer-promoter contacts genome-wide and found that they disproportionately affect genes that are bound by CTCF at the promoter and are dependent on long-distance enhancers. Disruption of promoter-proximal CTCF binding reduced both long-range enhancer-promoter contacts and transcription, which were restored by artificial tethering of CTCF to the promoter. Promoter-proximal CTCF binding is correlated with the transcription of over 2,000 genes across a diverse set of adult tissues. Taken together, the results of our study show that CTCF binding to promoters may promote long-distance enhancer-dependent transcription at specific genes in diverse cell types.
Collapse
Affiliation(s)
- Naoki Kubo
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Haruhiko Ishii
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Xiong Xiong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Simona Bianco
- Department of Physics, University of Naples Federico II, and INFN Complesso di Monte Sant’Angelo, Naples, Italy
| | - Franz Meitinger
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Rong Hu
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - James D. Hocker
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Mattia Conte
- Department of Physics, University of Naples Federico II, and INFN Complesso di Monte Sant’Angelo, Naples, Italy
| | - David Gorkin
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Miao Yu
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Bin Li
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Jesse R. Dixon
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Mario Nicodemi
- Department of Physics, University of Naples Federico II, and INFN Complesso di Monte Sant’Angelo, Naples, Italy
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Departments of Chemistry, Biochemistry, and Bioengineering, and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA,Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA,Department of Cellular and Molecular Medicine, Moores Cancer Center and Institute of Genome Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA,Correspondence to:
| |
Collapse
|
29
|
Hennessey RC, Brown KM. Cancer regulatory variation. Curr Opin Genet Dev 2021; 66:41-49. [DOI: 10.1016/j.gde.2020.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022]
|
30
|
Selection against archaic hominin genetic variation in regulatory regions. Nat Ecol Evol 2020; 4:1558-1566. [PMID: 32839541 DOI: 10.1038/s41559-020-01284-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/21/2020] [Indexed: 01/20/2023]
Abstract
Traces of Neandertal and Denisovan DNA persist in the modern human gene pool, but have been systematically purged by natural selection from genes and other functionally important regions. This implies that many archaic alleles harmed the fitness of hybrid individuals, but the nature of this harm is poorly understood. Here, we show that enhancers contain less Neandertal and Denisovan variation than expected given the background selection they experience, suggesting that selection acted to purge these regions of archaic alleles that disrupted their gene regulatory functions. We infer that selection acted mainly on young archaic variation that arose in Neandertals or Denisovans shortly before their contact with humans; enhancers are not depleted of older variants found in both archaic species. Some types of enhancer appear to have tolerated introgression better than others; compared with tissue-specific enhancers, pleiotropic enhancers show stronger depletion of archaic single-nucleotide polymorphisms. To some extent, evolutionary constraint is predictive of introgression depletion, but certain tissues' enhancers are more depleted of Neandertal and Denisovan alleles than expected given their comparative tolerance to new mutations. Foetal brain and muscle are the tissues whose enhancers show the strongest depletion of archaic alleles, but only brain enhancers show evidence of unusually stringent purifying selection. We conclude that epistatic incompatibilities between human and archaic alleles are needed to explain the degree of archaic variant depletion from foetal muscle enhancers, perhaps due to divergent selection for higher muscle mass in archaic hominins compared with humans.
Collapse
|
31
|
Lee CA, Abd-rabbo D, Reimand J. Functional and genetic determinants of mutation rate variability in regulatory elements of cancer genomes.. [DOI: 10.1101/2020.07.29.226373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
ABSTRACTBackgroundCancer genomes are shaped by mutational processes with complex spatial variation at multiple scales. Entire classes of regulatory elements are affected by local variations in mutation frequency. However, the underlying mutational mechanisms with functional and genetic determinants remain poorly understood.ResultsWe characterised the mutational landscape of 1.3 million gene regulatory and chromatin architectural elements in 2,419 whole cancer genomes with transcriptional and pathway activity, functional conservation and recurrent driver events. We developed RM2, a statistical model that quantifies mutational enrichment or depletion in classes of genomic elements through genetic, trinucleotide and megabase-scale effects. We report a map of localised mutational processes affecting CTCF binding sites, transcription start sites (TSS) and tissue-specific open-chromatin regions. We show that increased mutational frequency in TSSs correlates with mRNA abundance in most cancer types, while open-chromatin regions are generally enriched in mutations. We identified ∼10,000 CTCF binding sites with core DNA motifs and constitutive binding in 66 cell types that represent focal points of local mutagenesis. We detected site-specific mutational signatures, such as SBS40 in open-chromatin regions in prostate cancer and SBS17b in CTCF binding sites in gastrointestinal cancers. We also proposed candidate drivers of localised mutagenesis: BRAF mutations associate with mutational enrichments at CTCF binding sites in melanoma, and ARID1A mutations with TSS-specific mutations in pancreatic cancer.ConclusionsOur method and catalogue of localised mutational processes provide novel perspectives to cancer genome evolution, mutagenesis, DNA repair and driver discovery. Functional and genetic correlates of localised mutagenesis provide mechanistic hypotheses for future studies.
Collapse
|
32
|
Xu L, Gao N, Wang Z, Xu L, Liu Y, Chen Y, Xu L, Gao X, Zhang L, Gao H, Zhu B, Li J. Incorporating Genome Annotation Into Genomic Prediction for Carcass Traits in Chinese Simmental Beef Cattle. Front Genet 2020; 11:481. [PMID: 32499816 PMCID: PMC7243208 DOI: 10.3389/fgene.2020.00481] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/17/2020] [Indexed: 01/08/2023] Open
Abstract
Various methods have been proposed for genomic prediction (GP) in livestock. These methods have mainly focused on statistical considerations and did not include genome annotation information. In this study, to improve the predictive performance of carcass traits in Chinese Simmental beef cattle, we incorporated the genome annotation information into GP. Single nucleotide polymorphisms (SNPs) were annotated to five genomic classes: intergenic, gene, exon, protein coding sequences, and 3'/5' untranslated region. Haploblocks were constructed for all markers and these five genomic classes by defining a biologically functional unit, and haplotype effects were modeled in both numerical dosage and categorical coding strategies. The first-order epistatic effects among SNPs and haplotypes were modeled using a categorical epistasis model. For all makers, the extension from the SNP-based model to a haplotype-based model improved the accuracy by 5.4-9.8% for carcass weight (CW), live weight (LW), and striploin (SI). For the five genomic classes using the haplotype-based prediction model, the incorporation of gene class information into the model improved the accuracies by an average of 1.4, 2.1, and 1.3% for CW, LW, and SI, respectively, compared with their corresponding results for all markers. Including the first-order epistatic effects into the prediction models improved the accuracies in some traits and genomic classes. Therefore, for traits with moderate-to-high heritability, incorporating genome annotation information of gene class into haplotype-based prediction models could be considered as a promising tool for GP in Chinese Simmental beef cattle, and modeling epistasis in prediction can further increase the accuracy to some degree.
Collapse
Affiliation(s)
- Ling Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Gao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zezhao Wang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Liu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Chen
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingyang Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lupei Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijiang Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Centre of Beef Cattle Genetic Evaluation, Beijing, China
| | - Bo Zhu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Centre of Beef Cattle Genetic Evaluation, Beijing, China
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Centre of Beef Cattle Genetic Evaluation, Beijing, China
| |
Collapse
|
33
|
Akhtar MS, Akhter N, Najm MZ, Deo SVS, Shukla NK, Almalki SSR, Alharbi RA, Sindi AAA, Alruwetei A, Ahmad A, Husain SA. Association of mutation and low expression of the CTCF gene with breast cancer progression. Saudi Pharm J 2020; 28:607-614. [PMID: 32435142 PMCID: PMC7229322 DOI: 10.1016/j.jsps.2020.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/29/2020] [Indexed: 12/15/2022] Open
Abstract
Background CTCF encodes 11-zinc finger protein which is implicated in multiple tumors including the carcinoma of the breast. The Present study investigates the association of CTCF mutations and their expression in breast cancer cases. Methods A total of 155 breast cancer and an equal number of adjacent normal tissue samples from 155 breast cancer patients were examined for CTCF mutation(s) by PCR-SSCP and automated DNA sequencing. Immunohistochemistry (IHC) method was used to analyze CTCF expression. Molecular findings were statistically analyzed with various clinicopathological features to identify associations of clinical relevance. Results Of the total, 16.1% (25/155) cases exhibited mutation in the CTCF gene. Missense mutations Gln > His (G > T) in exon 1 and silent mutations Ser > Ser (C > T) in exon 4 of CTCF gene were analyzed. A significant association was observed between CTCF mutations and some clinicopathological parameters namely menopausal status (p = 0.02) tumor stage (p = 0.03) nodal status (p = 0.03) and ER expression (p = 0.04). Protein expression analysis showed 42.58% samples having low or no expression (+), 38.0% with moderate (++) expression and 19.35% having high (+++) expression for CTCF. A significant association was found between CTCF protein expression and clinicopathological parameters include histological grade (p = 0.04), tumor stage (p = 0.04), nodal status (p = 0.03) and ER status (p = 0.04). Conclusions The data suggest that CTCF mutations leading to its inactivation significantly contribute to the progression of breast cancer.
Collapse
Affiliation(s)
- Md Salman Akhtar
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.,Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Naseem Akhter
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.,Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | | | - S V S Deo
- Department of Surgical Oncology, DR. BRA-IRCH, AIIMS, New Delhi 110029, India
| | - N K Shukla
- Department of Surgical Oncology, DR. BRA-IRCH, AIIMS, New Delhi 110029, India
| | | | - Raed A Alharbi
- Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | | | - Abdulmohsen Alruwetei
- Department of Medical Laboratory, College of Applied Medical Sciences, Qassim University, Qassim, Saudi Arabia
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Akhtar Husain
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
34
|
Gonzalez-Perez A, Sabarinathan R, Lopez-Bigas N. Local Determinants of the Mutational Landscape of the Human Genome. Cell 2020; 177:101-114. [PMID: 30901533 DOI: 10.1016/j.cell.2019.02.051] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 12/19/2022]
Abstract
Large-scale chromatin features, such as replication time and accessibility influence the rate of somatic and germline mutations at the megabase scale. This article reviews how local chromatin structures -e.g., DNA wrapped around nucleosomes, transcription factors bound to DNA- affect the mutation rate at a local scale. It dissects how the interaction of some mutagenic agents and/or DNA repair systems with these local structures influence the generation of mutations. We discuss how this local mutation rate variability affects our understanding of the evolution of the genomic sequence, and the study of the evolution of organisms and tumors.
Collapse
Affiliation(s)
- Abel Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
| | - Radhakrishnan Sabarinathan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
35
|
Androgen receptor-binding sites are highly mutated in prostate cancer. Nat Commun 2020; 11:832. [PMID: 32047165 PMCID: PMC7012874 DOI: 10.1038/s41467-020-14644-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/20/2020] [Indexed: 12/20/2022] Open
Abstract
Androgen receptor (AR) signalling is essential in nearly all prostate cancers. Any alterations to AR-mediated transcription can have a profound effect on carcinogenesis and tumor growth. While mutations of the AR protein have been extensively studied, little is known about those somatic mutations that occur at the non-coding regions where AR binds DNA. Using clinical whole genome sequencing, we show that AR binding sites have a dramatically increased rate of mutations that is greater than any other transcription factor and specific to only prostate cancer. Demonstrating this may be common to lineage-specific transcription factors, estrogen receptor binding sites were also found to have elevated rate of mutations in breast cancer. We provide evidence that these mutations at AR binding sites, and likely other related transcription factors, are caused by faulty repair of abasic sites. Overall, this work demonstrates that non-coding AR binding sites are frequently mutated in prostate cancer and can impact enhancer activity.
Collapse
|
36
|
Singh S, Szlachta K, Manukyan A, Raimer HM, Dinda M, Bekiranov S, Wang YH. Pausing sites of RNA polymerase II on actively transcribed genes are enriched in DNA double-stranded breaks. J Biol Chem 2020; 295:3990-4000. [PMID: 32029477 DOI: 10.1074/jbc.ra119.011665] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
DNA double-stranded breaks (DSBs) are strongly associated with active transcription, and promoter-proximal pausing of RNA polymerase II (Pol II) is a critical step in transcriptional regulation. Mapping the distribution of DSBs along actively expressed genes and identifying the location of DSBs relative to pausing sites can provide mechanistic insights into transcriptional regulation. Using genome-wide DNA break mapping/sequencing techniques at single-nucleotide resolution in human cells, we found that DSBs are preferentially located around transcription start sites of highly transcribed and paused genes and that Pol II promoter-proximal pausing sites are enriched in DSBs. We observed that DSB frequency at pausing sites increases as the strength of pausing increases, regardless of whether the pausing sites are near or far from annotated transcription start sites. Inhibition of topoisomerase I and II by camptothecin and etoposide treatment, respectively, increased DSBs at the pausing sites as the concentrations of drugs increased, demonstrating the involvement of topoisomerases in DSB generation at the pausing sites. DNA breaks generated by topoisomerases are short-lived because of the religation activity of these enzymes, which these drugs inhibit; therefore, the observation of increased DSBs with increasing drug doses at pausing sites indicated active recruitment of topoisomerases to these sites. Furthermore, the enrichment and locations of DSBs at pausing sites were shared among different cell types, suggesting that Pol II promoter-proximal pausing is a common regulatory mechanism. Our findings support a model in which topoisomerases participate in Pol II promoter-proximal pausing and indicated that DSBs at pausing sites contribute to transcriptional activation.
Collapse
Affiliation(s)
- Sandeep Singh
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908
| | - Karol Szlachta
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908
| | - Arkadi Manukyan
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908
| | - Heather M Raimer
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908
| | - Manikarna Dinda
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
37
|
Fang H, Barbour JA, Poulos RC, Katainen R, Aaltonen LA, Wong JWH. Mutational processes of distinct POLE exonuclease domain mutants drive an enrichment of a specific TP53 mutation in colorectal cancer. PLoS Genet 2020; 16:e1008572. [PMID: 32012149 PMCID: PMC7018097 DOI: 10.1371/journal.pgen.1008572] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/13/2020] [Accepted: 12/17/2019] [Indexed: 01/16/2023] Open
Abstract
Cancer genomes with mutations in the exonuclease domain of Polymerase Epsilon (POLE) present with an extraordinarily high somatic mutation burden. In vitro studies have shown that distinct POLE mutants exhibit different polymerase activity. Yet, genome-wide mutation patterns and driver mutation formation arising from different POLE mutants remains unclear. Here, we curated somatic mutation calls from 7,345 colorectal cancer samples from published studies and publicly available databases. These include 44 POLE mutant samples including 9 with whole genome sequencing data available. The POLE mutant samples were categorized based on the specific POLE mutation present. Mutation spectrum, associations of somatic mutations with epigenomics features and co-occurrence with specific driver mutations were examined across different POLE mutants. We found that different POLE mutants exhibit distinct mutation spectrum with significantly higher relative frequency of C>T mutations in POLE V411L mutants. Our analysis showed that this increase frequency in C>T mutations is not dependent on DNA methylation and not associated with other genomic features and is thus specifically due to DNA sequence context alone. Notably, we found strong association of the TP53 R213* mutation specifically with POLE P286R mutants. This truncation mutation occurs within the TT[C>T]GA context. For C>T mutations, this sequence context is significantly more likely to be mutated in POLE P286R mutants compared with other POLE exonuclease domain mutants. This study refines our understanding of DNA polymerase fidelity and underscores genome-wide mutation spectrum and specific cancer driver mutation formation observed in POLE mutant cancers. Cancer arises through the accumulation of somatic mutations. The way that these somatic mutations form can vary greatly in different cancers. One of the most mutagenic processes that have been identified is caused by mutations within a replicative DNA polymerase known as Polymerase Epsilon (POLE). Cancers with such mutations present with hundreds of thousands of somatic mutations in their genome. Previous cancer genomics studies have identified a number of mutation hotspots in POLE, however how these different POLE mutants behave in affecting mutation distribution has not been studied. Here, we describe the genome-wide mutation profiles of distinct POLE mutant cancers. We find that different mutants indeed result in different mutation profiles and that this can be explained by the different fidelities of these mutants in replicating specific DNA sequences. Significantly, these differences have important implications in cancer formation as we found that a POLE mutation is strongly associated with a specific truncation of the TP53 cancer driver gene. This study furthers our understanding of the POLE mutagenic process in cancer and provide important insights into carcinogenesis in cancers with such mutations.
Collapse
Affiliation(s)
- Hu Fang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Jayne A. Barbour
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
- Prince of Wales Clinical School, UNSW Medicine, UNSW Sydney, New South Wales, Australia
| | - Rebecca C. Poulos
- Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Riku Katainen
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Lauri A. Aaltonen
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Jason W. H. Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
- Prince of Wales Clinical School, UNSW Medicine, UNSW Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
38
|
Zhu H, Uusküla-Reimand L, Isaev K, Wadi L, Alizada A, Shuai S, Huang V, Aduluso-Nwaobasi D, Paczkowska M, Abd-Rabbo D, Ocsenas O, Liang M, Thompson JD, Li Y, Ruan L, Krassowski M, Dzneladze I, Simpson JT, Lupien M, Stein LD, Boutros PC, Wilson MD, Reimand J. Candidate Cancer Driver Mutations in Distal Regulatory Elements and Long-Range Chromatin Interaction Networks. Mol Cell 2020; 77:1307-1321.e10. [PMID: 31954095 DOI: 10.1016/j.molcel.2019.12.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/04/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022]
Abstract
A comprehensive catalog of cancer driver mutations is essential for understanding tumorigenesis and developing therapies. Exome-sequencing studies have mapped many protein-coding drivers, yet few non-coding drivers are known because genome-wide discovery is challenging. We developed a driver discovery method, ActiveDriverWGS, and analyzed 120,788 cis-regulatory modules (CRMs) across 1,844 whole tumor genomes from the ICGC-TCGA PCAWG project. We found 30 CRMs with enriched SNVs and indels (FDR < 0.05). These frequently mutated regulatory elements (FMREs) were ubiquitously active in human tissues, showed long-range chromatin interactions and mRNA abundance associations with target genes, and were enriched in motif-rewiring mutations and structural variants. Genomic deletion of one FMRE in human cells caused proliferative deficiencies and transcriptional deregulation of cancer genes CCNB1IP1, CDH1, and CDKN2B, validating observations in FMRE-mutated tumors. Pathway analysis revealed further sub-significant FMREs at cancer genes and processes, indicating an unexplored landscape of infrequent driver mutations in the non-coding genome.
Collapse
Affiliation(s)
- Helen Zhu
- Computational Biology Program, Ontario Institute for Cancer Research, 661 University Avenue Suite 510, Toronto, ON M5G 0A3, Canada; Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada
| | - Liis Uusküla-Reimand
- Program in Genetics and Genome Biology, SickKids Research Institute, Peter Gilgan Centre for Research and Learning (PGCRL), 686 Bay Street, Toronto, ON M5G 0A4, Canada; Division of Gene Technology, Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Keren Isaev
- Computational Biology Program, Ontario Institute for Cancer Research, 661 University Avenue Suite 510, Toronto, ON M5G 0A3, Canada; Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada
| | - Lina Wadi
- Computational Biology Program, Ontario Institute for Cancer Research, 661 University Avenue Suite 510, Toronto, ON M5G 0A3, Canada
| | - Azad Alizada
- Program in Genetics and Genome Biology, SickKids Research Institute, Peter Gilgan Centre for Research and Learning (PGCRL), 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Shimin Shuai
- Computational Biology Program, Ontario Institute for Cancer Research, 661 University Avenue Suite 510, Toronto, ON M5G 0A3, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Vincent Huang
- Computational Biology Program, Ontario Institute for Cancer Research, 661 University Avenue Suite 510, Toronto, ON M5G 0A3, Canada
| | - Dike Aduluso-Nwaobasi
- Computational Biology Program, Ontario Institute for Cancer Research, 661 University Avenue Suite 510, Toronto, ON M5G 0A3, Canada
| | - Marta Paczkowska
- Computational Biology Program, Ontario Institute for Cancer Research, 661 University Avenue Suite 510, Toronto, ON M5G 0A3, Canada
| | - Diala Abd-Rabbo
- Computational Biology Program, Ontario Institute for Cancer Research, 661 University Avenue Suite 510, Toronto, ON M5G 0A3, Canada
| | - Oliver Ocsenas
- Computational Biology Program, Ontario Institute for Cancer Research, 661 University Avenue Suite 510, Toronto, ON M5G 0A3, Canada; Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada
| | - Minggao Liang
- Program in Genetics and Genome Biology, SickKids Research Institute, Peter Gilgan Centre for Research and Learning (PGCRL), 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - J Drew Thompson
- Computational Biology Program, Ontario Institute for Cancer Research, 661 University Avenue Suite 510, Toronto, ON M5G 0A3, Canada
| | - Yao Li
- Computational Biology Program, Ontario Institute for Cancer Research, 661 University Avenue Suite 510, Toronto, ON M5G 0A3, Canada
| | - Luyao Ruan
- Computational Biology Program, Ontario Institute for Cancer Research, 661 University Avenue Suite 510, Toronto, ON M5G 0A3, Canada
| | - Michal Krassowski
- Computational Biology Program, Ontario Institute for Cancer Research, 661 University Avenue Suite 510, Toronto, ON M5G 0A3, Canada
| | - Irakli Dzneladze
- Computational Biology Program, Ontario Institute for Cancer Research, 661 University Avenue Suite 510, Toronto, ON M5G 0A3, Canada
| | - Jared T Simpson
- Computational Biology Program, Ontario Institute for Cancer Research, 661 University Avenue Suite 510, Toronto, ON M5G 0A3, Canada; Department of Computer Science, University of Toronto, 214 College Street, Toronto, ON M5T 3A1, Canada
| | - Mathieu Lupien
- Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, 101 College Street, Toronto, ON M5G 0A3, Canada
| | - Lincoln D Stein
- Computational Biology Program, Ontario Institute for Cancer Research, 661 University Avenue Suite 510, Toronto, ON M5G 0A3, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada; Department of Human Genetics, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA; Department of Urology, University of California Los Angeles, 200 Medical Plaza Driveway #140, Los Angeles, CA 90024, USA; Institute of Precision Health, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90024, USA; Jonsson Comprehensive Cancer Centre, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90024, USA
| | - Michael D Wilson
- Program in Genetics and Genome Biology, SickKids Research Institute, Peter Gilgan Centre for Research and Learning (PGCRL), 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Jüri Reimand
- Computational Biology Program, Ontario Institute for Cancer Research, 661 University Avenue Suite 510, Toronto, ON M5G 0A3, Canada; Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
39
|
Somatic and Germline Mutation Periodicity Follow the Orientation of the DNA Minor Groove around Nucleosomes. Cell 2019; 175:1074-1087.e18. [PMID: 30388444 DOI: 10.1016/j.cell.2018.10.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/27/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022]
Abstract
Mutation rates along the genome are highly variable and influenced by several chromatin features. Here, we addressed how nucleosomes, the most pervasive chromatin structure in eukaryotes, affect the generation of mutations. We discovered that within nucleosomes, the somatic mutation rate across several tumor cohorts exhibits a strong 10 base pair (bp) periodicity. This periodic pattern tracks the alternation of the DNA minor groove facing toward and away from the histones. The strength and phase of the mutation rate periodicity are determined by the mutational processes active in tumors. We uncovered similar periodic patterns in the genetic variation among human and Arabidopsis populations, also detectable in their divergence from close species, indicating that the same principles underlie germline and somatic mutation rates. We propose that differential DNA damage and repair processes dependent on the minor groove orientation in nucleosome-bound DNA contribute to the 10-bp periodicity in AT/CG content in eukaryotic genomes.
Collapse
|
40
|
Supek F, Lehner B. Scales and mechanisms of somatic mutation rate variation across the human genome. DNA Repair (Amst) 2019; 81:102647. [PMID: 31307927 DOI: 10.1016/j.dnarep.2019.102647] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer genome sequencing has revealed that somatic mutation rates vary substantially across the human genome and at scales from megabase-sized domains to individual nucleotides. Here we review recent work that has both revealed the major mutation biases that operate across the genome and the molecular mechanisms that cause them. The default mutation rate landscape in mammalian genomes results in active genes having low mutation rates because of a combination of factors that increase DNA repair: early DNA replication, transcription, active chromatin modifications and accessible chromatin. Therefore, either an increase in the global mutation rate or a redistribution of mutations from inactive to active DNA can increase the rate at which consequential mutations are acquired in active genes. Several environmental carcinogens and intrinsic mechanisms operating in tumor cells likely cause cancer by this second mechanism: by specifically increasing the mutation rate in active regions of the genome.
Collapse
Affiliation(s)
- Fran Supek
- Genome Data Science, Institut de Recerca Biomedica (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| | - Ben Lehner
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain; Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
41
|
Krumm A, Duan Z. Understanding the 3D genome: Emerging impacts on human disease. Semin Cell Dev Biol 2019; 90:62-77. [PMID: 29990539 PMCID: PMC6329682 DOI: 10.1016/j.semcdb.2018.07.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022]
Abstract
Recent burst of new technologies that allow for quantitatively delineating chromatin structure has greatly expanded our understanding of how the genome is organized in the three-dimensional (3D) space of the nucleus. It is now clear that the hierarchical organization of the eukaryotic genome critically impacts nuclear activities such as transcription, replication, as well as cellular and developmental events such as cell cycle, cell fate decision and embryonic development. In this review, we discuss new insights into how the structural features of the 3D genome hierarchy are established and maintained, how this hierarchy undergoes dynamic rearrangement during normal development and how its perturbation will lead to human disease, highlighting the accumulating evidence that links the diverse 3D genome architecture components to a multitude of human diseases and the emerging mechanisms by which 3D genome derangement causes disease phenotypes.
Collapse
Affiliation(s)
- Anton Krumm
- Department of Microbiology, University of Washington, USA.
| | - Zhijun Duan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, USA; Division of Hematology, Department of Medicine, University of Washington, USA.
| |
Collapse
|
42
|
Liu EM, Martinez-Fundichely A, Diaz BJ, Aronson B, Cuykendall T, MacKay M, Dhingra P, Wong EWP, Chi P, Apostolou E, Sanjana NE, Khurana E. Identification of Cancer Drivers at CTCF Insulators in 1,962 Whole Genomes. Cell Syst 2019; 8:446-455.e8. [PMID: 31078526 PMCID: PMC6917527 DOI: 10.1016/j.cels.2019.04.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 11/20/2018] [Accepted: 04/02/2019] [Indexed: 12/15/2022]
Abstract
Recent studies have shown that mutations at non-coding elements, such as promoters and enhancers, can act as cancer drivers. However, an important class of non-coding elements, namely CTCF insulators, has been overlooked in the previous driver analyses. We used insulator annotations from CTCF and cohesin ChIA-PET and analyzed somatic mutations in 1,962 whole genomes from 21 cancer types. Using the heterogeneous patterns of transcription-factor-motif disruption, functional impact, and recurrence of mutations, we developed a computational method that revealed 21 insulators showing signals of positive selection. In particular, mutations in an insulator in multiple cancer types, including 16% of melanoma samples, are associated with TGFB1 up-regulation. Using CRISPR-Cas9, we find that alterations at two of the most frequently mutated regions in this insulator increase cell growth by 40%-50%, supporting the role of this boundary element as a cancer driver. Thus, our study reveals several CTCF insulators as putative cancer drivers.
Collapse
Affiliation(s)
- Eric Minwei Liu
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alexander Martinez-Fundichely
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Bianca Jay Diaz
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10003, USA
| | - Boaz Aronson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tawny Cuykendall
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Matthew MacKay
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Priyanka Dhingra
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Elissa W P Wong
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ping Chi
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Effie Apostolou
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Neville E Sanjana
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10003, USA
| | - Ekta Khurana
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
43
|
Roberts SA, Brown AJ, Wyrick JJ. Recurrent Noncoding Mutations in Skin Cancers: UV Damage Susceptibility or Repair Inhibition as Primary Driver? Bioessays 2019; 41:e1800152. [PMID: 30801747 PMCID: PMC6571124 DOI: 10.1002/bies.201800152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/05/2018] [Indexed: 12/14/2022]
Abstract
Somatic mutations arising in human skin cancers are heterogeneously distributed across the genome, meaning that certain genomic regions (e.g., heterochromatin or transcription factor binding sites) have much higher mutation densities than others. Regional variations in mutation rates are typically not a consequence of selection, as the vast majority of somatic mutations in skin cancers are passenger mutations that do not promote cell growth or transformation. Instead, variations in DNA repair activity, due to chromatin organization and transcription factor binding, have been proposed to be a primary driver of mutational heterogeneity in melanoma. However, as discussed in this review here, recent studies indicate that chromatin organization and transcription factor binding also significantly modulate the rate at which UV lesions form in DNA. The authors propose that local variations in lesion susceptibility may be an important driver of mutational hotspots in melanoma and other skin cancers, particularly at binding sites for ETS transcription factors.
Collapse
Affiliation(s)
- Steven A. Roberts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| | - Alexander J. Brown
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| | - John J. Wyrick
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| |
Collapse
|
44
|
From Genotype to Phenotype: Through Chromatin. Genes (Basel) 2019; 10:genes10020076. [PMID: 30678090 PMCID: PMC6410296 DOI: 10.3390/genes10020076] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 02/07/2023] Open
Abstract
Advances in sequencing technologies have enabled the exploration of the genetic basis for several clinical disorders by allowing identification of causal mutations in rare genetic diseases. Sequencing technology has also facilitated genome-wide association studies to gather single nucleotide polymorphisms in common diseases including cancer and diabetes. Sequencing has therefore become common in the clinic for both prognostics and diagnostics. The success in follow-up steps, i.e., mapping mutations to causal genes and therapeutic targets to further the development of novel therapies, has nevertheless been very limited. This is because most mutations associated with diseases lie in inter-genic regions including the so-called regulatory genome. Additionally, no genetic causes are apparent for many diseases including neurodegenerative disorders. A complementary approach is therefore gaining interest, namely to focus on epigenetic control of the disease to generate more complete functional genomic maps. To this end, several recent studies have generated large-scale epigenetic datasets in a disease context to form a link between genotype and phenotype. We focus DNA methylation and important histone marks, where recent advances have been made thanks to technology improvements, cost effectiveness, and large meta-scale epigenome consortia efforts. We summarize recent studies unravelling the mechanistic understanding of epigenetic processes in disease development and progression. Moreover, we show how methodology advancements enable causal relationships to be established, and we pinpoint the most important issues to be addressed by future research.
Collapse
|
45
|
Han R, Li L, Ugalde AP, Tal A, Manber Z, Barbera EP, Chiara VD, Elkon R, Agami R. Functional CRISPR screen identifies AP1-associated enhancer regulating FOXF1 to modulate oncogene-induced senescence. Genome Biol 2018; 19:118. [PMID: 30119690 PMCID: PMC6097335 DOI: 10.1186/s13059-018-1494-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/27/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Functional characterization of non-coding elements in the human genome is a major genomic challenge and the maturation of genome-editing technologies is revolutionizing our ability to achieve this task. Oncogene-induced senescence, a cellular state of irreversible proliferation arrest that is enforced following excessive oncogenic activity, is a major barrier against cancer transformation; therefore, bypassing oncogene-induced senescence is a critical step in tumorigenesis. Here, we aim at further identification of enhancer elements that are required for the establishment of this state. RESULTS We first apply genome-wide profiling of enhancer-RNAs (eRNAs) to systematically identify enhancers that are activated upon oncogenic stress. DNA motif analysis of these enhancers indicates AP-1 as a major regulator of the transcriptional program induced by oncogene-induced senescence. We thus constructed a CRISPR-Cas9 sgRNA library designed to target senescence-induced enhancers that are putatively regulated by AP-1 and used it in a functional screen. We identify a critical enhancer that we name EnhAP1-OIS1 and validate that mutating the AP-1 binding site within this element results in oncogene-induced senescence bypass. Furthermore, we identify FOXF1 as the gene regulated by this enhancer and demonstrate that FOXF1 mediates EnhAP1-OIS1 effect on the senescence phenotype. CONCLUSIONS Our study elucidates a novel cascade mediated by AP-1 and FOXF1 that regulates oncogene-induced senescence and further demonstrates the power of CRISPR-based functional genomic screens in deciphering the function of non-coding regulatory elements in the genome.
Collapse
Affiliation(s)
- Ruiqi Han
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Li Li
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Alejandro Piñeiro Ugalde
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Arieh Tal
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Zohar Manber
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Eric Pinto Barbera
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Veronica Della Chiara
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Reuven Agami
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Department of Genetics, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Kaiser VB, Semple CA. Chromatin loop anchors are associated with genome instability in cancer and recombination hotspots in the germline. Genome Biol 2018; 19:101. [PMID: 30060743 PMCID: PMC6066925 DOI: 10.1186/s13059-018-1483-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 07/13/2018] [Indexed: 01/07/2023] Open
Abstract
Background Chromatin loops form a basic unit of interphase nuclear organization, with chromatin loop anchor points providing contacts between regulatory regions and promoters. However, the mutational landscape at these anchor points remains under-studied. Here, we describe the unusual patterns of somatic mutations and germline variation associated with loop anchor points and explore the underlying features influencing these patterns. Results Analyses of whole genome sequencing datasets reveal that anchor points are strongly depleted for single nucleotide variants (SNVs) in tumours. Despite low SNV rates in their genomic neighbourhood, anchor points emerge as sites of evolutionary innovation, showing enrichment for structural variant (SV) breakpoints and a peak of SNVs at focal CTCF sites within the anchor points. Both CTCF-bound and non-CTCF anchor points harbour an excess of SV breakpoints in multiple tumour types and are prone to double-strand breaks in cell lines. Common fragile sites, which are hotspots for genome instability, also show elevated numbers of intersecting loop anchor points. Recurrently disrupted anchor points are enriched for genes with functions in cell cycle transitions and regions associated with predisposition to cancer. We also discover a novel class of CTCF-bound anchor points which overlap meiotic recombination hotspots and are enriched for the core PRDM9 binding motif, suggesting that the anchor points have been foci for diversity generated during recent human evolution. Conclusions We suggest that the unusual chromatin environment at loop anchor points underlies the elevated rates of variation observed, marking them as sites of regulatory importance but also genomic fragility. Electronic supplementary material The online version of this article (10.1186/s13059-018-1483-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vera B Kaiser
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK.
| | - Colin A Semple
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| |
Collapse
|
47
|
Diament A, Tuller T. Modeling three-dimensional genomic organization in evolution and pathogenesis. Semin Cell Dev Biol 2018; 90:78-93. [PMID: 30030143 DOI: 10.1016/j.semcdb.2018.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/08/2018] [Indexed: 12/17/2022]
Abstract
The regulation of gene expression is mediated via the complex three-dimensional (3D) conformation of the genetic material and its interactions with various intracellular factors. Various experimental and computational approaches have been developed in recent years for understating the relation between the 3D conformation of the genome and the phenotypes of cells in normal condition and diseases. In this review, we will discuss novel approaches for analyzing and modeling the 3D genomic conformation, focusing on deciphering disease-causing mutations that affect gene expression. We conclude that as this is a very challenging mission, an important direction should involve the comparative analysis of various 3D models from various organisms or cells.
Collapse
Affiliation(s)
- Alon Diament
- Dept. of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tamir Tuller
- Dept. of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; The Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
48
|
Abstract
CTCF, Zinc-finger protein, has been identified as a multifunctional transcription factor that regulates gene expression through various mechanisms, including recruitment of other co-activators and binding to promoter regions of target genes. Furthermore, it has been proposed to be an insulator protein that contributes to the establishment of functional three-dimensional chromatin structures. It can disrupt transcription through blocking the connection between an enhancer and a promoter. Previous studies revealed that the onset of various diseases, including breast cancer, could be attributed to the aberrant expression of CTCF itself or one or more of its target genes. In this review, we will describe molecular dysfunction involving CTCF that induces tumorigenesis and summarize the functional roles of CTCF in breast cancer.
Collapse
Affiliation(s)
- Sumin Oh
- Laboratory of Biomedical Genomics, Department of Biological Science, and Research Institute of Women's Health, Sookmyung Women's University, Seoul 04310, Korea
| | - Chaeun Oh
- Laboratory of Biomedical Genomics, Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| | - Kyung Hyun Yoo
- Laboratory of Biomedical Genomics, Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| |
Collapse
|
49
|
Mutation hotspots at CTCF binding sites coupled to chromosomal instability in gastrointestinal cancers. Nat Commun 2018; 9:1520. [PMID: 29670109 PMCID: PMC5906695 DOI: 10.1038/s41467-018-03828-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/15/2018] [Indexed: 01/06/2023] Open
Abstract
Tissue-specific driver mutations in non-coding genomic regions remain undefined for most cancer types. Here, we unbiasedly analyze 212 gastric cancer (GC) whole genomes to identify recurrently mutated non-coding regions in GC. Applying comprehensive statistical approaches to accurately model background mutational processes, we observe significant enrichment of non-coding indels (insertions/deletions) in three gastric lineage-specific genes. We further identify 34 mutation hotspots, of which 11 overlap CTCF binding sites (CBSs). These CBS hotspots remain significant even after controlling for a genome-wide elevated mutation rate at CBSs. In 3 out of 4 tested CBS hotspots, mutations are nominally associated with expression change of neighboring genes. CBS hotspot mutations are enriched in tumors showing chromosomal instability, co-occur with neighboring chromosomal aberrations, and are common in gastric (25%) and colorectal (19%) tumors but rare in other cancer types. Mutational disruption of specific CBSs may thus represent a tissue-specific mechanism of tumorigenesis conserved across gastrointestinal cancers. The impact of non-coding somatic mutations in gastric cancer is unknown. Here, using whole genome sequencing data from 212 gastric tumors, the authors identify recurring mutations at specific CTCF binding sites that are common across gastrointestinal cancers and associated with chromosomal instability.
Collapse
|
50
|
In-depth characterization of the cisplatin mutational signature in human cell lines and in esophageal and liver tumors. Genome Res 2018; 28:654-665. [PMID: 29632087 PMCID: PMC5932606 DOI: 10.1101/gr.230219.117] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 03/13/2018] [Indexed: 12/18/2022]
Abstract
Cisplatin reacts with DNA and thereby likely generates a characteristic pattern of somatic mutations, called a mutational signature. Despite widespread use of cisplatin in cancer treatment and its role in contributing to secondary malignancies, its mutational signature has not been delineated. We hypothesize that cisplatin's mutational signature can serve as a biomarker to identify cisplatin mutagenesis in suspected secondary malignancies. Knowledge of which tissues are at risk of developing cisplatin-induced secondary malignancies could lead to guidelines for noninvasive monitoring for secondary malignancies after cisplatin chemotherapy. We performed whole genome sequencing of 10 independent clones of cisplatin-exposed MCF-10A and HepG2 cells and delineated the patterns of single and dinucleotide mutations in terms of flanking sequence, transcription strand bias, and other characteristics. We used the mSigAct signature presence test and nonnegative matrix factorization to search for cisplatin mutagenesis in hepatocellular carcinomas and esophageal adenocarcinomas. All clones showed highly consistent patterns of single and dinucleotide substitutions. The proportion of dinucleotide substitutions was high: 8.1% of single nucleotide substitutions were part of dinucleotide substitutions, presumably due to cisplatin's propensity to form intra- and interstrand crosslinks between purine bases in DNA. We identified likely cisplatin exposure in nine hepatocellular carcinomas and three esophageal adenocarcinomas. All hepatocellular carcinomas for which clinical data were available and all esophageal cancers indeed had histories of cisplatin treatment. We experimentally delineated the single and dinucleotide mutational signature of cisplatin. This signature enabled us to detect previous cisplatin exposure in human hepatocellular carcinomas and esophageal adenocarcinomas with high confidence.
Collapse
|