1
|
Hashizume O, Kawabe T, Funato Y, Miki H. Intestinal Mg 2+ accumulation induced by cnnm mutations decreases the body size by suppressing TORC2 signaling in Caenorhabditis elegans. Dev Biol 2024; 509:59-69. [PMID: 38373693 DOI: 10.1016/j.ydbio.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Mg2+ is a vital ion involved in diverse cellular functions by forming complexes with ATP. Intracellular Mg2+ levels are tightly regulated by the coordinated actions of multiple Mg2+ transporters, such as the Mg2+ efflux transporter, cyclin M (CNNM). Caenorhabditis elegans (C. elegans) worms with mutations in both cnnm-1 and cnnm-3 exhibit excessive Mg2+ accumulation in intestinal cells, leading to various phenotypic abnormalities. In this study, we investigated the mechanism underlying the reduction in body size in cnnm-1; cnnm-3 mutant worms. RNA interference (RNAi) of gtl-1, which encodes a Mg2+-intake channel in intestinal cells, restored the worm body size, confirming that this phenotype is due to excessive Mg2+ accumulation. Moreover, RNAi experiments targeting body size-related genes and analyses of mutant worms revealed that the suppression of the target of rapamycin complex 2 (TORC2) signaling pathway was involved in body size reduction, resulting in downregulated DAF-7 expression in head ASI neurons. As the DAF-7 signaling pathway suppresses dauer formation under stress, cnnm-1; cnnm-3 mutant worms exhibited a greater tendency to form dauer upon induction. Collectively, our results revealed that excessive accumulation of Mg2+ repressed the TORC2 signaling pathway in C. elegans worms and suggest the novel role of the DAF-7 signaling pathway in the regulation of their body size.
Collapse
Affiliation(s)
- Osamu Hashizume
- Laboratory of Biorecognition Chemistry, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan; Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tomofumi Kawabe
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yosuke Funato
- Laboratory of Biorecognition Chemistry, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan; Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hiroaki Miki
- Laboratory of Biorecognition Chemistry, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan; Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
2
|
Chen YS, Gehring K. New insights into the structure and function of CNNM proteins. FEBS J 2023; 290:5475-5495. [PMID: 37222397 DOI: 10.1111/febs.16872] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023]
Abstract
Magnesium (Mg2+ ) is the most abundant divalent cation in cells and plays key roles in almost all biological processes. CBS-pair domain divalent metal cation transport mediators (CNNMs) are a newly characterized class of Mg2+ transporters present throughout biology. Originally discovered in bacteria, there are four CNNM proteins in humans, which are involved in divalent cation transport, genetic diseases, and cancer. Eukaryotic CNNMs are composed of four domains: an extracellular domain, a transmembrane domain, a cystathionine-β-synthase (CBS)-pair domain, and a cyclic nucleotide-binding homology domain. The transmembrane and CBS-pair core are the defining features of CNNM proteins with over 20 000 protein sequences known from over 8000 species. Here, we review the structural and functional studies of eukaryotic and prokaryotic CNNMs that underlie our understanding of their regulation and mechanism of ion transport. Recent structures of prokaryotic CNNMs confirm the transmembrane domain mediates ion transport with the CBS-pair domain likely playing a regulatory role through binding divalent cations. Studies of mammalian CNNMs have identified new binding partners. These advances are driving progress in understanding this deeply conserved and widespread family of ion transporters.
Collapse
Affiliation(s)
- Yu Seby Chen
- Department of Biochemistry & Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Kalle Gehring
- Department of Biochemistry & Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Yu Y, Chen J, An L, Huang T, Wang W, Cheng Z, Wang L, Xu X, Zhao Z, Fu X, Ma J. Knockdown of phosphatases of regenerating liver-1 prolongs the lifespan of Caenorhabditis elegans via activating DAF-16/FOXO. FASEB J 2023; 37:e22844. [PMID: 36906287 DOI: 10.1096/fj.202202003r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023]
Abstract
Phosphatases of regenerating liver (PRLs) are dual-specificity protein phosphatases. The aberrant expression of PRLs threatens human health, but their biological functions and pathogenic mechanisms are unclear yet. Herein, the structure and biological functions of PRLs were investigated using the Caenorhabditis elegans (C. elegans). Structurally, this phosphatase in C. elegans, named PRL-1, consisted of a conserved signature sequence WPD loop and a single C(X)5 R domain. Besides, by Western blot, immunohistochemistry and immunofluorescence staining, PRL-1 was proved to mainly express in larval stages and express in intestinal tissues. Afterward, by feeding-based RNA-interference method, knockdown of prl-1 prolonged the lifespan of C. elegans but also improved their healthspan, such as locomotion, pharyngeal pumping frequency, and defecation interval time. Furthermore, the above effects of prl-1 appeared to be taken without acting on germline signaling, diet restriction pathway, insulin/insulin-like growth factor 1 signaling pathway, and SIR-2.1 but through a DAF-16-dependent pathway. Moreover, knockdown of prl-1 induced the nuclear translocation of DAF-16, and upregulated the expression of daf-16, sod-3, mtl-1, and ctl-2. Finally, suppression of prl-1 also reduced the ROS. In conclusion, suppression of prl-1 enhanced the lifespan and survival quality of C. elegans, which provides a theoretical basis for the pathogenesis of PRLs in related human diseases.
Collapse
Affiliation(s)
- Yaoru Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jing Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Lu An
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Tianci Huang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Wenbo Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Ziqi Cheng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Lu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xuesong Xu
- Clinical Laboratory of China-Japan Union Hospital, Jilin University, Changchun, China
| | - Zhizhuang Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Xueqi Fu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Junfeng Ma
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
4
|
Lu R, Chen J, Wang F, Wang L, Liu J, Lin Y. Lysosome Inhibition Reduces Basal and Nutrient-Induced Fat Accumulation in Caenorhabditis elegans. Mol Cells 2022; 45:649-659. [PMID: 36058890 PMCID: PMC9448645 DOI: 10.14348/molcells.2022.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022] Open
Abstract
A long-term energy nutritional imbalance fundamentally causes the development of obesity and associated fat accumulation. Lysosomes, as nutrient-sensing and lipophagy centers, critically control cellular lipid catabolism in response to nutrient deprivation. However, whether lysosome activity is directly involved in nutrient-induced fat accumulation remains unclear. In this study, worm fat accumulation was induced by 1 mM glucose or 0.02 mM palmitic acid supplementation. Along with the elevation of fat accumulation, lysosomal number and acidification were also increased, suggesting that lysosome activity might be correlated with nutrient-induced fat deposition in Caenorhabditis elegans. Furthermore, treatments with the lysosomal inhibitors chloroquine and leupeptin significantly reduced basal and nutrient-induced fat accumulation in C. elegans. The knockdown of hlh-30, which is a critical gene in lysosomal biogenesis, also resulted in worm fat loss. Finally, the mutation of aak-2, daf-15, and rsks-1 showed that mTORC1 (mechanistic target of rapamycin complex-1) signaling mediated the effects of lysosomes on basal and nutrient-induced fat accumulation in C. elegans. Overall, this study reveals the previously undescribed role of lysosomes in overnutrition sensing, suggesting a new strategy for controlling body fat accumulation.
Collapse
Affiliation(s)
- Rui Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Juan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fangbin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Yan Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
5
|
Funato Y, Miki H. The emerging roles and therapeutic potential of cyclin M/CorC family of Mg 2+ transporters. J Pharmacol Sci 2021; 148:14-18. [PMID: 34924118 DOI: 10.1016/j.jphs.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 11/15/2022] Open
Abstract
Cyclin M (CNNM) and its prokaryotic ortholog CorC belong to a family of proteins that function as Mg2+-extruding transporters by stimulating Na+/Mg2+ exchange, and thereby control intracellular Mg2+ levels. The Mg2+-extruding function of CNNM is inhibited by the direct binding of an oncogenic protein, phosphatase of regenerating liver (PRL), and this inhibition is responsible for the PRL-driven malignant progression of cancers. Studies with mouse strains deficient for the CNNM gene family revealed the importance of CNNM4 and CNNM2 in maintaining organismal Mg2+ homeostasis by participating in intestinal Mg2+ absorption and renal reabsorption, respectively. Moreover, CNNM proteins are involved in various diseases, and gene mutations in CNNM2 and CNNM4 cause dominant familial hypomagnesemia and Jalili syndrome, respectively. Genome wide association studies have also revealed the importance of CNNM2 in multiple major diseases, such as hypertension and schizophrenia. Collectively, the molecular and biological characterizations of CNNM/CorC show that they are an intriguing therapeutic target; the current status of drug development targeting these proteins is also discussed.
Collapse
Affiliation(s)
- Yosuke Funato
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hiroaki Miki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, 2-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
6
|
Wu Y, Funato Y, Meschi E, Jovanoski KD, Miki H, Waddell S. Magnesium efflux from Drosophila Kenyon cells is critical for normal and diet-enhanced long-term memory. eLife 2020; 9:61339. [PMID: 33242000 PMCID: PMC7843133 DOI: 10.7554/elife.61339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Dietary magnesium (Mg2+) supplementation can enhance memory in young and aged rats. Memory-enhancing capacity was largely ascribed to increases in hippocampal synaptic density and elevated expression of the NR2B subunit of the NMDA-type glutamate receptor. Here we show that Mg2+ feeding also enhances long-term memory in Drosophila. Normal and Mg2+-enhanced fly memory appears independent of NMDA receptors in the mushroom body and instead requires expression of a conserved CNNM-type Mg2+-efflux transporter encoded by the unextended (uex) gene. UEX contains a putative cyclic nucleotide-binding homology domain and its mutation separates a vital role for uex from a function in memory. Moreover, UEX localization in mushroom body Kenyon cells (KCs) is altered in memory-defective flies harboring mutations in cAMP-related genes. Functional imaging suggests that UEX-dependent efflux is required for slow rhythmic maintenance of KC Mg2+. We propose that regulated neuronal Mg2+ efflux is critical for normal and Mg2+-enhanced memory. The proverbial saying ‘you are what you eat’ perfectly summarizes the concept that our diet can influence both our mental and physical health. We know that foods that are good for the heart, such as nuts, oily fish and berries, are also good for the brain. We know too that vitamins and minerals are essential for overall good health. But is there any evidence that increasing your intake of specific vitamins or minerals could help boost your brain power? While it might sound almost too good to be true, there is some evidence that this is the case for at least one mineral, magnesium. Studies in rodents have shown that adding magnesium supplements to food improves how well the animals perform on memory tasks. Both young and old animals benefit from additional magnesium. Even elderly rodents with a condition similar to Alzheimer’s disease show less memory loss when given magnesium supplements. But what about other species? Wu et al. now show that magnesium supplements also boost memory performance in fruit flies. One group of flies was fed with standard cornmeal for several days, while the other group received cornmeal supplemented with magnesium. Both groups were then trained to associate an odor with a food reward. Flies that had received the extra magnesium showed better memory for the odor when tested 24 hours after training. Wu et al. show that magnesium improves memory in the flies via a different mechanism to that reported previously for rodents. In rodents, magnesium increased levels of a receptor protein for a brain chemical called glutamate. In fruit flies, by contrast, the memory boost depended on a protein that transports magnesium out of neurons. Mutant flies that lacked this transporter showed memory impairments. Unlike normal flies, those without the transporter showed no memory improvement after eating magnesium-enriched food. The results suggest that the transporter may help adjust magnesium levels inside brain cells in response to neural activity. Humans produce four variants of this magnesium transporter, each encoded by a different gene. One of these transporters has already been implicated in brain development. The findings of Wu et al. suggest that the transporters may also act in the adult brain to influence cognition. Further studies are needed to test whether targeting the magnesium transporter could ultimately hold promise for treating memory impairments.
Collapse
Affiliation(s)
- Yanying Wu
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Oxford, United Kingdom
| | - Yosuke Funato
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Eleonora Meschi
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Oxford, United Kingdom
| | - Kristijan D Jovanoski
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Oxford, United Kingdom
| | - Hiroaki Miki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Oxford, United Kingdom
| |
Collapse
|
7
|
The Oncogenic PRL Protein Causes Acid Addiction of Cells by Stimulating Lysosomal Exocytosis. Dev Cell 2020; 55:387-397.e8. [DOI: 10.1016/j.devcel.2020.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/15/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022]
|
8
|
Huang J, Wu Z, Zhang X. Short-Term Mild Temperature-Stress-Induced Alterations in the C. elegans Phosphoproteome. Int J Mol Sci 2020; 21:ijms21176409. [PMID: 32899194 PMCID: PMC7504583 DOI: 10.3390/ijms21176409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/22/2022] Open
Abstract
Exposure to mild early-life stresses can slow down aging, and protein phosphorylation might be an essential regulator in this process. However, the mechanisms of phosphorylation-based signaling networks during mild early-life stress remain elusive. Herein, we systematically analyzed the phosphoproteomes of Caenorhabditis elegans, which were treated with three mild temperatures (15 °C, 20 °C, and 25 °C) in two different short-term groups (10 min and 60 min). By utilizing an iTRAQ-based quantitative phosphoproteomic approach, 18,187 phosphosites from 3330 phosphoproteins were detected in this study. Volcano plots illustrated that the phosphorylation abundance of 374 proteins and 347 proteins, were significantly changed at 15 °C and 25 °C, respectively. Gene ontology, KEGG pathway and protein-protein interaction network analyses revealed that these phosphoproteins were primarily associated with metabolism, translation, development, and lifespan determination. A motif analysis of kinase substrates suggested that MAPK, CK, and CAMK were most likely involved in the adaption processes. Moreover, 16 and 14 aging-regulated proteins were found to undergo phosphorylation modifications under the mild stresses of 15 °C and 25 °C, respectively, indicating that these proteins might be important for maintaining long-term health. Further lifespan experiments confirmed that the candidate phosphoproteins, e.g., EGL-27 and XNP-1 modulated longevity at 15 °C, 20 °C, and 25 °C, and they showed increased tolerance to thermal and oxidative stresses. In conclusion, our findings offered data that supports understanding of the phosphorylation mechanisms involved in mild early-life stresses in C. elegans. Data are available via ProteomeXchange with identifier PXD021081.
Collapse
Affiliation(s)
- Jichang Huang
- Correspondence: (J.H.); (X.Z.); Tel.: +86-021-3124-6575 (X.Z.)
| | | | - Xumin Zhang
- Correspondence: (J.H.); (X.Z.); Tel.: +86-021-3124-6575 (X.Z.)
| |
Collapse
|
9
|
Kozlov G, Funato Y, Chen YS, Zhang Z, Illes K, Miki H, Gehring K. PRL3 pseudophosphatase activity is necessary and sufficient to promote metastatic growth. J Biol Chem 2020; 295:11682-11692. [PMID: 32571875 PMCID: PMC7450121 DOI: 10.1074/jbc.ra120.014464] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Indexed: 01/07/2023] Open
Abstract
Phosphatases of regenerating liver (PRLs) are markers of cancer and promote tumor growth. They have been implicated in a variety of biochemical pathways but the physiologically relevant target of phosphatase activity has eluded 20 years of investigation. Here, we show that PRL3 catalytic activity is not required in a mouse model of metastasis. PRL3 binds and inhibits CNNM4, a membrane protein associated with magnesium transport. Analysis of PRL3 mutants specifically defective in either CNNM-binding or phosphatase activity demonstrate that CNNM binding is necessary and sufficient to promote tumor metastasis. As PRLs do have phosphatase activity, they are in fact pseudo-pseudophosphatases. Phosphatase activity leads to formation of phosphocysteine, which blocks CNNM binding and may play a regulatory role. We show levels of PRL cysteine phosphorylation vary in response to culture conditions and in different tissues. Examination of related protein phosphatases shows the stability of phosphocysteine is a unique and evolutionarily conserved property of PRLs. The demonstration that PRL3 functions as a pseudophosphatase has important ramifications for the design of PRL inhibitors for cancer.
Collapse
Affiliation(s)
- Guennadi Kozlov
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Yosuke Funato
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yu Seby Chen
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Zhidian Zhang
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Katalin Illes
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Hiroaki Miki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kalle Gehring
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada, For correspondence: Kalle Gehring,
| |
Collapse
|
10
|
Manjarrez JR, Mailler R. Stress and timing associated with Caenorhabditis elegans immobilization methods. Heliyon 2020; 6:e04263. [PMID: 32671240 PMCID: PMC7339059 DOI: 10.1016/j.heliyon.2020.e04263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/12/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background Caenorhabditis elegans is a model organism used to study gene, protein, and cell influence on function and behavior. These studies frequently require C. elegans to be immobilized for imaging or laser ablation experiments. There are a number of known techniques for immobilizing worms, but to our knowledge, there are no comprehensive studies of the various agents in common use today. New method This study determines the relationship between concentration, immobilization time, exposure time, and recovery likelihood for several immobilization agents. The agents used in this study are 1-Phenoxy-2-propanol, levamisole, sodium azide, polystyrene beads, and environmental cold shock. These tests are conducted using a humidified chamber to keep chemical concentrations consistent. Each of these agents is also tested to determine if they exhibit stress-related after effects using the gcs-1, daf-16, hsp-4, hif-1, hsp-16.2, and tmem-135 stress reporters. Results We present a range of quick mount immobilization and recovery conditions for each agent tested. This study shows that, under controlled conditions, 1-Phenoxy-2-propanol shows significant stress from the daf-16 reporter. While 1-Phenoxy-2-propanol and sodium azide both create stress related after effects with long term recovery in the case of the hsp-16.2 reporter. Comparison with existing method(s) This study shows that commonly used concentrations of immobilizing agents are ineffective when evaporation is prevented. Conclusions To improve reproducibility of results it is essential to use consistent concentrations of immobilizing agents. It is also critically important to account for stress-related after effects elicited by immobilization agents when designing any experiment.
Collapse
Affiliation(s)
| | - Roger Mailler
- University of Tulsa, 800 S. Tucker Dr., Tulsa, OK, 74104, USA
| |
Collapse
|
11
|
Hashizume O, Funato Y, Yamazaki D, Miki H. Excessive Mg 2+ Impairs Intestinal Homeostasis by Enhanced Production of Adenosine Triphosphate and Reactive Oxygen Species. Antioxid Redox Signal 2020; 33:20-34. [PMID: 32148064 DOI: 10.1089/ars.2019.7951] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aims: Mg2+ is fundamental for life, and its shortage severely impairs vital functions. However, whether excessive Mg2+ has beneficial or adverse effects has remained unknown. To clarify this issue, we analyzed the effect of suppressing the functions of Cyclin M (CNNM) Mg2+ efflux transporters in various experimental systems. Results: Investigation of short-lived Caenorhabditis elegans worms mutated for CNNM genes revealed reactive oxygen species (ROS) augmentation in intestinal cells, coincidently with high levels of Mg2+. Knockdown of gtl-1, encoding Mg2+-incorporating channel into intestinal cells, reduced ROS levels and restored life span, confirming the causative role of excessive Mg2+. Also, inactivation of orthologous CNNM in human cultured cells and mice by RNA interference, expression of CNNM-inhibiting protein, phosphatase of regenerating liver 3, or gene knockout resulted in ROS overproduction. Moreover, biochemical analyses revealed that excessive Mg2+ stimulates adenosine triphosphate overproduction and accelerates mitochondrial electron transport, whose suppression shut down ROS generation. Innovation and Conclusion: These results provide definitive evidence that excessive Mg2+ drives overproduction of ROS by affecting energy metabolism, implying the crucial importance of the tight regulation of intracellular Mg2+ levels.
Collapse
Affiliation(s)
- Osamu Hashizume
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yosuke Funato
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Daisuke Yamazaki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Hiroaki Miki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| |
Collapse
|
12
|
Blackwell TK, Sewell AK, Wu Z, Han M. TOR Signaling in Caenorhabditis elegans Development, Metabolism, and Aging. Genetics 2019; 213:329-360. [PMID: 31594908 PMCID: PMC6781902 DOI: 10.1534/genetics.119.302504] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 07/18/2019] [Indexed: 12/30/2022] Open
Abstract
The Target of Rapamycin (TOR or mTOR) is a serine/threonine kinase that regulates growth, development, and behaviors by modulating protein synthesis, autophagy, and multiple other cellular processes in response to changes in nutrients and other cues. Over recent years, TOR has been studied intensively in mammalian cell culture and genetic systems because of its importance in growth, metabolism, cancer, and aging. Through its advantages for unbiased, and high-throughput, genetic and in vivo studies, Caenorhabditis elegans has made major contributions to our understanding of TOR biology. Genetic analyses in the worm have revealed unexpected aspects of TOR functions and regulation, and have the potential to further expand our understanding of how growth and metabolic regulation influence development. In the aging field, C. elegans has played a leading role in revealing the promise of TOR inhibition as a strategy for extending life span, and identifying mechanisms that function upstream and downstream of TOR to influence aging. Here, we review the state of the TOR field in C. elegans, and focus on what we have learned about its functions in development, metabolism, and aging. We discuss knowledge gaps, including the potential pitfalls in translating findings back and forth across organisms, but also describe how TOR is important for C. elegans biology, and how C. elegans work has developed paradigms of great importance for the broader TOR field.
Collapse
Affiliation(s)
- T Keith Blackwell
- Research Division, Joslin Diabetes Center, Department of Genetics, Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts
| | - Aileen K Sewell
- Department of MCDB, University of Colorado at Boulder, and
- Howard Hughes Medical Institute, Boulder, Colorado
| | - Ziyun Wu
- Research Division, Joslin Diabetes Center, Department of Genetics, Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts
| | - Min Han
- Department of MCDB, University of Colorado at Boulder, and
- Howard Hughes Medical Institute, Boulder, Colorado
| |
Collapse
|
13
|
Molecular function and biological importance of CNNM family Mg2+ transporters. J Biochem 2018; 165:219-225. [DOI: 10.1093/jb/mvy095] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
|
14
|
Role of AMP activated protein kinase signaling pathway in intestinal development of mammals. Ann Anat 2018; 220:51-54. [DOI: 10.1016/j.aanat.2018.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022]
|
15
|
Won J, Kim JH, Oh SB. Molecular expression of Mg 2+ regulator TRPM7 and CNNM4 in rat odontoblasts. Arch Oral Biol 2018; 96:182-188. [PMID: 30278312 DOI: 10.1016/j.archoralbio.2018.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/05/2018] [Accepted: 09/19/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Magnesium, the second most abundant cation in cellular fluid, is critical for mineralization of hard tissues. Among the molecules involved in cellular Mg2+ homeostasis, functional impairment of Mg2+ permeable ion channel TRPM7 or Mg2+ transporter CNNM4 have been found to result in severe hypomineralization of the enamel and dentin. However, molecular expressions of TRPM7, CNNM4 and their respective homologues have not been fully investigated in adult odontoblasts. DESIGN Expressions of TRPM6, TRPM7, CNNM1, CNNM2, CNNM3, CNNM4 were screened in acutely dissociated rat odontoblasts by single cell RT-PCR. Among these candidates, expression levels of TRPM7 and CNNM4 were compared along the odontoblast layer by immunohistochemical analysis. Finally, the coexpression pattern of TRPM7 and CNNM4 in subcellular regions was examined by immunocytochemical analysis. RESULTS ScRT-PCR revealed high expression rate of TRPM7 and CNNM4 in odontoblasts, with CNNM4 detected almost exclusively in TRPM7-positive odontoblasts. However, CNNM2 and CNNM3 were detected in only a small population of odontoblasts, and TRPM6 and CNNM1 were not detected even in the pulp tissue. Immunohistochemical analysis revealed higher CNNM4 expression in the apical odontoblast layer than the coronal area, in contrast to the ubiquitous expression of TRPM7. Lastly, immunocytochemical analysis revealed colocalization of CNNM4 with TRPM7 in the odontoblastic process. CONCLUSIONS CNNM4 and TRPM7 may serve as main Mg2+ regulators in odontoblasts, possibly with selective involvement of CNNM4 in apical dentin formation or mineralization. Colocalization of TRPM7 and CNNM4 in the odontoblastic process suggest functional coupling of these two molecules to maintain Mg2+ homeostasis.
Collapse
Affiliation(s)
- Jonghwa Won
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji Hyun Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seog Bae Oh
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea; Dental Research Institute and Department of Neurobiology & Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Funato Y, Furutani K, Kurachi Y, Miki H. CrossTalk proposal: CNNM proteins are Na + /Mg 2+ exchangers playing a central role in transepithelial Mg 2+ (re)absorption. J Physiol 2018; 596:743-746. [PMID: 29383719 DOI: 10.1113/jp275248] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Yosuke Funato
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuharu Furutani
- Department of Pharmacology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, USA
| | - Yoshihisa Kurachi
- Department of Pharmacology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroaki Miki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|